KR101230787B1 - Agent and method for control insect using entomopathogenic nematode Rhabditis blumi - Google Patents
Agent and method for control insect using entomopathogenic nematode Rhabditis blumi Download PDFInfo
- Publication number
- KR101230787B1 KR101230787B1 KR1020100129266A KR20100129266A KR101230787B1 KR 101230787 B1 KR101230787 B1 KR 101230787B1 KR 1020100129266 A KR1020100129266 A KR 1020100129266A KR 20100129266 A KR20100129266 A KR 20100129266A KR 101230787 B1 KR101230787 B1 KR 101230787B1
- Authority
- KR
- South Korea
- Prior art keywords
- nematode
- pest control
- moth
- nematodes
- control agent
- Prior art date
Links
- 241000238631 Hexapoda Species 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 22
- 241001494143 Rhabditis blumi Species 0.000 title claims description 5
- 230000000967 entomopathogenic effect Effects 0.000 title description 10
- 241000244206 Nematoda Species 0.000 claims abstract description 172
- 241000607479 Yersinia pestis Species 0.000 claims abstract description 89
- 230000001717 pathogenic effect Effects 0.000 claims abstract description 31
- 241000130993 Scarabaeus <genus> Species 0.000 claims abstract description 8
- 241000894006 Bacteria Species 0.000 claims description 83
- 241000341864 Providencia vermicola Species 0.000 claims description 28
- 239000003795 chemical substances by application Substances 0.000 claims description 22
- 241000196324 Embryophyta Species 0.000 claims description 20
- 235000010149 Brassica rapa subsp chinensis Nutrition 0.000 claims description 13
- 235000000536 Brassica rapa subsp pekinensis Nutrition 0.000 claims description 13
- 241000499436 Brassica rapa subsp. pekinensis Species 0.000 claims description 13
- 241000254173 Coleoptera Species 0.000 claims description 8
- 235000013311 vegetables Nutrition 0.000 claims description 7
- 241000894007 species Species 0.000 claims description 6
- 241000255969 Pieris brassicae Species 0.000 claims description 5
- 244000144730 Amygdalus persica Species 0.000 claims description 4
- 241000983034 Anomala orientalis Species 0.000 claims description 4
- 241000255896 Galleria mellonella Species 0.000 claims description 4
- 241000907661 Pieris rapae Species 0.000 claims description 4
- 235000006040 Prunus persica var persica Nutrition 0.000 claims description 4
- 241000254062 Scarabaeidae Species 0.000 claims description 4
- 241000588813 Alcaligenes faecalis Species 0.000 claims description 3
- 241001641310 Cunea Species 0.000 claims description 3
- 241000254171 Curculionidae Species 0.000 claims description 3
- 241000589564 Flavobacterium sp. Species 0.000 claims description 3
- 241000555303 Mamestra brassicae Species 0.000 claims description 3
- 229940005347 alcaligenes faecalis Drugs 0.000 claims description 3
- 230000031068 symbiosis, encompassing mutualism through parasitism Effects 0.000 claims description 3
- 241000218475 Agrotis segetum Species 0.000 claims description 2
- 229920000742 Cotton Polymers 0.000 claims description 2
- 241000721047 Danaus plexippus Species 0.000 claims description 2
- 241001531327 Hyphantria cunea Species 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 241001009347 Spoladea recurvalis Species 0.000 claims description 2
- 235000013399 edible fruits Nutrition 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 241000256248 Spodoptera Species 0.000 claims 2
- 241001367049 Autographa Species 0.000 claims 1
- 241000688231 Curculio elephas Species 0.000 claims 1
- 241001573484 Dichocrocis Species 0.000 claims 1
- 241000012186 Litura Species 0.000 claims 1
- 244000061176 Nicotiana tabacum Species 0.000 claims 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 claims 1
- 241000130840 Palpita Species 0.000 claims 1
- 241000500439 Plutella Species 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 11
- 241001646398 Pseudomonas chlororaphis Species 0.000 abstract description 2
- 244000144977 poultry Species 0.000 abstract description 2
- 238000001228 spectrum Methods 0.000 abstract description 2
- 230000007918 pathogenicity Effects 0.000 description 29
- 241000255777 Lepidoptera Species 0.000 description 25
- 230000012010 growth Effects 0.000 description 22
- 241000589565 Flavobacterium Species 0.000 description 14
- 241000256259 Noctuidae Species 0.000 description 10
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 10
- 239000002609 medium Substances 0.000 description 10
- 208000015181 infectious disease Diseases 0.000 description 8
- 230000002458 infectious effect Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- 240000007124 Brassica oleracea Species 0.000 description 6
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 6
- 241000500437 Plutella xylostella Species 0.000 description 6
- 241000255893 Pyralidae Species 0.000 description 6
- 239000003242 anti bacterial agent Substances 0.000 description 6
- 229940088710 antibiotic agent Drugs 0.000 description 6
- 238000011081 inoculation Methods 0.000 description 6
- 235000015097 nutrients Nutrition 0.000 description 6
- 230000035755 proliferation Effects 0.000 description 6
- 235000015112 vegetable and seed oil Nutrition 0.000 description 6
- 239000008158 vegetable oil Substances 0.000 description 6
- 241000256844 Apis mellifera Species 0.000 description 5
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 5
- 238000005273 aeration Methods 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 235000012000 cholesterol Nutrition 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 210000000936 intestine Anatomy 0.000 description 5
- 238000004806 packaging method and process Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 4
- 241000255964 Pieridae Species 0.000 description 4
- 241000244173 Rhabditis Species 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 210000000436 anus Anatomy 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 230000000749 insecticidal effect Effects 0.000 description 4
- 239000001974 tryptic soy broth Substances 0.000 description 4
- 108010050327 trypticase-soy broth Proteins 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 241001523406 Heterorhabditis Species 0.000 description 3
- 241001148062 Photorhabdus Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000000799 fluorescence microscopy Methods 0.000 description 3
- 230000009545 invasion Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 239000012138 yeast extract Substances 0.000 description 3
- 241001415070 Arctiinae Species 0.000 description 2
- 241001367035 Autographa nigrisigna Species 0.000 description 2
- 208000035143 Bacterial infection Diseases 0.000 description 2
- 241000219198 Brassica Species 0.000 description 2
- 235000003351 Brassica cretica Nutrition 0.000 description 2
- 235000012905 Brassica oleracea var viridis Nutrition 0.000 description 2
- 235000003343 Brassica rupestris Nutrition 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 241000672182 Conogethes punctiferalis Species 0.000 description 2
- 241000832202 Diaphania indica Species 0.000 description 2
- 241001523412 Heterorhabditis bacteriophora Species 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 244000088415 Raphanus sativus Species 0.000 description 2
- 235000006140 Raphanus sativus var sativus Nutrition 0.000 description 2
- 241000244178 Rhabditidae Species 0.000 description 2
- 206010040047 Sepsis Diseases 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 241000256247 Spodoptera exigua Species 0.000 description 2
- 241000985245 Spodoptera litura Species 0.000 description 2
- 241001480238 Steinernema Species 0.000 description 2
- 241000607757 Xenorhabdus Species 0.000 description 2
- 241001466336 Yponomeutidae Species 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 208000022362 bacterial infectious disease Diseases 0.000 description 2
- 239000012681 biocontrol agent Substances 0.000 description 2
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000306 component Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 210000002615 epidermis Anatomy 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000000214 mouth Anatomy 0.000 description 2
- 235000010460 mustard Nutrition 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003950 pathogenic mechanism Effects 0.000 description 2
- 230000002688 persistence Effects 0.000 description 2
- 230000000361 pesticidal effect Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 230000001018 virulence Effects 0.000 description 2
- 239000012103 Alexa Fluor 488 Substances 0.000 description 1
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 1
- 235000017647 Brassica oleracea var italica Nutrition 0.000 description 1
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 1
- 244000178937 Brassica oleracea var. capitata Species 0.000 description 1
- 241000721021 Curculio Species 0.000 description 1
- 238000006234 Dowd ring expansion reaction Methods 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 241000255890 Galleria Species 0.000 description 1
- 241000237858 Gastropoda Species 0.000 description 1
- 241001465746 Heterorhabditidae Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 241001133383 Phasmarhabditis hermaphrodita Species 0.000 description 1
- 241000588768 Providencia Species 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 241001480223 Steinernema carpocapsae Species 0.000 description 1
- 241001465745 Steinernematidae Species 0.000 description 1
- 241001240492 Tipula oleracea Species 0.000 description 1
- 244000111306 Torreya nucifera Species 0.000 description 1
- 235000006732 Torreya nucifera Nutrition 0.000 description 1
- 244000195452 Wasabia japonica Species 0.000 description 1
- 235000000760 Wasabia japonica Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000853 biopesticidal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 235000021186 dishes Nutrition 0.000 description 1
- 230000000835 effect on nematodes Effects 0.000 description 1
- 235000013345 egg yolk Nutrition 0.000 description 1
- 210000002969 egg yolk Anatomy 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000012757 fluorescence staining Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 231100000225 lethality Toxicity 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012092 media component Substances 0.000 description 1
- 239000012533 medium component Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000034655 secondary growth Effects 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000012128 staining reagent Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- -1 succinimidyl ester Chemical class 0.000 description 1
- 230000002889 sympathetic effect Effects 0.000 description 1
- 210000000246 tooth germ Anatomy 0.000 description 1
- 235000008939 whole milk Nutrition 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/10—Animals; Substances produced thereby or obtained therefrom
- A01N63/12—Nematodes
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/20—Bacteria; Substances produced thereby or obtained therefrom
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Chemical & Material Sciences (AREA)
- Virology (AREA)
- Agronomy & Crop Science (AREA)
- Plant Pathology (AREA)
- Environmental Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Dentistry (AREA)
- Genetics & Genomics (AREA)
- Pest Control & Pesticides (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
본 발명은 곤충병원성 선충 랍디티스 블루미(랍디티스 블루미)를 포함하는 해충 방제제 및 해충 방제 방법을 제공한다. 본 발명의 곤충병원성 선충 랍디티스 블루미를 포함하는 해충 방제제는 인시류 및 풍뎅이류를 포함한 해충들에 대한 폭넓은 방제 스펙트럼을 갖고 있어 기존 생물학적 방제제에 비해 큰 방제 효과를 거둘 수 있다.The present invention provides a pest control agent and a pest control method comprising the insect pathogenic nematode Raptidis blummi . Insect control agents including the insect pathogenic nematode lapditis blueme of the present invention has a broad control spectrum for pests, including poultry and scarabs, can achieve a greater control effect than conventional biological control agents.
Description
본 발명은 곤충병원성 선충 랍디티스 블루미(Rhabditis blumi)를 포함하는 해충 방제제 및 해충 방제 방법에 관한 것이다.
The present invention relates to a pest control agent and a pest control method including the insect pathogenic nematode Rhabditis blumi .
경제성장에 따른 국민생활의 질적 향상과 식품의 안전성에 대한 사회적 관심의 증대로 친환경 농산물의 시장은 폭발적으로 증가하여 1990년 후반 이후 지난 5년 동안 친환경 농산물 생산은 매년 70% 이상의 급속한 성장세를 나타내고 있다. The market for eco-friendly agricultural products has exploded due to the improvement of the quality of people's living and the social interest in food safety due to economic growth, and the production of eco-friendly agricultural products has been growing more than 70% every year for the past 5 years since the late 1990s. .
친환경 농산물의 생산을 위해 현재 사용되고 있는 화학적 살충제를 대신할 해충 방제 방법으로서 곤충병원성 선충(entomopathogenic nematode)을 이용한 천적개념의 생물학적 방제가 효과적인 방법으로 주목받고 있다. As a pest control method to replace the chemical insecticides currently used for the production of eco-friendly agricultural products, biological control of the natural concept using the entomological pathogenic nematode (entomopathogenic nematode) is attracting attention as an effective method.
현재 알려져 있는 곤충병원성 선충으로는 Steinernema spp.(Steinernematidae)과 Heterorhabditis spp.(Heterorhabditidae)가 있으며, 이들은 각각 공생세균인 Xenorhabdus spp.와 Photorhabdus spp.와 특이적으로 결합하여 곤충의 입, 항문, 또는 표피의 기공 등을 통해 기주에 침입한 후 공생세균을 분비하며, 방출된 공생세균은 패혈증을 일으켜 기주를 48시간 이내에 치사시키는 살충기작을 지니고 있다(Marcek et al., 1988; Clarke and Dowds, 1995; Gerritsen et al., 1998; Grewal and Georgis, 1999). 이러한 곤충병원성 선충은 포장에서의 오랜 지속성과 넓은 기주범위, 유용동물에 대한 안전성, 살포의 용이함, 감염된 기주해충을 통한 이차적인 증식을 통하여 재생산되어 토양서식 해충 방제에 유용한 천적개념의 생물방제제로 평가받고 있다(Kaya and Gaugler, 1993).Currently known insect pathogenic nematodes are Steinernema spp. (Steinernematidae) and Heterorhabditis spp. (Heterorhabditidae), each of which is the symbiotic bacteria Xenorhabdus spp. and Photorhabdus It specifically binds to the host through the pores of the insect's mouth, anus, or epidermis and secretes symbiotic bacteria. The released symbiotic bacteria have a pesticidal mechanism that causes sepsis to kill the host within 48 hours. (Marcek et al., 1988; Clarke and Dowds, 1995; Gerritsen et al., 1998; Grewal and Georgis, 1999). These insect pathogenic nematodes are evaluated as natural biocontrol agents that are reproduced through long-term persistence in the field, wide host range, safety for useful animals, ease of spreading, and secondary growth through infected host pests, and are useful for controlling soil-type pests. (Kaya and Gaugler, 1993).
곤충병원성 선충은 기술적으로 활용가능성이 높은 여러 가지 특성을 나타내지만, 기주해충 내에서 선충의 병원성발현에 주요한 영향을 미치는 공생세균과의 단단한 공생관계로 인하여 기존 선충의 살충성 개량에 어려움이 존재한다. 따라서, 한국의 환경에 생태학적으로 안전하고 고살충성을 나타내는 새로운 곤충병원성 선충을 개발할 필요가 있다.
Insect pathogenic nematodes have various technically highly available characteristics, but there is a difficulty in improving the insecticidal properties of existing nematodes due to the tight symbiotic relationship with the symbiotic bacteria which have a major influence on the pathogenic expression of nematodes in host pests. . Therefore, there is a need to develop a new insect pathogenic nematode that is ecologically safe and highly insecticidal in the Korean environment.
본 발명은 새로운 곤충병원성 선충을 개발하고 이를 이용한 해충 방제제 및 해충 방제 방법을 제공하고자 한다.
The present invention is to develop a new insect pathogenic nematode and to provide a pest control and pest control method using the same.
본 발명자들은 새로운 곤충병원성 선충의 개발을 위해, 여러가지 기주해충에 곤충병원성 선충이 존재하는지에 대한 연구를 거듭하였다. 그 결과, 등얼룩풍뎅이(Blitopertha orientalis) 유충으로부터 곤충병원성 선충의 특성을 나타내는 선충을 채집하였으며, ITS sequence과 형태학적 분석을 이용하여 동정한 결과, 상기 선충이 랍디티스 블루미(Rhabditis blumi, Nematoda: Rhabditidae)임을 확인하였다. The present inventors conducted a study on the presence of insect pathogenic nematodes in various host pests for the development of new insect pathogenic nematodes. As a result, a nematode that exhibited the characteristics of an insect pathogenic nematode was collected from a Blitopertha orientalis larva and identified using an ITS sequence and morphological analysis. The nematode was identified as Rhabditis blumi, Nematoda: Rhabditidae).
지금까지 랍디티스 블루미가 곤충병원성을 갖는다는 사실은 밝혀진 적이 없으며, 랍디티스 블루미가 세균 프로비덴시아 버미콜라( Providencia vermicola ), 플라보박테리움( Flavobacterium sp.) 및 알칼리제네스 패칼리스(Alcaligenes faecalis)와 공생한다는 사실 또한 밝혀진 적이 없다. 본 발명은 랍디티스 블루미가 프로비덴시아 버미콜라, 플라보박테리움 및 알칼리제네스 패칼리스와 공생하며, 기주해충에 선충이 침입하여 이들 공생세균을 분비함으로써 기주해충을 죽인다는 사실, 그리고 랍디티스 블루미가 이들 공생세균에 의해 영양분을 공급받아 증식 및 성장한다는 사실에 대해 처음으로 밝혔다.Until now, the fact that Micah has a blue tooth rapdi entomopathogenic was never found, rapdi Micah Blue tooth germs Providencia beomi Cola (Providencia vermicola), Flavobacterium (Flavobacterium sp.) and Alcaligenes faecalis have not been identified. The present invention relates to the fact that the lobidis blumi coexists with Providencia vermicola, flavobacterium and alkaline genes facalis, and nematodes invade the host pests to secrete these symbiotic bacteria to kill host pests, and It is the first time that rice is nutrientd by these symbiotic bacteria to grow and grow.
따라서, 본 발명은 곤충병원성 선충 랍디티스 블루미를 포함하는 해충 방제제를 제공한다.Accordingly, the present invention provides a pest control agent comprising the insect pathogenic nematode Raptitis blubmi.
곤충병원성 선충은 곤충의 입, 항문, 또는 표피의 기공 등을 통해 기주 해충에 침입한 후 공생세균을 분비하며, 방출된 공생세균이 패혈증을 일으켜 기주 해충을 치사시키는 살충기작을 지니고 있다. 따라서, 본 발명자들은 곤충병원성 선충 랍디티스 블루미의 공생세균에 대해 조사하였으며, 그 결과, 프로비덴시아 버미콜라, 플라보박테리움, 및 알칼리제네스 패칼리스가 랍디티스 블루미의 공생세균인 것으로 확인되었다. Insect pathogenic nematodes secrete symbiotic bacteria after invading host pests through the pores of the insect's mouth, anus, or epidermis, and the released symbiotic bacteria have a pesticidal mechanism that kills host pests by causing sepsis. Therefore, the present inventors investigated the symbiotic bacteria of the entomopathogenic nematode rabditis blummi, and as a result, it was confirmed that Providencia vermicola, flavobacterium, and alkali genes facalis are the symbiotic bacteria of lobidis blummi. It became.
따라서, 본 발명의 한 구체예에서, 상기 해충 방제제는 프로비덴시아 버미콜라, 플라보박테리움, 및 알칼리제네스 패칼리스로 이루어진 군으로부터 선택되는 하나 이상의 선충공생세균을 포함할 수 있다. 이러한 선충공생세균은 랍디티스 블루미의 장내에 존재할 수 있지만, 랍디티스 블루미의 체외로 분비되어 해충 방제제의 제제 내에 존재할 수도 있다. Thus, in one embodiment of the present invention, the pest control agent may include one or more nematode symbiotic bacteria selected from the group consisting of Providencia vermicola, Flavobacterium, and Alkogenes facalis. Such nematode bacteria may be present in the intestine of the lobidis blush, but may also be secreted out of the lobidis blush in the formulation of a pest control agent.
상기 해충 방제제는 곤충병원성 선충외에 제제화를 위해 물과 같은 일반적인 담체를 포함할 수 있다. 또한, 곤충병원성 선충을 포함하는 해충 방제제에서 일반적으로 포함하고 있는 성분들을 추가로 포함할 수 있다. 예를 들어, 과 이의 공생 세균의 생장을 위한 성분을 포함할 수 있다. 이러한 성분으로는 효모 추출물, 콜레스테롤 및 식물성 오일 등이 포함될 수 있다.The pest control agent may include a general carrier such as water for formulation in addition to the insect pathogenic nematode. In addition, it may further include components generally included in pest control agents including entomopathogenic nematodes. For example, it may include a component for the growth of and its symbiotic bacteria. Such ingredients may include yeast extracts, cholesterol, vegetable oils, and the like.
상기 랍디티스 블루미의 병원성을 조사한 결과, 랍디티스 블루미는 인시류 해충 또는 풍뎅이류 해충에 대한 병원성을 갖고 있는 것으로 확인되었다. As a result of investigating the pathogenicity of the lobidis blummi, it was confirmed that the rabidis blummi has a pathogenicity against an insect pest or a scarab pest.
상기 인시류에 속하는 해충은 이에 제한되는 것은 아니나, 거세미나방(Agrotis segetum) (Lepidoptera: Noctuidae), 배추흰나비(Artogeia rapae) (Lepidoptera: Pieridae), 검은은무늬나방(Autographa nigrisigna) (Lepidoptera: Noctuidae), 복숭아명나방(Dichocrocis punctiferalis) (Lepidoptera: Pyralidae), 미국흰불나방(Hyphanria cunea) (Lepidoptera: Arctiidae), 흰띠명나방(Hymenia recurvalis) (Lepidoptera: Pyralidae), 도둑나방(Mamestra brassicae) (Lepidoptera: Noctuidae), 목화바둑명나방(Palpita indica) (Lepidoptera: Pieridae), 배추좀나방(Plutella xylostella) (Lepidoptera: Yponomeutidae), 파밤나방(Spodoptera exigua) (Lepidoptera: Noctuidae), 담배거세미나방(Spodoptera litura) (Lepidoptera: Noctuidae) 및 꿀벌부채명나방(Galleria mellonella) (Lepidoptera: Pyralidae) 등을 포함한다. Pests belonging to the species are not limited thereto, but are not limited to Agrotis segetum (Lepidoptera: Noctuidae), Cabbage butterfly (Artogeia rapae) (Lepidoptera: Pieridae), and black-leaved moth (Autographa nigrisigna) (Lepidoptera: Noctuidae) ), Dichocrocis punctiferalis (Lepidoptera: Pyralidae), American White Moth (Hyphanria cunea) (Lepidoptera: Arctiidae), White Belted Moth (Lepidoptera: Pyralidae), Thief Moth (Mamestra brassicae) (Lepidoptera: Noctuidae, Palpita indica (Lepidoptera: Pieridae), Chinese cabbage moth (Plutella xylostella) (Lepidoptera: Yponomeutidae), Spodoptera exigua (Lepidoptera: Noctuidae), Spodoptera litura (Lepidoptera: Noctuidae) and Honeybee moth (Galleria mellonella) (Lepidoptera: Pyralidae).
상기 풍뎅이류의 해충으로는 이에 제한되는 것은 아니나, 등얼룩풍뎅이(Blitopertha orientalis) (Coleoptera: Scarabaeidae) 또는 밤바구미(Curculio sikkimensis) (Coleoptera: Curculionidae)를 포함한다.The pests of the scarabs include, but are not limited to, Blitopertha orientalis (Coleoptera: Scarabaeidae) or Curkio sikkimensis (Coleoptera: Curculionidae).
본 발명은 또한 곤충병원성 선충 랍디티스 블루미를 포함하는 해충 방제제를 식물에 처리하는 것을 포함하는 해충의 방제 방법을 제공한다. 앞서 설명한 바와 같이, 상기 해충 방제제는 프로비덴시아 버미콜라, 플라보박테리움, 및 알칼리제네스 패칼리스로 이루어진 군으로부터 선택되는 하나 이상의 선충공생세균을 포함할 수 있다. 이러한 해충 방제제는 1 x 107 내지 1 x 1012 IJs/ha의 농도로 식물에 처리될 수 있다. 비용과 방제 효과를 고려할 때, 상기 해충 방제제는 3 x 1010 내지 1 x 1010 IJs/ha의 농도로 식물에 처리되는 것이 바람직하다.The present invention also provides a method for controlling pests, comprising treating a plant with a pest control agent comprising an insect pathogenic nematode lapidis blush. As described above, the pest control agent may include at least one nematode symbiosis bacteria selected from the group consisting of Providencia vermicola, Flavobacterium, and alkali genes facalis. Such pest control agents can be treated on plants at a concentration of 1 × 10 7 to 1 × 10 12 IJs / ha. Considering the cost and control effect, the pest control agent is preferably treated to plants at a concentration of 3 x 10 10 to 1 x 10 10 IJs / ha.
한편, 상기 해충 방제제를 이용하여 해충에 의한 피해를 방지할 수 있는 식물은 특별히 제한되지 않는다. 앞서 설명한 인시류 해충이나 풍뎅이류 해충이 해를 끼치고 있는 식물이라면 어떠한 것이든 방제의 대상이 될 수 있다. 이러한 식물로는 과채류, 엽채류, 화훼류 등이 포함된다. 바람직하게는 상기 식물은 십자화과 식물일 수 있다. 십자화과에는 배추, 무, 열무, 양배추, 브로콜리, 갓, 겨자, 냉이 등의 주요 작물이 포함된다.
On the other hand, the plant that can prevent damage caused by pests using the pest control agent is not particularly limited. Any of the above mentioned plant or pest beetles may be a target for control. Such plants include fruit, leafy vegetables, flowers and the like. Preferably the plant may be a cruciferous plant. Cruciferous plants include major crops such as cabbage, radish, radish, cabbage, broccoli, fresh, mustard, and wasabi.
본 발명의 곤충병원성 선충 랍디티스 블루미를 포함하는 해충 방제제는 인시류 및 풍뎅이류를 포함한 해충들에 대한 폭넓은 방제 스펙트럼을 갖고 있어 기존 생물학적 방제제에 비해 큰 방제 효과를 거둘 수 있다.
Insect control agents including the insect pathogenic nematode lapditis blueme of the present invention has a broad control spectrum for pests, including poultry and scarabs, can achieve a greater control effect than conventional biological control agents.
도 1A는 곤충병원성 선충 랍디티스 블루미가 기주해충의 기문을 통해 침입함을 보여주고, 도 1B는 선충의 침입 후 기주해충은 세균감염으로 인하여 몸체가 검정색으로 변하고 치사됨을 보여준다.
도 2는 곤충병원성 선충 랍디티스 블루미의 공생세균을 염색한 후 선충과 배양하여 이를 형광현미경으로 관찰한 결과를 보여준다.Figure 1A shows that the insect pathogenic nematode lapditis blubmi invade through the gate of the host pests, Figure 1B shows that the host pests after the invasion of the nematode turned black and lethal due to bacterial infection.
Figure 2 shows the results observed by fluorescence microscopy after staining the sympathetic bacteria of the insect pathogenic nematode lapditis blue rice staining.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described in detail below. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the technical field to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims.
[[ 실시예Example ]]
해충의 준비Preparation of pests
랍디티스 블루미 선충의 병원성 검정을 위하여, 공주와 수원의 유기농 농가에서 거세미나방A grot is segetum (Lepidoptera: Noctuidae), 배추흰나비Artogeia rapae (Lepidoptera: Pieridae), 검은은무늬나방 Autographa nigrisigna (Lepidoptera: Noctuidae), 복숭아명나방Dichocrocis punctiferalis (Lepidoptera: Pyralidae), 미국흰불나방 Hyphanria cunea (Lepidoptera: Arctiidae), 흰띠명나방 Hymenia recurvalis (Lepidoptera: Pyralidae), 도둑나방 Mamestra brassicae (Lepidoptera: Noctuidae), 목화바둑명나방 Palpita indica (Lepidoptera: Pieridae), 배추좀나방 Plutella xylostella (Lepidoptera: Yponomeutidae), 파밤나방 Spodoptera exigua (Lepidoptera: Noctuidae), 담배거세미나방 Spodoptera litura (Lepidoptera: Noctuidae)을 포함한 11가지 인시류 해충의 3령과 4령충을 채집하였으며, 농업과학기술원 원예연구소로부터 3령과 4령의 꿀벌부채명나방 Galleria mellonella (Lepidoptera: Pyralidae)을 공급받아 총 12종의 인시류 해충을 준비하였다.For the pathogenicity test of Rabditis blummi nematodes, Geogeunbang in organic farms in Gongju and Suwon A grot is segetum (Lepidoptera: Noctuidae), Cabbage Butterfly Artogeia rapae (Lepidoptera: Pieridae) , Black Silver Moth Autographa nigrisigna (Lepidoptera: Noctuidae), Peach Moth Dichocrocis punctiferalis (Lepidoptera: Pyralidae), American White Bull Moth Hyphanria cunea (Lepidoptera: Arctiidae), White-Banded Moth Hymenia recurvalis (Lepidoptera: Pyralidae), Thief Moth Mamestra brassicae (Lepidoptera: Noctuidae), Cotton Monarch Palpita indica (Lepidoptera: Pieridae), Chinese cabbage moth Plutella xylostella (Lepidoptera: Yponomeutidae), Pabamoth Moth Spodoptera exigua (Lepidoptera: Noctuidae), Tobacco Giant Spodoptera litura 3 and 4 larvae of 11 species of insect pests including (Lepidoptera: Noctuidae) were collected and 3 and 4 bee-beeped moth Galleria from the Horticultural Research Institute mellonella (Lepidoptera: Pyralidae) was supplied to prepare a total of 12 species of species.
파주 소재 서원골프클럽과 고양의 야산에서 각각 풍뎅이류 해충인 등얼룩풍뎅이 Blitopertha orientalis (Coleoptera: Scarabaeidae)와 밤바구미Curculio sikkimensis (Coleoptera: Curculionidae)를 채집하여 총 두 종의 풍뎅이류 해충을 준비하였다.
Scarab beetle Blitopertha orientalis (Coleoptera: Scarabaeidae) and Bab wee Curculio , respectively, at the Seowon Golf Club in Paju Two species of scarab pests were prepared by collecting sikkimensis (Coleoptera: Curculionidae).
실시예Example 1: 여러 가지 해충에 대한 1: against various pests 랍디티스Rabditis 블루미의Blume's 병원성 검정 ( Pathogenicity test ( 기주범위탐색Host Range Search ))
실험실 수준에서 각 해충에 대한 랍디티스 블루미의 병원성을 검정하기 위하여, 처리구당 30마리씩의 건전한 3령과 4령의 유충을 사용하여 페트리디쉬법에 의거 100 감염태선충(IJs)/larva의 농도로 감염태 선충을 접종하고, 배양기에서 25oC 로 온도를 유지한 후 24시간마다 죽은 사체에서 선충의 유무를 확인하여 5일 후와 10일 후 기주해충의 치사율을 계산하였다.In order to test the pathogenicity of Rapditis blummi for each pest at the laboratory level, concentrations of 100 infectious nematodes (IJs) / larva according to Petri dishes using 30 healthy 3 and 4 larvae per treatment. Inoculated with nematode nematode, and maintained the temperature at 25 o C in the incubator and confirmed the presence of nematodes in dead carcasses every 24 hours to calculate the mortality of host pests after 5 days and 10 days.
현미경 관찰 결과, 랍디티스 블루미 선충은 기주해충의 기문이나 항문을 통하여 침입함을 알 수 있었다(도 1A). 선충의 침입 후 기주해충은 세균감염으로 인하여 몸체가 검정색으로 변하고 결국 치사되었다(도 1B). As a result of microscopic observation, it can be seen that the rabdis bleu nematode invades through the gate or anus of the host pest (FIG. 1A). After the nematode invasion, the host pests turned black due to bacterial infection and eventually died (FIG. 1B).
선충의 병원성은 해충의 종류에 따라 차이를 나타내었다 (F=40.39; df=13,56; P<0.001). 하기 표 1에 나타낸 바와 같이, 선충을 처리한 후 5일째, 거세미나방과 복숭아명나방을 제외한 모든 해충에서70-90%의 치사율이 관찰되었다. 노출시간을 5일에서 10일로 연장하였을 때, 거세미나방과 복숭아명나방의 치사율은 각각 0에서 81.1%, 34.4%에서 85.6%로 증가하였으나, 다른 해충의 치사율은 증가하지 않았다. 랍디티스 블루미가 분리되었던 등얼룩풍뎅이의 경우 94.4%의 가장 높은 치사율을 나타내었다.
The pathogenicity of nematodes differed according to the type of pest (F = 40.39; df = 13,56; P <0.001). As shown in Table 1 below, on day 5 after treatment with nematodes, a mortality of 70-90% was observed in all pests except castration moth and peach moth. When the exposure time was extended from 5 days to 10 days, the mortality rate of macropods and peach moths increased from 0 to 81.1% and 34.4% to 85.6%, respectively, but the mortality of other pests did not increase. The dorsal beetle, which had been isolated from Rabditis blueme, had the highest mortality rate of 94.4%.
[표 1][Table 1]
본 연구에 사용된 랍디티스 블루미는 풍뎅이류 유충에서 분리되어 등얼룩풍뎅이 유충에서 가장 높은 병원성을 나타내지만, 나방류나 파리 유충에 대해서도 비교적 높은 병원성을 보이고 있어 대상해충 모두의 방제에 대해서 적합한 방제수단이라고 판단되었다.
Lobditis blummi used in this study was isolated from the scarab larvae and showed the highest pathogenicity in the scarab beetle larvae. However, it has a relatively high pathogenicity against moths and fly larvae. Judging.
실시예Example 2: 2: 십자화과Cruciferous family 식물에 해를 가하는 세 가지 해충에 대한 Against three pests that harm plants 랍디티스Rabditis 블루미의Blume's 병원성 검정 Pathogenicity test
십자화과 식물을 가해하는 대표적인 세 가지 해충- 배추흰나비, 도둑나방, 배추좀나방에 대한 랍디티스 블루미의 병원성을 네 가지 농도에서 검증하였다. 처리구당 90마리씩의 건전한 3령과 4령의 유충을 사용하여 페트리디쉬법에 의거 10, 20, 40, 그리고 80 IJs/larva의 농도로 선충을 접종하고, 배양기에서 25oC 로 온도를 유지하고 24시간마다 해충의 치사유무를 관찰하였다. The pathogenicity of the lobidis bumimi against three representative pests-cabbage butterfly, burglar moth, and cabbage moth on cruciferous plants was tested at four concentrations. Inoculate nematodes at concentrations of 10, 20, 40, and 80 IJs / larva according to Petri Dish using 90 healthy 3 and 4 larvae per treatment, and maintain the temperature at 25 o C in the incubator. Pest mortality was observed every 24 hours.
하기 표 2에 나타낸 바와 같이, 선충의 처리농도(F=1064.4; df=4,60; P<0.001) 가 증가할수록 각 해충의 치사율을 높게 관찰되었고, 해충의 령수(F=37.3; df=1,60; P<0.001)가 증가할수록 높은 치사율이 관찰되었다. 배추흰나비의 경우 각 해충당 10에서 80마리까지 농도로 선충을 처리하였을 때, 3령과 4령에서 각각 24.5%에서 79.4%와 23.4%에서 88.2%의 치사율이 관찰되었다. 도둑나방의 경우 3령에서 72.0%, 4령에서 77.8%의 치사율을 나타내었고, 배추좀나방의 경우 3령과 4령에서 각각 87.5%, 93.5%의 치사율을 나타내었다. 세 가지 해충에서 배추좀나방 4령충에 80마리의 감염태 선충을 처리하였을 때 가장 높은 치사율이 관찰되었다.
As shown in Table 2 below, as the nematode treatment concentration (F = 1064.4; df = 4,60; P <0.001) was increased, the mortality of each pest was observed, and the age of the pest (F = 37.3; df = 1). , 60; P <0.001), higher mortality was observed. In the case of cabbage butterfly, when the nematodes were treated at the concentration of 10 to 80 per pest, the mortality rate was 24.5% to 79.4% and 23.4% to 88.2% at 3 and 4 years, respectively. In case of thief moths, the mortality rate was 72.0% in 3rd age and 77.8% in 4th age, and the cabbage moths showed 87.5% and 93.5% in 3rd and 4th age, respectively. The highest mortality was observed when 80 insect infectious nematodes were treated to four insects of Chinese cabbage moth.
[표 2][Table 2]
각 해충의 4령에서 선충에 대한 감수성이 증가하는 이유는 해충의 크기가 커질수록 선충이 침입할 수 있는 기문, 입, 항문 등의 크기가 커져 선충의 침입이 상대적으로 유리하다고 판단되었다. 다른 곤충병원성 선충인 S. carpocapsae 선충의 경우에서도 배추좀나방과 배추흰나비의 영수가 증가할수록 선충이 쉽게 침입하는 결과를 나타내었다 (Beair, G., Fournier, Y., Dauphinais, N. (2003) Efficacy of steinernematid nematodes against three insect pests of crucifers in Quebec. J. Nematol. 35, 259-265).The reason why susceptibility to nematodes was increased at 4 ages of each pest was that the larger the size of the pests, the larger the size of the gate, mouth and anus, which the nematodes can invade, and thus the invasion of nematodes was relatively favorable. Other Insect Pathogenic Nematodes, S. carpocapsae In the case of nematodes, nematodes easily invaded as the number of cabbage moths and cabbage butterfly increased. (Beair, G., Fournier, Y., Dauphinais, N. (2003) Efficacy of steinernematid nematodes against three insect pests of crucifers in Quebec. J. Nematol . 35, 259-265).
표 2에서 측정된 데이터를 이용하여 반수치사농도(LD50)와 반수치사시간(LT50)을 측정하였다. 그 결과, 하기 표 3에 나타낸 바와 같이, 해충의 영수가 커질수록 LD50 값이 작아지고 LT50 값이 커지는 경향을 나타내었다. 세 가지 해충의 LT50와 LT50은 각각 대략 25.7-48.2 IJs/larva와 53.2-88.0 h으로 측정되었다. 반수치사 농도를 근거로 사용하여 랍디티스 블루미의 병원성 발현은 배추좀나방, 배추흰나비, 도둑나방 순으로 측정되었다.
Using the data measured in Table 2 was measured the half-numerous concentration (LD 50 ) and half-numbered mortality (LT 50 ). As a result, as shown in Table 3, as the number of pests increased, the LD 50 value decreased and the LT 50 value increased. The LT 50 and LT 50 of the three pests were estimated to be approximately 25.7-48.2 IJs / larva and 53.2-88.0 h, respectively. Based on the semi-lethal concentration, the pathogenic expression of Rhabditis blummi was measured in the order of Chinese cabbage moth, Chinese cabbage butterfly, and thief moth.
[표 3] [Table 3]
실시예Example 3: 포트 실험 3: port experiment
파종한 지 50일이 지난 배추모종을 플라스틱 상자 (30 x 30 x 28.5 cm)에 3모씩 넣었다. 배추모종당 유충의 종류와 영수를 구분하여 각각 10마리씩 잎에 부착시킨 후, 유충이 완전히 정착할 수 있도록 2시간 동안 방치하였다. 유충의 정착 유무를 확인한 후, 각 상자에 각각 3,000, 9,000, 그리고 12,000마리의 선충이 포함된 선충용액 30 ml을 휴대용 분무기를 사용하여 살포하였다. 무처리구는 살균수 30 ml을 살포하였다. 플라스틱 상자는 25oC, 상대습도 60±5%인 생장상에 넣은 다음, 처리 7일 후 유충의 치사유무를 관찰하였다. 실험은 3회 반복으로 수행하였다.Cabbage seedlings, 50 days after planting, were placed in plastic boxes (30 x 30 x 28.5 cm), 3 each. The larvae per cabbage seedlings and the number of larvae were separated and attached to the leaves of 10 each, and left for 2 hours to fully settle the larvae. After confirming the larvae settled, 30 ml of nematode solution containing 3,000, 9,000, and 12,000 nematodes in each box was sprayed using a portable sprayer. The untreated group was sprayed with 30 ml of sterilized water. The plastic crates were placed on growth at 25 ° C. and 60 ± 5% relative humidity, and then observed for 7 days after treatment. The experiment was performed in three iterations.
그 결과, 하기 표 4에 나타낸 바와 같이, 랍디티스 블루미선충의 병원성은 해충의 종류(F=30.6; df=2,24; P<0.001)와 선충의 처리농도(F=279.42; df=3,24; P<0.001)가 증가할수록 증가하였다. 배추흰나방의 경우 36.7% 에서 76.7%, 도둑나방은 26.6 %에서 66.7%, 그리고 배추좀나방은 53.3 %에서 93.3% 의 치사율을 나타내었다.
As a result, as shown in the following Table 4, the pathogenicity of the lobitis bemi nematodes is a pest type (F = 30.6; df = 2,24; P <0.001) and the treatment concentration of nematodes (F = 279.42; df = 3). , 24; P <0.001) increased. White cabbage moths showed 36.7% to 76.7%, thief moths to 26.6% to 66.7%, and cabbage moths to 53.3% to 93.3%.
[표 4][Table 4]
실시예Example 4: 포장실험 4: packaging experiment
시설재배지에서 배추흰나비, 도둑나방, 배추좀나방에 대한 랍디티스 블루미의 병원성을 검정하기 위하여 충남연기군 소재 시설하우스 재배지와 경기도 수원소재 시설하우스 재배지에서 쌈추와 적겨자를 대상으로 포장실험을 수행하였다. 각 식물은 30 cm 간격으로 심어져 있었으며, 3.31 m2의 면적을 한 구로 정하여 각각 1 x 1010, 2 x 1010, 그리고 3 x 1010 IJs per ha 의 농도로 10 리터의 선충용액을 살포하였다. 무처리구는 10 리터의 물을 살포하여, 처리 7일 후 아래와 같은 계산식을 사용하여 병원성을 계산하였다.In order to test the pathogenicity of the lobidis bluemi against cabbage white butterfly, thief moth, and Chinese cabbage moth in a facility cultivation field, packaging experiments were carried out in the plant house in Chungnam Yeongi-gun and the plant house in Suwon, Gyeonggi-do. . Each plant was planted at 30 cm intervals, and each plant was sprayed with 10 liters of nematode solution at concentrations of 1 x 10 10 , 2 x 10 10 , and 3 x 10 10 IJs per ha, each with an area of 3.31 m 2 . . The treated area was sprayed with 10 liters of water, and after 7 days of treatment, the pathogenicity was calculated using the following formula.
LR = [1-(Nt / N0) / (Ct / C0)] x 100LR = [1- (N t / N 0 ) / (C t / C 0 )] x 100
N0: 선충처리구에서 선충살포직후 해충의 밀도, Nt: 선충처리구에서 7일 후 해충의 밀도, C0: 무처리구에서 물 살포직후 해충의 밀도, Ct: 무처리구에서 7일후 해충의 밀도. N 0 : pest density after nematode application in nematode, N t : density of pest after 7 days in nematode, C 0 : density of pest immediately after water spraying in untreated, C t : density of pest after 7 days in untreated.
표 5에 나타낸 바와 같이, 시설재배지에서 채소의 종류와 해충의 종류에 따라 선충의 살포효과는 커다란 차이를 나타내었다. 채소의 경우 선충처리에 따른 해충밀도의 감소는 쌈추, 적겨자, 케일의 순으로 관찰되었으며, 대상해충이 배추좀나방, 배추흰나비, 도둑나방 순으로 선충에 대한 감수성이 증가하였다. 쌈추에서의 경우 선충의 처리농도가 1 x 1010 에서 3 x 1010 IJs per ha 로 증가하였을 때, 해충의 종류에 따른 처리효과는 차이가 있었다 (F=134.2; df=2,54; P<0.001). 배추좀나방, 배추흰나비, 그리고 도둑나방의 밀도는 각각 59%에서 88%, 8%에서 29%, 8%에서 37%로 감소하였다. 세 가지 해충 중 배추좀나방 유충에 대한 방제효과가 가장 우수하였다. 배추좀나방의 경우 채소종류에 따른 포장효과 (F=10.8; df=2,18; P<0.001)는 차이를 나타내었고, 선충의 처리농도를 1 x 1010 에서 3 x 1010 IJs per ha 로 증가하였을 때, 케일에서 47%에서 72%로 가장 낮은 방제효과가 관찰되었다.As shown in Table 5, the spreading effect of nematodes differed significantly depending on the types of vegetables and pests in the facility cultivation medium. In the case of vegetables, the decrease of pest density by nematode treatment was observed in the order of Ssamchu, red mustard, and kale, and the susceptibility to nematodes was increased in the order of Chinese cabbage moth, Chinese cabbage butterfly, and thief moth. In the case of Ssamchu, when the nematode concentration increased from 1 x 10 10 to 3 x 10 10 IJs per ha, the treatment effect was different according to the types of pests (F = 134.2; df = 2,54; P < 0.001). The density of Chinese cabbage moth, Chinese cabbage butterfly, and thief moth decreased from 59% to 88%, 8% to 29%, and 8% to 37%, respectively. Among the three pests, the most effective control against Chinese cabbage larvae was. In the case of Chinese cabbage moth, the packaging effect (F = 10.8; df = 2,18; P <0.001) was different according to the kinds of vegetables, and the treatment concentration of nematode was changed from 1 x 10 10 to 3 x 10 10 IJs per ha. When increased, the lowest control effect was observed in kale, from 47% to 72%.
시설재배지에서 포장효과는 포트실험에서 엽채류의 종류에 따른 선충의 지속성 결과와 높은 상관관계를 나타내었다. 채소의 엽면에 잔털은 선충용액의 보유에 유리하게 작용하여 결과적으로 포장효과를 높여준다고 판단되었다.
The packaging effect in the facility cultivation was highly correlated with the results of nematode persistence according to the types of leafy vegetables in the pot test. It was judged that fine hairs on the foliar surface of vegetables favored the retention of nematode solution and consequently increased the packaging effect.
[표 5][Table 5]
실시예Example 5: 공생세균을 이용한 5: using symbiotic bacteria 살충력Insecticidal 검정 black
공생세균은 기주해충의 체혈강에 단독으로 침입할 수 없다. 따라서, 공생세균을 액체배지에서 24 시간 배양하여 혈강주입법에 의해 기주해충의 치사율을 검정하였다. Symbiotic bacteria cannot penetrate into the body blood cavity of host pests alone. Therefore, symbiotic bacteria were cultured in a liquid medium for 24 hours, and the lethality of the host pests was assayed by the blood injection method.
프로비덴시아 버미콜라, 플라보박테리움 및 알칼리제네스 패칼리스 5 ul의 공생세균 용액 (2 x 105, 2 x 106, and 2 x 107 cells/ml in Ringer's solution)을 5 ul씩 랍디티스 블루미 의 체혈강에 직접 투여하여 꿀벌부채명나방 유충에 대한 병원성을 검정하였다. 5 ul of symbiotic bacterium solution (2 x 10 5 , 2 x 10 6 , and 2 x 10 7 cells / ml in Ringer's solution) of Providencia vermicola, Flavobacterium and Alkaliness facalis The pathogenicity of honeybee moth larvae was tested by direct administration to BLU's body cavity.
표 6에서 볼 수 있는 바와 같이, 각 세균의 종류에 따라 병원성은 커다란 차이를 나타내었다 (F=283.8; df=2,36; P<0.001).
As can be seen in Table 6, the pathogenicity of each bacterium was significantly different (F = 283.8; df = 2,36; P <0.001).
[표 6]TABLE 6
프로비덴시아 버미콜라와 플라보박테리움을 1 x 105 처리하여 24시간 경과한 경우, 20% 내외의 병원성을 나타낸 반면, 알칼리제네스 패칼리스와 식염수를 처리한 경우 병원성을 나타내지 않았다. 48시간이 경과한 뒤, 프로비덴시아 버미콜라와 플라보박테리움은 모든 농도에서 100% 병원성을 나타냈지만, 알칼리제네스 패칼리스는 30% 미만의 병원성을 나타내었다. 따라서, 세 가지 세균 중, 프로비덴시아 버미콜라와 플라보박테리움이 선충의 병원성 발현에 결정적인 세균이라 판단되었다. After 24 hours of 1 x 10 5 treatment with Providencia vermicola and Flavobacterium, the pathogenicity was about 20%, whereas the treatment with Alkogenes faecalis and saline did not. After 48 hours, Providencia vermicola and Flavobacterium showed 100% pathogenicity at all concentrations, while Alkogenes facalis showed less than 30% pathogenicity. Therefore, among three bacteria, Providencia vermicola and Flavobacterium were judged to be the determinants of pathogenic expression of nematodes.
실시예Example 6: 6: 무균선충의Sterile nematode 병원성 검정 Pathogenicity test
공생세균의 유무에 의한 선충의 병원성을 측정하기 위하여 무균선충과 감염태선충을 각각 멸균식염수 1 ml에 2,000 마리 농도로 준비하고 5 ul의 선충용액을 꿀벌부채명나방 유충에 직접 투여하였다. 또한 항생제에 의한 병원성의 차이를 검정하기 위해 선충용액에 항생제(500 U/ml of penicillin 와500 ppm of streptomycin) 를 처리하여 꿀벌부채명나방의 혈체강에 직접 투여하였다.In order to determine the pathogenicity of nematodes with or without symbiotic bacteria, aseptic nematodes and infectious nematodes were prepared at a concentration of 2,000 in 1 ml of sterile saline, respectively, and 5 ul of nematode solution was directly administered to honey bee moth larvae. In addition, antibiotics (500 U / ml of penicillin and 500 ppm of streptomycin) were treated with nematode solution directly to the blood cavity of honey bee moths.
그 결과, 표 7에서 볼 수 있는 바와 같이, 선충내부에 공생세균을 없는 무균선충은 120 시간까지 꿀벌부채명나방 유충에 대하여 병원성을 나타내지 않았다.
As a result, as can be seen in Table 7, aseptic nematodes without symbiotic bacteria in nematodes did not show pathogenicity against honeybee larvae until 120 hours.
[표 7][Table 7]
선충처리시 항생제의 유무에 따라 병원성 발현에 커다란 차이를 나타내었다 (t=203.9, P<0.001). 항생제를 포함한 경우 48시간까지 병원성이 발현되지 않다가 120 시간에 100%의 병원성을 나타낸 반면, 항생제를 포함하지 않았을 경우 48시간부터 90%의 병원성을 발현하여 120시간에 100% 병원성을 나타내었다.In nematode treatment, there was a significant difference in pathogenic expression according to the presence or absence of antibiotics ( t = 203.9, P <0.001). In the case of antibiotics, pathogenicity was not expressed until 48 hours, but showed 100% pathogenicity at 120 hours, whereas in the absence of antibiotics, pathogenicity was expressed from 48 hours to 90%, indicating 100% pathogenicity at 120 hours.
일반적으로 무척추 동물에 병원성을 보이는 선충은 결합되어 있는 공생세균과의 조합에 따라 병원성의 차이를 나타내었다 (Wilson, M.J., Glen, D.M., George, S.K. and Pearce, J.D. (1995a) Selection of a bacterium for the mass production of Phasmarhabditis hermaphrodita (Nematoda:Rhabditidae) as a biocontrol agent for slugs. Fundam . appl . Nematol. 18, 419-425). 선충은 공생세균의 운반자 역할을 수행하여 기주해충에 침입한 뒤, 선충의 장내에 존재하는 공생세균이 방출되어 증식함으로써 기주해충의 면역체계를 마비시켜 기주해충을 치사시키는 병원성 기작을 가지고 있다 (Marcek, Z., Hanzal, R., Kodrik, D. (1988) Sites of penetration of juvenile steinernematids and heterorhabditids (Nematoda) into the larvae of Galleria mellonella (Lepidoptera). J. Invertebr . Pathol . 52, 477-478; Clarke, D.J. and Dowds, B.C.A. (1995) Virulence mechanisms of Potorhabdus sp. strain K122 toward wax moth larvae. J. Invertebr. Pathol . 66, 149-155; Gerritsen, L.J.M., Wiegers, G.L. and Smits, P.H. (1998) Pathogenicity of new combinations of Heterorhabditis spp. and Photorhabdus liminescens against Galleria mellonella and Tipula oleracea. Biol . Control 13, 9-15; Grewal, P.S. and Georgis, R. (1999) Entomopathogenic nematodes, In Hall, F.R. and Menn, J.J. (eds), Methods in biotechnology, vol . 5: biopesticides : use and delivery. Humana press Inc., Totowa, NJ. pp. 271-299). 이 때 작용하는 공생세균의 살충력은 무척추동물에 대한 병원성의 발현에 주요한 역할을 수행한다. 항생제가 존재할 때 48 시간에서랍디티스 블루미선충의 병원성이 감소하는 이유는 기주해충내에서 선충으로부터 분비된 공생세균의 증식이 항생제에 의하여 억제되었기 때문이라 사료되며, 이는 공생세균이 선충의 병원성 발현에 중추적인 역할을 수행한다고 판단되는 유용한 근거를 제시하고 있다.
In general, nematodes that are pathogenic to invertebrates have shown pathogenic differences depending on their combination with the associated symbiotic bacteria (Wilson, MJ, Glen, DM, George, SK and Pearce, JD (1995a) Selection of a bacterium for the mass production of Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae) as a biocontrol agent for slugs. Fundam . appl . Nematol . 18, 419-425). Nematodes have a pathogenic mechanism that acts as a carrier of symbiotic bacteria, invades host pests, and then releases and multiplies symbiotic bacteria present in the intestine of the nematodes, paralyzing the host's immune system and killing host pests (Marcek). , Z., Hanzal, R., Kodrik , D. (1988) Sites of penetration of juvenile steinernematids and heterorhabditids (Nematoda) into the larvae of Galleria mellonella (Lepidoptera) J. Invertebr Pathol 52, 477-478;... Clarke , DJ and Dowds, BCA (1995) Virulence mechanisms of Potorhabdus sp. strain K122 toward wax moth larvae. J. Invertebr. Pathol . 66, 149-155; Gerritsen, LJM, Wiegers, GL and Smits, PH (1998) Pathogenicity of new combinations of Heterorhabditis spp. and Photorhabdus liminescens against Galleria mellonella and Tipula oleracea . Biol . Control 13, 9-15; Grewal, PS and Georgis, R. (1999) Entomopathogenic nematodes, In Hall, FR and Menn, JJ (eds), Methods in biotechnology, vol . 5: biopesticides : use and delivery . Humana press Inc., Totowa, NJ. pp. 271-299). Insecticidal activity of symbiotic bacteria acts at this time plays a major role in the expression of pathogenicity to invertebrates. Rhabditis at 48 hours when antibiotics are present Blue reason for pathogenicity is reduced by the US nematode is feed as due to the growth of the symbiotic bacteria secreted from nematodes in the host insect was inhibited by antibiotics, it is determined that the symbiotic bacteria to perform a central role in the virulence expression of the nematode It provides useful evidence.
실시예Example 7: 7: 선충과Nematode 세균의 공생관계 분석 Bacterial Symbiosis Analysis
선충과 세균의 공생관계를 확인하기 위하여 형광염색시약으로 세균을 염색시키고 선충과 배양하였다. 프로비덴시아 버미콜라세균을 형광염색시약으로 염색하기 위하여 nutrient broth에서 24 시간 순수 배양한 후 원심분리하여 배지성분을 제거하였다. 약 3.0 x 1010 cells/ml의 프로비덴시아 버미콜라에 10 ug Alexa Fluor 488 succinimidyl ester (Molecular Probes - Invitrogen, UK)가 녹아있는 100 ul DMSO를 첨가하여 60 분간 상온에서 반응하였다. 살균수를 이용하여 반응하지 않은 형광염색시약을 제거하고 형광으로 염색된 세균을 각각 3.0 x 109 cells/ml의 농도로 첨가하여 선충과 배양하였다. 선충이 세균을 섭식한 후 선충의 장내에서 세균의 위치확인 및 형태변화를 형광현미경으로 관찰하였다(x 200). 도 2에서 볼 수 있는 바와 같이, 선충의 몸통부분의 basal bulb, vesicle, 그리고 선충의 장이 관찰되었으며(도 2a), 같은 선충을 형광현미경으로 관찰하였을 때 basal bulb 아래쪽 vesicle에 파란색으로 염색된 프로비덴시아 버미콜라의 군집을 확인할 수 있었다(도 2b). 이는 곤충병원성 선충의 병원성 발현과 생활방식을 위한 전제조건이다. 증식 중에 있는 선충의 장내에서 넓게 퍼진 초록색 프로비덴시아 버미콜라는 선충의 증식을 위해 장내에서 소화된 세균의 잔재라 사료된다(도 2c 및 도 2d). To confirm the symbiotic relationship between nematodes and bacteria, the bacteria were stained with fluorescence staining reagents and cultured with nematodes. In order to stain the Providencia vermicola bacteria with fluorescent staining reagent, the culture medium was purely cultured in nutrient broth for 24 hours and centrifuged to remove the media components. The reaction was performed at room temperature for 60 minutes by adding 100 ul DMSO dissolved in 10 ug Alexa Fluor 488 succinimidyl ester (Molecular Probes-Invitrogen, UK) to about 3.0 x 10 10 cells / ml of Providencia vermicola. Unreacted fluorescent dyes were removed using sterile water, and the fluorescently stained bacteria were added at concentrations of 3.0 x 10 9 cells / ml and incubated with nematodes. After the nematode fed the bacteria, the locating and morphological changes of the bacteria in the intestine of the nematodes were observed by fluorescence microscopy (x 200). As can be seen in Figure 2, basal bulbs, vesicles, and nematodes of the nematode body were observed (Fig. 2a), and the same nematodes were observed in fluorescence microscopy under the basal bulb vesicle stained blue. The cluster of Sia vermicola could be confirmed (FIG. 2b). This is a prerequisite for the pathogenic expression and lifestyle of entomopathogenic nematodes. The green Providencia vermicola, which has been widely spread in the intestine of the nematodes during proliferation, is considered to be the remnant of bacteria digested in the intestines for propagation of nematodes (FIGS. 2C and 2D).
랍디티스 블루미 선충은 각기 Xenorhabdus spp., Photorhabdus spp.와 특이적으로 결합되어 있는 곤충병원성 선충인 Steinernema spp., Heterorhabditis spp.와 유사한 병원성 기작을 가지고 있다고 판단되었다.
Rhabditis bumi nematodes were considered to have pathogenic mechanisms similar to those of the insect pathogenic nematodes Steinernema spp. And Heterorhabditis spp., Which are specifically associated with Xenorhabdus spp. And Photorhabdus spp.
실시예Example 8: 공생세균 종류에 따른 8: by type of symbiotic bacteria 선충의Nematode 증식경향 분석 Growth Trend Analysis
곤충병원성 선충 랍디티스 블루미의 세 가지 공생세균-프로비덴시아 버미콜라와 플라보박테리움 및 알칼리제네스 패칼리스를 선충으로부터 분리하고, 각 세균을 tryptic soy broth (TSB, Difco)에서 25℃로 순수배양 하였다. Three symbiotic bacteria of the entomopathogenic nematode Lapditis blummi-Providencia vermicola, Flavobacterium and Alkaliness faecalis are isolated from nematodes, and each bacterium is purified to 25 ° C in tryptic soy broth (TSB, Difco). Incubated.
랍디티스 블루미 선충 유래 세 가지 공생세균의 농도에 따른 선충의 증식경향을 분석하였다. 8,000 rpm에서 10 분간 원심분리하여 배지성분을 제거하고 네 가지 다른 농도 (1.5 x 1010 cfu/ml, 3.0 x 1010 cfu/ml, 6.0 x 1010 cfu/ml, and no bacteria in Ringer's solution)에서 10,000 IJs/ml의 농도로 선충을 첨가하여 25℃에서 120 시간 배양하였다. 두 가지 세균의 농도에 따른 선충의 증식경향을 관찰하였다. 그 결과, 표 8에서 볼 수 있는 바와 같이, 프로비덴시아 버미콜라에 선충이 접종되었던 경우 초기세균의 농도가 높을수록 선충의 생산성이 높게 관찰되었고, 세균의 농도가 감소하면서 선충은 비례적으로 증가하였다.The propagation trends of nematodes were analyzed according to the concentrations of three symbiotic bacteria derived from Rabditis bleu nematodes. Remove the media by centrifugation at 8,000 rpm for 10 minutes and remove at four different concentrations (1.5 x 10 10 cfu / ml, 3.0 x 10 10 cfu / ml, 6.0 x 10 10 cfu / ml, and no bacteria in Ringer's solution). Nematodes were added at a concentration of 10,000 IJs / ml and incubated at 25 ° C. for 120 hours. Nematode proliferation was observed according to the concentration of two bacteria. As a result, as shown in Table 8, when the nematode was inoculated with Providencia vermicola, the higher the initial bacterial concentration was, the higher the productivity of the nematode was observed. It was.
[표 8][Table 8]
프로비덴시아 버미콜라의 초기농도가 1.5±0.1 x 1010 에서 6.0±0.2 x 1010 cfu/ml 로 증가되었을 때, 72 시간 후 선충의 농도는 2.4 x 104 에서 5.2 x 104 IJs/ml로 비례적인 증가를 나타났다. 프로비덴시아 버미콜라의 농도가 1 x 109 cfu/ml이상으로 유지된 경우 선충 증식이 확인되었으며, 그 이하로 유지된 경우 선충의 성장은 관찰되지 않았다. 플라보박테리움과 알칼리제네스 패칼리스의 경우 초기세균의 농도가 증가할수록 선충의 증식이 비례적으로 관찰되었지만, 프로비덴시아 버미콜라와 비교하여 낮은 생산성을 나타내었다. 세 가지 공생세균 중 프로비덴시아 버미콜라와 플라보박테리움이 선충증식에 결정적인 세균이라고 판단되었다.
The initial concentration of Providencia vermicola at 1.5 ± 0.1 x 10 10 When increased to 6.0 ± 0.2 × 10 10 cfu / ml, after 72 hours the concentration of nematodes increased proportionally from 2.4 × 10 4 to 5.2 × 10 4 IJs / ml. Nematode proliferation was observed when the concentration of Providencia vermicola was maintained at 1 × 10 9 cfu / ml or higher. In the case of Flabobacterium and Alkella nes facalis, nematode proliferation was observed proportionally as the concentration of early bacterium increased, but showed lower productivity compared to Providencia vermicola. Among the three symbiotic bacteria, Providencia vermicola and Flavobacterium were considered to be the decisive bacteria for nematode growth.
실시예Example 9: 9: 무균선충Aseptic nematodes 제조 및 증식경향 분석 Preparation and Growth Trend Analysis
공생세균의 역할 규명을 위한 일환으로써 공생세균을 전혀 가지고 있지 않은 무균선충을 개발하여 공생세균을 보유하고 있는 선충의 성장과 증식경향을 비교분석하였다. 알을 품고 있는 성충을 0.4 N NaOH에 10 분간 방치하여 사멸시키고 50% phosphate를 첨가하여 중화한 후, 선충의 알만 따로 분리하여 0.2% sodium hypochlorite로 10 분간 표면살균을 실시하여 무균선충을 개발하였다. As part of the investigation of the role of symbiotic bacteria, a sterile nematode containing no symbiotic bacteria was developed and the growth and proliferation trends of nematodes containing symbiotic bacteria were analyzed. Adults bearing eggs were killed for 10 min in 0.4 N NaOH, neutralized by addition of 50% phosphate, and only nematode eggs were separated and surface sterilization was performed with 0.2% sodium hypochlorite for 10 min to develop aseptic nematodes.
6-well plate를 사용하여 인 비트로에서 세균의 유무에 따른 선충의 증식속도와 최종수율 등을 중점적으로 관찰하였다. 하기 표 9에서 볼 수 있는 바와 같이, in vitro 선충배양에서 공생세균이 존재하는 경우 선충은 약 0.2 h-1의 비증식 속도로 증가하였지만, 세균이 존재하지 않는 경우 시간에 따라 선충의 생장이 느린 속도로 이루어지지만 증식은 관찰되지 않았다. 240 시간이 지난 후 일반선충의 농도는 110,000 IJs/ml로 대략 110 배 증가하였지만, 무균선충의 농도는 증가하거나 감소하는 않고 일정하게 유지되었다. The 6-well plate was used to observe the growth rate and final yield of nematodes according to the presence of bacteria in vitro. As can be seen in Table 9, in In the presence of symbiotic bacteria in vitro, nematodes increased at a non-proliferative rate of about 0.2 h -1 . However, when bacteria were not present, nematodes grew slowly over time, but proliferation was not observed. After 240 hours, the concentration of common nematodes increased approximately 110-fold to 110,000 IJs / ml, but the concentration of aseptic nematodes remained constant without increasing or decreasing.
[표 9]TABLE 9
일반적으로 곤충병원성 선충의 공생세균은 선충에 병원성을 제공해 줄뿐만 아니라, 인공적인 액체배양에서 선충의 증식에 유리한 환경을 조성하여 높은 생산성을 유지시켜주는 역할을 수행하는 것으로 알려져 있다. 랍디티스 블루미 의 경우에서도 선충의 증식에 있어 공생세균이 중요한 역할을 수행하고 있음을 확인할 수 있다.
In general, symbiotic bacteria of entomopathogenic nematodes are known to not only provide pathogenicity to nematodes, but also to maintain high productivity by creating an environment favorable for nematode growth in artificial liquid culture. In the case of Rabditis blummi, it can be seen that symbiotic bacteria play an important role in nematode growth.
실시예Example 10: 10: 선충의Nematode 접종시기에 따른 According to the time of inoculation 최종수율측정Final yield measurement
선충의 인공배지에 공생세균을 접종하고 24 시간 미리 배양한 후 선충의 접종시기를 다르게 조정하여 선충의 생산성을 비교하였다. 랍디티스 블루미 선충의 농도를 1,000 IJs/ml로 조절하고 배양 24, 48, 그리고 72 시간으로 달리하여 선충의 최종수율을 측정하였다. 선충의 배양은 6-well plate에서 25℃, 216 시간 동안 실시되었다. 선충의 배양은 0.15 l 기포탑 발효기에서 25℃, 216 시간 동안 3 vvm으로 통기량을 조절하여 실시되었다. The nematode artificial medium was inoculated with symbiotic bacteria and incubated in advance for 24 hours, and then the nematode inoculation time was adjusted differently to compare the productivity of nematodes. The final yield of nematodes was determined by adjusting the concentration of the lobidis blummi nematodes to 1,000 IJs / ml and varying in culture at 24, 48 and 72 hours. Nematode culture was carried out in a 6-well plate at 25 ° C. for 216 hours. Nematode culture was carried out in a 0.15 l bubble column fermentor by adjusting the aeration rate to 3 vvm at 25 ° C. for 216 hours.
하기 표 10에서 볼 수 있는 바와 같이, 공생세균을 접종한 후 24시간 배양하여 선충을 접종했던 경우 선충의 최종수율은 31,000 IJs/ml로 가장 낮은 수준이었다. 선충을 접종할 때 DOT는 3%로 측정되었고 이후 48시간까지 10% 이하로 유지하였다 (데이터 미도시). 공생세균을 48 시간 그리고 72 시간 배양한 후 선충을 접종하였을 경우 선충의 최종 농도는 각각 119,000±14,500 IJs/ml, 112,000±3,800 IJs/ml로 나타내어 24 시간 이후 접종한 실험구보다 3배 이상 증가하였다. 선충의 접종시기는 최종수율에 커다란 영향을 미친다고 판단되었다.
As can be seen in Table 10 below, the final yield of the nematode was 31,000 IJs / ml when the inoculated nematode was incubated for 24 hours after inoculation of the symbiotic bacteria. At inoculation of nematodes, DOT was measured at 3% and remained below 10% by 48 hours thereafter (data not shown). When inoculated nematodes after incubation of symbiotic bacteria for 48 hours and 72 hours, the final concentration of nematodes was 119,000 ± 14,500 IJs / ml and 112,000 ± 3,800 IJs / ml, respectively. The timing of nematode inoculation was considered to have a significant effect on the final yield.
[표 10][Table 10]
실시예Example 11: 11: 배지성분에In the medium 따른 According 선충의Nematode 생산성향상Increased productivity 검정 black
하기 표 11에 나타낸 다섯 가지 배지를 사용하여 선충의 최종수율을 측정하였다. 각 배지에서 공생세균을 24시간 배양한 뒤 감염태 선충의 농도를 1,000 IJs/ml의 조정하여 25℃에서 216 시간동안 배양하였다.
The final yield of nematodes was determined using the five media shown in Table 11 below. After culturing symbiotic bacteria in each medium for 24 hours, the concentration of infectious nematodes was adjusted to 1,000 IJs / ml and cultured at 25 ° C. for 216 hours.
[표 11]TABLE 11
그 결과, 표 12에서 볼 수 있는 바와 같이, 6-well plate에서 216시간 동안 배양한 후 감염태 선충은 media No. 2 에서 213,000±35,000 IJs/ml로 최고 수율을 나타내었다.
As a result, as shown in Table 12, after 216 hours incubation in a 6-well plate infectious nematode was media No. The highest yield was shown at 2 to 213,000 ± 35,000 IJs / ml.
[표 12][Table 12]
배지성분 중 yeast extract 비율이 높을수록 선충의 최종수율은 증가하는 경향을 나타내었으며, 콜레스테롤이 첨가된 경우 선충의 증식이 빠르게 진행되었다. 식물성기름이 존재하지 않은 media No. 5의 경우 선충의 최종수율은 34,000±6,000 IJs/ml로 현저히 감소하였다. 배지조성 중 탄소원이나 질소원으로 사용될 수 있는 yeast extract의 농도가 상대적으로 낮게 조성되어 선충의 증식에 사용될 수 있는 공생세균의 증식이 제한적이었기 때문이라 사료된다. 공생세균의 영양배지로서 전지분유가 높은 농도로 조성된 media No. 4에서의 선충생산성은 비교적 낮은 수준으로 전지분유는 선충배양을 위한 배지성분으로서 적합하지 않다고 판단되었다. 배지별 식물성기름의 종류와 농도에 따라 선충의 수율을 커다란 차이를 나타내고 있으나 직접적인 비교는 불가능 하였다. 공생세균을 생장을 위한 기본적인 탄소원이나 질소원이 충분한 상태에서 콜레스테롤을 직접적으로 배지조성에 첨가하거나 (media No. 2), 또는 콜레스테롤이 함유되어있는 배지성분(계란노른자)을 첨가했던 경우 (media No. 3) 선충의 생산성은 비교적 높은 수준이었다. The higher the yeast extract ratio in the media, the higher the final yield of nematodes. Media No. without vegetable oil In case of 5, the final yield of nematodes was significantly reduced to 34,000 ± 6,000 IJs / ml. It is considered that the growth of symbiotic bacteria that could be used for propagation of nematodes was limited due to the relatively low concentration of yeast extract, which can be used as a carbon source or nitrogen source. As a nutrient medium for symbiotic bacteria, media No. Nematode productivity at 4 was relatively low, and it was judged that whole milk powder was not suitable as a medium for nematode culture. The yield of nematodes showed a big difference according to the type and concentration of vegetable oil in each medium, but no direct comparison was possible. When cholesterol was added directly to the composition of the medium with sufficient basic carbon or nitrogen source for growth of symbiotic bacteria (media No. 2), or when the medium component (egg yolk) containing cholesterol was added (media No. 3) The nematode productivity was relatively high.
Yoo et al. (Yoo, S.K., Brown, I., Gaugler, R. (2000) Liquid media development for Heterorhabditis bacteriophora: lipid source and concentration. Appl . Microbiol . Biotechnol . 54, 759-763)은 식물성 기름의 농도가 2.5%에서 8%로 증가하였을 때, 공생세균의 농도는 증가하지 않았지만 H. bacteriophora의 생산성은 크게 증가한다고 보고하였다. 식물성 기름은 박테리아의 증식에 영향을 미치는 영양소는 아니지만, 선충의 콜레스테롤 생합성을 위해 주요한 영양분으로 사용되어 선충의 증식에 긍정적인 역할을 수행하였다 (Ehlers, R.U. (2001) Mass production of entomopathogenic nematodes for plant protection. Appl . Microbiol . Biotechnol. 56, 623-633). 랍디티스 블루미선충의 경우에도 식물성기름 또는 콜레스테롤의 직접적인 첨가는 선충의 생산성을 크게 증가시키는 중요한 요소라고 판단되었다.
Yoo et al. (Yoo, SK, Brown, I. , Gaugler, R. (2000) Liquid media development for Heterorhabditis bacteriophora:.... Lipid source and concentration Appl Microbiol Biotechnol 54, 759-763) is the concentration of the vegetable oil in 2.5% When increased to 8%, the concentration of commensal bacteria did not increase, but the productivity of H. bacteriophora was reported to increase significantly. Vegetable oil is not a nutrient that affects the growth of bacteria, but it has been used as a major nutrient for nematode cholesterol biosynthesis (Ehlers, RU (2001) Mass production of entomopathogenic nematodes for plant protection). . Appl. Microbiol. Biotechnol. 56 , 623-633). In the case of Rhabditis blum nematodes, the direct addition of vegetable oil or cholesterol was considered to be an important factor that greatly increases the productivity of nematodes.
실시예Example 12: 세균의 조합비에 따른 세균 12: bacteria according to the combination ratio of bacteria 균체생산성Cell productivity 검정 black
인공배양법에 의한 선충생산은 선충의 영양원으로 작용하는 세균의 농도를 높게 유지하는 것이 중요하다. 따라서, 세 가지 공생세균의 접종량을 인위적으로 조절함으로써 각 세균의 증식경향을 분석하였다. Nematode production by artificial culture method is important to maintain a high concentration of bacteria that act as a nutrient source of nematodes. Therefore, the propagation trend of each bacterium was analyzed by artificially adjusting the inoculation amount of the three symbiotic bacteria.
24시간 동안 tryptic soy broth (TSB)에서 배양된 각 세균을 두 가지- 알칼리제네스 패칼리스와 플라보박테리움, 알칼리제네스 패칼리스와프로비덴시아 버미콜라, 또는 플라보박테리움과프로비덴시아 버미콜라씩 10:0, 10:1, 5:5, 1:10, 0:10의 비율로 조합하여 세균의 종류와 조합비가 각 세균의 증식에 미치는 영향을 관찰하였다.Each bacterium incubated in tryptic soy broth (TSB) for 24 hours was divided into two groups: alkalizenes faecalis and flabobacterium, alkalinegenes faecalis and providencia vermicola, or flabobacterium and providencia vermicola. 10: 0, 10: 1, 5: 5, 1:10, and 0:10 were combined to observe the effect of the type and combination ratio of bacteria on the growth of each bacteria.
두 종류의 세균을 공동으로 배양했을 때, 한 종의 세균은 다른 한 종의 세균의 생장에 영향을 주었다. 하기 표 13에서 볼 수 있는 바와 같이, 두 가지 세균의 균체생산량은 6.4 - 12.6 g/l로 하나의 세균만 순수배양한 경우(4.1-5.3 g/l)보다 우수한 균체생산량을 나타내어, 각 세균은 다른 세균의 생장에 긍정적인 영향을 미친다고 판단하였다. 총 세균량은 알칼리제네스 패칼리스와프로비덴시아 버미콜라, 플라보박테리움과프로비덴시아 버미콜라, 그리고 알칼리제네스 패칼리스와플라보박테리움을 조합했던 순으로 높게 관찰되었고, 최고수율은 알칼리제네스 패칼리스와 프로비덴시아 버미콜라를 1:10으로 조합하였을 때 12.6 g/l를 나타내었다. 이때 프로비덴시아 버미콜라의 균체량은 10.9 g/l로 프로비덴시아 버미콜라가 선충의 생장에 가장 효과적인 역할을 수행하고 있다는 사실을 감안할 때 최적의 조건이라 판단하였다. 알칼리제네스 패칼리스의 경우, 선충의 생장과 병원성발현에 직접적인 효과를 나타내지 않지만, 프로비덴시아 버미콜라의 생장에 상승효과를 발생시켜 결과적으로 선충의 인공배양에 풍부한 영양원을 제공하는 긍정적인 역할을 수행한다고 판단되었다.When two kinds of bacteria were co-cultured, one bacterium affected the growth of another. As can be seen in Table 13, the bacteria production of the two bacteria is 6.4-12.6 g / l, showing a better cell production than the pure culture of only one bacteria (4.1-5.3 g / l), each bacteria It was judged to have a positive effect on the growth of other bacteria. The total bacterial load was observed in the order of Alkénes Fabalis and Providencia vermicola, Flavobacterium and Providencia vermicola, and Alkogenes Facalis and Flavobacterium in the highest order. When Callis and Providencia vermicola were combined at 1:10, the result was 12.6 g / l. At this time, the weight of the Providencia vermicola was 10.9 g / l, and the optimal condition was considered in consideration of the fact that Providencia vermicola plays the most effective role in nematode growth. Alkaline ness faecalis does not have a direct effect on nematode growth and pathogenic expression, but it has a positive effect on the growth of Providencia vermicola and consequently plays a positive role in providing abundant nutrients to the artificial culture of nematodes. It was judged.
[표 13][Table 13]
실시예Example 13: 13: 기포탑Bubble tower 발효기에서 In fermenter 선충생산Nematode production 최적화 수행 Perform optimization
작은 규모에서 규명된 발효인자를 기초로 하여 기포탑 발효기에서 통기량을 조절하여 선충을 생산하였다. 공생세균의 비율을 10:1 (프로비덴시아 버미콜라 : 플라보박테리움)로 조절하여 0.15 l 기포탑 발효기 (3 cm dia. x 22 cm, Taegyung Sci., Korea)에서 5 vvm의 통기량으로 48 시간 배양하였다. 이 후 10,000 IJs/ml의 선충을 접종하고 통기량을 2, 3, 5, 그리고 6 vvm으로 조절하고 25℃에서 216 시간 배양하여 선충의 최종수율을 측정하였다. Nematodes were produced by controlling the air flow in the bubble column fermenter based on the fermentation factor identified on a small scale. By adjusting the ratio of symbiotic bacteria to 10: 1 (Providencia Vermicola: Flavobacterium), aeration volume of 5 vvm in 0.15 l bubble column fermenter (3 cm dia. X 22 cm, Taegyung Sci., Korea) Incubated for 48 hours. Thereafter, 10,000 IJs / ml nematode was inoculated, and the aeration rate was adjusted to 2, 3, 5, and 6 vvm, and cultured at 25 ° C. for 216 hours to determine the final yield of nematodes.
하기 표 14에 나타낸 바와 같이, 선충을 접종한 후 통기량을 다르게 조정하여 25℃에서 144 시간 동안 감염태 선충을 생산하였을 때 6 vvm에서 170,000±15,600 IJs/ml로 최고 수율을 나타내었다. 이 때 공생세균의 농도는 3 x 107 cfu/ml로 측정되었다. 2 vvm에서 선충을 접종한 후 72 시간 배양하였을 때 세균의 농도는 5.4±0.89 x 1010 cfu/ml 수준으로 증가한 반면 선충의 농도는 900±200 IJs/ml로 처음 접종한 농도보다 감소하였다. 통기량을 3 vvm으로 유지하여 72 시간 배양하였을 때, 선충의 농도는 크게 증가하지 않았지만 선충의 길이는 증가하여 생장이 진행되고 있다고 판단하였다 (data not shown). 통기량이 증가할수록 감염태 선충의 생산성은 증가하는 경향을 나타내었고, 세균의 농도는 감소하였다. 감염태 선충의 수율변화는 통기량 증가에 따른 배양액속의 용존산소가 증가하기 때문이며 이 때 선충에 의한 세균의 섭식이 활발해져 배지 내 세균농도가 감소하고 선충의 증식이 빠르게 진행되었다고 판단되었다.
As shown in Table 14 below, when the nematode was inoculated differently to produce infectious nematodes for 144 hours at 25 ° C., the highest yield was 170,000 ± 15,600 IJs / ml at 6 vvm. At this time, the concentration of symbiotic bacteria was measured as 3 x 10 7 cfu / ml. After 72 hours of incubation at 2 vvm, the bacterial concentration increased to 5.4 ± 0.89 x 10 10 cfu / ml, while the nematode concentration decreased to 900 ± 200 IJs / ml. After 72 hours of incubation at 3 vvm, the nematode concentration did not increase significantly, but the nematode length increased, indicating that growth was progressing (data not shown). As the amount of aeration increased, the productivity of infectious nematodes tended to increase, and the concentration of bacteria decreased. The yield change of infectious nematodes was due to the increase of dissolved oxygen in the culture medium due to the increase of the aeration rate. At this time, the feeding of bacteria by the nematodes increased the concentration of bacteria in the medium and the growth of nematodes was accelerated.
[표 14][Table 14]
Claims (10)
A pest control agent comprising an insect pathogenic nematode Rhabditis blumi .
상기 해충 방제제는 프로비덴시아 버미콜라(Providencia vermicola), 플라보박테리움(Flavobacterium sp.) 및 알칼리제네스 패칼리스(Alcaligenes faecalis)로 이루어진 군으로부터 선택되는 하나 이상의 선충공생세균을 포함하는 것인 해충 방제제.
The method of claim 1,
The pest control agent Providencia vermicola , Flavobacterium sp.) and Alcaligenes faecalis pest control agent comprising at least one nematode symbiosis bacteria selected from the group consisting of.
상기 해충은 인시류 해충 또는 풍뎅이류 해충인 해충 방제제.
The method of claim 1,
The pest is a pest control agent that is an insect pest or a scarab pest.
상기 인시류 해충은 거세미나방(Agrotis segetum), 배추흰나비(Artogeia rapae), 검은은무늬나방(Autographa nigrisigna), 복숭아명나방(Dichocrocis punctiferalis), 미국흰불나방(Hyphanria cunea), 흰띠명나방(Hymenia recurvalis), 도둑나방(Mamestra brassicae), 목화바둑명나방(Palpita indica), 배추좀나방(Plutella xylostella), 파밤나방(Spodoptera exigua), 담배거세미나방(Spodoptera litura) 및 꿀벌부채명나방(Galleria mellonella)로 이루어진 군으로부터 선택되는 것인 해충 방제제.
The method of claim 3, wherein
The insect pests of the species are Agrotis segetum , cabbage butterfly ( Artogeia rapae ) , black silver moth ( Autographa) nigrisigna ), Peach moth ( Dichocrocis) punctiferalis ), American White Moth ( Hyphanria) cunea), ttimyeong white moth (Hymenia recurvalis ), thief moth ( Mamestra brassicae ), cotton monarch moth ( Palpita) indica ), Chinese cabbage moth ( Plutella) xylostella , Pamoth Moth ( Spodoptera) exigua ), tobacco giant seminar ( Spodoptera) litura ) and beetle moth ( Galleria mellonella ) pest control agent selected from the group consisting of.
상기 풍뎅이류 해충은 등얼룩풍뎅이(Blitopertha orientalis) (Coleoptera: Scarabaeidae) 또는 밤바구미(Curculio sikkimensis) (Coleoptera: Curculionidae)인 해충 방제제.
The method of claim 3, wherein
The scarab pest is a Blitopertha orientalis (Coleoptera: Scarabaeidae) or chestnut weevil ( Culculio sikkimensis ) (Poleoptera: Curculionidae).
A method of controlling pests comprising treating a plant with a pest control agent comprising an insect pathogenic nematode Rhabditis blumi .
상기 해충 방제제는 프로비덴시아 버미콜라(Providencia vermicola), 플라보박테리움(Flavobacterium sp.) 및 알칼리제네스 패칼리스(Alcaligenes faecalis)로 이루어진 군으로부터 선택되는 하나 이상의 선충공생세균을 포함하는 것인 해충의 방제 방법.
The method according to claim 6,
The pest control agent Providencia vermicola , Flavobacterium sp.) and Alcaligenes faecalis , and at least one nematode symbiotic bacterium selected from the group consisting of.
상기 해충 방제제는 1 x 107 내지 1 x 1012 IJs/ha의 농도로 식물에 처리되는 것인 해충의 방제 방법.
The method according to claim 6,
The pest control agent is a pest control method that is treated to plants at a concentration of 1 x 10 7 to 1 x 10 12 IJs / ha.
상기 해충 방제제는 과채류, 엽채류 및 화훼류로부터 선택되는 식물에 처리되는 것인 해충의 방제 방법.
The method according to claim 6,
The pest control agent is a pest control method that is treated to plants selected from fruit, leafy vegetables and flowers.
상기 해충 방제제는 십자화과 식물에 처리되는 것인 해충의 방제 방법. The method according to claim 6,
The pest control agent is a pest control method that is treated to cruciferous plants.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100129266A KR101230787B1 (en) | 2010-12-16 | 2010-12-16 | Agent and method for control insect using entomopathogenic nematode Rhabditis blumi |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100129266A KR101230787B1 (en) | 2010-12-16 | 2010-12-16 | Agent and method for control insect using entomopathogenic nematode Rhabditis blumi |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120089522A KR20120089522A (en) | 2012-08-13 |
KR101230787B1 true KR101230787B1 (en) | 2013-02-06 |
Family
ID=46874216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100129266A KR101230787B1 (en) | 2010-12-16 | 2010-12-16 | Agent and method for control insect using entomopathogenic nematode Rhabditis blumi |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101230787B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180289012A1 (en) * | 2015-10-02 | 2018-10-11 | The Regents Of The University Of California | Mollusk-killing biopesticide |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104663724A (en) * | 2015-03-16 | 2015-06-03 | 江苏省农业科学院 | Providencia Ewing water aqua and application thereof |
CN107794234B (en) * | 2017-08-01 | 2019-09-03 | 江苏省农业科学院 | A strain Pr-nj01 with insecticidal activity and its production and application of insecticide |
KR101952542B1 (en) * | 2018-08-28 | 2019-02-26 | 오헌식 | The method for culturing entomopathogenic nematode using carrier medium or method for controlling insect pests using the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6637366B1 (en) | 1998-12-24 | 2003-10-28 | Commonwealth Scientific And Industrial Research Organization | Nematode biopesticide |
KR100773986B1 (en) | 2006-10-26 | 2007-11-08 | 김정화 | Control and Control Methods of Slugs Using Insect Hospital Nematodes Butlios and Nematode Symbiosis Bacteria |
-
2010
- 2010-12-16 KR KR1020100129266A patent/KR101230787B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6637366B1 (en) | 1998-12-24 | 2003-10-28 | Commonwealth Scientific And Industrial Research Organization | Nematode biopesticide |
KR100773986B1 (en) | 2006-10-26 | 2007-11-08 | 김정화 | Control and Control Methods of Slugs Using Insect Hospital Nematodes Butlios and Nematode Symbiosis Bacteria |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180289012A1 (en) * | 2015-10-02 | 2018-10-11 | The Regents Of The University Of California | Mollusk-killing biopesticide |
US10772333B2 (en) * | 2015-10-02 | 2020-09-15 | The Regents Of The University Of California | Mollusk-killing biopesticide |
US11825808B2 (en) | 2015-10-02 | 2023-11-28 | The Regents Of The University Of California | Mollusk-killing biopesticide |
Also Published As
Publication number | Publication date |
---|---|
KR20120089522A (en) | 2012-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shapiro-Ilan et al. | Production technology for entomopathogenic nematodes and their bacterial symbionts | |
Brooks | The microorganisms of healthy insects | |
BR112015006405B1 (en) | METHOD FOR CONTROL OF AT LEAST ONE PEST OF PLANTS, PARTICULARLY LEPIDOPTERS AND DIPTERS | |
KR101230787B1 (en) | Agent and method for control insect using entomopathogenic nematode Rhabditis blumi | |
KR20180033774A (en) | Entomopathogenic fungus, Beauveria bassiana ANU1 and microbial agent for controlling Spodoptera exigua, Plutella xylostella, Helicoverpa assulta or Phaedon brassicae using it | |
Tozlu et al. | The investigation of the biological control of Icerya purchasi Maskell, 1878 (Hemiptera: Margarodidae) with entomopathogenic fungi and bacteria | |
Vedha et al. | Mosquito larvicidal potential of marine Streptomyces griseus against Aedes aegypti | |
WO2007142543A2 (en) | Novel bacteria and uses thereof | |
Jeong et al. | Evaluation of insecticidal activity of a bacterial strain, Serratia sp. EML-SE1 against diamondback moth | |
KR101187936B1 (en) | Culture method for steinernema carpocapsae | |
Diao et al. | Toxicity of crude toxin protein produced by Cordyceps fumosorosea IF-1106 against Myzus persicae (Sulze) | |
Chastel et al. | Mosquito spiroplasmas | |
KR20120067717A (en) | Method for culture of entomopathogenic nematode rhabditis blumi | |
CN112553086A (en) | Violet purpurea bacterial strain and application thereof in preventing and treating phyllotreta striolata | |
RU2701502C1 (en) | Crystal-forming bacterial strain brevibacillus laterosporus with a wide spectrum of antagonist activity and use thereof | |
KR101952542B1 (en) | The method for culturing entomopathogenic nematode using carrier medium or method for controlling insect pests using the same | |
CN106358858A (en) | Application of heterorhabditis bacteriophora to biological control of underground insects of greenhouse vegetables | |
RU2453595C1 (en) | Strain of bacteria bacillus thuringiensis for obtaining bio- insecticide for control of greater wax moth | |
KR100390535B1 (en) | Culture medium and mass culture method for nematodes which infect insects | |
Carneiro et al. | Effects of entomopathogenic bacterium Photorhabdus temperata infection on the intestinal microbiota of the sugarcane stalk borer Diatraea saccharalis (Lepidoptera: Crambidae) | |
Kalane et al. | Larvicidal effect of Staphylococcus vitulinus bacteria against Spodoptera litura fab | |
RU2422511C1 (en) | Brevibacillus laterosporus BACTERIA STRAIN PRODUCING WIDE SPECTRUM OF BIOLOGICALLY ACTIVE COMPOUNDS | |
Bua-art et al. | Effect of bioactive compound from luminescent mushroom (Neonothopanus nambi Speg.) on root-knot nematode (Meloidogyne incognita Chitwood) and non-target organisms | |
CA3130070A1 (en) | Bee gut microbial formulation for use as a probiotic for improved bee health and pathogen resistance | |
Dos Santos Moreira et al. | Assessment of the Entomopathogenic Potential of Fungal and Bacterial Isolates from Fall Armyworm Cadavers Against Spodoptera frugiperda Caterpillars and the Adult Boll Weevil, Anthonomus grandis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20101216 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20120614 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20121231 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20130131 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20130131 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20160125 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20160125 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170123 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20170123 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180129 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20180129 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190128 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20190128 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20200604 Start annual number: 8 End annual number: 8 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20211111 |