KR101227109B1 - Tuning nanoscale friction using nanopartiecles with engineering of organic capping layer - Google Patents

Tuning nanoscale friction using nanopartiecles with engineering of organic capping layer Download PDF

Info

Publication number
KR101227109B1
KR101227109B1 KR1020110035312A KR20110035312A KR101227109B1 KR 101227109 B1 KR101227109 B1 KR 101227109B1 KR 1020110035312 A KR1020110035312 A KR 1020110035312A KR 20110035312 A KR20110035312 A KR 20110035312A KR 101227109 B1 KR101227109 B1 KR 101227109B1
Authority
KR
South Korea
Prior art keywords
composite
operating efficiency
nanoparticles
friction
mechanical systems
Prior art date
Application number
KR1020110035312A
Other languages
Korean (ko)
Other versions
KR20120117515A (en
Inventor
박정영
권상구
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020110035312A priority Critical patent/KR101227109B1/en
Publication of KR20120117515A publication Critical patent/KR20120117515A/en
Application granted granted Critical
Publication of KR101227109B1 publication Critical patent/KR101227109B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/008MEMS characterised by an electronic circuit specially adapted for controlling or driving the same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/005Constitution or structural means for improving the physical properties of a device
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Micromachines (AREA)

Abstract

본 발명은 윤활성 유기분자층과 나노 입자의 복합체를 이용하여 마이크로단위 소자(MEMS; micro electro mechanical systems) 또는 나노단위 소자(NEMS; nano electro mechanical systems)의 작동효율을 향상시키는 방법에 관한 것으로서, 마이크로단위 소자 또는 나노단위 소자 표면의 마찰력 및 점착력을 제어함으로써 소자의 작동효율을 향상시킬 수 있다는 유리한 효과가 있다.The present invention relates to a method for improving operating efficiency of micro electro mechanical systems (MEMS) or nano electro mechanical systems (NEMS) using a composite of a lubricious organic molecular layer and nano particles. There is an advantageous effect that the operating efficiency of the device can be improved by controlling the frictional force and the adhesive force on the surface of the unit device or the nanounit device.

Description

나노입자위의 유기분자층의 공학적 제어를 통한 나노미터 수준의 마찰력 및 점착력 제어{Tuning nanoscale friction using nanopartiecles with engineering of organic capping layer}Tuning nanoscale friction using nanopartiecles with engineering of organic capping layer}

본 발명은 윤활성(lubricative) 유기분자층과 나노 입자의 복합체를 이용하여 마이크로단위 소자(MEMS; micro electro mechanical systems) 또는 나노단위 소자(NEMS; nano electro mechanical systems)의 작동효율을 향상시키는 방법에 관한 기술이다. 보다 상세하게는 마이크로단위 소자 또는 나노단위 소자 표면의 마찰력 및 점착력을 제어함으로써 소자의 작동효율을 향상시키는 방법에 관한 기술이다.The present invention relates to a method for improving the operating efficiency of micro electro mechanical systems (MEMS) or nano electro mechanical systems (NEMS) using a composite of a lubricative organic molecule layer and nano particles. Technology. More specifically, the present invention relates to a method of improving the operating efficiency of the device by controlling the frictional force and the adhesive force on the surface of the microunit or nanounit device.

통상적으로 소자(element, 素子)라 함은 전기 회로, 자성 재료, 반도체 장치, 안테나 등에서 널리 이용되는 주요 구성 요소의 하나를 의미한다. 전기 회로에서는 코일, 콘덴서, 저항체를, 자성 재료에서는 페라이트 등을 사용한 자심을, 반도체 장치에서는 트랜지스터, 다이오드, 서미스터 등을 말한다. In general, an element refers to one of main components widely used in an electric circuit, a magnetic material, a semiconductor device, an antenna, and the like. In an electric circuit, a magnetic core using a coil, a capacitor, a resistor, a ferrite, and the like in a magnetic material, and a transistor, a diode, and a thermistor in a semiconductor device.

이러한 소자 관련 기술의 최근 이슈는 소자의 작동효율을 향상 시키는데 있다. 이에 다양한 접근과 연구가 있었으며, 본 발명에서는 표면의 마찰력 및 점착력을 제어함으로써 소자의 작동효율을 향상시키고자 하였다.The recent issue of the device-related technology is to improve the operating efficiency of the device. There have been various approaches and studies, and in the present invention, to improve the operating efficiency of the device by controlling the frictional force and adhesion of the surface.

본 발명은 윤활성 유기분자층과 나노 입자의 복합체를 이용하여 마이크로단위 소자 또는 나노단위 소자의 작동효율을 향상시키는 방법의 제공을 목적으로 한다. 보다 상세하게는 마이크로단위 소자 또는 나노단위 소자 표면의 마찰력 및 점착력을 제어함으로써 소자의 작동효율을 향상시키는 방법을 제공함을 목적으로 한다.
An object of the present invention is to provide a method of improving the operating efficiency of a micro-unit device or a nano-unit device using a composite of a lubricious organic molecule layer and nanoparticles. More specifically, an object of the present invention is to provide a method of improving the operating efficiency of the device by controlling the frictional force and the adhesive force on the surface of the microunit device or the nanounit device.

본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 본 발명의 기재로부터 당해 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다. The technical objects to be achieved by the present invention are not limited to the above-mentioned technical problems, and other technical subjects which are not mentioned can be clearly understood by those skilled in the art from the description of the present invention .

상기 목적을 달성하기 위해 본 발명에서는 윤활성(lubricative) 유기분자층과 나노 입자의 복합체를 이용하여 마이크로단위 소자(MEMS; micro electro mechanical systems) 또는 나노단위 소자(NEMS; nano electro mechanical systems)의 작동효율을 향상시키는 방법을 제공한다.In order to achieve the above object, the present invention utilizes a composite of a lubricative organic molecule layer and nanoparticles to operate the micro electro mechanical systems (MEMS) or the nano electro mechanical systems (NEMS). Provides a way to improve.

보다 상세하게는 상기 작동효율의 향상은 마이크로단위 소자 또는 나노단위 소자 표면의 마찰력 및 점착력을 제어함으로써 수행되는 것임을 특징으로 할 수 있다.
In more detail, the improvement of the operating efficiency may be performed by controlling the frictional force and the adhesive force on the surface of the microunit device or the nanounit device.

보다 구체적으로는 상기 윤활성 유기분자층과 나노 입자의 복합체는 (1) TTAB(Tetradecyl Trimethyl Ammonium Bromide)에 백금(Pt; platinum) 나노 입자를 코팅한 복합체; (2) PVP(Poly Vinyl Pyrrolidone)에 백금 나노 입자를 코팅한 복합체; (3) HDA(hexadecylamine)에 백금 나노 입자를 코팅한 복합체 및 (4) HDT(hexadecylthiol)에 백금 나노 입자를 코팅한 복합체로 이루어진 군에서 선택된 어느 하나일 수 있다.
More specifically, the composite of the lubricious organic molecule layer and the nanoparticles may include: (1) a composite of platinum (Pt; platinum) nanoparticles coated on Tetradecyl Trimethyl Ammonium Bromide (TTAB); (2) composites coated with platinum nanoparticles on polyvinyl pyrrolidone (PVP); It may be any one selected from the group consisting of (3) a composite coated with platinum nanoparticles on HDA (hexadecylamine) and (4) a composite coated with platinum nanoparticles on HDT (hexadecylthiol).

본 특허는 윤활성 유기분자층과 나노 입자의 복합체를 이용한 나노미터 단위의 마찰력 제어를 주요 내용으로 한다. 또한 자외선-오존, 화학적 방법 등의 공학적 제어를 이용하여 표면이 개질된 유기분자-나노 입자 복합체 또한 포함한다. This patent focuses on nanometer friction control using a composite of lubricious organic molecular layers and nanoparticles. It also includes organic molecule-nanoparticle composites whose surfaces have been modified using engineering controls such as ultraviolet-ozone and chemical methods.

윤활성 유기물로 둘러 쌓인 나노 입자 복합체는 표면의 마찰력 및 점착력을 크게 변화시키며, 이를 이용할 경우에 마이크로 또는 나노 단위의 소자 (MEMS 또는 NEMS)의 효율을 크게 향상 시키는 것이 가능하다. The nanoparticle composite enclosed by the lubricious organic material greatly changes the frictional and adhesive forces of the surface, and when it is used, it is possible to greatly improve the efficiency of the micro or nano devices (MEMS or NEMS).

본 발명은 유기분자층과 나노 입자의 복합체를 이용하여 마이크로단위 소자(MEMS; micro electro mechanical systems) 또는 나노단위 소자(NEMS; nano electro mechanical systems) 표면의 마찰력 및 점착력을 제어함으로써 소자의 작동효율을 향상시킬 수 있다는 유리한 효과가 있다.The present invention improves the operating efficiency of the device by controlling the friction and adhesion of the surface of the micro electro mechanical systems (MEMS) or nano electro mechanical systems (NEMS) using a composite of the organic molecular layer and nano particles. There is an advantageous effect that it can be improved.

도 1은 Atomic/Friction force microscopy 를 이용한 유기분자-나노입자 복합체와 실리콘 표면의 마찰 특성 비교에 관한 것이다.
도 2는 PVP 와 TTAB 유기분자-플래티늄 나노입자 복합체를 이용한 실리콘 표면의 마찰력 및 점착력 제어에 관한 것이다.
도 3은 여러 종류의 유기분자층으로 둘러싸인 나노입자의 주사전자현미경 사진의 이미지에 관한 것이다(스케일 바 : 100nm).
(a) : HDA(hexadecylamine)로 둘러싸인 Pt 나노입자의 주사전자현미경 사진
(b) : HDT(hexadecylthiol)로 둘러싸인 Pt 나노입자의 주사전자현미경 사진
(c) : TTAB(Tetradecyl Trimethyl Ammonium Bromide)로 둘러싸인 Pt 나노입자의 주사전자현미경 사진
(d) : PVP(Poly Vinyl Pyrrolidone)로 둘러싸인 Pt 나노입자의 주사전자현미경 사진
도 4는 자외선-오존에 의한 PVP-플래티늄 나노입자의 마찰 특성 변화에 관한 것이다.
FIG. 1 relates to a comparison of frictional characteristics between an organic molecule-nanoparticle composite and a silicon surface using Atomic / Friction force microscopy.
Figure 2 relates to the friction and adhesion control of the silicon surface using PVP and TTAB organic molecule-platinum nanoparticle composite.
3 relates to an image of a scanning electron micrograph of nanoparticles surrounded by various types of organic molecular layers (scale bar: 100 nm).
(a): Scanning electron micrograph of Pt nanoparticles surrounded by HDA (hexadecylamine)
(b): Scanning electron micrograph of Pt nanoparticles surrounded by HDT (hexadecylthiol)
(c): Scanning electron micrograph of Pt nanoparticles surrounded by TTAB (Tetradecyl Trimethyl Ammonium Bromide)
(d): Scanning electron micrograph of Pt nanoparticles surrounded by Polyvinyl Pyrrolidone (PVP)
Figure 4 relates to the change in friction characteristics of PVP-platinum nanoparticles by ultraviolet-ozone.

본 발명은 윤활성 유기분자층과 나노 입자의 복합체를 이용하여 마이크로단위 소자(MEMS; micro electro mechanical systems) 또는 나노단위 소자(NEMS; nano electro mechanical systems)의 작동효율을 향상시키는 방법에 관한 것이다. The present invention relates to a method of improving the operating efficiency of micro electro mechanical systems (MEMS) or nano electro mechanical systems (NEMS) using a composite of a lubricious organic molecule layer and nano particles.

보다 상세하게는 상기 작동효율의 향상은 마이크로단위 소자 또는 나노단위 소자 표면의 마찰력 및 점착력을 제어함으로써 수행되는 것임을 특징으로 할 수 있다.
In more detail, the improvement of the operating efficiency may be performed by controlling the frictional force and the adhesive force on the surface of the microunit device or the nanounit device.

보다 구체적으로는 상기 윤활성 유기분자층과 나노 입자의 복합체는 (1) TTAB(Tetradecyl Trimethyl Ammonium Bromide)에 백금(Pt; platinum) 나노 입자를 코팅한 복합체; (2) PVP(Poly Vinyl Pyrrolidone)에 백금 나노 입자를 코팅한 복합체; (3) HDA(hexadecylamine)에 백금 나노 입자를 코팅한 복합체 및 (4) HDT(hexadecylthiol)에 백금 나노 입자를 코팅한 복합체로 이루어진 군에서 선택된 어느 하나일 수 있다.
More specifically, the composite of the lubricious organic molecule layer and the nanoparticles may include: (1) a composite of platinum (Pt; platinum) nanoparticles coated on Tetradecyl Trimethyl Ammonium Bromide (TTAB); (2) composites coated with platinum nanoparticles on polyvinyl pyrrolidone (PVP); It may be any one selected from the group consisting of (3) a composite coated with platinum nanoparticles on HDA (hexadecylamine) and (4) a composite coated with platinum nanoparticles on HDT (hexadecylthiol).

이하에서 첨부된 도면을 참조하여 구체적으로 설명한다.
Hereinafter, with reference to the accompanying drawings will be described in detail.

윤활성 유기분자층으로 쌓인 나노 입자 복합체를 이용한 MEMS (또는 NEMS) 소자의 마찰력을 제어를 통해 작동 효율을 높인다는 개념으로서, 유기분자층으로 쌓인 나노 입자 복합체를 제조하여, MEMS 또는 NEMS 소자에 도포함으로써 마찰력을 제어하는 방식이다.
As a concept of improving the operating efficiency by controlling the frictional force of MEMS (or NEMS) devices using nanoparticle composites stacked with lubricious organic molecular layers, nanoparticle composites stacked with organic molecular layers are prepared and applied to MEMS or NEMS devices. It is a method of controlling friction.

도 1은 AFM/FFM (Atomic/friction force microscopy)를 이용한 유기물-나노 복합체와 실리콘 표면의 마찰력 및 점착력 측정 방식의 모식도이다. 본 연구를 통해 도 2에서 보이는 바와 같이 TTAB(Tetradecyltrimethylammonium Bromide), PVP (poly(vinylpyrrolidone))의 유기분자-플래티늄 나노 입자 복합체가 실리콘 표면의 마찰력 및 점착력을 크게 변화시킨다는 결과를 도출하였다.
1 is a schematic diagram of a friction and adhesion measurement method of the organic material-nano composites and silicon surface using AFM / FFM (Atomic / friction force microscopy). As shown in FIG. 2, TTAB (Tetradecyltrimethylammonium Bromide) and PVP (poly (vinylpyrrolidone) organic molecules-platinum nanoparticle composites showed a significant change in the friction and adhesion of the silicon surface.

또한 위의 TTAB, PVP 외에도 HDA (hexadecylamine), HDT (hexadecylthiol) 등이 윤활성 유기분자층으로 사용되었다.
In addition to TTAB and PVP, HDA (hexadecylamine) and HDT (hexadecylthiol) were used as lubricity organic molecules.

도 2는 PVP 와 TTAB 유기분자-플래티늄 나노입자 복합체를 이용한 실리콘 표면의 마찰력 및 점착력 제어에 관한 것이고, 도 3은 이러한 여러 종류의 유기분자층으로 둘러싸인 나노입자의 주사전자현미경 사진의 이미지를 보여둔다.
FIG. 2 relates to the friction and adhesion control of silicon surfaces using PVP and TTAB organic molecule-platinum nanoparticle composites, and FIG. 3 shows an image of a scanning electron micrograph of nanoparticles surrounded by these various types of organic molecule layers. .

Figure 112011028095347-pat00001
Figure 112011028095347-pat00001

상기 표 1은 PVP, TTAB, HDT, HAD 의 유기분자-플래티늄 나노입자를 이용한 실리콘 표면의 마찰력 및 점착력 변화 (applied load = 0 nN)를 정리하여 나타낸 것이다.상기 표 1에 나타나 있듯이 유기분자-나노입자 복합체를 통하여 표면의 마찰력 및 점착력의 제어가 가능하다. 뿐만 아니라, 자외선-오존을 이용한 표면 개질이나 화학적인 방법을 통한 유기분자층을 개질 시켜 마찰력 및 점착력의 제어가 가능한다.
Table 1 summarizes the frictional and adhesive force changes (applied load = 0 nN) of the silicon surface using the organic molecules-platinum nanoparticles of PVP, TTAB, HDT, and HAD. As shown in Table 1, organic molecules-nano Through the particle composite, it is possible to control the friction and adhesion of the surface. In addition, it is possible to control the friction and adhesion by modifying the organic molecular layer through surface modification or chemical method using ultraviolet-ozone.

이는 도 4에서 보이는 바와 같이 자외선-오존 표면 개질 은 복합체의 마찰력을 크게 변화 시키게 된다. 본 특허는 일반적인 윤활성 유기분자-나노입자 복합체를 통한 나노단위의 마찰력 및 점착력 제어와 추가적인 표면 개질 (자외선-오존, 플라즈마, 스퍼터링, 열처리, 산화 환원 등의 화학적 변형 등) 방법을 통한 것 모두를 포함한다.
As shown in FIG. 4, the UV-ozone surface modification significantly changes the friction of the silver composite. This patent covers both nanoscale frictional and cohesion control through common lubricious organic molecule-nanoparticle composites and through additional surface modification methods (such as UV-ozone, plasma, sputtering, heat treatment, redox, and chemical modification). do.

이상 본 발명의 구체적 실시형태와 관련하여 본 발명을 설명하였으나 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다. 당업자는 본 발명의 범위를 벗어나지 않고 설명된 실시형태를 변경 또는 변형할 수 있으며, 이러한 변경 또는 변형도 본 발명의 범위에 속한다. 또한, 본 명세서에서 설명한 각 구성요소의 물질은 당업자가 공지된 다양한 물질로부터 용이하게 선택하여 대체할 수 있다. 또한 당업자는 본 명세서에서 설명된 구성요소 중 일부를 성능의 열화 없이 생략하거나 성능을 개선하기 위해 구성요소를 추가할 수 있다. 뿐만 아니라, 당업자는 공정 환경이나 장비에 따라 본 명세서에서 설명한 방법 단계의 순서를 변경할 수도 있다. 따라서 본 발명의 범위는 설명된 실시형태가 아니라 특허청구범위 및 그 균등물에 의해 결정되어야 한다.
Although the present invention has been described in connection with the specific embodiments of the present invention, it is to be understood that the present invention is not limited thereto. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. In addition, the materials of each component described herein can be readily selected and substituted for various materials known to those skilled in the art. Those skilled in the art will also appreciate that some of the components described herein can be omitted without degrading performance or adding components to improve performance. In addition, those skilled in the art may change the order of the method steps described herein depending on the process environment or equipment. Therefore, the scope of the present invention should be determined by the appended claims and equivalents thereof, not by the embodiments described.

Claims (6)

윤활성(lubricative) 유기분자층과 나노 입자의 복합체를 이용하여 마이크로단위 소자(MEMS; micro electro mechanical systems) 또는 나노단위 소자(NEMS; nano electro mechanical systems)의 작동효율을 향상시키는 방법에 있어서,
상기 윤활성 유기분자층과 나노 입자의 복합체는 PVP(Poly Vinyl Pyrrolidone)에 백금 나노 입자를 코팅한 복합체, HDA(hexadecylamine)에 백금 나노 입자를 코팅한 복합체, 및 HDT(hexadecylthiol)에 백금 나노 입자를 코팅한 복합체로 이루어진 군에서 선택되는 어느 하나의 복합체인 것을 특징으로 하는 소자의 작동효율을 향상시키는 방법.
In a method of improving the operating efficiency of micro electro mechanical systems (MEMS) or nano electro mechanical systems (NEMS) using a composite of a lubricative organic molecular layer and nano particles,
The composite of the lubricious organic molecule layer and the nanoparticles is a composite of platinum nanoparticles coated on polyvinyl pyrrolidone (PVP), a composite of platinum nanoparticles coated on hexadecylamine (HDA), and a platinum nanoparticle on hexadecylthiol (HDT). Method for improving the operating efficiency of the device, characterized in that any one selected from the group consisting of a composite.
제1항에 있어서, 상기 작동효율의 향상은 마이크로단위 소자 또는 나노단위 소자 표면의 마찰력 및 점착력을 제어함으로써 수행되는 것임을 특징으로 하는 소자의 작동효율을 향상시키는 방법.The method of claim 1, wherein the improvement of the operating efficiency is performed by controlling frictional and adhesive forces on the surface of the microunit or nanounit device. 삭제delete 삭제delete 삭제delete 삭제delete
KR1020110035312A 2011-04-15 2011-04-15 Tuning nanoscale friction using nanopartiecles with engineering of organic capping layer KR101227109B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110035312A KR101227109B1 (en) 2011-04-15 2011-04-15 Tuning nanoscale friction using nanopartiecles with engineering of organic capping layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110035312A KR101227109B1 (en) 2011-04-15 2011-04-15 Tuning nanoscale friction using nanopartiecles with engineering of organic capping layer

Publications (2)

Publication Number Publication Date
KR20120117515A KR20120117515A (en) 2012-10-24
KR101227109B1 true KR101227109B1 (en) 2013-01-28

Family

ID=47285459

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110035312A KR101227109B1 (en) 2011-04-15 2011-04-15 Tuning nanoscale friction using nanopartiecles with engineering of organic capping layer

Country Status (1)

Country Link
KR (1) KR101227109B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000929A (en) * 2004-06-15 2006-01-05 National Institute For Materials Science Solid nano thin film
WO2009138471A1 (en) * 2008-05-14 2009-11-19 Dow Corning Corporation Process for reduction of friction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000929A (en) * 2004-06-15 2006-01-05 National Institute For Materials Science Solid nano thin film
WO2009138471A1 (en) * 2008-05-14 2009-11-19 Dow Corning Corporation Process for reduction of friction
JP2011522912A (en) 2008-05-14 2011-08-04 ダウ・コーニング・コーポレイション How to reduce friction

Also Published As

Publication number Publication date
KR20120117515A (en) 2012-10-24

Similar Documents

Publication Publication Date Title
Kang et al. Reduction of the fcc to L10 ordering temperature for self-assembled FePt nanoparticles containing Ag
Guo et al. A novel electromechanical actuation mechanism of a carbon nanotube fiber
Meli et al. Aggregation and coarsening of ligand-stabilized gold nanoparticles in poly (methyl methacrylate) thin films
Liu et al. Mechanical, dielectric, and actuated strain of silicone elastomer filled with various types of TiO2
Huang et al. Colossal dielectric and electromechanical responses in self-assembled polymeric nanocomposites
Stoyanov et al. Dielectric elastomer transducers with enhanced force output and work density
Kalra et al. Controlling nanoparticle location via confined assembly in electrospun block copolymer nanofibers
Xu et al. Constructing highly porous thermoelectric monoliths with high-performance and improved portability from solution-synthesized shape-controlled nanocrystals
De la Presa et al. Structural and magnetic characterization of oleic acid and oleylamine-capped gold nanoparticles
Li et al. Recyclable Liquid Metal‐Based Circuit on Paper
Lu et al. Mussel-inspired multifunctional integrated liquid metal-based magnetic suspensions with rheological, magnetic, electrical, and thermal reinforcement
Choi et al. Gripping characteristics of an electromagnetically activated magnetorheological fluid-based gripper
Mizuno et al. Prevention of nanoparticle coalescence under high-temperature annealing
Yun et al. Electrical bistabilities and carrier transport mechanisms of write-once-read-many-times memory devices fabricated utilizing ZnO nanoparticles embedded in a polystyrene layer
Xia et al. Printed thin magnetic films based on diblock copolymer and magnetic nanoparticles
Sahoo et al. Molecular Camouflage: Making Use of Protecting Groups To Control the Self‐Assembly of Inorganic Janus Particles onto Metal–Chalcogenide Nanotubes by Pearson Hardness
Cho et al. Improved thermoelectric power factor in completely organic nanocomposite enabled by L-ascorbic acid
KR101227109B1 (en) Tuning nanoscale friction using nanopartiecles with engineering of organic capping layer
Ghosh et al. Carbon nanotube-based hierarchical paper structure for ultra-high electrothermal actuation in a wide humidity range
Cai et al. Tunable Electrical Transport through Annealed Monolayers of Monodisperse Cobalt− Platinum Nanoparticles
Diao et al. Self assembled nanoparticle wires by discontinuous vertical colloidal deposition
Hu et al. Tuning thermoelectric conversion performance of BiSbTe/Epoxy flexible films with dot magnetic arrays
Fathipour et al. Reducing adhesion energy of nano-electro-mechanical relay contacts by self-assembled Perfluoro (2, 3-Dimethylbutan-2-ol) coating
Chen et al. Fabrication of electromechanical switch using interconnected single-walled carbon nanotubes
Cook et al. Conductance of kinked nanowires

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151229

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170106

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190107

Year of fee payment: 7