KR101225328B1 - Appratus for refining sinter flue gas - Google Patents

Appratus for refining sinter flue gas Download PDF

Info

Publication number
KR101225328B1
KR101225328B1 KR1020100094689A KR20100094689A KR101225328B1 KR 101225328 B1 KR101225328 B1 KR 101225328B1 KR 1020100094689 A KR1020100094689 A KR 1020100094689A KR 20100094689 A KR20100094689 A KR 20100094689A KR 101225328 B1 KR101225328 B1 KR 101225328B1
Authority
KR
South Korea
Prior art keywords
activated carbon
bed
sox
nox
flue gas
Prior art date
Application number
KR1020100094689A
Other languages
Korean (ko)
Other versions
KR20120033090A (en
Inventor
류성윤
송창병
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020100094689A priority Critical patent/KR101225328B1/en
Publication of KR20120033090A publication Critical patent/KR20120033090A/en
Application granted granted Critical
Publication of KR101225328B1 publication Critical patent/KR101225328B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/08Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds according to the "moving bed" method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8637Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/025Other waste gases from metallurgy plants

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Treating Waste Gases (AREA)

Abstract

하부에 배가스 주입구가 형성되고 내부에 활성탄이 채워진 SOx베드; 상기 SOx베드의 위에 위치하며 내부에 활성탄이 채워지고, 하부에 상기 SOx베드로부터 배가스가 취입되고 상부에 배가스 배출구가 형성된 NOx베드; 상기 SOx베드와 상기 NOx베드는 각각 상부에 형성된 제1 및 제2활성탄 투입부; 각각의 하부에 형성된 제1 및 제2활성탄 배출부; 및 상기 제1 및 제2활성탄 투입부에 각각 활성탄을 공급하는 활성탄 저장탱크를 포함하는 소결배가스 정제장치는 NOx 베드와 SOx 베드의 활성탄의 순환속도를 각 물질의 농도에 따라 다르게 할 수 있으므로 불필요한 활성탄의 낭비를 막을 수 있으며, SOx베드에서 미처 제거되지 못한 SOx가 NOx 베드에서 암모니아와 반응하여 황산암모늄을 생성함으로써 나타나는 막힘현상을 줄일 수 있다. An SOx bed having an exhaust gas injection hole formed therein and filled with activated carbon therein; A NOx bed positioned above the SOx bed, filled with activated carbon therein, exhaust gas being blown in from the SOx bed, and having an exhaust gas outlet formed thereon; The SOx bed and the NOx bed, respectively, the first and second activated carbon input unit formed on the top; First and second activated carbon discharge parts formed on each lower part; And activated carbon storage tanks for supplying activated carbon to the first and second activated carbon input units, respectively, so that the circulation rate of the activated carbon of the NOx bed and the SOx bed can be changed according to the concentration of each material. This prevents the waste of SOx and reduces the blockage caused by SOx that is not removed from the SOx bed and reacts with ammonia in the NOx bed to form ammonium sulfate.

Description

소결배가스 정제장치{Appratus for refining sinter flue gas}Apparatus for refining sinter flue gas

본 발명은 2단 활성탄 흡착탑에서 SOx의 제거효율을 향상시킬 수 있는 흡착탑에 대한 것이다.The present invention relates to an adsorption tower that can improve the removal efficiency of SOx in a two-stage activated carbon adsorption tower.

소결공정은 철광석을 쇳물로 만들기 위한 공정인 제선공정에서 가장 첫 번째로 거치는 공정으로 철광석 내의 불순물을 제거하여 품질을 고르게 하고 철광석 가루들을 일정한 크기로 만들기 위한 공정이다. The sintering process is the first step in the sintering process, which is a process for making iron ore. It is a process to remove impurities in the iron ore to make the quality uniform and to make iron ores powder to a certain size.

소결 공정은 주원료인 미립의 철광석에 부원료인 석회석, 사문암, 규사 등과 연료로서 코크스 또는 유연탄, 무연탄을 일정비율로 사용하여 제조한다. The sintering process is manufactured by using coke, bituminous coal, anthracite coal as a fuel in fine iron ore as a main raw material, and limestone, serpentine and silica sand as a raw material.

본 발명의 목적은 2단 활성탄 흡착탑에서 SOx의 제거효율을 향상시킬 수 있는 흡착탑을 제공하는 것이다.It is an object of the present invention to provide an adsorption tower that can improve the removal efficiency of SOx in a two-stage activated carbon adsorption tower.

본 발명의 일측면에 따른 소결배가스 정제장치는 하부에 배가스 주입구가 형성되고 내부에 활성탄이 채워진 SOx베드와, 상기 SOx베드의 위에 위치하며, 내부에 활성탄이 채워지고 하부에 상기 SOx베드로부터 배가스가 취입되고 상부에 배가스 배출구가 형성된 NOx베드와, 상기 SOx베드와 상기 NOx베드에 활성탄을 공급하는 활성탄 저장탱크와, 상기 SOx베드의 상부에 연결되어 상기 활성탄 저장탱크 내의 활성탄을 상기 SOx베드의 내부로 공급하는 제1활성탄 투입부와, 상기 SOx베드의 하부에 연결되어 상기 SOx베드 내의 활성탄을 배출하는 제1활성탄 배출부와, 상기 NOx베드의 상부에 연결되어 상기 활성탄 저장탱크 내의 활성탄을 상기 NOx베드의 내부로 공급하는 제2활성탄 투입부와, 상기 NOx베드의 하부에 연결되어 상기 NOx베드 내의 활성탄을 배출하는 제2활성탄 배출부와, 상기 SOx베드의 상부에 배치되어 SOx 농도를 측정하는 센서; 및 상기 센서로부터 SOx 농도 데이터를 전송받아 상기 제1활성탄 투입부 및 상기 제2활성탄 투입부를 통해 상기 SOx베드 및 상기 NOx베드에 공급되는 활성탄의 양과 상기 제1활성탄 배출부 및 상기 제2활성탄 배출부를 통해 배출되는 활성탄의 양을 개별적으로 제어하는 제어부를 포함한다.
상기 SOx베드의 하부에서 탈황제를 주입하는 분사장치를 더 포함한다.
상기 탈황제는 Al2O3-Na2O, Mn2O3 및 암모니아 중 적어도 하나를 포함한다.
상기 제어부는 상기 센서로부터 SOx 농도 데이터를 전송받아 상기 분사장치에서 SOx베드에 주입되는 탈황제의 양을 조절한다.
상기 제1활성탄 배출부와 상기 제2활성탄 배출부는 상기 활성탄 저장탱크와 연결되고, 상기 활성탄 저장탱크는 상기 제1활성탄 배출부와 상기 제2활성탄 배출부로부터 수집된 활성탄을 재생한다.
Sintered flue gas purification apparatus according to an aspect of the present invention is an SOx bed formed with an exhaust gas inlet at the bottom and filled with activated carbon therein, and is located above the SOx bed, the activated carbon is filled inside and the exhaust gas from the SOx bed at the bottom A NOx bed blown in and formed with an exhaust gas outlet at the top, an activated carbon storage tank for supplying activated carbon to the SOx bed and the NOx bed, and connected to an upper portion of the SOx bed to activate activated carbon in the activated carbon storage tank into the SOx bed. A first activated carbon inlet for supplying, a first activated carbon discharger connected to a lower portion of the SOx bed to discharge activated carbon in the SOx bed, and a top of the NOx bed connected to an activated carbon in the activated carbon storage tank to supply the activated carbon in the NOx bed A second active carbon input unit for supplying the inside of the second active unit and a second active unit connected to a lower portion of the NOx bed to discharge activated carbon in the NOx bed A carbon discharging part and a sensor disposed on the SOx bed to measure SOx concentration; And an amount of activated carbon supplied to the SOx bed and the NOx bed, the first activated carbon discharge part, and the second activated carbon discharge part by receiving SOx concentration data from the sensor. It includes a control unit for individually controlling the amount of activated carbon discharged through.
The apparatus further includes an injector for injecting a desulfurization agent under the SOx bed.
The desulfurization agent includes at least one of Al 2 O 3 -Na 2 O, Mn 2 O 3 and ammonia.
The control unit receives the SOx concentration data from the sensor and adjusts the amount of desulfurization agent injected into the SOx bed in the injector.
The first activated carbon discharge unit and the second activated carbon discharge unit are connected to the activated carbon storage tank, and the activated carbon storage tank regenerates the activated carbon collected from the first activated carbon discharge unit and the second activated carbon discharge unit.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

본 발명의 소결배가스 정제장치는 NOx 베드와 SOx 베드의 활성탄의 순환속도를 각 물질의 농도에 따라 다르게 할 수 있으므로 불필요한 활성탄의 낭비를 막을 수 있으며, SOx베드에서 미처 제거되지 못한 SOx가 NOx 베드에서 암모니아와 반응하여 황산암모늄을 생성함으로써 나타나는 막힘현상을 줄일 수 있다. The sintered flue gas purification apparatus of the present invention can prevent the waste of activated carbon because the circulation rate of activated carbon of NOx bed and SOx bed can be changed according to the concentration of each material, and SOx is not removed from SOx bed in NOx bed. Reaction with ammonia to form ammonium sulfate can reduce clogging.

도 1은 본 발명의 일 실시예에 따른 소결배가스 정제장치를 나타낸 개념도.1 is a conceptual diagram showing a sintered flue gas purification apparatus according to an embodiment of the present invention.

이하에서는 본 발명의 바람직한 실시예를 도 1을 참조하여 구체적으로 설명하도록 한다.Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to FIG. 1.

도 1은 본 발명의 일 실시예에 따른 소결배가스 정제장치를 나타낸 개념도로서, SOx베드(10), NOx베드(20), 배가스 주입구(11), 배가스 배출구(21), 제1 및 제2활성탄 투입부(13,23), 제1 및 제2활성탄 배출부(15,25), 분사장치(17,27), 센서(19), 활성탄 저장탱크(30), 활성탄 분배장치(33,35) 및 메쉬(37)가 도시되어 있다. 1 is a conceptual view showing a sintered flue gas purification apparatus according to an embodiment of the present invention, SOx bed 10, NOx bed 20, exhaust gas inlet 11, exhaust gas outlet 21, the first and second activated carbon Input unit 13, 23, first and second activated carbon discharge unit 15, 25, injectors 17, 27, sensor 19, activated carbon storage tank 30, activated carbon distribution device (33, 35) And mesh 37 is shown.

SOx베드(10)는 활성탄이 채워져 있으며, 전체 소결배가스 정제장치의 하단에 위치하여 소결배가스가 주입되는 배가스 주입구(11)를 포함하고, 주입된 소결배가스는 가벼우므로 상부로 이동한다.The SOx bed 10 is filled with activated carbon and is located at the bottom of the entire sintered flue gas purification apparatus, and includes an exhaust gas inlet 11 through which the sintered flue gas is injected.

NOx베드(20)는 활성탄이 채워져 있으며, SOx베드(10)의 상부에 위치하여 SOx베드(10)를 통과한 소결배가스가 유입되며 내부의 활성탄을 통과하며 NOx가 제거된 소결배가스가 배가스 배출구(21)로 빠져나간다. The NOx bed 20 is filled with activated carbon, and the sintered exhaust gas passing through the SOx bed 10 is located at the top of the SOx bed 10, and the sintered exhaust gas passes through the activated carbon inside and NOx is removed. Exit to 21).

활성탄 저장탱크(30)는 활성탄을 저장해두고 SOx베드(10) 및 NOx베드(20)에 활성탄을 공급한다. 한편, 활성탄 저장탱크(30)는 사용 후 오염된 활성탄을 회수해서 재생하여 다시 사용할 수 있도록 활성탄 저장탱크(30)는 재생 장치를 구비할 수 있다.The activated carbon storage tank 30 stores activated carbon and supplies activated carbon to the SOx bed 10 and the NOx bed 20. On the other hand, the activated carbon storage tank 30 may be provided with a regeneration device so that the activated carbon storage tank 30 can be recovered and reused after reuse.

분사장치(27)는 소결배가스가 NOx베드(20)에 주입되기 전에 소결배가스에 암모니아를 분사하여 소결배가스와 함께 NOx베드(20)로 유입되도록 하며, 균일하게 배가스와 전체적으로 섞이도록 스프레이 방식으로 분사하는 것이 바람직하다.The injector 27 injects ammonia into the sintered exhaust gas and enters the NOx bed 20 together with the sintered exhaust gas before the sintered exhaust gas is injected into the NOx bed 20. It is desirable to.

이하에서는 각 베드에서 소결배가스 내의 SOx 및 NOx를 제거하기 위해 진행되는 화학 반응에 대해 살펴보도록 한다.Hereinafter, the chemical reaction proceeds to remove SOx and NOx in the sintered flue gas in each bed.

SOx 베드(10)에서는 활성탄의 표면에 SO2를 흡착시킴으로써 SO2를 제거하고, NOx 베드(20)에서는 활성탄을 촉매로 하여 암모니아와 NO를 반응시켜 물과 질소로 전환시킴으로서 소결배가스 내의 NO를 제거한다. In SOx bed 10, SO 2 is removed by adsorbing SO 2 on the surface of activated carbon. In NOx bed 20, NO in the sintered flue gas is removed by converting water and nitrogen by reacting ammonia and NO with activated carbon as a catalyst. do.

SOx 베드(10)와 NOx 베드(20)의 제거 반응은 다음과 같다.The removal reaction of the SOx bed 10 and the NOx bed 20 is as follows.

SOx 베드 : SO2 + H2O + 1/2O2 → H2SO4 (황산 형태의 흡착에 의한 제거) … 식(1)SOx bed: SO 2 + H 2 O + 1 / 2O 2 → H 2 SO 4 (removed by adsorption in the form of sulfuric acid). Equation (1)

NOx 베드 : 4NO + 4NH3 + O2 → 4N2 + 6H2O (활성탄 촉매상에서 환원 제거)…식(2)NOx bed: 4NO + 4NH 3 + O 2- > 4N 2 + 6H 2 O (reduced removal on activated carbon catalyst). Equation (2)

이때 분사되는 암모니아는 상기 식(2)에서 보듯이 소결배가스에 포함된 NO와 1:1의 당량비를 유지해야 NO를 효율적으로 제거할 수 있다. 즉, NOx베드(20)에 취입되는 소결배가스에 포함된 NO과 반응하기에 충분한 암모니아 양을 계산하여 분사한다.At this time, the injected ammonia must be maintained at an equivalent ratio of 1: 1 with NO contained in the sintered flue gas as shown in Equation (2) to efficiently remove NO. That is, the amount of ammonia sufficient to react with NO contained in the sintered flue gas blown into the NOx bed 20 is calculated and injected.

다만, SOx 베드(10)는 시간이 지남에 따라 활성탄의 표면에 SO2가 흡착되어 효율이 저하되면 SOx 베드(10)에서 다 제거되지 못하고 NOx베드(20)로 이동하게 된다.However, when the SOx bed 10 is adsorbed onto the surface of activated carbon over time as SO 2 is deteriorated, the SOx bed 10 is not removed from the SOx bed 10 and moves to the NOx bed 20.

이때 SO2는 암모니아와 반응하여 황산암모늄을 형성하는바, NO의 제거에 이용되어야할 암모니아가 소모되어 NO의 제거 효율이 저하되고, 암모니아와 반응하여 형성된 황산암모늄은 활성탄 촉매의 표면을 피독시키게 되어 NOx 베드(20)의 효율이 저하되는 문제가 발생하며, 암모니아와 SOx이 반응하여 생성된 황산암모늄으로 인해 NOx베드(20)의 하부에 막힘 현상이 발생한다.At this time, SO 2 reacts with ammonia to form ammonium sulfate. As ammonia to be used for NO removal is consumed, NO removal efficiency is reduced, and ammonium sulfate formed by reaction with ammonia poisons the surface of the activated carbon catalyst. A problem occurs that the efficiency of the NOx bed 20 is lowered, and clogging occurs at the bottom of the NOx bed 20 due to ammonium sulfate produced by the reaction of ammonia and SOx.

또한, SOx베드(10)와 NOx베드(20)의 활성탄은 SOx와 NOx의 농도에 따라 그 오염정도가 차이가 나는데 기존의 활성탑은 NOx베드(20) 상단에서 활성탄을 투입하면 그 활성탄은 하부 SOx베드(10)까지 지난 후에 배출된다.In addition, the activated carbon of SOx bed 10 and NOx bed 20 has a different pollution degree according to the concentration of SOx and NOx. In the conventional activated tower, when activated carbon is injected from the top of NOx bed 20, the activated carbon is lowered. After passing through the SOx bed 10, it is discharged.

SOx베드(10)의 오염도가 일반적으로 NOx베드(20)보다 크므로 이러한 구조에서는 NOx베드(20)에 이용되는 활성탄은 교체할 필요가 없더라도 SOx베드(10)의 효율을 위해 교체해야하며, 이는 활성탄의 낭비가 될 수 있다.  Since the pollution degree of the SOx bed 10 is generally larger than that of the NOx bed 20, the activated carbon used in the NOx bed 20 needs to be replaced for the efficiency of the SOx bed 10, although it is not necessary to replace it. It can be a waste of activated carbon.

따라서 본 발명은 SOx베드(10)와 NOx베드(20)에 각각 활성탄 저장탱크(30)로 부터 활성탄을 공급하여, 독립적으로 활성탄을 순환 시킴으로써, 불필요하게 순환시켜야 하는 활성탄의 양을 최소화 하였다.Therefore, the present invention supplies activated carbon from the activated carbon storage tank 30 to the SOx bed 10 and the NOx bed 20, respectively, to minimize the amount of activated carbon that must be circulated unnecessarily by circulating the activated carbon independently.

도 1을 참조하면, SOx베드(10)와 NOx베드(20)의 상부에 각각 활성탄을 주입하는 제1 및 제2활성탄 투입부(13,23)가 있고, 각각 하부에 제1 및 제2활성탄 배출부(15,25)를 구비하고 있다.
제1활성탄 투입부(13)는 SOx베드(10)의 상부에 연결되어 활성탄 저장탱크(30) 내의 활성탄을 SOx베드(10)의 내부로 공급하고, 제1활성탄 배출부(15)는 SOx베드(10)의 하부에 연결되어 SOx베드(10) 내의 활성탄을 배출한다.
제2활성탄 투입부(23)는 NOx베드(20)의 상부에 연결되어 활성탄 저장탱크(30) 내의 활성탄을 NOx베드(20)의 내부로 공급하고, 제2활성탄 배출부(23)는 NOx베드(20)의 하부에 연결되어 NOx베드(20) 내의 활성탄을 배출한다.
제1활성탄 배출부(15)와 제2활성탄 배출부(25)는 활성탄 저장탱크(30)와 연결되고, 활성탄 저장탱크(30)는 제1활성탄 배출부(15)와 제2활성탄 배출부(25)로부터 수집된 활성탄을 재생한다.
이렇게 활성탄의 공급을 각 베드(10,20)에 개별적으로 공급하는 방식을 도입하면 SOx베드(10)에서 SOx가 효율적으로 제거되고, NOx베드(20)에는 SOx가 유입되지 않아 활성탄의 교환 주기가 길어지게 되어 활성탄 순환속도를 매우 늦춰도 문제되지 않는다.
Referring to FIG. 1, first and second activated carbon inlets 13 and 23 for injecting activated carbon into upper portions of the SOx bed 10 and the NOx bed 20 are respectively provided, respectively. Discharge parts 15 and 25 are provided.
The first activated carbon input unit 13 is connected to the upper portion of the SOx bed 10 to supply activated carbon in the activated carbon storage tank 30 to the inside of the SOx bed 10, and the first activated carbon discharge unit 15 is connected to the SOx bed. It is connected to the lower part of 10 to discharge activated carbon in the SOx bed 10.
The second activated carbon input unit 23 is connected to the upper portion of the NOx bed 20 to supply activated carbon in the activated carbon storage tank 30 to the inside of the NOx bed 20, and the second activated carbon discharge unit 23 is a NOx bed. It is connected to the lower part of the 20 to discharge the activated carbon in the NOx bed 20.
The first activated carbon discharge unit 15 and the second activated carbon discharge unit 25 are connected to the activated carbon storage tank 30, and the activated carbon storage tank 30 is the first activated carbon discharge unit 15 and the second activated carbon discharge unit ( Recycle the activated carbon collected from 25).
In this way, by supplying activated carbon to each bed 10 and 20 separately, SOx is efficiently removed from SOx bed 10, and SOx does not flow into NOx bed 20, so the exchange cycle of activated carbon It will be longer, so slowing the activated carbon cycle is not a problem.

이때, SOx베드(10)의 상부에 SOx의 농도를 측정하는 센서(19)를 추가하면, 제어부(미도시)는 센싱한 SOx농도를 통해 SOx베드(10)의 SOx제거 효율을 모니터링 할 수 있다. 즉, SOx가 많이 검출되면 제어부(미도시)는 활성탄 분배장치(33,35)를 제어하여 SOx베드(10)의 활성탄 순환속도를 높여 NOx베드(20)로 SOx의 유입을 최소화 할 수 있다.
센서(19)는 SOx베드(10)의 상부에 배치되어 SOx 농도를 측정하고, 제어부는 센서(19)로부터 SOx 농도 데이터를 전송받아 제1활성탄 투입부(13) 및 제2활성탄 투입부(23)를 통해 SOx베드(10) 및 NOx베드(20)에 공급되는 활성탄의 양과 제1활성탄 배출부(15) 및 제2활성탄 배출부(25)를 통해 배출되는 활성탄의 양을 개별적으로 제어한다.
In this case, when the sensor 19 for measuring the concentration of SOx is added to the upper portion of the SOx bed 10, the controller (not shown) may monitor the SOx removal efficiency of the SOx bed 10 through the sensed SOx concentration. . That is, when a large amount of SOx is detected, the controller (not shown) may control the activated carbon distribution devices 33 and 35 to increase the activated carbon circulation rate of the SOx bed 10 to minimize the inflow of SOx into the NOx bed 20.
The sensor 19 is disposed on the SOx bed 10 to measure the SOx concentration, and the control unit receives SOx concentration data from the sensor 19, and the first activated carbon input unit 13 and the second activated carbon input unit 23. The amount of activated carbon supplied to the SOx bed 10 and the NOx bed 20 and the amount of activated carbon discharged through the first activated carbon discharge unit 15 and the second activated carbon discharge unit 25 are individually controlled.

분사장치(17)은 상기 SOx베드의 하부에서 탈황제를 주입하는 분사장치로서, NOx베드(20)의 분사장치(27)와 같이 스프레이 타입이 바람직하며, 탈황제는 Al2O3-Na2O, Mn2O3 및 암모니아 중 적어도 하나를 포함할 수 있다. 예를 들어, 탈황제는 Al2O3에 Na2O와 Mn2O3를 담지하여 제조할 수 있다. The injector 17 is an injector for injecting a desulfurization agent from the bottom of the SOx bed, and is preferably a spray type like the injector 27 of the NOx bed 20. The desulfurization agent is Al 2 O 3 -Na 2 O, And at least one of Mn 2 O 3 and ammonia. For example, the desulfurization agent may be prepared by supporting Na 2 O and Mn 2 O 3 in Al 2 O 3 .

이처럼 SOx베드(10) 하단에서 탈황제를 이용해 미리 SOx를 효과적으로 제거할 수 있으며, 탈황제와 반응하여 생성된 황산화물이 활성탄의 표면에 피독되더라도, 바로 배출되어 활성탄 저장탱크(30)로 이동되므로 막힘현상은 NOx베드(20)에서 황산화물이 생겼을 때에 비해 문제되지 않는다.Thus, SOx can be effectively removed in advance by using a desulfurization agent at the bottom of the SOx bed 10, and even if sulfur oxides generated by reacting with the desulfurization agent are poisoned on the surface of the activated carbon, they are immediately discharged and moved to the activated carbon storage tank 30, thereby causing clogging. Is not a problem compared to when sulfur oxides are generated in the NOx bed 20.

센서(19)에서 SOx의 농도데이터를 전송받은 제어부(미도시)는 SOx농도가 높게 검출되면 탈황제의 분사량을 증가시키도록 분사장치(17)를 제어하여, SOx의 제거 효율을 높여 SOx가 NOx베드(20)로 투입되는 것을 억제할 수 있다.The control unit (not shown) receiving the SOx concentration data from the sensor 19 controls the injector 17 to increase the injection amount of the desulfurization agent when the SOx concentration is detected to be high, so that the SOx is NOx bed by increasing the removal efficiency of the SOx. Input to (20) can be suppressed.

메쉬(37)는 SOx베드(10)의 제1활성탄 배출부(15)와 상기 활성탄 저장탱크(30) 사이에 개재되고, 활성탄의 직경보다 작고 상기 탈황제와 SOx가 반응한 반응물은 통과할 수 있는 개구부가 형성된 부재로서, 탈황제와 SOx가 반응한 반응물과 활성탄을 분리하여 활성탄만 활성탄 저장탱크로 이동시킨다. 메쉬(37)를 이용하면 활성탄의 재생 효율 향상에 도움이 된다. The mesh 37 is interposed between the first activated carbon outlet 15 of the SOx bed 10 and the activated carbon storage tank 30, and smaller than the diameter of the activated carbon and a reactant reacted with the desulfurization agent and SOx can pass therethrough. An opening is formed, and the activated carbon and the reactant reacted with the desulfurization agent and SOx are separated to move only activated carbon to the activated carbon storage tank. Use of the mesh 37 helps to improve the regeneration efficiency of activated carbon.

이상 SOx베드(10)와 NOx베드(20)의 활성탄을 개별적으로 순환시키는 구조를 통해 활성탄을 효율적으로 이용할 수 있고, SOx베드(10) 하단에서 탈황제를 주입하여 SOx의 제거 성능을 향상시킬 수 있는 소결배가스 정제장치에 대해 살펴보았다.Through the structure of circulating the activated carbon of SOx bed 10 and NOx bed 20 separately, activated carbon can be efficiently used, and desulfurization agent can be injected from the bottom of SOx bed 10 to improve SOx removal performance. The sinter flue gas purification apparatus was examined.

상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention as defined in the appended claims. It will be understood that the invention may be varied and varied without departing from the scope of the invention.

10: SOx베드 20: NOx베드
11: 배가스 주입구 21: 배가스 배출구
13, 23: 제1 및 제2활성탄 투입부
15, 25: 제1 및 제2활성탄 배출부
17, 27: 분사장치 19: 센서
30: 활성탄 저장탱크 35: 활성탄 분배장치
37: 메쉬
10: SOx Bed 20: NOx Bed
11: flue gas inlet 21: flue gas outlet
13, 23: first and second activated carbon input unit
15, 25: first and second activated carbon discharge portion
17, 27: injector 19: sensor
30: activated carbon storage tank 35: activated carbon distribution device
37: mesh

Claims (7)

하부에 배가스 주입구가 형성되고 내부에 활성탄이 채워진 SOx베드;
상기 SOx베드의 위에 위치하며, 내부에 활성탄이 채워지고 하부에 상기 SOx베드로부터 배가스가 취입되고 상부에 배가스 배출구가 형성된 NOx베드;
상기 SOx베드와 상기 NOx베드에 활성탄을 공급하는 활성탄 저장탱크;
상기 SOx베드의 상부에 연결되어 상기 활성탄 저장탱크 내의 활성탄을 상기 SOx베드의 내부로 공급하는 제1활성탄 투입부;
상기 SOx베드의 하부에 연결되어 상기 SOx베드 내의 활성탄을 배출하는 제1활성탄 배출부;
상기 NOx베드의 상부에 연결되어 상기 활성탄 저장탱크 내의 활성탄을 상기 NOx베드의 내부로 공급하는 제2활성탄 투입부;
상기 NOx베드의 하부에 연결되어 상기 NOx베드 내의 활성탄을 배출하는 제2활성탄 배출부;
상기 SOx베드의 상부에 배치되어 SOx 농도를 측정하는 센서; 및
상기 센서로부터 SOx 농도 데이터를 전송받아 상기 제1활성탄 투입부 및 상기 제2활성탄 투입부를 통해 상기 SOx베드 및 상기 NOx베드에 공급되는 활성탄의 양과 상기 제1활성탄 배출부 및 상기 제2활성탄 배출부를 통해 배출되는 활성탄의 양을 개별적으로 제어하는 제어부를 포함한 것을 특징으로 하는 소결배가스 정제장치.
An SOx bed having an exhaust gas injection hole formed therein and filled with activated carbon therein;
Located on the SOx bed, NOx bed filled with activated carbon therein, the exhaust gas is blown from the SOx bed at the bottom and the exhaust gas outlet is formed on the top;
An activated carbon storage tank for supplying activated carbon to the SOx bed and the NOx bed;
A first activated carbon input unit connected to an upper portion of the SOx bed to supply activated carbon in the activated carbon storage tank into the SOx bed;
A first activated carbon discharge part connected to a lower portion of the SOx bed to discharge activated carbon in the SOx bed;
A second activated carbon input unit connected to an upper portion of the NOx bed to supply activated carbon in the activated carbon storage tank to the inside of the NOx bed;
A second activated carbon discharge unit connected to a lower portion of the NOx bed to discharge activated carbon in the NOx bed;
A sensor disposed on the SOx bed to measure SOx concentration; And
Receiving SOx concentration data from the sensor, the amount of activated carbon supplied to the SOx bed and the NOx bed through the first activated carbon inlet and the second activated carbon inlet, and through the first activated carbon outlet and the second activated carbon outlet Sintered flue gas purification apparatus comprising a control unit for individually controlling the amount of activated carbon discharged.
삭제delete 제1항에 있어서,
상기 SOx베드의 하부에서 탈황제를 주입하는 분사장치를 더 포함하는 소결배가스 정제장치.
The method of claim 1,
Sintered flue gas purification apparatus further comprises an injection device for injecting a desulfurization agent in the lower portion of the SOx bed.
제3항에 있어서,
상기 탈황제는 Al2O3-Na2O, Mn2O3 및 암모니아 중 적어도 하나를 포함하는 것을 특징으로 하는 소결배가스 정제장치.
The method of claim 3,
The desulfurization agent sintered flue gas purification apparatus comprising at least one of Al 2 O 3 -Na 2 O, Mn 2 O 3 and ammonia.
제3항에 있어서,
상기 제어부는 상기 센서로부터 SOx 농도 데이터를 전송받아 상기 분사장치에서 SOx베드에 주입되는 탈황제의 양을 조절하는 것을 특징으로 하는 소결배가스 정제장치.
The method of claim 3,
The control unit receives the SOx concentration data from the sensor sintered flue gas purification apparatus, characterized in that for adjusting the amount of desulfurization agent injected into the SOx bed in the injector.
삭제delete 제1항에 있어서,
상기 제1활성탄 배출부와 상기 제2활성탄 배출부는 상기 활성탄 저장탱크와 연결되고,
상기 활성탄 저장탱크는 상기 제1활성탄 배출부와 상기 제2활성탄 배출부로부터 수집된 활성탄을 재생하는 것을 특징으로 하는 소결배가스 정제장치.
The method of claim 1,
The first activated carbon discharge portion and the second activated carbon discharge portion is connected to the activated carbon storage tank,
The activated carbon storage tank is a sintered flue gas purification apparatus, characterized in that for recycling the activated carbon collected from the first activated carbon discharge portion and the second activated carbon discharge portion.
KR1020100094689A 2010-09-29 2010-09-29 Appratus for refining sinter flue gas KR101225328B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100094689A KR101225328B1 (en) 2010-09-29 2010-09-29 Appratus for refining sinter flue gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100094689A KR101225328B1 (en) 2010-09-29 2010-09-29 Appratus for refining sinter flue gas

Publications (2)

Publication Number Publication Date
KR20120033090A KR20120033090A (en) 2012-04-06
KR101225328B1 true KR101225328B1 (en) 2013-01-23

Family

ID=46135991

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100094689A KR101225328B1 (en) 2010-09-29 2010-09-29 Appratus for refining sinter flue gas

Country Status (1)

Country Link
KR (1) KR101225328B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101466357B1 (en) * 2013-09-26 2014-11-27 현대제철 주식회사 Apparatus for refining sinter flue gas and controlling methods of the same
CN109913640A (en) * 2019-04-01 2019-06-21 东北大学 A kind of intensified-sintered experimental provision and method
KR20200058529A (en) * 2018-01-29 2020-05-27 종예 창티엔 인터내셔날 엔지니어링 컴퍼니 리미티드 Multi-process flue gas purification system and control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101581562B1 (en) * 2014-06-27 2015-12-30 현대제철 주식회사 Apparatus for treating exhaust gas and method for treating exhaust gas with the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100262903B1 (en) * 1995-02-28 2000-08-01 가노 다다마사 Wet-type gas desulfurization plant and method making use of a solid desulfurizing agent
KR20090089470A (en) * 2006-12-14 2009-08-21 호르스트 그로초비스키 Method and device for purifying the flue gases of a sintering process of ores and/or other material-containing materials in metal production
KR100941400B1 (en) 2009-05-13 2010-02-10 (주)대우건설 Integrated multistage type apparatus for processing exhaust gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100262903B1 (en) * 1995-02-28 2000-08-01 가노 다다마사 Wet-type gas desulfurization plant and method making use of a solid desulfurizing agent
KR20090089470A (en) * 2006-12-14 2009-08-21 호르스트 그로초비스키 Method and device for purifying the flue gases of a sintering process of ores and/or other material-containing materials in metal production
KR100941400B1 (en) 2009-05-13 2010-02-10 (주)대우건설 Integrated multistage type apparatus for processing exhaust gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101466357B1 (en) * 2013-09-26 2014-11-27 현대제철 주식회사 Apparatus for refining sinter flue gas and controlling methods of the same
KR20200058529A (en) * 2018-01-29 2020-05-27 종예 창티엔 인터내셔날 엔지니어링 컴퍼니 리미티드 Multi-process flue gas purification system and control method
KR102343392B1 (en) * 2018-01-29 2021-12-27 종예 창티엔 인터내셔날 엔지니어링 컴퍼니 리미티드 Multi-process flue gas purification system and its control method
CN109913640A (en) * 2019-04-01 2019-06-21 东北大学 A kind of intensified-sintered experimental provision and method

Also Published As

Publication number Publication date
KR20120033090A (en) 2012-04-06

Similar Documents

Publication Publication Date Title
CN101605589B (en) Method and device for purifying the flue gases of a sintering process of ores and/or other metal-containing materials in metal production
KR102122673B1 (en) Method and apparatus for flue gas desulfurization and denitrification
JP5410404B2 (en) Powder absorbent recirculation type acid gas removal device and acid gas removal method using the same
KR102267459B1 (en) Automatic Ammonia-Adding System and Method for Ammonia-based Desulfurization Device
CN111841240B (en) Container and method for loading ammonia gas into adsorbent and/or absorbent
KR101225328B1 (en) Appratus for refining sinter flue gas
CN206897106U (en) A kind of middle low temperature combined desulfurization and denitration system
CN104107632A (en) Spouted bed type reactor for semi-dry flue gas desulfurization and multi-stage desulfurization using thereof
CN105194989A (en) Flue gas dust removal, desulfurization and denitrification coprocessing technology
CN101940870B (en) Device for removing sulfur dioxide in flue gas
CN102989313A (en) Flue gas denitration reaction device of catalytic fluidized bed
CN104736224B (en) Exhaust gas processing device and exhaust gas processing method
EP3498360A1 (en) Flue gas denitration method
CN110833743A (en) Adsorber and method for exhaust gas purification
CN103702939A (en) Catalytic sulfur degassing
CN110523251A (en) A kind of system for desulfuration and denitration and method of sintering flue gas circulation joint ozone pre-oxidation
KR101257049B1 (en) Apparatus for treating exhaust gas
US8480983B1 (en) Mercury capture system and method for a wet flue gas desulfurization system
CN104667746B (en) A kind of low-temperature circulating regenerates denitration catalyst device
CN209752576U (en) Device for treating solid combustion waste gas
CN202909626U (en) Catalytic fluidized bed flue gas denitration reaction device
KR20130046808A (en) Apparatus for purifying exhaust gas and controlling method thereof
CN202909607U (en) Waste gas treatment device
CN203155051U (en) Carbon adsorbent storage tank and waste gas treatment device
CN204543991U (en) A kind of low-temperature circulating regeneration denitration catalyst device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee