KR101222467B1 - Method for the fabrication of needle-punched carbon composite - Google Patents

Method for the fabrication of needle-punched carbon composite Download PDF

Info

Publication number
KR101222467B1
KR101222467B1 KR1020110093691A KR20110093691A KR101222467B1 KR 101222467 B1 KR101222467 B1 KR 101222467B1 KR 1020110093691 A KR1020110093691 A KR 1020110093691A KR 20110093691 A KR20110093691 A KR 20110093691A KR 101222467 B1 KR101222467 B1 KR 101222467B1
Authority
KR
South Korea
Prior art keywords
fiber
carbon composite
needle
composite material
manufacturing
Prior art date
Application number
KR1020110093691A
Other languages
Korean (ko)
Inventor
이재열
박종규
윤남균
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47841879&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR101222467(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to KR1020110093691A priority Critical patent/KR101222467B1/en
Application granted granted Critical
Publication of KR101222467B1 publication Critical patent/KR101222467B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/498Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres entanglement of layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nonwoven Fabrics (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE: A method for fabricating a needle-punched carbon composite is provided to prevent delamination or crack of layers and to save production cost. CONSTITUTION: A method for fabricating a needle-punched carbon composite comprises: a step of preparing a fiber layer of a predetermined thickness using a heat resistant fiber(S101); a step of laminating the prepared fiber layers and needle-punching while compressing the fiber layers to tight the fiber layers(S102); a step of performing thermal treatment of the fiber reinforcing material(S103); and a step of filling the fiber reinforcing material with a carbon ingredient(S104). The heat resistant fiber is an oxidized-polyacrylonitrile fiber. The fiber layer has a form of a woven fabric, a non-woven fabric, a knitted fabric, a multiaxial warp knitted fabric, a unidirectional fabric, or a web. [Reference numerals] (AA) Start; (BB) End; (S101) Preparing a fiber layer of a predetermined thickness using a heat resistant fiber; (S102) Laminating the prepared fiber layers and needle-punching the fiber layers while compressing; (S103) Thermally treating the fiber reinforcing material; (S104) Filling the fiber reinforcing material with a carbon ingredient

Description

니들펀치 탄소복합재 제조방법{Method for the fabrication of needle-punched carbon composite}Method for manufacturing needle punched carbon composites {Method for the fabrication of needle-punched carbon composite}

본 발명의 실시예들은 섬유보강재에 탄소 성분을 충진시켜 제작된 탄소복합재(carbon composite)의 제조방법에 관한 것이다. Embodiments of the present invention relate to a method of manufacturing a carbon composite (carbon composite) prepared by filling a carbon component in the fiber reinforcement.

탄소복합재는 매우 높은 온도에서 사용이 가능한 내열재 또는 극심한 삭마조건을 견디는 내삭마재 제조에 필수적인 재료이다.
Carbon composites are essential materials for the manufacture of heat-resistant materials that can be used at very high temperatures or for abrasive materials that withstand extreme ablation conditions.

탄소복합재 제조에 필요한 섬유보강재는 다양한 방법으로 제작한다. 섬유보강재 내부에 포함된 섬유의 배열 형태에 따라서, 짧은 섬유가 무질서하게 분산된 무배향 (random) 섬유보강재, 모든 섬유들이 나란하게 동일한 방향으로 배열된 1차원(1D)섬유보강재, 직물과 같은 평면 구조를 이용하는 2차원(2D) 섬유보강재, 입체적인 3방향으로 섬유를 보강한 3차원(3D) 섬유보강재로 분류한다.Fiber reinforcements for the production of carbon composites are produced in a variety of ways. Random fiber reinforcement with randomly dispersed short fibers, one-dimensional (1D) fiber reinforcement with all fibers arranged in the same direction, depending on the arrangement of fibers contained in the fiber reinforcement, flat like fabric It is classified into two-dimensional (2D) fiber reinforcement using a structure, and three-dimensional (3D) fiber reinforcement reinforced with fibers in three-dimensional three directions.

상기와 같은 방법으로 제조된 섬유보강재에 탄소 성분을 충진시키는 방법으로는, 고분자 수지를 함침시킨 후 고온으로 탄화하는 수지함침법(resin impregnation), 탄화수소 기체를 열분해하여 탄소 성분을 증착시키는 화학기상침투법(chemical vapor infiltration), 석탄 피치(coal tar pitch)를 용융시켜 함침하는 피치함침법(pitch impregnation) 등이 있다.As a method of filling a carbon component in the fiber reinforcing material prepared by the above method, a resin gas impregnation method of impregnating a polymer resin and then carbonizing at a high temperature, chemical vapor permeation to deposit carbon components by pyrolyzing hydrocarbon gas Chemical vapor infiltration, pitch impregnation for melting and impregnating coal tar pitch, and the like.

하지만, 이러한 기존의 공정들은 제조 공정이 복잡하고, 탄소복합재 제조 비용이 고가인바, 이를 개선하기 위한 새로운 공정들이 고려될 수 있다.
However, these existing processes are complicated manufacturing process, and the cost of manufacturing a carbon composite material is expensive, new processes to improve them can be considered.

본 발명의 일실시예들은, 탄소복합재를 제조하는 방식을 새롭게 개발하여, 탄소복합재의 물성을 향상시키고 제조공정을 용이하게 하며 제조비용을 낮추고자 하는 데 그 목적이 있다.
One embodiment of the present invention is to develop a method for producing a carbon composite material, to improve the physical properties of the carbon composite material, to facilitate the manufacturing process and to reduce the manufacturing cost.

이와 같은 본 발명의 해결 과제를 달성하기 위하여, 본 발명의 일 실시예에 따르는 니들펀치 탄소복합재 제조방법은, 내열성 섬유를 이용하여 일정한 두께의 섬유층으로 준비하는 단계와, 상기 준비된 섬유층들을 적층하고, 압착하면서 니들펀치를 수행하여 층간 결속을 부여하는 단계와, 니들펀치를 완료한 섬유보강재를 열처리하는 단계 및 열처리된 섬유보강재에 탄소 성분을 충진시키는 단계를 포함한다.In order to achieve the above object of the present invention, the needle punch carbon composite material manufacturing method according to an embodiment of the present invention, using a heat-resistant fiber to prepare a fiber layer of a constant thickness, and to laminate the prepared fiber layers, Performing a needle punch while pressing to impart interlayer bonding, heat treating the fiber reinforcement having completed the needle punch, and filling the heat treated fiber reinforcement with a carbon component.

본 발명과 관련한 일 예에 따르면, 상기 내열성 섬유는 옥시팬(Oxidized-Polyacrylonitrile) 섬유가 사용될 수 있다.According to an example related to the present invention, the heat resistant fiber may be an oxyfan (Oxidized-Polyacrylonitrile) fiber.

본 발명과 관련한 일 예에 따르면, 상기 내열성 섬유는 옥시팬 섬유에 탄소 섬유를 혼합하여 형성된 것이 사용될 수 있다.According to an example related to the present invention, the heat resistant fiber may be one formed by mixing carbon fiber with oxyfan fiber.

본 발명과 관련한 일 예에 따르면, 상기 섬유층은, 장섬유 또는 단섬유를 이용하여 직포(woven fabric), 부직포(nonwoven fabric), 편직포(knitted fabric), 다축경편성포(multiaxial warp knitted fabric), 일방향배열포(unidirectinoal fabric) 또는 웹(web)의 형태를 가지는 것이 사용될 수 있다.According to an example related to the present invention, the fiber layer is a woven fabric, a nonwoven fabric, a knitted fabric, a multiaxial warp knitted fabric using long fibers or short fibers, One having a form of a unidirectinoal fabric or a web may be used.

본 발명과 관련한 일 예에 따르면, 상기 섬유층은 적어도 하나 이상의 섬유층을 혼합하여 형성된 것이 사용될 수 있다.According to an example related to the present invention, the fiber layer may be one formed by mixing at least one or more fiber layers.

본 발명과 관련한 일 예에 따르면, 상기 섬유층의 두께는 0.1mm 내지 6mm 인 것이 사용될 수 있다.According to an example related to the present invention, the thickness of the fiber layer may be used that is 0.1mm to 6mm.

본 발명과 관련한 일 예에 따르면, 상기 섬유층을 적층할 때의 적층방향은 1방향에서 8방향 사이가 되도록 할 수 있다.According to an example related to the present invention, the lamination direction when laminating the fiber layer may be in one direction to eight directions.

본 발명과 관련한 일 예에 따르면, 상기 니들펀치를 수행하여 층간 결속을 부여하는 단계는, 바늘 사이의 간격이 0.5mm 내지 20mm 로 하여 배치된 니들 침판을 사용하여 층간 결속을 부여하는 방법이 적용될 수 있다.According to an example related to the present invention, the step of imparting the interlayer binding by performing the needle punch may be applied to the method of imparting the interlayer bonding using a needle needle plate disposed with a distance between the needles of 0.5 mm to 20 mm. have.

본 발명과 관련한 일 예에 따르면, 상기 섬유보강재를 열처리하는 온도는 600 ℃ 내지 2800 ℃ 로 하여 수행될 수 있다.According to an example related to the present invention, a temperature for heat treating the fiber reinforcement may be performed at 600 ° C. to 2800 ° C.

본 발명과 관련한 일 예에 따르면, 상기 섬유보강재의 열처리하는 단계는, 무거운 중량물을 이용하거나 또는 판재를 이용하여 섬유보강재를 가압하는 단계를 더 포함할 수 있다.According to an example related to the present invention, the heat treatment of the fiber reinforcement may further include pressing the fiber reinforcement using a heavy weight or a plate.

본 발명과 관련한 일 예에 따르면, 상기 탄소 성분을 충진시키는 단계는, 화학기상침투법이나 피치함침법 중 적어도 하나를 수행하는 방법이 적용될 수 있다.According to an example related to the present invention, the filling of the carbon component may include a method of performing at least one of chemical vapor permeation and pitch impregnation.

본 발명과 관련한 일 예에 따르면, 상기 탄소 성분을 충진시키는 단계는, 상기 탄소 성분을 충진시킨 후에 1500 ℃에서 2800 ℃ 사이의 추가 열처리 하는 단계를 더 포함할 수 있다.According to an example related to the present invention, the filling of the carbon component may further include performing an additional heat treatment between 1500 ° C. and 2800 ° C. after filling the carbon component.

본 발명과 관련한 일 예에 따르면, 상기 화학기상침투법이 수행되는 경우, 사용되는 원료 물질은 한 분자 내에 탄소 원자의 수가 1에서 7 사이인 탄화수소가 사용될 수 있다.According to an example related to the present invention, when the chemical vapor permeation method is performed, a hydrocarbon having 1 to 7 carbon atoms in one molecule may be used as the raw material used.

본 발명과 관련한 일 예에 따르면, 상기 화학기상침투법이 수행되는 경우, 증착 온도는 600 ℃ 내지 2000 ℃ 로 하여 수행될 수 있다.According to an example related to the present invention, when the chemical vapor permeation method is performed, the deposition temperature may be performed at 600 ° C to 2000 ° C.

본 발명과 관련한 일 예에 따르면, 상기 피치함침법이 수행되는 경우, 사용되는 원료 물질은 석탄계 피치 또는 석유계 피치가 될 수 있다.According to an example related to the present invention, when the pitch impregnation method is performed, the raw material used may be a coal-based pitch or a petroleum-based pitch.

본 발명과 관련한 일 예에 따르면, 상기 피치함침법이 수행되는 경우, 탄화 온도는 500 ℃ 내지 1700 ℃ 로 하여 수행될 수 있다.According to an example related to the present invention, when the pitch impregnation method is performed, the carbonization temperature may be performed at 500 ° C to 1700 ° C.

본 발명과 관련한 일 예에 따르면, 상기 피치함침법이 수행되는 경우, 탄화 압력은 200기압 내지 1500기압으로 하여 수행될 수 있다.
According to an example related to the present invention, when the pitch impregnation method is performed, the carbonization pressure may be performed at 200 atm to 1500 atm.

본 발명의 실시예들에 따라 제조된 니들펀치 탄소복합재는 기본적으로 2차원 섬유보강재에 해당하지만, 기존의 2차원 섬유보강재에는 존재하지 않는 층간 결속 수단을 부여한 것이다. The needle punch carbon composite material prepared according to the embodiments of the present invention basically corresponds to a two-dimensional fiber reinforcement, but is provided with an interlayer binding means that does not exist in the existing two-dimensional fiber reinforcement.

따라서, 기존의 2차원 섬유보강재에서 발생할 수 있는 층간 분리(delamination)나 크랙(crack)이 발생하지 않으며, 3차원 섬유보강재와 유사한 특성을 나타낸다. Therefore, delamination or cracking that may occur in the conventional two-dimensional fiber reinforcement does not occur, and exhibits characteristics similar to those of the three-dimensional fiber reinforcement.

또한 기존의 3차원 섬유보강재의 제조 방법보다 본 발명에 의한 니들펀치 공정이 쉽고 빠르기 때문에 제조비용을 절감할 수 있다.
In addition, since the needle punch process according to the present invention is easier and faster than the conventional method of manufacturing the three-dimensional fiber reinforcement can reduce the manufacturing cost.

도 1은 본 발명에 따른 니들펀치 탄소복합재의 제조방법을 보여주는 흐름도.1 is a flow chart showing a method of manufacturing a needle punch carbon composite material according to the present invention.

이하, 본 발명의 일실시예에 따르는 니들펀치 탄소복합재 제조방법에 대하여 도면을 참조하여 보다 상세하게 설명한다. 본 명세서에서는 서로 다른 실시예라도 동일·유사한 구성에 대해서는 동일·유사한 참조번호를 부여하고, 그 설명은 처음 설명으로 갈음한다. 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
Hereinafter, a needle punch carbon composite material manufacturing method according to an embodiment of the present invention will be described in more detail with reference to the accompanying drawings. In the present specification, the same or similar reference numerals are given to different embodiments in the same or similar configurations. As used herein, the singular forms "a", "an" and "the" include plural referents unless the context clearly dictates otherwise.

본 발명의 일실시예들과 관련된 탄소 복합재 제조방법은 니들 펀칭을 이용한다. Carbon composite manufacturing method related to an embodiment of the present invention uses needle punching.

니들 펀칭을 이용하는 방법은, 먼저, 직물을 여러 겹으로 적층하여 원하는 두께를 만든 후, 적층된 직물들을 두께방향으로 결속시켜 3차원 섬유보강재와 같은 효과를 가지도록 한다. In a method using needle punching, first, a plurality of layers of fabrics are laminated to form a desired thickness, and then the laminated fabrics are bound in the thickness direction to have the same effect as a three-dimensional fiber reinforcement.

그리고, 적층된 직물들을 두께 방향으로 결속시키기 위하여, 다수의 바늘(needle)들을 적층된 직물의 두께 방향으로 관통시킨다. 상기 바늘들은 측면에 다수의 돌기(barb)를 가지고 있어서, 적층된 직물에 포함된 섬유 중의 일부가 바늘의 돌기에 걸리게 된다. Then, in order to bind the laminated fabrics in the thickness direction, a plurality of needles are penetrated in the thickness direction of the laminated fabric. The needles have a plurality of barbs on the side, so that some of the fibers included in the laminated fabric are caught by the needle protrusions.

바늘의 돌기에 걸린 섬유들은 바늘이 적층된 직물의 두께방향으로 관통할 때, 그 바늘을 따라서 적층된 직물의 두께 방향으로 삽입되어 적층된 직물들의 층간 결속을 일으킨다.The fibers caught in the protrusions of the needle are inserted along the needle in the thickness direction of the laminated fabric when the needle penetrates in the thickness direction of the laminated fabric, causing interlayer bonding of the laminated fabrics.

이와 같은 방식으로 직물의 두께방향으로 결속시키는 방식을 니들펀치 기술이라 한다.
The method of binding in the thickness direction of the fabric in this manner is called needle punch technology.

이하 첨부된 도 1을 이용하여 본 발명의 내용을 구체적으로 설명한다.Hereinafter, the content of the present invention will be described in detail with reference to FIG. 1.

본 발명의 일실시예에 따른 니들펀치 탄소복합재 제조방법은, 내열성 섬유를 이용하여 일정한 두께의 섬유층으로 준비하는 단계와(단계 S101); 상기 준비된 섬유층들을 적층하여 압착하면서 니들펀치를 수행하여 층간 결속을 부여하는 단계와(단계 S102); 니들펀치를 완료한 섬유보강재를 열처리하는 단계와(단계 S103); 열처리된 섬유보강재에 탄소 성분을 충진시키는 단계(단계 S104);를 포함하여 이루어진다.Needle punch carbon composite material manufacturing method according to an embodiment of the present invention, the step of preparing a fiber layer of a predetermined thickness using heat-resistant fibers (step S101); Stacking the prepared fiber layers and performing a needle punch while pressing to give an interlayer bond (step S102); Heat-treating the fiber reinforcement having completed the needle punch (step S103); And filling a carbon component in the heat-treated fiber reinforcement (step S104).

상기 단계 S101에서의 내열성 섬유는 옥시팬 섬유인 것이 바람직하다. It is preferable that the heat resistant fiber in the said step S101 is an oxyfan fiber.

그 이유는 옥시팬 섬유가 유연한 성질을 가지고 있으므로, 니들펀치 공정에 의하여 바늘의 돌기에 걸려 적층된 섬유층의 두께 방향으로 삽입되어 층간 결속을 부여하기에 용이하기 때문이다.The reason for this is that the oxyfan fibers have a flexible property, so that they are easily inserted into the thickness direction of the stacked fiber layers by the needle punch process to impart interlayer bonding.

또한, 상기 단계 S101에서의 내열성 섬유는 옥시팬 섬유로 하되 탄소 섬유를 혼합하는 것도 바람직하다. 그 이유는 탄소 섬유의 높은 강도와 내열성을 이용하여 섬유보강재의 강도와 내열성을 높일 수 있기 때문이다.In addition, the heat-resistant fiber in the step S101 is an oxypan fiber, but it is also preferable to mix the carbon fibers. The reason is that the strength and heat resistance of the fiber reinforcement can be increased by using the high strength and heat resistance of the carbon fiber.

또한, 상기 단계 S101에서 준비하는 섬유층은, 섬유보강재에 필요한 특성에 따라서 장섬유 또는 단섬유를 이용하여 직포(woven fabric) 또는 부직포(nonwoven fabric) 또는 편직포(knitted fabric) 또는 다축경편성포(multiaxial warp knitted fabric) 또는 일방향배열포(unidirectinoal fabric) 또는 웹(web)의 형태로 준비하는 것이 바람직하다.In addition, the fiber layer prepared in step S101, woven fabric or nonwoven fabric (knitted fabric) or multi-axial warp knitted fabric (multiaxial) using long fibers or short fibers according to the characteristics required for the fiber reinforcement It is preferable to prepare in the form of warp knitted fabric or unidirectinoal fabric or web.

또한, 상기 단계 S101에서 준비하는 섬유층은, 섬유보강재에 필요한 특성에 따라서 상기 준비된 섬유층을 1종류만 사용하거나 2종류 이상의 섬유층을 혼합하여 사용하는 것이 바람직하다.In addition, the fiber layer prepared in step S101, it is preferable to use only one type of the prepared fiber layer or a mixture of two or more types of fiber layer, depending on the properties required for the fiber reinforcement.

또한, 상기 단계 S101에서 준비하는 섬유층의 두께는 0.1mm 에서 6mm 사이인 것이 바람직하다. In addition, the thickness of the fiber layer prepared in step S101 is preferably between 0.1mm and 6mm.

그 이유는 섬유층의 두께가 0.1mm 미만인 경우 섬유층의 두께가 너무 얇아서 원하는 두께의 섬유보강재를 만들기 위해서 필요한 적층 횟수가 과다하여 제조 시간과 비용이 상승하는 단점이 있고, 섬유층의 두께가 6mm 초과인 경우 섬유층의 두께가 너무 두꺼워서 니들펀치로 인한 층간 결속이 충분하지 못한 단점이 있기 때문이다.The reason is that when the thickness of the fibrous layer is less than 0.1 mm, the thickness of the fibrous layer is so thin that the number of laminations required to make the fiber reinforcement of the desired thickness is excessive, which increases the manufacturing time and cost, and the thickness of the fibrous layer is more than 6 mm. This is because the thickness of the fiber layer is so thick that the interlayer bonding due to the needle punch is not sufficient.

상기 단계 S102에서 섬유층을 적층할 때의 적층방향은 1방향에서 8방향 사이인 것이 바람직하다. 여기서 각 방향은 섬유층의 적층방향으로서 서로 교차한다.It is preferable that the lamination direction at the time of laminating | stacking a fiber layer in the said step S102 is between 1 direction and 8 directions. Here, each direction crosses each other as a lamination direction of the fibrous layer.

왜냐하면, 적층방향이 9방향 이상인 경우 섬유가 보강되는 방향이 증가되어 섬유보강재의 등방성은 조금 상승하지만 적층이 번거롭고 재료의 손실이 많아져 제조 시간과 비용이 상승하는 단점이 있기 때문이다.If the lamination direction is greater than 9 directions, the direction in which the fibers are reinforced is increased, but the isotropy of the fiber reinforcement is slightly increased, but the lamination is cumbersome and the loss of materials increases, which increases the manufacturing time and cost.

또한, 상기 단계 S102에서 바늘 사이의 간격은 일정한 것이 바람직하며, 그 간격은 0.5mm에서 20mm 사이인 것이 바람직하다. 그 이유는 바늘 간격이 0.5mm 미만인 경우 너무 빽빽한 바늘 간격으로 인하여 섬유층이 손상을 많이 받기 때문이고, 바늘 간격이 20mm 초과인 경우 너무 먼 바늘 간격으로 인하여 니들펀치로 인한 층간 결속이 충분하지 못한 단점이 있기 때문이다.In addition, the interval between the needles in the step S102 is preferably constant, the interval is preferably between 0.5mm to 20mm. The reason is that if the needle spacing is less than 0.5mm, the fiber layer is damaged by too tight needle spacing, and if the needle spacing is more than 20mm, the interlayer bonding due to the needle punch is not sufficient due to the needle spacing too far. Because there is.

상기 단계 S103에서 열처리 온도는 600 ℃에서 2800 ℃ 사이인 것이 바람직하다. In the step S103, the heat treatment temperature is preferably between 600 ° C and 2800 ° C.

그 이유는 열처리 온도가 600 ℃ 미만인 경우 옥시팬 섬유가 충분히 탄화되지 못하여 불완전한 물성을 가지기 때문이고, 2800 ℃ 초과인 경우 옥시팬 섬유의 물성 향상은 더 이상 없는 반면 열처리 시간과 비용이 상승하는 단점이 있기 때문이다.The reason is that when the heat treatment temperature is less than 600 ° C., the oxyfan fibers are not sufficiently carbonized and have incomplete physical properties. When the heat treatment temperature is higher than 2800 ° C., the properties of the oxyfan fibers are no longer improved while the heat treatment time and cost are increased. Because there is.

이와 같은 열처리를 통해, 적당한 열적 특성과 기계적 특성을 만족하게 된다. 또한, 열처리는 복수로 수행될 수 있다. 이 경우 제1 차 열처리는 옥시팬 섬유에 탄소 이외의 불순물을 제거하기 위하여, 수행되는 것이며, 2차 열처리는 상기와 같이 열적 특성과 기계적 특성을 옥시팬 섬유에 부여하기 위함이다.Through such heat treatment, proper thermal and mechanical properties are satisfied. In addition, the heat treatment may be performed in plurality. In this case, the first heat treatment is performed to remove impurities other than carbon in the oxyfan fiber, and the second heat treatment is to impart thermal and mechanical properties to the oxyfan fiber as described above.

또한 상기 단계 S103에서 열처리 중에 무거운 중량물을 이용하거나 또는 판재를 이용하여 섬유보강재를 누르는 것이 바람직하다. In addition, it is preferable to press the fiber reinforcement using a heavy weight material or a plate during the heat treatment in step S103.

상기 단계 중 섬유 보강재를 가압함으로써, 열처리 중의 열응력으로 인하여 발생할 수 있는 섬유보강재의 뒤틀림, 층간 분리 또는 크랙을 방지할 수 있기 때문이다.This is because by pressing the fiber reinforcement during the step, it is possible to prevent distortion, interlayer separation or cracking of the fiber reinforcement that may occur due to the thermal stress during the heat treatment.

상기 단계 S104에서 탄소 성분을 충진시키는 방법은 화학기상침투법이나 피치함침법을 단독 또는 함께 사용하는 것이 바람직하다.In the method of filling the carbon component in step S104, it is preferable to use chemical vapor permeation or pitch impregnation alone or in combination.

또한 상기 단계 S104에서 탄소 성분을 충진시킨 후에 1500 ℃에서 2800 ℃ 사이의 추가 열처리를 수행하는 것도 바람직하다. It is also preferable to perform further heat treatment between 1500 ° C. and 2800 ° C. after filling the carbon component in step S104.

그 이유는 충진된 탄소 성분이 추가 열처리를 통하여 흑연화하게 되어 섬유 보강재, 즉 탄소 복합재의 기계적 물성이 향상되기 때문이다.This is because the filled carbon component is graphitized through further heat treatment, thereby improving the mechanical properties of the fiber reinforcement, that is, the carbon composite material.

또한 상기 단계 S104에서 화학기상침투법에 사용되는 원료 물질은 한 분자 내에 탄소 원자의 수가 1에서 7 사이인 탄화수소를 사용하는 것이 바람직하다. 그 이유는 탄소 원자의 수가 8 이상인 탄화수소인 경우 분자량이 커서 기체 상태로 섬유보강재에 침투시키기에 용이하지 않기 때문이다.In addition, it is preferable to use a hydrocarbon having 1 to 7 carbon atoms in one molecule as a raw material used for chemical vapor permeation in step S104. The reason for this is that hydrocarbons having 8 or more carbon atoms have a high molecular weight and are not easy to penetrate into the fiber reinforcement in a gaseous state.

또한 상기 단계 S104에서 화학기상침투법의 증착 온도는 600 ℃에서 2000 ℃ 사이인 것이 바람직하다. In addition, the deposition temperature of the chemical vapor permeation method in step S104 is preferably between 600 ° C and 2000 ° C.

그 이유는 증착 온도가 600 ℃ 미만인 경우 온도가 너무 낮아서 탄화수소 기체의 열분해가 잘 일어나지 않고 증착 온도가 2000 ℃ 초과인 경우 온도가 너무 높아서 열분해된 탄소 성분이 섬유보강재에서 증착이 잘 일어나지 않기 때문이다.The reason is that the temperature is too low when the deposition temperature is less than 600 ℃ do not thermally decompose hydrocarbon gas and the temperature is too high when the deposition temperature is more than 2000 ℃ because the thermally decomposed carbon component does not occur well in the fiber reinforcement.

또한 상기 단계 S104에서 피치함침법에 사용되는 원료 물질은 석탄계 피치 또는 석유계 피치를 사용하는 것이 바람직하다.In addition, it is preferable to use a coal pitch or a petroleum pitch as a raw material used for the pitch impregnation method in step S104.

또한 상기 단계 S104에서 피치함침법의 탄화 온도는 500 ℃에서 1700 ℃ 사이인 것이 바람직하다. In addition, the carbonization temperature of the pitch impregnation method in the step S104 is preferably between 500 ° C and 1700 ° C.

그 이유는 탄화 온도가 500 ℃ 미만인 경우 온도가 너무 낮아서 피치의 탄화가 잘 일어나지 않고 탄화 온도가 1700 ℃ 초과인 경우 피치의 탄화는 더 이상 없는 반면 고온 유지를 위한 비용이 상승하기 때문이다.The reason is that when the carbonization temperature is less than 500 ° C., the temperature is too low so that carbonization of the pitch does not occur well.

또한 상기 단계 S104에서 피치함침법의 탄화 압력은 200기압에서 1500기압 사이인 것이 바람직하다. In addition, the carbonization pressure of the pitch impregnation method in the step S104 is preferably between 200 atm and 1500 atm.

그 이유는 탄화 압력이 200기압 미만인 경우 섬유보강재에 충진된 탄소 성분이 치밀하지 않고 탄화 압력이 1500기압 초과인 경우 섬유보강재에 충진된 탄소 성분의 치밀화는 더 이상 없는 반면 고압 유지를 위한 비용이 상승하기 때문이다.
The reason for this is that when the carbonization pressure is less than 200 atm, the carbon component filled in the fiber reinforcement is not dense, and when the carbonization pressure is above 1500 atm, the densification of the carbon component filled in the fiber reinforcement is no longer performed, but the cost for maintaining the high pressure is increased. Because.

이상, 본 발명에 관하여 상세히 설명하였으나 본 발명의 범위는 이에 한정되는 것은 아니며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양하게 변경, 응용될 수 있음은 당업자에게 자명하다. 따라서, 본 발명의 진정한 보호 범위는 다음의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적사상은 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.
As described above, the present invention has been described in detail, but the scope of the present invention is not limited thereto, and it is apparent to those skilled in the art that various changes and applications can be made without departing from the technical spirit of the present invention. Therefore, the true scope of protection of the present invention should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto shall be construed as being included in the scope of the present invention.

Claims (18)

내열성 섬유를 이용하여 일정한 두께의 섬유층으로 준비하는 단계;
상기 준비된 섬유층들을 적층하고, 압착하면서 니들펀치를 수행하여 층간
결속을 부여하는 단계;
니들펀치를 완료한 섬유보강재를 열처리하는 단계; 및
열처리된 섬유보강재에 탄소 성분을 충진시키는 단계를 포함하고,
상기 섬유보강재의 열처리하는 단계는,
무거운 중량물을 이용하거나 또는 판재를 이용하여 섬유보강재를 가압하는 단계를 더 포함하는 것을 특징으로 하는 니들펀치 탄소복합재 제조방법.
Using a heat resistant fiber to prepare a fiber layer having a constant thickness;
The prepared fibrous layers are laminated, and a needle punch is performed while pressing the interlayers.
Imparting a bond;
Heat-treating the fiber reinforcement having completed the needle punch; And
Filling the heat treated fiber reinforcement with a carbon component,
Heat treatment of the fiber reinforcement,
The method of manufacturing a needle punched carbon composite material further comprising the step of pressing the fiber reinforcement using a heavy weight or using a plate.
제1항에 있어서,
상기 내열성 섬유는 옥시팬(Oxidized-Polyacrylonitrile) 섬유인 것을 특징으로 하는 니들펀치 탄소복합재 제조방법.
The method of claim 1,
The heat-resistant fiber is an oxypan (Oxidized-Polyacrylonitrile) fiber, characterized in that the needle punch carbon composite manufacturing method.
제2항에 있어서,
상기 내열성 섬유는 옥시팬 섬유에 탄소 섬유를 혼합하여 형성된 것을 특징으로 하는 니들펀치 탄소복합재 제조방법.
The method of claim 2,
The heat-resistant fiber is a needle punched carbon composite material manufacturing method, characterized in that formed by mixing carbon fiber with oxy-fan fiber.
제1항에 있어서,
상기 섬유층은,
장섬유 또는 단섬유를 이용하여 직포(woven fabric), 부직포(nonwoven fabric), 편직포(knitted fabric), 다축경편성포(multiaxial warp knitted fabric), 일방향배열포(unidirectinoal fabric) 또는 웹(web)의 형태를 가지는 것을 특징으로 하는 니들펀치 탄소복합재 제조방법.
The method of claim 1,
The fiber layer,
Long or short fibers are used for woven fabrics, nonwoven fabrics, knitted fabrics, multiaxial warp knitted fabrics, unidirectinoal fabrics or webs. Needle punched carbon composite material manufacturing method characterized in that it has a form.
제4항에 있어서,
상기 섬유층은 적어도 하나 이상의 섬유층을 혼합하여 형성된 것을 특징으로 하는 니들펀치 탄소복합재 제조방법.
5. The method of claim 4,
The fiber layer is a needle punched carbon composite material manufacturing method characterized in that formed by mixing at least one fiber layer.
제1항에 있어서,
상기 섬유층의 두께는 0.1mm 내지 6mm 인 것을 특징으로 하는 니들펀치 탄소복합재 제조방법.
The method of claim 1,
The thickness of the fiber layer is a needle punched carbon composite material manufacturing method, characterized in that 0.1mm to 6mm.
제1항에 있어서,
상기 섬유층을 적층할 때의 적층방향은 1방향에서 8방향 사이인 것을 특징으로 하는 니들펀치 탄소복합재 제조방법.
The method of claim 1,
The method of manufacturing a needle punched carbon composite material, wherein the lamination direction when laminating the fiber layer is between one direction and eight directions.
제1항에 있어서,
상기 니들펀치를 수행하여 층간 결속을 부여하는 단계는,
바늘 사이의 간격이 0.5mm 내지 20mm 로 하여 배치된 니들 침판을 사용하여 층간 결속을 부여하는 것을 특징으로 하는 니들펀치 탄소복합재 제조방법.
The method of claim 1,
The step of imparting the interlayer binding by performing the needle punch,
A method for producing a needle punched carbon composite material, comprising: imparting interlayer bonding by using needle needle plates arranged at a distance of 0.5 mm to 20 mm between needles.
제1항에 있어서,
상기 섬유보강재를 열처리하는 온도는 600 ℃ 내지 2800 ℃ 인 것을 특징으로 하는 니들펀치 탄소복합재 제조방법.
The method of claim 1,
The method of heat-treating the fiber reinforcing material is a needle punched carbon composite material manufacturing method, characterized in that 600 ℃ to 2800 ℃.
삭제delete 제1항에 있어서,
상기 탄소 성분을 충진시키는 단계는,
화학기상침투법이나 피치함침법 중 적어도 하나를 수행하는 것을 특징으로 하는 니들펀치 탄소복합재 제조방법.
The method of claim 1,
Filling the carbon component,
A method of manufacturing a needle punched carbon composite material, comprising performing at least one of chemical vapor permeation and pitch impregnation.
제1항에 있어서,
상기 탄소 성분을 충진시키는 단계는,
상기 탄소 성분을 충진시킨 후에 1500 ℃에서 2800 ℃ 사이의 추가 열처리 하는 단계를 더 포함하는 것을 특징으로 하는 니들펀치 탄소복합재 제조방법.
The method of claim 1,
Filling the carbon component,
After filling the carbon component further comprising the step of further heat treatment between 1500 ℃ to 2800 ℃ needle punch carbon composite material manufacturing method.
제11항에 있어서,
상기 화학기상침투법이 수행되는 경우, 사용되는 원료 물질은 한 분자 내에 탄소 원자의 수가 1에서 7 사이인 탄화수소인 것을 특징으로 하는 니들펀치 탄소복합재 제조방법.
The method of claim 11,
When the chemical vapor permeation method is carried out, the raw material used is a needle punched carbon composite material manufacturing method, characterized in that the hydrocarbon number of 1 to 7 carbon atoms in a molecule.
제11항에 있어서,
상기 화학기상침투법이 수행되는 경우, 증착 온도는 600 ℃ 내지 2000 ℃ 인 것을 특징으로 하는 니들펀치 탄소복합재 제조방법.
The method of claim 11,
When the chemical vapor permeation is performed, the deposition temperature is 600 ℃ to 2000 ℃ needle punch carbon composite material manufacturing method characterized in that.
제11항에 있어서,
상기 피치함침법이 수행되는 경우, 사용되는 원료 물질은 석탄계 피치 또는 석유계 피치인 것을 특징으로 하는 니들펀치 탄소복합재 제조방법.
The method of claim 11,
When the pitch impregnation method is performed, the raw material used is a needle punched carbon composite material manufacturing method, characterized in that the coal pitch or petroleum pitch.
제11항에 있어서,
상기 피치함침법이 수행되는 경우, 탄화 온도는 500 ℃ 내지 1700 ℃ 인 것을 특징으로 하는 니들펀치 탄소복합재 제조방법.
The method of claim 11,
When the pitch impregnation method is carried out, the needle punched carbon composite material manufacturing method, characterized in that the carbonization temperature is 500 ℃ to 1700 ℃.
제11항에 있어서,
상기 피치함침법이 수행되는 경우, 탄화 압력은 200기압 내지 1500기압인 것을 특징으로 하는 니들펀치 탄소복합재 제조방법.
The method of claim 11,
When the pitch impregnation method is performed, the carbonization pressure is a needle punched carbon composite material manufacturing method, characterized in that 200 to 1500 atm.
상기 청구항 제1항의 방법에 의해 제조된 니들펀치 탄소복합재.Needle punch carbon composite material prepared by the method of claim 1.
KR1020110093691A 2011-09-16 2011-09-16 Method for the fabrication of needle-punched carbon composite KR101222467B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110093691A KR101222467B1 (en) 2011-09-16 2011-09-16 Method for the fabrication of needle-punched carbon composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110093691A KR101222467B1 (en) 2011-09-16 2011-09-16 Method for the fabrication of needle-punched carbon composite

Publications (1)

Publication Number Publication Date
KR101222467B1 true KR101222467B1 (en) 2013-01-15

Family

ID=47841879

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110093691A KR101222467B1 (en) 2011-09-16 2011-09-16 Method for the fabrication of needle-punched carbon composite

Country Status (1)

Country Link
KR (1) KR101222467B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101595704B1 (en) * 2015-07-31 2016-02-18 박태근 Manufacture for laminated short fiber having the function of sound absorption and the function of interior and laminated short fiber thereof
CN110485047A (en) * 2019-09-18 2019-11-22 江苏恒神股份有限公司 A kind of aeroplane brake discs quasi- three-dimensional preform and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07291750A (en) * 1994-04-25 1995-11-07 Nippon Oil Co Ltd Production of formed body for carbon/carbon composite material
KR19990061537A (en) * 1997-12-31 1999-07-26 추호석 Manufacturing Method of Carbon-Carbon Composites
KR20030089880A (en) * 2002-05-20 2003-11-28 주식회사 데크 Manufacturing method for carbon-carbon composites
KR20040060017A (en) * 2002-12-30 2004-07-06 한국기계연구원 Method for manufacturing the preform of high temperature refractory, using needle-punching process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07291750A (en) * 1994-04-25 1995-11-07 Nippon Oil Co Ltd Production of formed body for carbon/carbon composite material
KR19990061537A (en) * 1997-12-31 1999-07-26 추호석 Manufacturing Method of Carbon-Carbon Composites
KR20030089880A (en) * 2002-05-20 2003-11-28 주식회사 데크 Manufacturing method for carbon-carbon composites
KR20040060017A (en) * 2002-12-30 2004-07-06 한국기계연구원 Method for manufacturing the preform of high temperature refractory, using needle-punching process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101595704B1 (en) * 2015-07-31 2016-02-18 박태근 Manufacture for laminated short fiber having the function of sound absorption and the function of interior and laminated short fiber thereof
WO2017022918A1 (en) * 2015-07-31 2017-02-09 박태근 Method for manufacturing sound absorbing board having excellent sound absorption and interior functions, and sound absorbing board manufactured thereby
CN110485047A (en) * 2019-09-18 2019-11-22 江苏恒神股份有限公司 A kind of aeroplane brake discs quasi- three-dimensional preform and preparation method thereof
CN110485047B (en) * 2019-09-18 2024-04-05 江苏恒神股份有限公司 Quasi-three-dimensional preform for aircraft brake disc and preparation method thereof

Similar Documents

Publication Publication Date Title
KR20130004335A (en) Carbon/carbon composite material and method of manufacture for same
JP5205671B2 (en) Heat resistant composite material
US20120219778A1 (en) Composite material containing soft carbon fiber felt and hard carbon fiber felt
US20060177663A1 (en) Carbon-carbon composite article manufactured with needled fibers
KR20100010023A (en) A method of fabricating a thermostructural composite material part, and a part obtained thereby
KR19990082610A (en) Method for producing a member of a carbon-carbon composite, in particular a braking plate
JP6742855B2 (en) Molded heat insulating material and manufacturing method thereof
KR101628461B1 (en) Carbon fiber insulator and preparing method for thereof
KR100503499B1 (en) Method for manufacturing the preform of high temperature refractory, using needle-punching process
JP2015174807A (en) Carbon fiber-based heat insulation material, and manufacturing method of the same
JP6009758B2 (en) Manufacturing method of three-dimensional fiber preform
JP2005239539A (en) Thermomechanical property enhancement ply for cvi/sic ceramic matrix composite laminate
KR101222467B1 (en) Method for the fabrication of needle-punched carbon composite
JP6358645B2 (en) Coil spring
JP6623011B2 (en) Carbon fiber reinforced carbon composite and method for producing carbon fiber reinforced carbon composite
CN110485047A (en) A kind of aeroplane brake discs quasi- three-dimensional preform and preparation method thereof
CN116330757A (en) High-strength laminated carbon-carbon composite material and preparation method thereof
CN116330756A (en) Composite carbon-carbon composite material and preparation method thereof
JP6916706B2 (en) Manufacturing method of molded insulation
JP6864588B2 (en) Carbon fiber sheet laminate and its manufacturing method
CN105063895A (en) Quasi-three dimensional prefabricated body preparation method
KR102191680B1 (en) Fabrication Method of Carbon Composite Using melt infiltration method
JP7293823B2 (en) Fiber-reinforced composite material and manufacturing method thereof
CN116409023A (en) High-temperature-resistant carbon-carbon composite body, production method thereof and carbon fiber preform
KR102400035B1 (en) Fabrication Methode of Carbon Composite using Fixture

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
J204 Invalidation trial for patent
J301 Trial decision

Free format text: TRIAL DECISION FOR INVALIDATION REQUESTED 20130624

Effective date: 20140429

J2X1 Appeal (before the patent court)

Free format text: INVALIDATION

J121 Written withdrawal of request for trial
J122 Written withdrawal of action (patent court)
FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190102

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20200103

Year of fee payment: 8