KR101220403B1 - Nanogenerator and manufacturing method thereof which have entire coated nanowires - Google Patents

Nanogenerator and manufacturing method thereof which have entire coated nanowires Download PDF

Info

Publication number
KR101220403B1
KR101220403B1 KR1020110082817A KR20110082817A KR101220403B1 KR 101220403 B1 KR101220403 B1 KR 101220403B1 KR 1020110082817 A KR1020110082817 A KR 1020110082817A KR 20110082817 A KR20110082817 A KR 20110082817A KR 101220403 B1 KR101220403 B1 KR 101220403B1
Authority
KR
South Korea
Prior art keywords
nanowires
coating film
nanogenerator
nanowire
seed layer
Prior art date
Application number
KR1020110082817A
Other languages
Korean (ko)
Inventor
노임준
신백균
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020110082817A priority Critical patent/KR101220403B1/en
Application granted granted Critical
Publication of KR101220403B1 publication Critical patent/KR101220403B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/081Shaping or machining of piezoelectric or electrostrictive bodies by coating or depositing using masks, e.g. lift-off
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Further insulation means against electrical, physical or chemical damage, e.g. protective coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/832Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
    • Y10S977/837Piezoelectric property of nanomaterial

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE: A nano generator and manufacturing method thereof are provided to make sharp the end portion of nanowire on whole nanowires. CONSTITUTION: An upper electrode is formed on an upper plate having sawtooth. An electricity storing member accumulates the electricity delivered from each electrode. A supporter is installed at both terminals of a lower plate. Multiple nanowires(24) are grown from a seed layer(23) in a vertical direction. Each nanowire is coated with a coating film(29).

Description

나노와이어의 전체에 코팅막이 형성된 나노발전기 및 그 제조방법{Nanogenerator and manufacturing method thereof which have entire coated nanowires} Nanogenerator with a coating film formed on the entirety of nanowires and a method of manufacturing the same

본 발명은 나노발전기(nanogenerator)에 관한 것으로, 더 상세하게는, 예를 들면, 산화 아연(ZnO)과 같은 물질의 압전효과를 이용하여, 불규칙한 움직임으로부터 전력을 생산하는 나노발전기 및 그 제조방법에 관한 것이다.
TECHNICAL FIELD The present invention relates to a nanogenerator, and more particularly, to a nanogenerator and a method of manufacturing the same, using the piezoelectric effect of a material such as zinc oxide (ZnO) to produce power from irregular movement. It is about.

즉, 본 발명은, 종래의 나노발전기의 나노와이어에 코팅막이 끝 부분에만 형성되는 문제점을 개선하여 전체적으로 코팅된 나노와이어를 가지는 나노발전기 및 그 제조방법에 관한 것이다.
That is, the present invention improves the problem that the coating film is formed only at the ends of the nanowires of the conventional nanogenerator, and relates to a nanogenerator having the nanowires coated as a whole and a method of manufacturing the same.

최근, 환경오염 등의 문제로 인해 친환경 에너지에 대한 요구가 높아지고 있으며, 또한, 스마트폰이나 태블릿 PC 등 각종 휴대형 전자기기가 보급됨에 따라 배터리 및 배터리를 충전하는 기술에 대한 수요도 증가하고 있다.
In recent years, there has been an increasing demand for environmentally friendly energy due to problems such as environmental pollution. In addition, as portable electronic devices such as smart phones and tablet PCs are popularized, there is a growing demand for technologies for charging batteries and batteries.

즉, 휴대기기의 사용자는, 충전된 상태의 기기나 배터리를 가지고 다니면서 사용하다가 배터리가 방전되면 자신의 집이나 사무실 등의 콘센트를 통해 공급되는 전기를 이용하여 자신의 기기 및 배터리를 충전한 후에 다시 사용하는 것이 일반적이었다.
That is, a user of a portable device uses a device or a battery in a charged state while it is being used. When the battery is discharged, the device charges the device and the battery using electricity supplied through an outlet such as a house or an office, It was common to use.

이에 대하여, 최근에는, 기존의 충전방식을 대신하여, 별도의 충전기가 필요 없이 자가발전의 형태로 충전하는 이른바 사용자 발전(UCP : User Created Power) 기술이 연구되고 있다.
On the other hand, in recent years, so-called User Created Power (UCP) technology has been researched in which, instead of the conventional charging method, charging is performed in the form of self-power generation without requiring a separate charger.

더 상세하게는, 이러한 사용자발전(UCP)의 예로서, 예를 들면, MIT 졸업생들이 개발한 자가발전형 '요요 발전기'가 있다.
More specifically, as an example of this User Evolution (UCP), there is, for example, a self-powered "yo-yo generator" developed by MIT graduates.

즉, 상기한 요요 발전기는, 줄을 당기면 내장된 발전기가 돌아가면서 15∼20W의 전력을 생산하도록 구성된 것으로, 이와 같이 소형의 자가발전형 충전장치를 휴대하면 언제 어디서나 휴대용 전자기기에 필요한 전기를 공급할 수 있다.
That is, the yoyo generator described above is configured to generate electric power of 15 to 20 W while the built-in generator is turned when the string is pulled. By carrying such a small self-powered charging device, .

또한, 사용자 발전(UCP)의 다른 예로서, 예를 들면, 헬스기구에 발전기를 연결하여 운동을 하면 전력이 발생하도록 구성된 자가발전형 헬스 바이크도 출시된 바 있으며, 이는, 사용자가 바이크 페달을 밟으면 발전기를 통해 20인치 TV를 켜는 데 충분한 100∼200W의 전력이 생산된다.
Another example of the user power generation (UCP) is a self-generating type health bike that is configured to generate power when a generator is connected to a fitness device, for example. This is because when the user presses the bike pedal Generators produce 100 to 200 watts of power sufficient to turn on 20-inch TVs.

즉, 상기한 바와 같은 헬스기구를 이용하면, TV 프로그램을 시청하기 위해서 최소 30분에서 한 시간은 쉬지 않고 페달을 돌려야 하므로, 전기에너지를 절약할 뿐만 아니라 TV를 보기 위해 계속 움직이는 운동효과도 얻을 수 있으므로, 이를 다른 헬스장비에도 적용하면 회원들의 운동량을 이용하여 전력 수요를 상당부분 절감할 수 있을 것으로 예상된다.
In other words, if you use the fitness equipment as described above, at least 30 minutes to one hour to rotate the pedal to watch TV programs, not only saves the electric energy, but also keeps the movement effect to watch TV Therefore, if it is applied to other fitness equipment, it is expected that the demand of members can be reduced by a considerable amount of power.

그러나 상기한 바와 같은 요요 발전기나 자가발전형 헬스 바이크는, 일정한 동작을 반복적으로 수행하여야 하므로, 사용자가 같은 동작을 오랜 시간 지속하기는 어렵다는 문제점이 있었다.
However, the above-described yoyo generator and self-generating type health bike have to repeatedly perform a certain operation, so that it is difficult for the user to continue the same operation for a long time.

즉, 상기한 바와 같이, 사용자 발전은, 점점 늘어나는 전력 수요를 감당하기 위해서도 앞으로 많은 연구개발이 필요한 분야이며, 이러한 연구의 일환으로, 예를 들면, 걷기, 근육 스트레칭, 팔 돌리기, 심장 박동 등과 같은 인체의 불규칙한 다양한 움직임을 활용하여 전력을 생산하는 기술에 대한 연구가 진행되고 있다.
That is, as described above, user development is a field that requires a lot of research and development in the future in order to cope with an ever-increasing demand for electric power. As a part of such research, for example, Research is being conducted on technologies to produce electric power utilizing various irregular movements of the human body.

더 상세하게는, 예를 들면, 미국 조지아 공대의 왕종린 교수 등에 의해, 햄스터의 움직임을 전류로 바꾸는 나노발전기가 제시된 바 있다.
More specifically, for example, a nano generator has been proposed by Professor Wong Jong-Lin of Georgia Tech University, which converts hamster motion into electric current.

이는, 불규칙한 생체운동을 전기 에너지로 바꾼 세계 최초의 사례로서, 즉, 이론적으로는 모든 생물의 근육 수축과 이완을 기계적 에너지로 전환시켜 전기를 만들 수 있는 것으로 알려져 있으나, 그 불규칙한 운동특성 때문에 실용화에는 성공하지 못했던 문제점을 해결하여, 비규칙적이고 아주 미세한 동물이나 인간의 근육힘을 전기로 바꿀 수 있음을 입증했다는 점에서 의미가 크다고 할 수 있다.
This is the world's first example of irregular biological movements to electrical energy, that is, it is known that theoretically, muscle contraction and relaxation of all living things can be converted into mechanical energy to generate electricity. However, due to its irregular motion characteristics, It can be said that it is meaningful because it proves that it can change the muscle force of an animal or a human being which is irregular and very microscopic by solving a problem which has not succeeded.

더 상세하게는, 상기한 나노발전기는 압전효과를 이용한 나노발전기로서, 여기서, 압전효과란, 크리스탈이나 세라믹 같은 압전체에 물리적 힘을 가하면 그 힘이 전기 에너지로 변환되는 효과를 말한다.
More specifically, the above-mentioned nano-generator is a nano-generator using a piezoelectric effect. Here, the piezoelectric effect refers to an effect that a physical force is applied to a piezoelectric body such as a crystal or a ceramic to convert the force into electric energy.

따라서 상기한 바와 같은 압전효과를 이용하면 근육이 움직일 때 발생하는 불규칙한 움직임을 전기 에너지로 만들 수 있다.
Therefore, by using the piezoelectric effect as described above, it is possible to make the irregular movement that occurs when the muscle moves, into electric energy.

즉, 더 상세하게는, 상기한 나노 발전기는, 얇고 잘 휘어지는 폴리머 기판에 산화아연(ZnO) 소재의 나노 와이어를 붙인 구조로서, 햄스터가 움직일 때마다 와이어가 구부러지면서 전류가 흐르게 된다.
More specifically, the above-mentioned nanogenerator has a structure in which nanowires made of zinc oxide (ZnO) are adhered to a thin and well-bending polymer substrate. When the hamster moves, the wire bends and current flows.

따라서 이러한 방식을 이용하면, 근육이 움직일 때 발생하는 불규칙한 움직임을 발전으로 연결할 수 있으며, 최근에는 나노 와이어로 옷감을 만들어 전기를 생성하는 실험까지 성공한 사례가 알려진 바 있다.
Therefore, using this method, it is possible to connect the irregular movement that occurs when the muscle moves to power generation, and recently, a case has been known to succeed in experiments to generate electricity by making cloth from nanowires.

그러나 상기한 나노발전기는, 그 발전량이 매우 적어서 햄스터 약 1000마리를 모아야 휴대폰 충전이 가능한 수준이며, 따라서 더욱 많은 발전량을 가지는 나노발전기에 대한 연구가 활발하게 진행되고 있다.
However, the above-mentioned nano generator has a very low power generation amount, so that it is necessary to collect about 1,000 hamsters to charge the mobile phone. Therefore, researches on nano generators having more power generation are actively conducted.

또한, 종래의 나노발전기는, 나노와이어가 변형을 반복하는 중에 수평이나 수직 방향 이외에 대각선 방향의 힘을 받으면 나노와이어가 쉽게 파손되는 경향이 있으므로, 이러한 나노와이어의 파손을 방지하고 그 물리, 화학적 특성을 향상시키기 위한 방법을 제공하는 것이 요구되고 있다.
In addition, the conventional nanogenerator tends to break easily when the nanowire receives a force in a diagonal direction other than the horizontal or vertical direction while the nanowire is repeatedly being deformed, thereby preventing the nanowire from being broken and its physical and chemical properties. There is a need to provide a method for improving this.

아울러, 상기한 바와 같은 나노발전기의 원리에 대한 더 상세한 내용은, 이하의 [참고문헌]에 기재된 내용들을 참조하면 쉽게 알 수 있다.
Further, the details of the principle of the nano generator as described above can be easily understood by referring to the contents described in the following reference.

[참고문헌] [references]

1. "Toward high output-power nanogenerator", Jin Liu, Peng Fei, Jun Zhou, Rao Tummala and Zhong Lin Wang, APPLIED PHYSICS LETTERS 92, 173105, 2008. 1. "Toward high output-power nanogenerator", Jin Liu, Peng Fei, Jun Zhou, Rao Tummala and Zhong Lin Wang, APPLIED PHYSICS LETTERS 92, 173105, 2008.

2. "Top emerging technologies for self-powered nanosystems : nanogenerators and nanopiezotronics", Zhong Lin Wang 2. "Top emerging technologies for self-powered nanosystems: nanogenerators and nanopiezotronics", Zhong Lin Wang

3. "Self-powered nanowire devices", Sheng Xu, Yong Qin, Chen Xu, Yaguang Wei, Rusen Yang and Zhong Lin Wang, NATURE NANOTECHNOLOGY ADVANCE ONLINE PUBLICATION, PUBLISHED ONLINE : 28 MARCH 2010 3. "Self-powered nanowire devices", Sheng Xu, Yong Qin, Chen Xu, Yaguang Wei, Rusen Yang and Zhong Lin Wang, NATURE NANOTECHNOLOGY ADVANCE ONLINE PUBLICATION, PUBLISHED ONLINE: 28 MARCH 2010

4. "Piezotronic and Piezophototronic Effects", Zhong Lin Wang, J. Phys. Chem. Lett. 2010.01. 1388-393 4. "Piezotronic and Piezophototronic Effects", Zhong Lin Wang, J. Phys. Chem. Lett. 2010.01. 1388-393

5. "Piezoelectric Nanogenerators for Self-Powered Nanodevices", Zhong Lin Wang, Xudong Wang, Jinhui Song, Jin Liu, and Yifan Gao, PERVASIVE computing JANUARY-MARCH 2008 5. "Piezoelectric Nanogenerators for Self-Powered Nanodevices", Zhong Lin Wang, Xudong Wang, Jinhui Song, Jin Liu, and Yifan Gao, PERVASIVE computing JANUARY-MARCH 2008

6. "Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays" Ming-Pei Lu, Jinhui Song, Ming-Yen Lu, Min-Teng Chen, Yifan Gao, Lih-Juann Chen, and Zhong Lin Wang, Nano Lett., Article ASAP, Publication Date (Web): 11 February 2009 6. "Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays" Ming-Pei Lu, Jinhui Song, Ming-Yen Lu, Min-Teng Chen, Yifan Gao, Lih-Juann Chen, and Zhong Lin Wang, Nano Lett. , Publication Date (Web): 11 February 2009

7. "Nanogenerator Based on Piezoelectric Nanowires", Jinhui Song, Xudong Wang, Jun Zhou, Zhong L. Wang, The Sixth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, Nov. 29 - Dec. 1, 2006, Berkeley, U.S.A. 7. "Nanogenerator Based on Piezoelectric Nanowires", Jinhui Song, Xudong Wang, Jun Zhou, Zhong L. Wang, The Sixth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, Nov. 29-Dec. 1, 2006, Berkeley, U.S.A.

8. "Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods" By Min-Yeol Choi, Dukhyun Choi, Mi-Jin Jin, Insoo Kim, Sang-Hyeob Kim, Jae-Young Choi, Sang Yoon Lee, Jong Min Kim, and Sang-Woo Kim, Adv. Mater. 2009, 21, 2185-2189 8. "Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods" By Min-Yeol Choi, Mi-Jin Jin, Insoo Kim, Sang-Hyeob Kim, Jae Young Choi, Sang Yoon Lee, Jong Min Kim , and Sang-Woo Kim, Adv. Mater. 2009, 21, 2185-2189

9. "Identifying individual n- and p-type ZnO nanowires by the output voltage sign of piezoelectric nanogenerator" S S Lin, J H Song, Y F Lu and Z L Wang, Nanotechnology 20 (2009) 365703 (5pp) 9. "Identifying individual n- and p-type ZnO nanowires by the output voltage signal of a piezoelectric nanogenerator" S S Lin, J H Song, Y F Lu and Z L Wang, Nanotechnology 20 (2009) 365703

10. "Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators", Yi Xi, Jinhui Song, Sheng Xu, Rusen Yang, Zhiyuan Gao, Chenguo Hu and Zhong Lin Wang, J. Mater. Chem., 2009, 19, 9260-9264 10. "Growth of ZnO nanotube arrays and nanotube-based piezoelectric nanogenerators", Yi Xi, Jinhui Song, Sheng Xu, Zhuuan Gao, Chenguo Hu and Zhong Lin Wang, J. Mater. Chem., 2009, 19, 9260-9264

11. "Fully Rollable Transparent Nanogenerators Based on Graphene Electrodes", By Dukhyun Choi, Min-Yeol Choi, Won Mook Choi, Hyeon-Jin Shin, Hyun-Kyu Park, Ju-Seok Seo, Jongbong Park, Seon-Mi Yoon, Seung Jin Chae, Young Hee Lee, Sang-Woo Kim, Jae-Young Choi, Sang Yoon Lee, and Jong Min Kim, Adv. Mater. 2010, 22, 2187-2192 11. "Fully Rollable Transparent Nanogenerators Based on Graphene Electrodes", Byun Dukhyun Choi, Min-Yeol Choi, Won Mook Choi, Hyeon-Jin Shin, Hyun-Kyu Park, Ju Seok Seo, Jongbong Park, Jin Chae, Young Hee Lee, Sang-Woo Kim, Jae-Young Choi, Sang Yoon Lee, and Jong Min Kim, Adv. Mater. 2010, 22, 2187-2192

12. "Equilibrium Piezoelectric Potential Distribution in a Deformed ZnO Nanowire", Giulia Mantini, Yifan Gao, A. D.Amico, C. Falconi, and Zhong Lin Wang, Nano Res (2009) 2: 624 629 12. "Equilibrium Piezoelectric Potential Distribution in a Deformed ZnO Nanowire", Giulia Mantini, Yifan Gao, A. D. Amico, C. Falconi, and Zhong Lin Wang, Nano Res (2009) 2: 624 629

13. "Energy Harvesting for Self-Powered Nanosystems" Zhong Lin Wang, Nano Res (2008) 1 : 1-8 13. "Energy Harvesting for Self-Powered Nanosystems" Zhong Lin Wang, Nano Res (2008) 1: 1-8

14. "Effect of growth temperature on photoluminescence and piezoelectric characteristics of ZnO nanowires", WalterWater, Te-Hua Fang, Liang-Wen Ji, Ching-Chin Lee, Materials Science and Engineering B 158 (2009) 75.78 14. "Effect of growth temperature on photoluminescence and piezoelectric properties of ZnO nanowires", WalterWater, Te-Hua Fang, Liang-Wen Ji, Ching-Chin Lee, Materials Science and Engineering B 158 (2009) 75.78

15. "Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency", Chieh Chang, Van H. Tran, Junbo Wang, Yiin-Kuen Fuh, and Liwei Lin, Nano Lett. 2010, 10, 726-731 15. "Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency", Chieh Chang, Van H. Tran, Junbo Wang, Yiin-Kuen Fuh, and Liwei Lin, Nano Lett. 2010, 10, 726-731

16. "Converting Biomechanical Energy into Electricity by a Muscle-Movement-Driven Nanogenerator", Rusen Yang, Yong Qin, Cheng Li, Guang Zhu, and Zhong Lin Wang, Nano Lett., Vol. 9, No.3, 2009 16. "Converting Biomechanical Energy into Electricity by a Muscle-Movement-Driven Nanogenerator", Rusen Yang, Yong Qin, Cheng Li, Guang Zhu, and Zhong Lin Wang, Nano Lett., Vol. 9, No.3, 2009

17. "Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays", Zhong Lin Wang and Jinhui Song, 14 APRIL 2006, VOL 312, SCIENCE 17. "Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays ", Zhong Lin Wang and Jinhui Song, 14 APRIL 2006, VOL 312, SCIENCE

18. "Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire. A Technology for Harvesting Electricity from the Environment", Jinhui Song, Jun Zhou and Zhong Lin Wang, Nano Lett., Vol. 6, No. 8, 2006. 18. "Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt / Wire. A Technology for Harvesting Electricity from the Environment", Jinhui Song, Jun Zhou and Zhong Lin Wang, Nano Lett., Vol. 6, No. 8, 2006.

19. "Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire", Xudong Wang, Jun Zhou, Jinhui Song, Jin Liu, Ningsheng Xu and Zhong L. Wang, Nano Lett., Vol. 6, No. 12, 2006 19. "Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire", Xudong Wang, Jun Zhou, Jinhui Song, Jin Liu, Ningsheng Xu and Zhong L. Wang, Nano Lett., Vol. 6, No. 12, 2006

20. "Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices", Pu Xian Gao, Jinhui Song, Jin Liu, and Zhong Lin Wang, Adv. Mater. 2007, 19, 67.72 20. "Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices", Pu Xian Gao, Jinhui Song, Jin Liu, and Zhong Lin Wang, Adv. Mater. 2007, 19, 67.72

21. "Piezoelectric Gated Diode of a Single ZnO Nanowire", Jr H. He, Cheng L. Hsin, Jin Liu, Lih J. Chen and Zhong L. Wang, Adv. Mater. 2007, 19, 781.784 21. "Piezoelectric Gated Diode of a Single ZnO Nanowire ", Jr H. He, Cheng L. Hsin, Jin Liu, Lih J. Chen and Zhong L. Wang, Adv. Mater. 2007, 19, 781.784

22. "Nanopiezotronics", Zhong Lin Wang, Adv. Mater. 2007, 19, 889.892 22. "Nanopiezotronics ", Zhong Lin Wang, Adv. Mater. 2007, 19, 889.892

23. "Direct-Current Nanogenerator Driven by Ultrasonic Waves", Xudong Wang, et al., Science 316, 102 (2007) 23. Direct-Current Nanogenerator Driven by Ultrasonic Waves, Xudong Wang, et al., Science 316, 102 (2007)

24. "Electrostatic Potential in a Bent Piezoelectric Nanowire. The Fundamental Theory of Nanogenerator and Nanopiezotronics", Yifan Gao and Zhong Lin Wang, Nano Lett., Vol. 7, No. 8, 2007 24. "Electrostatic Potential in a Bent Piezoelectric Nanowire. The Fundamental Theory of Nanogenerator and Nanopiezotronics", Yifan Gao and Zhong Lin Wang, Nano Lett., Vol. 7, No. 8, 2007

25. "Integrated Nanogenerators in Biofluid", Xudong Wang, Jin Liu, Jinhui Song and Zhong Lin Wang, Nano Lett., Vol. 7, No. 8, 2007 25. "Integrated Nanogenerators in Biofluid", Xudong Wang, Jin Liu, Jinhui Song and Zhong Lin Wang, Nano Lett., Vol. 7, No. 8, 2007

26. "Piezoelectric Potential Output from ZnO Nanowire Functionalized with p-Type Oligomer", Jinhui Song, Xudong Wang, Jin Liu, Huibiao Liu, Yuliang Li and Zhong Lin Wang, Nano Lett., Vol. 8, No. 1, 2008 26. "Piezoelectric Potential Output from ZnO Nanowire Functionalized with p-Type Oligomer ", Jinhui Song, Xudong Wang, Jin Liu, Huibiao Liu, Yuliang Li and Zhong Lin Wang, Nano Lett., Vol. 8, No. 1, 2008

27. "Carrier Density and Schottky Barrier on the Performance of DC Nanogenerator", Jin Liu, Peng Fei, Jinhui Song, Xudong Wang, Changshi Lao, Rao Tummala and Zhong Lin Wang, Nano Lett., Vol. 8, No. 1, 2008 27. "Carrier Density and Schottky Barrier on the Performance of Nanogenerator", Jin Liu, Peng Fei, Jinhui Song, Xudong Wang, Changshi Lao, Rao Tummala and Zhong Lin Wang, Nano Lett., Vol. 8, No. 1, 2008

28. "Piezoelectric nanogenerator using CdS nanowires", Yi-Feng Lin, Jinhui Song, Yong Ding, Shih-Yuan Lu and Zhong Lin Wang, APPLIED PHYSICS LETTERS 92, 022105 (2008) 28. "Piezoelectric nanogenerator using CdS nanowires", Yi-Feng Lin, Jinhui Song, Yong Ding, Shih-Yuan Lu and Zhong Lin Wang, APPLIED PHYSICS LETTERS 92, 022105 (2008)

29. "Microfibre-nanowire hybrid structure for energy scavenging", Yong Qin, Xudong Wang & Zhong Lin Wang, NATURE Vol 451, 14 February 2008 29. "Microfibre-nanowire hybrid structure for energy scavenging", Yong Qin, Xudong Wang & Zhong Lin Wang, NATURE Vol 451, 14 February 2008

30. "Toward high output-power nanogenerator", Jin Liu, Peng Fei, Jun Zhou, Rao Tummala and Zhong Lin Wang, APPLIED PHYSICS LETTERS 92, 173105 (2008) 30. "Toward high output-power nanogenerator", Jin Liu, Peng Fei, Jun Zhou, Rao Tummala and Zhong Lin Wang, APPLIED PHYSICS LETTERS 92, 173105 (2008)

31. "Alternating the Output of a CdS Nanowire Nanogenerator by a White-Light-Stimulated Optoelectronic Effect", Yi-Feng Lin, Jinhui Song, Yong Ding, Shih-Yuan Lu and Zhong Lin Wang, Adv. Mater. 2008, 20, 3127-3130 31. "Alternating the Output of a CdS Nanowire Nanogenerator by a White-Light-Stimulated Optoelectronic Effect ", Yi-Feng Lin, Jinhui Song, Yong Ding, Shih-Yuan Lu and Zhong Lin Wang, Adv. Mater. 2008, 20, 3127-3130

32. "Mechanical-Electrical Triggers and Sensors Using Piezoelectric Micowires/Nanowires", Jun Zhou, Peng Fei, Yifan Gao, Yudong Gu, Jin Liu, Gang Bao and Zhong Lin Wang, Nano Lett. Vol. 8, No. 9, 2008 32. "Mechanical-Electrical Triggers and Sensors Using Piezoelectric Microwires / Nanowires ", Jun Zhou, Peng Fei, Yifan Gao, Yudong Gu, Jin Liu, Gang Bao and Zhong Lin Wang, Nano Lett. Vol. 8, No. 9, 2008

33. "Flexible Piezotronic Strain Sensor", Jun Zhou, Yudong Gu, Peng Fei, Wenjie Mai, Yifan Gao, Rusen Yang, Gang Bao and Zhong Lin Wang, Nano Lett. Vol. 8, No. 9, 2008 33. "Flexible Piezotronic Strain Sensor", Jun Zhou, Yudong Gu, Peng Fei, Wenjie Mai, Yifan Gao, Rusen Yang, Gang Bao and Zhong Lin Wang, Nano Lett. Vol. 8, No. 9, 2008

34. "Piezoelectric-Potential-Controlled Polarity-Reversible Schottky Diodes and Switches of ZnO Wires", Jun Zhou, Peng Fei, Yudong Gu, Wenjie Mai, Yifan Gao, Rusen Yang, Gang Bao and Zhong Lin Wang, Nano Lett. 34. "Piezoelectric-Potential-Controlled Polarity-Reversible Schottky Diodes and Switches of ZnO Wires ", Jun Zhou, Peng Fei, Yudong Gu, Wenjie Mai, Yifan Gao, Rusen Yang, Gang Bao and Zhong Lin Wang, Nano Lett.

35. "Integrated Multilayer Nanogenerator Fabricated Using Paired Nanotip-to-Nanowire Brushes", Sheng Xu, Yaguang Wei, Jin Liu, Rusen Yang and Zhong Lin Wang, Nano Lett. 35. "Integrated Multilayer Nanogenerator Fabricated Using Paired Nanotip-to-Nanowire Brushes ", Sheng Xu, Yaguang Wei, Jin Liu, Rusen Yang and Zhong Lin Wang, Nano Lett.

36. "Power generation with laterally packaged piezoelectric fine wires", Rusen Yang, Yong Qin, Liming Dai and Zhong Lin Wang, NATURE NANOTECHNOLOGY DOI: 10.1038/NNANO.2008.314 36. "Power generation with laterally packaged piezoelectric fine wires", Rusen Yang, Yong Qin, Liming Dai and Zhong Lin Wang, NATURE NANOTECHNOLOGY DOI: 10.1038 / NNANO.2008.314

37. "Energy Harvesting Using Piezoelectric Nanowires-A Correspondence on "Energy Harvesting Using Nanowires?" by Alexe et al., Zhong Lin Wang, Adv. Mater. 2008, 20, 1-5 37. "Energy Harvesting Using Piezoelectric Nanowires-A Correspondence on" Energy Harvesting Using Nanowires? "By Alexe et al., Zhong Lin Wang, Adv. Mater. 2008, 20, 1-5

38. "Characteristics of output voltage and current of integrated nanogenerators", Rusen Yang, Yong Qin, Cheng Li, Liming Dai and Zhong Lin Wang, APPLIED PHYSICS LETTERS 94, 022905 (2009) 38. "Characteristics of output voltage and current of integrated nanogenerators", Rusen Yang, Yong Qin, Cheng Li, Liming Dai and Zhong Lin Wang, APPLIED PHYSICS LETTERS 94, 022905 (2009)

39. "Equilibrium Potential of Free Charge Carriers in a Bent Piezoelectric Semiconductive Nanowire", Yifan Gao and Zhong Lin Wang, Nano Lett. 39. "Equilibrium Potential of Free Charge Carriers in a Bent Piezoelectric Semiconductor Nanowire ", Yifan Gao and Zhong Lin Wang, Nano Lett.

40. "Converting Biomechanical Energy into Electricity by a Muscle-Movement-Driven Nanogenerator", Rusen Yang, Yong Qin, Cheng Li, Guang Zhu and Zhong Lin Wang, Nano Lett. 40. "Converting Biomechanical Energy into Electricity by a Muscle-Movement-Driven Nanogenerator", Rusen Yang, Yong Qin, Cheng Li, Guang Zhu and Zhong Lin Wang, Nano Lett.

41. "Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays", Ming-Pei Lu, Jinhui Song, Ming-Yen Lu, Min-Teng Chen, Yifan Gao, Lih-Juann Chen and Zhong Lin Wang, Nano Lett. 41. "Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays ", Ming-Pei Lu, Jinhui Song, Ming-Yen Lu, Min-Teng Chen, Yifan Gao, Lih-Juann Chen and Zhong Lin Wang, Nano Lett.

42. "Piezoelectric Nanostructures : From Growth Phenomena to Electric Nanogenerators", Zhong Lin Wang, MRS BULLETIN . VOLUME 32 . FEBRUARY 2007 42. "Piezoelectric Nanostructures: From Growth Phenomena to Electric Nanogenerators", Zhong Lin Wang, MRS BULLETIN. VOLUME 32. FEBRUARY 2007

43. "The new field of nanopiezotronics", Zhong Lin Wang, Materialstoday MAY 2007 VOLUME 10 NUMBER 5 43. "The new field of nanopiezotronics", Zhong Lin Wang, Materialstoday MAY 2007 VOLUME 10 NUMBER 5

44. "Piezoelectric Nanogenerators for Self-Powered Nanodevices", Zhong Lin Wang, Xudong Wang, Jinhui Song, Jin Liu and Yifan Gao, PERVASIVE computing Vol. 7, No. 1 January-March 2008 44. "Piezoelectric Nanogenerators for Self-Powered Nanodevices", Zhong Lin Wang, Xudong Wang, Jinhui Song, Jin Liu and Yifan Gao, PERVASIVE computing Vol. 7, No. 1 January-March 2008

45. "Self-powered nanotech", Zhong Lin Wang, Scientific American Jan. 2008
45. "Self-powered nanotech ", Zhong Lin Wang, Scientific American Jan. 2008

본 발명은 상기한 바와 같은 종래기술의 나노발전기의 단점을 해결하고자 하는 것으로, 따라서 본 발명의 목적은, 나노와이어의 파손을 방지하고 그 특성을 향상시키기 위해 각각의 나노와이어에, 예를 들면, PVDF(Polyvinylidene fluoride)와 같은 고분자 물질을 코팅한 나노발전기를 제공하고자 하는 것이다.
The present invention seeks to address the shortcomings of the prior art nanogenerators as described above, and therefore the object of the present invention is to provide for each nanowire, for example, to prevent breakage of nanowires and to improve their properties. It is to provide a nanogenerator coated with a polymer material such as polyvinylidene fluoride (PVDF).

즉, 더 상세하게는, 본 발명의 목적은, 종래에는, 예를 들면, 기둥형으로 형성된 나노와이어에 단순히 PVDF를 도포함으로써 코팅막이 나노와이어의 끝 부분에만 형성되고 그 측면 쪽으로는 코팅막이 제대로 형성되지 않았던 문제점을 해결하여, 나노와이어의 끝 부분을 뾰족한 형태로 형성함으로써 나노와이어 전체가 코팅막으로 코팅될 수 있도록 구성되어 나노와이어의 전체에 코팅막이 형성된 나노발전기 및 그 제조방법을 제공하고자 하는 것이다.
That is, in more detail, the object of the present invention is conventionally, for example, by simply applying PVDF to a nanowire formed in a columnar shape, the coating film is formed only at the end of the nanowire and the coating film is properly formed toward the side surface. In order to solve the problem that has not been, by forming the end of the nanowire in a pointed shape is to be provided so that the entire nanowire is coated with a coating film is to provide a nano-generator and a method of manufacturing the coating film is formed on the entire nanowire.

상기한 바와 같은 목적을 달성하기 위해, 본 발명에 따르면, 나노발전기에 있어서, 상면 및 하면에 각각 배치되는 상부기판 및 하부기판과, 상기 하부기판상에 배치되는 시드층과, 상기 시드층으로부터 수직 방향으로 각각 성장하는 복수의 나노와이어와, 상기 나노와이어로부터 발생한 전기를 외부로 전달하기 위해 상기 하부기판과 상기 시드층 사이에 배치되고 도전체로 이루어지는 하부전극 및 상기 상부기판상에 톱니형으로 형성되는 상부전극과, 각각의 전극으로부터 전달된 전기를 축적하는 축전수단과, 상기 하부기판의 좌우 양단에 각각 배치되어 상기 상부기판과 상기 하부기판이 접촉하는 것을 방지하고 일정 간격을 유지하도록 하는 지지체 및 각각의 상기 나노와이어의 전체를 코팅하는 코팅막을 포함하여 구성된 것을 특징으로 하는 나노발전기가 제공된다.
In order to achieve the above object, according to the present invention, in the nanogenerator, an upper substrate and a lower substrate, respectively disposed on the upper and lower surfaces, a seed layer disposed on the lower substrate, and perpendicular to the seed layer A plurality of nanowires, each of which grows in a direction, and is disposed between the lower substrate and the seed layer to transfer electricity generated from the nanowires to the outside, and is formed in a sawtooth shape on the upper electrode and the upper substrate made of a conductor. An upper electrode, power storage means for accumulating electricity transferred from each electrode, and a support disposed at left and right ends of the lower substrate, respectively, to prevent the upper substrate and the lower substrate from contacting each other and to maintain a predetermined interval, respectively; Nano comprising a coating film to coat the entirety of the nanowires of A generator is provided.

여기서, 상기 나노와이어는 끝 부분이 뾰족한 형태로 형성되는 것을 특징으로 한다.
Here, the nanowire is characterized in that the end portion is formed in a pointed shape.

또한, 상기 코팅막은 PVDF(Polyvinylidene fluoride)를 포함하는 고분자 물질로 이루어지는 것을 특징으로 한다.
In addition, the coating film is characterized in that made of a polymeric material containing polyvinylidene fluoride (PVDF).

또한, 본 발명에 따르면, 나노발전기의 제조방법에 있어서, 상면 및 하면에 각각 배치되는 상부기판 및 하부기판을 형성하는 단계와, 상기 하부기판상에 도전체로 이루어지는 하부전극을 형성하는 단계와, 상기 하부전극 상에 나노와이어를 성장시키기 위한 시드층을 형성하는 단계와, 상기 상부기판상에 톱니형으로 상부전극을 형성하는 단계와, 각각의 전극으로부터 전달된 전기를 축적하는 축전수단을 설치하는 단계와, 상기 하부기판의 좌우 양단에 상기 상부기판과 상기 하부기판이 접촉하는 것을 방지하고 일정 간격을 유지하도록 하는 지지체를 각각 설치하는 단계와, 상기 시드층으로부터 수직 방향으로 복수의 나노와이어를 성장시키는 단계와, 각각의 상기 나노와이어의 전체를 코팅막으로 코팅하는 단계를 포함하여 구성된 것을 특징으로 하는 나노발전기의 제조방법이 제공된다.
Further, according to the present invention, in the method of manufacturing a nanogenerator, forming an upper substrate and a lower substrate respectively disposed on the upper and lower surfaces, forming a lower electrode made of a conductor on the lower substrate, Forming a seed layer for growing nanowires on the lower electrode, forming an upper electrode in a sawtooth shape on the upper substrate, and installing power storage means for accumulating electricity transferred from each electrode; And installing a support on both left and right ends of the lower substrate to prevent the upper substrate and the lower substrate from contacting each other and to maintain a predetermined interval, and to grow a plurality of nanowires in a vertical direction from the seed layer. And coating the entirety of each of the nanowires with a coating film. It is provided a method for manufacturing a nano-generator.

여기서, 상기 나노와이어를 성장시키는 단계는, 상기 나노와이어의 끝 부분을 뾰족한 형태로 형성하는 것을 특징으로 한다.
Here, the step of growing the nanowires, characterized in that to form a pointed end of the nanowires.

또한, 상기 코팅하는 단계는, PVDF(Polyvinylidene fluoride)를 포함하는 고분자 물질로 상기 나노와이어의 전체를 코팅하는 것을 특징으로 한다.
The coating may include coating the entirety of the nanowires with a polymer material including polyvinylidene fluoride (PVDF).

상기한 바와 같이, 본 발명에 따르면, 종래의 나노발전기의 나노와이어에 코팅막이 끝 부분에만 형성되는 문제점을 개선하여 나노와이어의 전체에 코팅막이 형성된 나노발전기 및 그 제조방법을 제공할 수 있다.
As described above, according to the present invention, it is possible to provide a nanogenerator having a coating layer formed on the entirety of the nanowire and a method of manufacturing the same by improving a problem in that a coating layer is formed only at an end portion of the nanowire of the conventional nanogenerator.

도 1은 종래기술에 따른 나노발전기의 전체적인 구성을 개략적으로 나타내는 도면이다.
도 2는 도 1에 나타낸 종래의 나노발전기에서 나노와이어에 코팅막이 형성된 상태를 나타내는 도면이다.
도 3은 본 발명에 따른 나노발전기의 전체적인 구성을 개략적으로 나타내는 도면이다.
도 4는 도 3에 나타낸 본 발명에 따른 나노발전기의 나노와이어 및 코팅막의 구성을 상세하게 설명하기 위한 확대도이다.
1 is a view schematically showing the overall configuration of a nanogenerator according to the prior art.
2 is a view showing a state in which a coating film is formed on the nanowires in the conventional nanogenerator shown in FIG.
3 is a view schematically showing the overall configuration of a nanogenerator according to the present invention.
Figure 4 is an enlarged view for explaining in detail the configuration of the nanowires and the coating film of the nano-generator according to the present invention shown in FIG.

이하, 첨부된 도면을 참조하여, 본 발명에 따른 나노와이어의 전체에 코팅막이 형성된 나노발전기 및 그 제조방법의 구체적인 실시예에 대하여 설명한다.
Hereinafter, with reference to the accompanying drawings, it will be described a specific embodiment of the nano-generator and a method for manufacturing the coating film is formed on the entirety of the nanowire according to the present invention.

여기서, 이하에 설명하는 내용은 본 발명을 실시하기 위한 실시예일 뿐이며, 본 발명은 이하에 설명하는 실시예의 내용으로만 한정되는 것은 아니라는 사실에 유념해야 한다.
Here, it should be noted that the contents described below are only examples for carrying out the present invention, and the present invention is not limited to the contents of the embodiments described below.

즉, 본 발명에 따른 나노와이어의 전체에 코팅막이 형성된 나노발전기 및 그 제조방법은, 후술하는 바와 같이, 종래의 나노발전기의 나노와이어에 코팅막이 끝 부분에만 형성되는 문제점을 개선하여 코팅막이 나노와이어 전체에 형성될 수 있도록 하고자 하는 것이다.
That is, the nanogenerator having a coating film formed on the whole of the nanowire according to the present invention and a method of manufacturing the same, as described below, improve the problem that the coating film is formed only at the end portion of the nanowire of the conventional nanogenerator, thereby coating the nanowire It is intended to be formed in the whole.

여기서, 도 1을 참조하여, 종래의 나노발전기의 구성에 대하여 설명하면 다음과 같다.
Here, referring to FIG. 1, the configuration of a conventional nanogenerator will be described.

즉, 도 1에 나타낸 바와 같이, 종래의 나노발전기(10)는, 플렉서블 폴리머로 이루어지고 상면 및 하면에 각각 배치되는 상부기판(11) 및 하부기판(12)과, 상기 하부기판(12)상에 배치된 고밀도의 아연 산화물(Zinc Oxide)로 이루어지는 시드층(seed layer)(13)과, 상기 시드층(13)으로부터 수직 방향으로 성장하는 복수의 나노와이어(nanowires)(14)와, 상기 나노와이어로부터 발생되는 전기를 전달하기 위해 상기 하부기판(12)과 시드층(13) 사이에 배치되는 하부전극(15)과, 상부기판(11)에 배치되고 지그재그형으로 이루어지는 상부전극(16)과, 상기 전극(15, 16)으로부터 전달되는 전기를 축적하는 축전수단(17)과, 기판(11, 12)의 변형시 각 기판(11, 12)이 접촉하지 않도록 일정 간격을 유지하기 위한 지지체(18) 및 나노와이어의 상단에 형성된 코팅막(19)을 포함하여 구성되어 있다.
That is, as shown in FIG. 1, the conventional nanogenerator 10 includes an upper substrate 11 and a lower substrate 12 formed of a flexible polymer and disposed on the upper and lower surfaces, respectively, and on the lower substrate 12. A seed layer 13 made of high density zinc oxide, a plurality of nanowires 14 growing vertically from the seed layer 13, and the nano A lower electrode 15 disposed between the lower substrate 12 and the seed layer 13 to transfer electricity generated from a wire, an upper electrode 16 disposed on the upper substrate 11 and zigzag-shaped; And a power storage means 17 for accumulating electricity transferred from the electrodes 15 and 16, and a support for maintaining a predetermined interval such that each substrate 11 and 12 does not come into contact with each other when the substrates 11 and 12 are deformed. 18) and a coating film 19 formed on the top of the nanowires.

여기서, 축전수단(17)은, 예를 들면, 커패시터(capacitor)와 같은 소자를 이용할 수 있다.
Here, the power storage means 17 may use, for example, an element such as a capacitor.

더 상세하게는, 도 1에 나타낸 바와 같이, 종래의 나노발전기(10)의 구성은, 기판상에 일정 방향으로 복수의 나노와이어(14)를 성장시키고, 기판에 힘을 가하여 기판이 휘어지도록 함으로써 압전 효과에 의해 나노와이어(14)에서 전기가 발생하게 되면, 이와 같이 하여 발생된 전기를 전극(15, 16)을 통하여 외부의 커패시터와 같은 축전수단(17)에 축적함으로써 발전이 이루어지는 원리를 이용한 것이다.
More specifically, as shown in FIG. 1, the conventional nanogenerator 10 is configured by growing a plurality of nanowires 14 on a substrate in a predetermined direction and applying a force to the substrate so that the substrate is bent. When electricity is generated in the nanowires 14 by the piezoelectric effect, the electricity generated in this way is accumulated in the power storage means 17 such as an external capacitor through the electrodes 15 and 16 to generate electricity. will be.

또한, 도 1에 나타낸 종래의 나노발전기(10)는, 나노와이어(14)의 파손을 방지하고 그 특성을 향상시키기 위해, 각각의 나노와이어(14)에, 예를 들면, PVDF(Polyvinylidene fluoride)와 같은 고분자 물질을 코팅하여 코팅막을 형성하고 있다.
In addition, the conventional nanogenerator 10 shown in FIG. 1 is, for example, polyvinylidene fluoride (PVDF) on each nanowire 14 in order to prevent breakage of the nanowire 14 and improve its characteristics. By coating a polymer material such as to form a coating film.

여기서, PVDF는, 높은 압전 상수를 가지는 재료로서, 이러한 물질이 나노와이어에 도포되었을 경우는 단순히 나노와이어만 이용했을 때보다 훨씬 더 많은 압전기를 얻을 수 있는 효과가 있다.
Here, PVDF is a material having a high piezoelectric constant, and when such a material is applied to nanowires, there is an effect of obtaining much more piezoelectric elements than using only nanowires.

더 상세하게는, PVDF와 같은 압전 상수가 높은 물질로 나노와이어를 코팅하면, 나노와이어의 표면적이 극대화됨으로써 ZnO 나노와이어만으로 나노발전기를 구성했을 때보다 더 높은 효율을 얻을 수 있게 된다.
More specifically, when nanowires are coated with a high piezoelectric material such as PVDF, the surface area of the nanowires is maximized, thereby achieving higher efficiency than when the nanogenerator is composed of only ZnO nanowires.

또한, 이러한 코팅물질은, PVDF에 한정되지 않고, 압전 상수가 높은 재료라면 어떠한 물질이라도 사용 가능하나, 이하의 설명에서는 PVDF로 나노와이어를 코팅하는 것을 예로 들어 설명한다.
In addition, the coating material is not limited to PVDF, and any material may be used as long as the material has a high piezoelectric constant. In the following description, the nanowire is coated with PVDF as an example.

즉, 도 2를 참조하면, 도 2는 도 1에 나타낸 종래의 나노발전기에서 나노와이어에 코팅막이 형성된 상태를 나타내는 도면이다.
That is, referring to Figure 2, Figure 2 is a view showing a state in which a coating film is formed on the nanowires in the conventional nanogenerator shown in FIG.

더 상세하게는, 종래의 나노발전기는, 예를 들면, 도 2에 나타낸 바와 같이, 기둥형으로 형성된 나노와이어(14)에 단순히 PVDF와 같은 고분자 물질을 도포함으로써, 코팅막(19)이 나노와이어(14)의 끝 부분에만 형성되고, 그 측면 쪽으로는 코팅막(19)이 제대로 형성되지 않는 단점이 있는 것이었다.
More specifically, the conventional nanogenerator, for example, as shown in Figure 2, by simply applying a polymer material such as PVDF to the nanowire 14 formed in a columnar shape, the coating film 19 is a nanowire ( It was formed only at the end of 14), and the side surface thereof had a disadvantage in that the coating film 19 was not properly formed.

이러한 문제점을 해결하기 위해, 본 발명은, 다음과 같이 하여 나노와이어 전체에 코팅막을 형성할 수 있는 나노발전기를 구성하였다.
In order to solve this problem, the present invention, a nano-generator capable of forming a coating film on the entire nanowire as follows.

계속해서, 도 3을 참조하여 본 발명에 따른 나노발전기의 상세한 내용에 대하여 설명한다.
Next, with reference to FIG. 3, the detail of the nanogenerator which concerns on this invention is demonstrated.

도 3을 참조하면, 도 3은 본 발명에 따른 나노발전기의 전체적인 구조를 개략적으로 나타내는 도면이다.
Referring to FIG. 3, FIG. 3 is a view schematically showing the overall structure of a nanogenerator according to the present invention.

즉, 도 3에 나타낸 바와 같이, 본 발명에 따른 나노발전기(20)는, 상면 및 하면에 각각 배치되는 상부기판(21) 및 하부기판(22)과, 상기 하부기판(22)상에 형성되는 시드층(23)과, 각각의 상기 시드층(23)으로부터 수직 방향으로 각각 성장하는 복수의 나노와이어(24)와, 상기 나노와이어(24)로부터 발생한 전기를 외부로 전달하기 위해 상기 하부기판(22)과 상기 시드(23)층 사이에 형성되고 도전체로 이루어지는 하부전극(25)과, 상기 상부기판(21)상에 톱니형으로 형성되는 상부전극(26)과, 각각의 전극(25, 26)으로부터 전달된 전기를 축적하는 축전수단(27)과, 하부기판(22)의 좌우 양단에 각각 배치되어 상부 및 하부기판(21, 22)이 접촉하는을 것을 방지하고 일정 거리를 유지하도록 하는 지지체(28) 및 각각의 상기 나노와이어(24)의 전체를 코팅하는 코팅막(29)을 포함하여 구성되어 있다.
That is, as shown in Figure 3, the nano-generator 20 according to the present invention, the upper substrate 21 and the lower substrate 22 disposed on the upper and lower surfaces, respectively, is formed on the lower substrate 22 A seed layer 23, a plurality of nanowires 24 each growing in a vertical direction from each of the seed layers 23, and the lower substrate for transferring electricity generated from the nanowires 24 to the outside; A lower electrode 25 formed between a layer 22 and the seed layer 23 and made of a conductor, an upper electrode 26 formed in a serrated shape on the upper substrate 21, and respective electrodes 25 and 26. Power storage means 27 for accumulating electricity transferred from the < RTI ID = 0.0 > and < / RTI > 28 and a coating film 29 for coating the entirety of each of the nanowires 24. It is configured.

따라서 상기한 바와 같은 구성을 통하여, 나노발전기(20)에 힘이 가해져 상부 및 하부기판(21, 22)이 서로를 향해 가압되거나 기판이 휘어지게 되면, 나노와이어(24)에 의해 발생된 전기가 전극(25, 26)을 통하여 축전수단(27)에 모이게 되어, 나노와이어(24)의 변형을 반복시킴으로써 발전이 이루어지게 된다.
Therefore, when the force is applied to the nanogenerator 20 through the configuration as described above, the upper and lower substrates 21, 22 are pressed toward each other or the substrate is bent, the electricity generated by the nanowires 24 The electrodes 25 and 26 are collected in the power storage means 27, and the electric power is generated by repeating the deformation of the nanowires 24.

또한, 축전수단(27)은, 예를 들면, 커패시터(capacitor)와 같은 소자를 이용할 수 있다.
In addition, the electrical storage means 27 can use an element, such as a capacitor, for example.

여기서, 상기한 바와 같이 나노와이어(24)를 변형시킴으로써 압전효과를 이용하여 발전이 이루어지는 원리 자체는 종래기술의 내용과 동일하므로, 그 상세한 설명은 생략하나, 본 발명에 따른 나노발전기(20)는, 도 4에 나타낸 바와 같이, 각각의 나노와이어(24)가 그 끝이 뾰족한 형태로 형성되는 것을 특징으로 하는 것이다.
Here, as described above, since the principle itself of generating power using the piezoelectric effect by modifying the nanowire 24 is the same as that of the prior art, its detailed description is omitted, but the nanogenerator 20 according to the present invention is 4, each nanowire 24 is characterized in that the end is formed in a pointed shape.

즉, 도 4를 참조하면, 도 4는 도 3에 나타낸 본 발명에 따른 나노발전기의 나노와이어 및 코팅막의 구성을 상세하게 설명하기 위한 확대도이다.
That is, referring to Figure 4, Figure 4 is an enlarged view for explaining in detail the configuration of the nanowire and the coating film of the nano-generator according to the present invention shown in FIG.

더 상세하게는, 종래의 나노발전기는, 도 2에 나타낸 바와 같이, 기둥형으로 형성된 나노와이어(14)에 단순히 PVDF와 같은 고분자 물질을 도포함으로써, 코팅막(19)이 나노와이어(14)의 끝 부분에만 형성되고, 그 측면 쪽으로는 코팅막(19)이 제대로 형성되지 않는 단점이 있는 것이었으나, 본 발명에 따른 나노발전기(20)는, 도 4에 나타내 바와 같이, 나노와이어(24)의 끝 부분을 뾰족한 형태로 형성함으로써, 코팅물질이 하부기판(22)의 시드(23)까지 도달하여, 결과적으로 나노와이어(24) 전체에 걸쳐 코팅막(29)이 형성될 수 있도록 구성된 것을 특징으로 하는 것이다.
More specifically, the conventional nanogenerator, as shown in Figure 2, by simply applying a polymer material such as PVDF to the nanowire 14 formed in a columnar shape, the coating film 19 is the end of the nanowire 14 Although only a portion thereof is formed, and a side surface thereof has a disadvantage in that the coating film 19 is not properly formed, the nanogenerator 20 according to the present invention has an end portion of the nanowire 24 as shown in FIG. 4. By forming in a pointed shape, the coating material reaches to the seed 23 of the lower substrate 22, and as a result is configured so that the coating film 29 can be formed over the entire nanowire 24.

따라서 상기한 바와 같이 하여, 본 발명에 따른 나노와이어의 전체에 코팅막이 형성된 나노발전기 및 그 제조방법을 구현할 수 있으며, 그것에 의해, 나노와이어의 전체가 코팅막으로 코팅될 수 있도록 하여 나노와이어의 특성을 향상시킬 수 있는 나노발전기를 제공할 수 있다.
Therefore, as described above, it is possible to implement a nano-generator and a method of manufacturing the coating film is formed on the entirety of the nanowires according to the present invention, whereby the entirety of the nanowires can be coated with a coating film to improve the characteristics of the nanowires It is possible to provide a nanogenerator that can be improved.

또한, 그 외의 내용은 종래의 나노발전기와 동일하므로, 여기서는, 설명을 간략히 하기 위해 그 상세한 설명을 생략한다.
In addition, since the other content is the same as that of the conventional nanogenerator, the detailed description is abbreviate | omitted here for simplicity of description.

이상, 상기한 바와 같은 본 발명의 실시예를 통하여 본 발명에 따른 나노와이어의 전체에 코팅막이 형성된 나노발전기 및 그 제조방법의 상세한 내용에 대하여 설명하였으나, 본 발명은 상기한 실시예에 기재된 내용으로만 한정되는 것은 아니며, 따라서 본 발명은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 설계상의 필요 및 기타 다양한 요인에 따라 여러 가지 수정, 변경, 결합 및 대체 등이 가능한 것임은 당연한 일이라 하겠다.
As described above, the nanogenerator having a coating film formed on the entirety of the nanowire according to the present invention and the manufacturing method thereof through the embodiments of the present invention as described above, but the present invention is described in the above embodiments. However, the present invention is not limited thereto, and therefore, it is obvious that various modifications, changes, combinations, and substitutions may be made by those skilled in the art according to design needs and various other factors. I will call it work.

10. 나노발전기 11. 상부기판
12. 하부기판 13. 시드층
14. 나노와이어 15. 하부전극
16. 상부전극 17. 축전수단
18. 지지체 19. 코팅막
20. 나노발전기 21. 상부기판
22. 하부기판 23. 시드층
24. 나노와이어 25. 하부전극
26. 상부전극 27. 축전수단
28. 지지체 29. 코팅막
10. Nano Generator 11. Upper Board
12. Lower substrate 13. Seed layer
14. Nanowire 15. Bottom electrode
16. Upper electrode 17. Power storage means
18. Support 19. Coating Film
20. Nano Generator 21. Upper Board
22. Lower substrate 23. Seed layer
24. Nanowire 25. Bottom electrode
26. Upper electrode 27. Power storage means
28. Support 29. Coating Film

Claims (6)

나노와이어의 전체에 걸쳐 코팅막이 형성된 나노발전기에 있어서,
상면 및 하면에 각각 배치되는 상부기판 및 하부기판;
상기 하부기판상에 배치되는 시드층;
상기 시드층으로부터 수직 방향으로 각각 성장하는 복수의 나노와이어;
상기 나노와이어로부터 발생한 전기를 외부로 전달하기 위해 상기 하부기판과 상기 시드층 사이에 배치되고 도전체로 이루어지는 하부전극 및 상기 상부기판상에 톱니형으로 형성되는 상부전극;
각각의 전극으로부터 전달된 전기를 축적하는 축전수단;
상기 하부기판의 좌우 양단에 각각 배치되어 상기 상부기판과 상기 하부기판이 접촉하는 것을 방지하고 일정 간격을 유지하도록 하는 지지체; 및
각각의 상기 나노와이어를 코팅하는 코팅막을 포함하여 구성되고,
각각의 상기 나노와이어는, 끝 부분이 뾰족한 형태로 형성됨으로써, 상기 코팅막을 형성하는 코팅물질이 상기 시드층까지 도달하여 각각의 상기 나노와이어의 전체에 걸쳐 상기 코팅막이 형성되도록 구성된 것을 특징으로 하는 나노발전기.
In the nanogenerator in which a coating film is formed over the entire nanowire,
An upper substrate and a lower substrate disposed on upper and lower surfaces, respectively;
A seed layer disposed on the lower substrate;
A plurality of nanowires each growing in a vertical direction from the seed layer;
A lower electrode made of a conductor and an upper electrode formed in a sawtooth shape on the upper substrate to be disposed between the lower substrate and the seed layer to transfer electricity generated from the nanowires to the outside;
Power storage means for accumulating electricity transferred from each electrode;
Support members disposed at left and right ends of the lower substrate, respectively, to prevent the upper substrate and the lower substrate from contacting each other and to maintain a predetermined gap; And
It comprises a coating film for coating each of the nanowires,
Each of the nanowires, characterized in that the tip is formed in a pointed shape, the coating material forming the coating film reaches to the seed layer is configured to form the coating film over the entire of the nanowires generator.
삭제delete 제 1항에 있어서,
상기 코팅막은 PVDF(Polyvinylidene fluoride)를 포함하는 고분자 물질로 이루어지는 것을 특징으로 하는 나노발전기.
The method of claim 1,
The coating film is a nano-generator, characterized in that made of a polymer material containing PVDF (Polyvinylidene fluoride).
나노와이어의 전체에 걸쳐 코팅막이 형성되도록 하는 나노발전기의 제조방법에 있어서,
상면 및 하면에 각각 배치되는 상부기판 및 하부기판을 형성하는 단계와,
상기 하부기판상에 도전체로 이루어지는 하부전극을 형성하는 단계와,
상기 하부전극 상에 나노와이어를 성장시키기 위한 시드층을 형성하는 단계와,
상기 상부기판상에 톱니형으로 상부전극을 형성하는 단계와,
각각의 전극으로부터 전달된 전기를 축적하는 축전수단을 설치하는 단계와,
상기 하부기판의 좌우 양단에 상기 상부기판과 상기 하부기판이 접촉하는 것을 방지하고 일정 간격을 유지하도록 하는 지지체를 각각 설치하는 단계와,
상기 시드층으로부터 수직 방향으로 복수의 나노와이어를 성장시키는 단계; 및
각각의 상기 나노와이어를 코팅막으로 코팅하는 단계를 포함하여 구성되고,
상기 나노와이어를 성장시키는 단계에서 각각의 상기 나노와이어의 끝 부분이 뾰족한 형태로 형성됨으로써, 상기 코팅막을 형성하는 코팅물질이 상기 시드층까지 도달하여 각각의 상기 나노와이어의 전체에 걸쳐 상기 코팅막이 형성되도록 구성된 것을 특징으로 하는 나노발전기의 제조방법.
In the method of manufacturing a nano-generator to form a coating film over the entire nanowire,
Forming an upper substrate and a lower substrate respectively disposed on the top and bottom surfaces thereof;
Forming a lower electrode made of a conductor on the lower substrate;
Forming a seed layer for growing nanowires on the lower electrode;
Forming an upper electrode on the upper substrate in a sawtooth shape;
Providing power storage means for accumulating electricity transferred from each electrode;
Installing support members on both left and right ends of the lower substrate to prevent the upper substrate and the lower substrate from contacting each other and to maintain a predetermined interval;
Growing a plurality of nanowires in a vertical direction from the seed layer; And
Coating each of the nanowires with a coating film,
In the growing of the nanowires, the ends of each of the nanowires are formed in a pointed shape, such that the coating material forming the coating film reaches the seed layer to form the coating film over the entire nanowire. Method for producing a nanogenerator, characterized in that configured to.
삭제delete 제 4항에 있어서,
상기 코팅하는 단계는, PVDF(Polyvinylidene fluoride)를 포함하는 고분자 물질로 상기 나노와이어의 전체를 코팅하는 것을 특징으로 하는 나노발전기의 제조방법.
5. The method of claim 4,
The coating may include coating the entirety of the nanowires with a polymer material including polyvinylidene fluoride (PVDF).
KR1020110082817A 2011-08-19 2011-08-19 Nanogenerator and manufacturing method thereof which have entire coated nanowires KR101220403B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110082817A KR101220403B1 (en) 2011-08-19 2011-08-19 Nanogenerator and manufacturing method thereof which have entire coated nanowires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110082817A KR101220403B1 (en) 2011-08-19 2011-08-19 Nanogenerator and manufacturing method thereof which have entire coated nanowires

Publications (1)

Publication Number Publication Date
KR101220403B1 true KR101220403B1 (en) 2013-01-21

Family

ID=47841531

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110082817A KR101220403B1 (en) 2011-08-19 2011-08-19 Nanogenerator and manufacturing method thereof which have entire coated nanowires

Country Status (1)

Country Link
KR (1) KR101220403B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100032175A (en) * 2008-09-17 2010-03-25 삼성전자주식회사 Apparatus and method for converting energy
KR100959067B1 (en) 2008-01-14 2010-05-20 전북대학교산학협력단 Zinc oxide nanostuctures based chemical sensors for hydrazine detection
KR20110021637A (en) * 2009-08-25 2011-03-04 삼성전자주식회사 Apparatus for generating electrical energy and method for manufacturing the same
KR20110047860A (en) * 2009-10-30 2011-05-09 삼성전자주식회사 PIEZOELECTRIC NANOWIRE STRUCTURE AND ELECTRIC DEVICE INCLUDING tHE SAME

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100959067B1 (en) 2008-01-14 2010-05-20 전북대학교산학협력단 Zinc oxide nanostuctures based chemical sensors for hydrazine detection
KR20100032175A (en) * 2008-09-17 2010-03-25 삼성전자주식회사 Apparatus and method for converting energy
KR20110021637A (en) * 2009-08-25 2011-03-04 삼성전자주식회사 Apparatus for generating electrical energy and method for manufacturing the same
KR20110047860A (en) * 2009-10-30 2011-05-09 삼성전자주식회사 PIEZOELECTRIC NANOWIRE STRUCTURE AND ELECTRIC DEVICE INCLUDING tHE SAME

Similar Documents

Publication Publication Date Title
Hu et al. Recent advancements in nanogenerators for energy harvesting
Manjakkal et al. Energy autonomous electronic skin
He et al. Ultrahigh output piezoelectric and triboelectric hybrid nanogenerators based on ZnO nanoflakes/polydimethylsiloxane composite films
García Núñez et al. Energy autonomous electronic skin
Qin et al. Wearable and stretchable triboelectric nanogenerator based on crumpled nanofibrous membranes
Huang et al. Fiber‐based energy conversion devices for human‐body energy harvesting
Chandrasekaran et al. Micro-scale to nano-scale generators for energy harvesting: Self powered piezoelectric, triboelectric and hybrid devices
Liao et al. Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting
Wang From nanogenerators to piezotronics—A decade-long study of ZnO nanostructures
Wang Ten years’ venturing in ZnO nanostructures: from discovery to scientific understanding and to technology applications
Fan et al. Flexible nanogenerators for energy harvesting and self‐powered electronics
Lin et al. BaTiO3 nanotubes-based flexible and transparent nanogenerators
Li et al. Materials and designs for power supply systems in skin-interfaced electronics
Lin et al. Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of∼ 55%
Pradel et al. Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition
Nechibvute et al. Piezoelectric energy harvesting devices: an alternative energy source for wireless sensors
Khan et al. Evolution from single to hybrid nanogenerator: a contemporary review on multimode energy harvesting for self-powered electronics
WO2013155924A1 (en) Nano-generator and manufacturing method thereof
Khalifa et al. PVDF nanofibers with embedded polyaniline–graphitic carbon nitride nanosheet composites for piezoelectric energy conversion
US20150318800A1 (en) Vibration generator and stacked-structure generator
CN101295941B (en) AC nano generator
Wang et al. High output nano-energy cell with piezoelectric nanogenerator and porous supercapacitor dual functions–A technique to provide sustaining power by harvesting intermittent mechanical energy from surroundings
Yue et al. A review of flexible lead-free piezoelectric energy harvester
JP2013026619A (en) Electric energy generating device and method of driving the same
Chandrasekhar et al. Battery-free electronic smart toys: a step toward the commercialization of sustainable triboelectric nanogenerators

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160105

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161220

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171213

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181121

Year of fee payment: 7