KR101220207B1 - Liquefaction method of natural gas for energy reduction - Google Patents

Liquefaction method of natural gas for energy reduction Download PDF

Info

Publication number
KR101220207B1
KR101220207B1 KR1020120054389A KR20120054389A KR101220207B1 KR 101220207 B1 KR101220207 B1 KR 101220207B1 KR 1020120054389 A KR1020120054389 A KR 1020120054389A KR 20120054389 A KR20120054389 A KR 20120054389A KR 101220207 B1 KR101220207 B1 KR 101220207B1
Authority
KR
South Korea
Prior art keywords
natural gas
heat exchanger
mixed refrigerant
heat
separator
Prior art date
Application number
KR1020120054389A
Other languages
Korean (ko)
Inventor
임원섭
문일
탁경재
이인규
최광호
이선근
김학성
최낙기
조웅호
Original Assignee
연세대학교 산학협력단
지에스건설 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단, 지에스건설 주식회사 filed Critical 연세대학교 산학협력단
Priority to KR1020120054389A priority Critical patent/KR101220207B1/en
Application granted granted Critical
Publication of KR101220207B1 publication Critical patent/KR101220207B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0239Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0267Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using flash gas as heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • F25J3/0214Liquefied natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/60Natural gas or synthetic natural gas [SNG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air

Abstract

PURPOSE: A natural gas liquidation method for reducing energy is provided to reduce electric power energy by heat recovery according to mixed-refrigerant and heat exchange. CONSTITUTION: A natural gas liquidation method for reducing energy uses a pretreatment process unit(100), a heat exchange unit and a mixed refrigerant circulation unit(300). The pretreatment process unit removes impurities among provided natural gas, and cools the natural gas by heat exchange with propane. The heat exchange unit cools the pre-processed natural gas by heat exchange with the mixed-refrigerant to liquefy. The mixed-refrigerant circulation unit circulates the mixed-refrigerant to the heat exchange unit to liquefy the natural gas which passes through the heat exchange unit.

Description

혼합냉매와 열교환에 의하여 에너지를 저감시키기 위한 천연가스 액화방법{ liquefaction method of natural gas for energy reduction}Liquefaction method of natural gas for energy reduction

본 발명은 천연가스의 액화방법에 관한 것으로서, 보다 상세하게는 천연가스를 액화시키는 과정에서 분리되는 저온의 가스 스트림을 냉매 사이클로 재순환시킴으로써, 혼합냉매와 열교환에 따른 열 회수로 인하여 전력 에너지를 저감하도록 한 천연가스의 액화방법에 관한 것이다.
The present invention relates to a method of liquefying natural gas, and more particularly, by recycling a low temperature gas stream separated in a process of liquefying natural gas into a refrigerant cycle, thereby reducing power energy due to heat recovery due to mixed refrigerant and heat exchange. A method of liquefying natural gas.

일반적으로, 천연가스는 천연에서 산출되는 가연성의 가스로서, 탄화수소류를 주성분으로 하는 가스를 의미한다.In general, natural gas is a flammable gas produced in nature, and means a gas mainly composed of hydrocarbons.

지하에서 추출된 천연가스는 주성분인 메탄, 에탄, 프로판, 부탄 등 외에 수분, 고분자, 탄화수소, 질소, 헬륨, 탄산가스와 황화수소 등이 함유되어 있다.Natural gas extracted from the basement contains moisture, polymers, hydrocarbons, nitrogen, helium, carbon dioxide and hydrogen sulfide as well as methane, ethane, propane and butane which are main components.

여기서, 이러한 물질들을 분리 및 제거하지 않고 이용하면 발열량 및 물리 화학적 특성이 다르게 되기 때문에, 상기와 같은 물질들을 천연가스로부터 분리하여 연료로서의 천연가스 품질을 향상시키고, 분리된 물질들 또한 다른 자원으로 이용하기 위해서 수분제거, 황화물제거, 탄산가스제거, 먼지와 유분 제거 등의 분리 및 정제과정을 거치게 된다.Here, if these materials are used without separating and removing them, the calorific value and the physicochemical properties are different, so that such materials are separated from natural gas to improve natural gas quality as fuel, and the separated materials are also used as other resources. In order to remove water, remove sulfides, remove carbon dioxide, and remove dust and oil.

이러한 천연가스는 육상 또는 해상의 가스배관을 통해 가스 상태로 운반되기도 하는데, 장거리 수송과 작은 면적의 저장공간에 많은 양의 천연가스를 저장하려는 목적으로 액화공정을 거쳐 액체상태로 변화시키게 된다.The natural gas is also transported in the gas state through a gas pipeline on land or sea, which is converted into a liquid state through a liquefaction process for the purpose of storing a large amount of natural gas in a long distance transportation and a small storage space.

액화상태로 된 천연가스를 액화천연가스(LNG : Liquefied Natural Gas)라 하며, 가스상태의 천연가스보다 그 부피가 1/600로 감소되게 때문에 운송 및 저장이 용이하게 된다.Liquefied natural gas (LNG) is called liquefied natural gas, and its volume is reduced to 1/600 more than gaseous natural gas, which facilitates transportation and storage.

천연가스의 주성분은 메탄이며, 이 메탄의 액화온도는 매우 낮기 때문에 일반적인 방법으로 액화시키기는 매우 어렵다. 이에 팽창법(Turbo expander cycle), 다단냉동법(Cascade cycle) 또는 혼합냉매법(Multi-component refrigerant cycle) 등의 방법을 통해 천연가스를 액화하고 있다.The main component of natural gas is methane, and the liquefaction temperature of the methane is very low, so it is very difficult to liquefy in the usual way. Natural gas is liquefied through methods such as turbo expander cycle, cascade cycle, or multi-component refrigerant cycle.

여기서, 천연가스를 액화하기 위하여 주로 혼합냉매법이 적용되는데, 도 1은 이러한 혼합냉매법에 의하여 천연가스를 액화시키는 방법을 도시한 공정도로서, 도 1을 참조하여 종래에 천연가스를 액화시키는 방법을 설명하면 다음과 같다.Here, a mixed refrigerant method is mainly applied to liquefy natural gas. FIG. 1 is a process diagram illustrating a method of liquefying natural gas by such a mixed refrigerant method, and a method of liquefying natural gas in the related art with reference to FIG. 1. This is as follows.

종래에 천연가스를 액화시키기 위한 공정은, 천연가스 중 불순물을 제거하고 프로판과의 열교환에 의해 천연가스를 설정온도로 냉각시키는 전처리 공정부(10)를 포함한다.Conventionally, a process for liquefying natural gas includes a pretreatment step 10 for removing impurities in the natural gas and cooling the natural gas to a set temperature by heat exchange with propane.

전처리 공정부(10)는, 이산화탄소 제거기(12), 수분 제거기(14), 복수의 프로판 열교환기(16)들 및 스크러버(18)로 구성될 수 있다.The pretreatment process unit 10 may include a carbon dioxide remover 12, a water remover 14, a plurality of propane heat exchangers 16, and a scrubber 18.

또한, 상기 전처리 공정부(10)를 통과하여 정제된 기상의 천연가스를 열교환에 따라 액화시키는 열교환부와, 이 열교환부에 혼합냉매를 순환시키는 혼합냉매 순환부(30)를 더 포함한다.The apparatus may further include a heat exchanger configured to liquefy natural gas of purified gas phase through the pretreatment process unit 10 according to heat exchange, and a mixed refrigerant circulation unit 30 circulating the mixed refrigerant in the heat exchanger.

이와 같이 전처리 공정부(10)를 통과하여 정제과정을 거치면서 설정온도로 낮아진 천연가스(G3)는 혼합냉매(MR)와 열교환을 이루는 열교환부를 통과하여 저온으로 된 후, 액화천연가스(LNG)로 생성되는데, 이 과정에서 일부는 저온의 가스 스트림(G.S)으로 되어 배기되거나 또는 가스 터빈 또는 파워플랜트의 연료로도 재사용된다.As such, the natural gas (G3) lowered to the set temperature while passing through the pretreatment process unit 10 passes through the heat exchange unit forming heat exchange with the mixed refrigerant (MR), and then becomes a low temperature. In this process, part of the process is a low temperature gas stream (GS) which is exhausted or reused as fuel in gas turbines or power plants.

상기 열교환부는, 제1열교환기(20)와 제2열교환기(24)가 직렬로 나란하게 설치되며, 전처리 공정부(10)를 거친 천연가스(G3)는 제1열교환기(20) 및 제2열교환기(24)를 순차적으로 통과하면서 혼합냉매(MR)와의 열교환에 의해 저온으로 된 후, 제1분리기(50)를 통해 액화천연가스(LNG)와 저온의 가스 스트림(G.S)으로 분리된다.The heat exchange unit, the first heat exchanger 20 and the second heat exchanger 24 are installed side by side in series, the natural gas (G3) passed through the pretreatment process unit 10 is the first heat exchanger 20 and After passing through the two heat exchangers 24 sequentially to a low temperature by heat exchange with the mixed refrigerant (MR), it is separated into a liquefied natural gas (LNG) and a low temperature gas stream (GS) through the first separator (50). .

한편, 상기 열교환부의 제1열교환기(20)와 제2열교환기(24)에는 혼합냉매 순환부(30)를 순환하게 되는 혼합냉매(MR)가 연속적으로 통과하게 되는데, 이에 대한 구성 및 열교환 방법을 설명하면 다음과 같다.On the other hand, the mixed refrigerant (MR) to circulate the mixed refrigerant circulation section 30 is continuously passed through the first heat exchanger 20 and the second heat exchanger 24 of the heat exchanger, the configuration and heat exchange method for this This is as follows.

혼합냉매 순환부(30)는, 복수의 압축기(32)와 복수의 냉각기(34)를 순차적으로 통과하면서 고압으로 되고, 다시 복수의 프로판 냉각기(36)를 순차적으로 통과하면서 기액분리기(38)로 공급된다.The mixed refrigerant circulating unit 30 becomes a high pressure while sequentially passing through the plurality of compressors 32 and the plurality of coolers 34, and then passes through the plurality of propane coolers 36 sequentially to the gas-liquid separator 38. Supplied.

기액분리기(38)는 혼합냉매 순환부(30)를 통과하여 저온고압으로 된 혼합냉매(MR)를 기상과 액상으로 분리하여, 각각 제1열교환기(20)를 통과하도록 공급된다.The gas-liquid separator 38 passes through the mixed refrigerant circulation section 30 to separate the mixed refrigerant MR, which has become a low temperature and high pressure, into a gas phase and a liquid phase, and is supplied to pass through the first heat exchanger 20, respectively.

이때, 기액분리기(38)에서 분리된 액상 혼합냉매 및 기상 혼합냉매는 제1열교환기(20)를 통과하면서, 제1열교환기(20)를 동시에 통과하게 되는 천연가스와 열교환을 이루어, 상기 천연가스(G4)가 저온상태가 되도록 한다.At this time, the liquid mixed refrigerant and gaseous mixed refrigerant separated from the gas-liquid separator 38 undergoes a heat exchange with the natural gas which simultaneously passes through the first heat exchanger 20 while passing through the first heat exchanger 20, thereby The gas G4 is brought to a low temperature state.

제1열교환기(20)를 통과하는 액상 혼합냉매는 연속해서 제2열교환기(24)를 통과하고, 줄-톰슨 효과에 의해 혼합냉매의 압력을 낮추고 냉각시키는 제2팽창밸브(26)를 거쳐 다시 제2열교환기(24)를 재차 통과함으로써, 이 제2열교환기(24)를 통과하게 되는 천연가스를 더욱 낮은 온도로 열교환시키게 된다.The liquid mixed refrigerant passing through the first heat exchanger 20 continuously passes through the second heat exchanger 24 and passes through a second expansion valve 26 which lowers and cools the pressure of the mixed refrigerant by the Joule-Thomson effect. By passing through the second heat exchanger 24 again, the natural gas passing through the second heat exchanger 24 is heat-exchanged to a lower temperature.

여기서, 제1열교환기(20) 및 제2열교환기(24)를 연속적으로 통과하여 저온으로 된 천연가스(G5)는 제3팽창밸브(40)를 거쳐 제1분리기(50)를 통해 액화천연가스(LNG)와 질소가 풍부한 저온의 가스 스트림(G.S)으로 분리된다.Here, the natural gas (G5), which has passed through the first heat exchanger (20) and the second heat exchanger (24) and has a low temperature, passes through the third expansion valve (40) and is liquefied through the first separator (50). The gas (LNG) and nitrogen-rich cold gas stream (GS) are separated.

한편, 제1열교환기(20)를 통과한 기상 혼합냉매는 줄-톰슨 효과에 의해 압력을 낮추고 냉각시키는 제1팽창밸브(22)를 거치면서 냉각된 상태로 혼합기(28)로 공급되고, 제2열교환기(24)를 재차 통과한 액상 혼합냉매도 상기 혼합기(28)로 공급된다.Meanwhile, the gaseous mixed refrigerant passing through the first heat exchanger 20 is supplied to the mixer 28 in a cooled state while passing through the first expansion valve 22 for lowering and cooling the pressure by the Joule-Thomson effect. The liquid mixed refrigerant having passed through the two heat exchangers 24 is also supplied to the mixer 28.

이와 같이, 혼합기(28)에는 제1열교환기(20)를 통과한 기상 혼합냉매와, 제2열교환기(24)를 통과한 액상 혼합냉매가 공급되어 혼합된 후, 다시 제1열교환기를 재차 통과하게 됨으로써, 상기 제1열교환기(20)를 통과하는 천연가스와 기상 및 액상 혼합냉매와 재차 열교환을 이루게 된다.As described above, the gaseous mixed refrigerant passing through the first heat exchanger 20 and the liquid mixed refrigerant passed through the second heat exchanger 24 are supplied to the mixer 28 and mixed, and then passed through the first heat exchanger again. As a result, the natural gas passing through the first heat exchanger 20 and the gaseous and liquid mixed refrigerant are further heat exchanged.

제1열교환기(20)를 통과한 혼합냉매는 열교환에 의해 압력이 낮고 고온인 상태이므로, 다시 혼합냉매 순환부(30) 즉, 복수의 압축기(32)와 복수의 냉각기(34) 및 복수의 프로판 냉각기(36)를 통과하면서 저온고압으로 된 후 기액분리기(38)로 순환된다.
Since the mixed refrigerant having passed through the first heat exchanger 20 has a low pressure and a high temperature due to heat exchange, the mixed refrigerant circulation part 30, that is, the plurality of compressors 32, the plurality of coolers 34, and the plurality of refrigerants are again present. After passing through the propane cooler 36, it is cooled to high temperature and then circulated to the gas-liquid separator 38.

여기서, 공정에 유입되는 천연가스(G1) 유량과, 생산되는 LNG의 비를 전환율(conversion ratio)로 정하고, 전환율을 75~85%로 고려하여 다음의 표 1과 같이 공정모사를 수행하였다.Here, the flow rate of the natural gas (G1) flowing into the process, the ratio of the LNG produced as a conversion ratio (conversion ratio), considering the conversion rate of 75 ~ 85% was carried out process simulation as shown in Table 1 below.

실제로는 액화공정에 들어오는 천연가스의 조성이나 목표로 하는 LNG의 조성, 그리고 혼합냉매의 조성이 바뀜에 따라 적합한 전환율을 설정하며, LNG로 전환되지 않은 가스 스트림(G.S)은 공정의 가스 터빈이나 파워플랜트의 연료로 사용한다.In practice, the appropriate conversion rate is set according to the composition of natural gas entering the liquefaction process, the target LNG composition, and the composition of the mixed refrigerant, and the gas stream (GS) not converted to LNG is the gas turbine or power of the process. Used as fuel for the plant.

또한, 각 공정의 열효율은 Specific work(kJ/kg)를 통해 비교한다. 이는 1kg의 LNG를 생산하기 위해서 공정에서 사용하는 에너지의 양으로 정의하고, 전환율은 열교환부를 거친 천연가스(G5)의 온도를 통해서 조절하며, 목표로 하는 전환율을 바꾸면 열교환기(20,24)들 사이에서의 천연가스(G4) 온도를 적합하게 조절한다.In addition, the thermal efficiency of each process is compared through the specific work (kJ / kg). This is defined as the amount of energy used in the process to produce 1 kg of LNG, the conversion rate is controlled through the temperature of the natural gas (G5) through the heat exchanger, and if the target conversion rate is changed, the heat exchangers (20, 24) Natural gas (G4) temperature between them is adjusted suitably.

G5
온도(˚C)
G5
Temperature (˚C)
LNG/G1
전환율(%)
LNG / G1
Conversion Rate (%)
Specific
work (kJ/kg)
Specific
work (kJ / kg)
MR유량
(kg/h)
MR flow rate
(kg / h)
G4
온도(˚C)
G4
Temperature (˚C)
-134.2-134.2 77.6777.67 739.13739.13 667497.89667497.89 -114.53-114.53 -135.2-135.2 78.2878.28 737.89737.89 671648.87671648.87 -115.53-115.53 -136.2-136.2 78.8978.89 736.68736.68 675797.60675797.60 -116.54-116.54 -137.2-137.2 79.5079.50 735.51735.51 679944.39679944.39 -117.58-117.58 -138.2-138.2 80.1180.11 734.37734.37 684089.40684089.40 -118.63-118.63 -139.2-139.2 80.7280.72 733.25733.25 688233.03688233.03 -119.71-119.71 -140.2-140.2 81.3381.33 732.17732.17 692375.68692375.68 -120.82-120.82 -141.2-141.2 81.9381.93 731.12731.12 696517.41696517.41 -121.97-121.97 -142.2-142.2 82.5382.53 730.11730.11 700658.67700658.67 -123.19-123.19 -143.2-143.2 83.1383.13 729.11729.11 704799.68704799.68 -124.49-124.49 -143.3-143.3 83.1983.19 729.02729.02 705213.77705213.77 -124.63-124.63 -143.4-143.4 83.2583.25 728.92728.92 705627.81705627.81 -124.77-124.77 -143.5-143.5 83.3183.31 728.83728.83 706041.97706041.97 -124.91-124.91 -143.6-143.6 83.3783.37 728.73728.73 706456.00706456.00 -125.06-125.06 -143.65-143.65 83.4083.40 728.67728.67 706657.92706657.92 -125.13-125.13 -143.7-143.7 83.4383.43 728.63728.63 706894.39706894.39 -125.20-125.20 -143.8-143.8 83.4983.49 730.00730.00 710713.16710713.16 -125.20-125.20 -143.9-143.9 83.5583.55 731.47731.47 714603.98714603.98 -125.20-125.20 -144-144 83.6183.61 732.79732.79 718318.97718318.97 -125.20-125.20 -144.1-144.1 83.6783.67 734.15734.15 722158.96722158.96 -125.20-125.20 -144.2-144.2 83.7383.73 735.53735.53 726002.22726002.22 -125.20-125.20 -144.3-144.3 83.7983.79 736.75736.75 729654.14729654.14 -125.20-125.20 -144.4-144.4 83.8583.85 738.11738.11 733410.19733410.19 -125.20-125.20 -144.5-144.5 83.9183.91 739.58739.58 737310.67737310.67 -125.20-125.20 -144.6-144.6 83.9783.97 740.79740.79 741081.11741081.11 -125.20-125.20

[그래프 1][Graph 1]

Figure 112012041013714-pat00001
Figure 112012041013714-pat00001

위의 표 1 및 그래프 1에서와 같이, 제1열교환기(20)와 제2열교환기(24)를 모두 통과하여 열교환된 천연가스(G5)의 온도가 낮아질수록 액화천연가스로의 전환율이 높아지게 됨을 알 수 있었다.As shown in Table 1 and Graph 1 above, the lower the temperature of the natural gas (G5) heat exchanged through both the first heat exchanger 20 and the second heat exchanger 24, the higher the conversion rate to liquefied natural gas. Could know.

그러나, 열교환부를 통과하여 열교환된 천연가스(G5)의 온도가 어느 정도의 온도에서 더 낮아질수록 혼합냉매의 유량이 증가하면서 오히려 에너지 소비량도 많아짐을 알게 되었다.However, as the temperature of the natural gas G5 heat exchanged through the heat exchanger is lowered at a certain temperature, it is found that the flow rate of the mixed refrigerant increases, rather, the energy consumption increases.

즉, 열교환부를 모두 통과한 천연가스(G5)의 온도가 -143.7℃이고, 제1열교환기(20)를 통과한 천연가스(G4)의 온도가 -125.20℃ 일 경우, 에너지 소비량이 가장 적게 소모됨을 알 수 있게 되었다.That is, when the temperature of the natural gas (G5) passing through all of the heat exchange parts is -143.7 ° C and the temperature of the natural gas (G4) passing through the first heat exchanger (20) is -125.20 ° C, energy consumption is consumed the least. It became known.

본 발명은 상기와 같은 종래의 천연가스 액화방법에 따른 공정에 착안하여 안출된 것으로서, 천연가스를 액화시키는 과정에서 분리되는 저온의 가스 스트림을 냉매 사이클로 재순환시킴으로써, 혼합냉매와 열교환에 따른 열 회수로 인하여 전력 에너지를 저감하도록 한 천연가스의 액화방법을 제공하는데 그 목적이 있다.
The present invention has been made in view of the process according to the conventional natural gas liquefaction method as described above, by recycling the low-temperature gas stream separated in the process of liquefying natural gas in the refrigerant cycle, by the heat recovery according to the mixed refrigerant and heat exchange The purpose is to provide a liquefaction method of natural gas to reduce the power energy.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 혼합냉매와 열교환에 의하여 에너지를 저감시키기 위한 천연가스 액화방법은, 공급되는 천연가스 중, 불순물을 제거하고 프로판과의 열교환에 의해 설정온도로 냉각시키는 전처리 공정부와, 상기 전처리 공정부를 통과한 천연가스를 혼합냉매와의 열교환에 의해 냉각시켜 액화가 이루어지도록 하는 열교환부와, 상기 열교환부로 혼합냉매를 순환시킴에 따라 상기 열교환부를 통과하는 천연가스가 액화되도록 하는 혼합냉매 순환부를 포함하며, 상기 열교환부를 통과하여 저온으로 열교환된 천연가스를 제1분리기로서 액화천연가스와 저온의 가스 스트림으로 분리한 후, 상기 저온의 가스 스트림을 상기 열교환부로 재순환시킴에 따라 상기 열교환부를 순환하는 혼합냉매를 저온으로 열교환시킴으로써, 에너지를 저감하도록 하는 것을 특징으로 한다.Natural gas liquefaction method for reducing energy by the mixed refrigerant and heat exchange according to the present invention for achieving the above object, to remove the impurities in the supplied natural gas and to cool to a set temperature by heat exchange with propane The pretreatment process unit, a heat exchange unit for cooling the natural gas passed through the pretreatment process unit by heat exchange with the mixed refrigerant to liquefy, and the natural gas passing through the heat exchange unit by circulating the mixed refrigerant to the heat exchange unit A mixed refrigerant circulating unit for liquefying, comprising separating the natural gas heat exchanged to a low temperature through the heat exchanger into a liquefied natural gas and a low temperature gas stream as a first separator, and recycles the low temperature gas stream to the heat exchanger By heat-exchanging the mixed refrigerant circulating the heat exchanger at a low temperature according to It is characterized by reducing energy.

여기서, 상기 열교환부는, 제1열교환기와 제2열교환기로 이루어지되, (A) 상기 혼합냉매 순환부로부터 액상 혼합냉매가 상기 제1열교환기 및 제2열교환기를 통과하면서 천연가스와 열교환을 이루고, 상기 제2열교환기를 다시 통과하면서 천연가스와 재차 열교환을 이룬 후, 혼합냉매 혼합기로 공급되는 단계; (B) 상기 혼합냉매 순환부로부터 기상 혼합냉매가 유량 분리기를 거쳐 일부는 상기 제1열교환기 및 제2열교환기를 통과하면서 천연가스와 열교환을 이루고, 상기 혼합냉매 혼합기로 공급되는 단계; (C) 상기 유량 분리기를 거친 나머지 일부의 기상 혼합냉매는 제3열교환기로 유입되고, 상기 저온의 가스 스트림은 상기 제3열교환기로 공급되어, 상기 기상 혼합냉매와 열교환을 이루는 단계; (D) 상기 (C) 단계에서 열교환된 기상 혼합냉매는 상기 혼합냉매 혼합기로 공급되는 단계 및; (E) 상기 혼합냉매 혼합기로 유입된 상기 (A) 단계, (B)단계 및 (D) 단계의 각 혼합냉매가 혼합되어 상기 제1열교환기로 재차 순환되는 단계를 포함하는 것이 바람직하다.Here, the heat exchange part is composed of a first heat exchanger and a second heat exchanger, (A) the liquid mixed refrigerant from the mixed refrigerant circulating unit to exchange heat with natural gas while passing through the first heat exchanger and the second heat exchanger, Performing heat exchange again with the natural gas while passing through the second heat exchanger again, and then feeding the mixed refrigerant mixer; (B) the gaseous mixed refrigerant from the mixed refrigerant circulating unit through the flow separator and a part of the mixed gas through the first heat exchanger and the second heat exchanger to exchange heat with the natural gas, and is supplied to the mixed refrigerant mixer; (C) a portion of the remaining gaseous mixed refrigerant passing through the flow separator is introduced into a third heat exchanger, and the cold gas stream is supplied to the third heat exchanger to exchange heat with the gaseous mixed refrigerant; (D) the gaseous mixed refrigerant exchanged in the step (C) is supplied to the mixed refrigerant mixer; (E) Preferably, the mixed refrigerants introduced into the mixed refrigerant mixer (A), (B) and (D) are mixed and circulated again to the first heat exchanger.

특히, 상기 (C) 단계는, (C-1) 상기 제1분리기에서 분리된 액화천연가스를 제2분리기에 의해 재차 액화천연가스와 저온의 가스 스트림으로 분리하는 단계; (C-2) 상기 제1분리기에서 분리된 저온의 가스 스트림과, 상기 제2분리기에서 분리된 저온의 가스 스트림을 가스 혼합기에 의해 혼합하는 단계; (C-3) 상기 가스 혼합기에 의해 혼합된 가스 스트림을 상기 제3열교환기로 공급하는 단계를 더 포함하는 것이 바람직하다.In particular, step (C) may include: (C-1) separating the liquefied natural gas separated in the first separator into a liquefied natural gas and a low temperature gas stream by a second separator; (C-2) mixing the low temperature gas stream separated in the first separator and the low temperature gas stream separated in the second separator by a gas mixer; (C-3) preferably further comprising feeding a gas stream mixed by the gas mixer to the third heat exchanger.

한편, 상기 (C) 단계에서, 상기 유량 분리기를 거친 나머지 일부의 기상 혼합냉매는 제3열교환기와 제4열교환기로 연속해서 유입되고, 상기 제1분리기에서 분리된 액화천연가스를 제2분리기에 의해 재차 액화천연가스와 저온의 가스 스트림으로 분리하되, 상기 제1분리기에서 분리된 저온의 가스 스트림은 상기 제3열교환기로 공급되고, 상기 제2분리기에서 분리된 저온의 가스 스트림을 상기 제4열교환기로 공급되도록 하여, 상기 제3열교환기 및 제4열교환기에서 각각 상기 기상 혼합냉매와 열교환이 이루어지도록 할 수도 있다.Meanwhile, in the step (C), the remaining gaseous mixed refrigerant passing through the flow separator is continuously introduced into the third heat exchanger and the fourth heat exchanger, and the liquefied natural gas separated in the first separator is separated by the second separator. The liquefied natural gas and the low temperature gas stream are separated again, wherein the low temperature gas stream separated from the first separator is supplied to the third heat exchanger, and the low temperature gas stream separated from the second separator is transferred to the fourth heat exchanger. The supply may be such that heat is exchanged with the gaseous mixed refrigerant in the third heat exchanger and the fourth heat exchanger, respectively.

또한, 상기 열교환부로 재순환되어 상기 열교환부를 순환하는 혼합냉매를 저온으로 열교환시킨 저온의 가스 스트림은 다시 상기 전처리 공정부로 공급되어, 상기 열교환부로 공급되는 천연가스와 열교환을 이루도록 할 수 있다.In addition, the low-temperature gas stream, which is recycled to the heat exchange part and heat-exchanged to the low temperature of the mixed refrigerant circulating the heat exchange part, may be supplied to the pretreatment process part again to exchange heat with the natural gas supplied to the heat exchange part.

이 경우, 상기 전처리 공정부를 통과한 천연가스 중, 일부는 상기 저온의 가스 스트림과 열교환을 이루어 상기 열교환부로 공급되고, 나머지 일부는 상기 열교환부로 직접 공급되도록 할 수도 있다.
In this case, some of the natural gas passed through the pretreatment process unit may be heat-exchanged with the low temperature gas stream to be supplied to the heat exchange unit, and the other part may be directly supplied to the heat exchange unit.

이상에서와 같이 본 발명에 따른 혼합냉매와 열교환에 의하여 에너지를 저감시키기 위한 천연가스 액화방법에 의하면, 천연가스를 액화시키는 과정에서 분리되는 저온의 가스 스트림이 냉매 사이클로 재순환됨으로써, 혼합냉매와 열교환에 따른 열 회수로 인하여 전력 에너지가 저감되는 효과가 제공된다.
As described above, according to the natural gas liquefaction method for reducing energy by the mixed refrigerant and heat exchange according to the present invention, the low-temperature gas stream separated in the process of liquefying natural gas is recycled to the refrigerant cycle, so that The heat recovery accordingly provides the effect of reducing power energy.

도 1은 종래에 천연가스를 액화시키는 방법을 나타낸 공정도.
도 2는 본 발명의 제 1실시 예에 따라 천연가스를 액화시키는 방법을 나타낸 공정도.
도 3은 본 발명의 제 2실시 예에 따라 천연가스를 액화시키는 방법을 나타낸 공정도.
도 4는 본 발명의 제 3실시 예에 따라 천연가스를 액화시키는 방법을 나타낸 공정도.
도 5는 본 발명의 제 4실시 예에 따라 천연가스를 액화시키는 방법을 나타낸 공정도.
1 is a process chart showing a conventional method for liquefying natural gas.
2 is a process chart showing a method for liquefying natural gas according to the first embodiment of the present invention.
3 is a process chart showing a method for liquefying natural gas according to a second embodiment of the present invention.
4 is a process chart showing a method for liquefying natural gas according to a third embodiment of the present invention.
5 is a process chart showing a method for liquefying natural gas according to a fourth embodiment of the present invention.

이하, 본 발명의 바람직한 실시 예를 첨부된 예시도면에 의거하여 상세히 설명한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

<제 1실시 예><First Embodiment>

본 발명의 제 1실시 예에 따른 천연가스의 액화방법은, 천연가스가 프로판 및 혼합냉매와 열교환을 이루어 액화천연가스와 저온의 가스 스트림으로 분리될 때, 저온의 가스 스트림을 이용하여 혼합냉매를 저온으로 열교환시킴으로써, 천연가스의 열교환에 따른 액화시 소요되는 전력 에너지를 저감하도록 하는 것이다.In the liquefaction method of natural gas according to the first embodiment of the present invention, when natural gas is separated into liquefied natural gas and a low temperature gas stream by heat exchange with propane and a mixed refrigerant, a low temperature gas stream is used to mix the mixed refrigerant. By heat exchange at low temperature, it is to reduce the power energy required during liquefaction due to heat exchange of natural gas.

이러한 제 1실시 예에 따른 천연가스 액화방법은, 그 공정에서 유입되는 천연가스(G1) 중 불순물을 제거하고 프로판과의 열교환에 의해 천연가스를 설정온도로 냉각시키는 전처리 공정부(100)를 포함한다.The natural gas liquefaction method according to the first embodiment includes a pre-treatment process unit 100 for removing impurities from the natural gas (G1) flowing in the process and cooling the natural gas to a set temperature by heat exchange with propane. do.

전처리 공정부(100)는, 기상의 천연가스 중, 이산화탄소, 수분 및 먼지 등을 제거하고 프로판과의 열교환에 의해 설정온도로 냉각시키는 기능을 담당하는 것으로서, 도 2에 도시된 바와 같이, 이산화탄소 제거기(102)와, 수분 제거기(104)와, 복수의 프로판 열교환기(106)들 및 스크러버(108)로 구성될 수 있다.The pretreatment process unit 100 is responsible for removing carbon dioxide, water, dust, and the like from natural gas in the gas phase and cooling to a set temperature by heat exchange with propane. As illustrated in FIG. 2, a carbon dioxide remover 102, moisture remover 104, a plurality of propane heat exchangers 106 and scrubber 108.

또한, 본 발명의 제 1실시 예에 따른 천연가스 액화방법은, 그 공정에서 상기 전처리 공정부(100)를 통과하여 정제된 기상의 천연가스(G3)를 열교환에 따라 액화시키는 열교환부와, 이 열교환부에 혼합냉매(MR)를 순환시키는 혼합냉매 순환부(300)를 더 포함한다.In addition, the natural gas liquefaction method according to the first embodiment of the present invention, the heat exchanger for liquefying the natural gas (G3) of the gaseous phase purified through the pre-treatment process unit 100 in accordance with the heat exchange, Further comprising a mixed refrigerant circulation unit 300 for circulating the mixed refrigerant (MR) in the heat exchange unit.

이와 같이 전처리 공정부(100)의 프로판 열교환기(106)들을 통과하여 설정온도로 낮아진 천연가스(G2)는 스크러버(109)를 통과하여 정제되며, 정제된 천연가스(G3)는 혼합냉매(MR)와 열교환을 이루는 열교환부를 통과하여 저온으로 된 후, 액화천연가스(LNG)로 생성되고, 그 일부는 저온의 가스 스트림(G.S)으로 되어 열교환부로 다시 순환됨으로써, 혼합냉매와 열교환을 이룸에 따라 천연가스의 열교환에 따른 전력 에너지를 저감시키게 된다.As such, the natural gas G2 which is lowered to the set temperature by passing through the propane heat exchanger 106 of the pretreatment process unit 100 is purified by passing through the scrubber 109, and the purified natural gas G3 is mixed refrigerant (MR). After passing through the heat exchanger to form a low temperature through the heat exchanger, it is produced as liquefied natural gas (LNG), a part of which is converted into a low-temperature gas stream (GS) and circulated back to the heat exchanger, thereby performing heat exchange with the mixed refrigerant. Power energy due to heat exchange of natural gas is reduced.

상기 열교환부는, 제1열교환기(200)와 제2열교환기(204)가 직렬로 나란하게 설치되며, 전처리 공정부(100)를 거친 천연가스(G3)는 제1열교환기(200) 및 제2열교환기(204)를 순차적으로 통과하면서 혼합냉매(MR)와의 열교환에 의해 저온으로 된 후, 제1분리기(500)를 통해 액화천연가스(LNG)와 저온의 가스 스트림(G.S)으로 분리된다.The heat exchange unit, the first heat exchanger 200 and the second heat exchanger 204 are installed side by side in series, the natural gas (G3) passed through the pretreatment process unit 100 is the first heat exchanger (200) and the first After passing through the two heat exchangers 204 to the low temperature by heat exchange with the mixed refrigerant (MR), it is separated into the liquefied natural gas (LNG) and the low temperature gas stream (GS) through the first separator (500). .

한편, 상기 열교환부의 제1열교환기(200)와 제2열교환기(204)에는 혼합냉매 순환부(300)를 순환하게 되는 혼합냉매(MR)가 연속적으로 통과하게 되는데, 이에 대한 구성 및 열교환 방법을 설명하면 다음과 같다.On the other hand, the mixed refrigerant (MR) to circulate the mixed refrigerant circulating unit 300 is continuously passed to the first heat exchanger 200 and the second heat exchanger 204 of the heat exchange unit, the configuration and heat exchange method for this This is as follows.

혼합냉매 순환부(300)는, 복수의 압축기(302)와 복수의 냉각기(304)를 순차적으로 통과하면서 고압으로 되고, 다시 복수의 프로판 냉각기(306)를 순차적으로 통과하면서 기액분리기(308)로 공급된다.The mixed refrigerant circulating unit 300 becomes a high pressure while sequentially passing through the plurality of compressors 302 and the plurality of coolers 304 and again passes through the plurality of propane coolers 306 to the gas-liquid separator 308. Supplied.

기액분리기(308)는 혼합냉매 순환부(300)를 통과하여 저온고압으로 된 혼합냉매(MR)를 기상과 액상으로 분리하여, 각각 제1열교환기(200)를 통과하도록 공급된다.The gas-liquid separator 308 passes through the mixed refrigerant circulation unit 300 to separate the mixed refrigerant MR at low temperature and high pressure into a gaseous phase and a liquid phase, and is supplied to pass through the first heat exchanger 200, respectively.

이때, 기액분리기(308)에서 분리된 액상 혼합냉매는 곧바로 제1열교환기(200)를 통과하고, 기상 혼합냉매는 유량 분리기(600)를 거쳐 그 일부가 제1열교환기(200)를 통과하게 된다.In this case, the liquid mixed refrigerant separated from the gas-liquid separator 308 passes directly through the first heat exchanger 200, and the gaseous mixed refrigerant passes through the flow separator 600 so that a part thereof passes through the first heat exchanger 200. do.

이와 같이, 제1열교환기(200)를 통과하게 되는 액상 및 기상 혼합냉매는, 제1열교환기(200)를 동시에 통과하게 되는 천연가스와 열교환을 이루어, 천연가스(G4)가 저온상태가 되도록 한다.As such, the liquid and gaseous mixed refrigerant passing through the first heat exchanger 200 exchanges heat with the natural gas simultaneously passing through the first heat exchanger 200 so that the natural gas G4 is at a low temperature. do.

제1열교환기(200)를 통과하는 액상 혼합냉매는 연속해서 제2열교환기(204)를 통과하고, 줄-톰슨 효과에 의해 혼합냉매의 압력을 낮추고 냉각시키는 제2팽창밸브(206)를 거쳐 다시 제2열교환기(204)를 재차 통과함으로써, 이 제2열교환기(204)를 통과하게 되는 천연가스를 더욱 낮은 온도로 열교환시키게 된다.The liquid mixed refrigerant passing through the first heat exchanger 200 continuously passes through the second heat exchanger 204 and passes through a second expansion valve 206 which lowers and cools the pressure of the mixed refrigerant by the Joule-Thomson effect. By passing the second heat exchanger 204 again, the natural gas passing through the second heat exchanger 204 is exchanged to a lower temperature.

여기서, 제1열교환기(200) 및 제2열교환기(204)를 연속적으로 통과하여 저온으로 된 천연가스(G5)는 제3팽창밸브(400)를 거쳐 제1분리기(500)를 통해 액화천연가스(LNG)와 질소가 풍부한 저온의 가스 스트림(G.S)으로 분리된다.Here, the natural gas (G5) that is passed through the first heat exchanger 200 and the second heat exchanger 204 to a low temperature is liquefied natural through the first separator (500) via the third expansion valve (400). The gas (LNG) and nitrogen-rich cold gas stream (GS) are separated.

한편, 제1열교환기(200)를 통과한 기상 혼합냉매는 줄-톰슨 효과에 의해 압력을 낮추고 냉각시키는 제1팽창밸브(202)를 거쳐 혼합기(208)로 공급되고, 제2열교환기(204)를 재차 통과한 액상 혼합냉매도 상기 혼합기(208)로 공급된다.Meanwhile, the gaseous mixed refrigerant passing through the first heat exchanger 200 is supplied to the mixer 208 through the first expansion valve 202 for lowering and cooling the pressure by the Joule-Thomson effect, and the second heat exchanger 204. The liquid mixed refrigerant having passed through) is again supplied to the mixer 208.

또 한편, 상기 기액분리기(308)를 통해 유량분리기(600)로 공급된 기상 혼합냉매 중, 제1열교환기(200)로 공급되지 않은 나머지 일부의 기상 혼합냉매는 제3열교환기(610)로 공급되는데, 이 제3열교환기(610)에는 상기 제1분리기(500)에서 분리된 저온의 가스 스트림(G.S)이 공급되어 상기 기상 혼합냉매와 열교환을 이룬다.On the other hand, of the gas phase mixed refrigerant supplied to the flow separator 600 through the gas-liquid separator 308, a part of the remaining gaseous mixed refrigerant not supplied to the first heat exchanger 200 is transferred to the third heat exchanger 610. The third heat exchanger 610 is supplied with a low temperature gas stream GS separated from the first separator 500 to exchange heat with the gaseous mixed refrigerant.

따라서, 제3열교환기(610)를 통과하는 기상 혼합냉매는 저온의 가스 스트림(G.S)과 열교환에 의해 저온으로 되고, 다시 제4팽창밸브(620)를 통과하여 줄-톰슨 효과에 의해 압력을 낮아지고 더욱 저온으로 된 상태에서 상기 혼합기(208)로 공급된다.Accordingly, the gaseous mixed refrigerant passing through the third heat exchanger 610 is cooled by heat exchange with the low temperature gas stream GS, and then passes through the fourth expansion valve 620 to reduce the pressure by the Joule-Thomson effect. Fed to the mixer 208 at a lower and lower temperature.

이와 같이, 혼합기(208)에는 제1열교환기(200)를 통과한 기상 혼합냉매와, 제2열교환기(204)를 통과한 액상 혼합냉매 및 제3열교환기(610)를 통과한 기상 혼합냉매가 공급되어 혼합된 후, 다시 제1열교환기(200)를 재차 통과하게 됨으로써, 상기 제1열교환기(200)를 통과하는 천연가스와 기상 및 액상 혼합냉매와 열교환을 이루게 된다.As described above, the mixer 208 has a gas phase mixed refrigerant passed through the first heat exchanger 200, a liquid phase mixed refrigerant passed through the second heat exchanger 204, and a gas phase mixed refrigerant passed through the third heat exchanger 610. After supplying and mixing, the gas is passed through the first heat exchanger 200 again to exchange heat with the natural gas and the gaseous and liquid mixed refrigerant passing through the first heat exchanger 200.

따라서, 제1열교환기(200)를 통과하여 혼합냉매 순환부(300)로 리턴되는 혼합냉매는 저온의 가스 스트림(G.S)과의 열교환에 의해 보다 효과적으로 온도가 낮아지는바, 제1열교환기(200)를 통과하는 천연가스를 적은 에너지로서 더욱 낮은 온도로 열교환시킬 수 있게 된다.Therefore, the mixed refrigerant returned to the mixed refrigerant circulation unit 300 through the first heat exchanger 200 is lowered more effectively by heat exchange with the low temperature gas stream GS, and thus the first heat exchanger ( Natural gas passing through 200 can be heat-exchanged to lower temperatures with less energy.

이와 같이, 제1열교환기(200)를 통과한 혼합냉매는 열교환에 의해 압력이 낮고 고온인 상태이므로, 다시 혼합냉매 순환부(300) 즉, 복수의 압축기(302)와 복수의 냉각기(304) 및 복수의 프로판 냉각기(306)를 통과하면서 저온고압으로 된 후 기액분리기(308)로 순환된다.As described above, since the mixed refrigerant passing through the first heat exchanger 200 has a low pressure and high temperature due to heat exchange, the mixed refrigerant circulating unit 300, that is, the plurality of compressors 302 and the plurality of coolers 304 are again. And a low temperature and high pressure while passing through the plurality of propane coolers 306 and then circulated to the gas-liquid separator 308.

이상에서와 같이, 제1분리기(500)에 의해 분리된 저온의 가스 스트림(G.S)을 이용하여 기상 혼합냉매와 열교환을 이루게 됨에 따라 아래의 표 2에서와 같이 전력 에너지 소비가 낮아짐에도 불구하고 천연가스(G1) 공급 대비 액화천연가스(LPG)의 전환율이 유지됨을 알 수 있었다.As described above, as the heat exchange with the gaseous mixed refrigerant using the low-temperature gas stream (GS) separated by the first separator 500, even though the power energy consumption is lowered as shown in Table 2 below, It was found that the conversion rate of LPG was maintained compared to the supply of gas G1.

즉, 제1열교환기(200) 및 제2열교환기(204)를 모두 통과하여 열교환된 천연가스(G5)의 온도를 조절하여 각각 액화천연가스 전환율과 전력 에너지 소비량을 각각 측정한 결과, 아래의 표 2 및 그래프 2와 같이 나타나게 되었다.That is, by adjusting the temperature of the natural gas (G5) heat exchanged through both the first heat exchanger (200) and the second heat exchanger (204) to measure the liquefied natural gas conversion rate and power energy consumption, respectively, It is shown as Table 2 and Graph 2.

이때, 기액분리기(308)에서 분리된 기상 혼합냉매 대비 유량분리기(600)에서 분리되어 제1열교환기(200)로 직접 유입되는 기상 혼합냉매의 양이 많아질수록, 또 제3열교환기(610)로 유입되는 기상 혼합냉매의 양이 적을수록, 열교환부를 통과한 천연가스(G5)의 온도가 더 낮아지고, 이에 따라 액화천연가스의 전환율이 높아지며, 전력 에너지 소비가 많아짐을 알 수 있게 되었다.At this time, as the amount of gaseous mixed refrigerant separated from the gas phase separator 308 and flowed into the first heat exchanger 200 directly into the first heat exchanger 200, the third heat exchanger 610 increases. As the amount of the gaseous mixed refrigerant flowing into the lower) decreases, the temperature of the natural gas (G5) passing through the heat exchanger is lowered, thereby increasing the conversion rate of the liquefied natural gas and increasing the power energy consumption.

G5
온도(˚C)
G5
Temperature (˚C)
LNG/G1
전환율(%)
LNG / G1
Conversion Rate (%)
Specific
work (kJ/kg)
Specific
work (kJ / kg)
G4
온도(˚C)
G4
Temperature (˚C)
유량분리기에서 제1열교환기로 유입되는 혼합냉매/기액분리기에서 유량분리기로 유입되는 혼합냉매
유량의 비
Mixed refrigerant flowing from the flow separator to the first heat exchanger / mixed refrigerant entering the flow separator from the gas-liquid separator
Ratio of flow rate
유량분리기에서 제3열교환기로 유입되는 혼합냉매/기액분리기에서 유량분리기로 유입되는 혼합냉매
유량의 비
Mixed refrigerant flowing from the flow separator to the third heat exchanger / mixed refrigerant entering the flow separator from the gas-liquid separator
Ratio of flow rate
-133.2-133.2 77.0577.05 669.16669.16 -115.69-115.69 0.79730.7973 0.20270.2027 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.81050.8105 0.18950.1895 -135.2-135.2 78.2878.28 671.97671.97 -117.58-117.58 0.82310.8231 0.17690.1769 -136.2-136.2 78.8978.89 673.34673.34 -118.54-118.54 0.83490.8349 0.16510.1651 -137.2-137.2 79.5079.50 674.70674.70 -119.53-119.53 0.84620.8462 0.15380.1538 -138.2-138.2 80.1180.11 676.04676.04 -120.53-120.53 0.85680.8568 0.14320.1432 -139.2-139.2 80.7280.72 677.36677.36 -121.58-121.58 0.86680.8668 0.13320.1332 -140.2-140.2 81.3381.33 678.67678.67 -122.66-122.66 0.87620.8762 0.12380.1238 -141.2-141.2 81.9381.93 679.96679.96 -123.81-123.81 0.88520.8852 0.11480.1148 -142.2-142.2 82.5382.53 681.23681.23 -125.05-125.05 0.89360.8936 0.10640.1064 -142.3-142.3 82.5982.59 681.36681.36 -125.18-125.18 0.90000.9000 0.10000.1000 -142.4-142.4 82.6582.65 681.49681.49 -125.31-125.31 0.90000.9000 0.10000.1000 -143.2-143.2 83.1383.13 682.78682.78 -126.42-126.42 0.92500.9250 0.07500.0750 -144.2-144.2 83.7383.73 713.19713.19 -125.92-125.92 0.96000.9600 0.04000.0400

위의 표 2 및 아래의 그래프 2에서와 같이, 제1열교환기(200)와 제2열교환기(204)를 모두 통과하여 열교환된 천연가스(G5)의 온도가 낮아질수록 액화천연가스로의 전환율이 높아지고, 에너지 소비량도 많아짐을 알게 되었다.As shown in Table 2 and the graph 2 below, the conversion rate to liquefied natural gas decreases as the temperature of the natural gas (G5) heat exchanged through both the first heat exchanger 200 and the second heat exchanger 204 decreases. Higher energy consumption.

그러나, 본 발명이 제 1실시 예를 종래의 천연가스 액화방법과 비교해 보았을 때, 제1열교환기(200)와 제2열교환기(204)를 모두 통과한 천연가스(G5)의 온도가 동일할 경우, 액화천연가스로의 전환율은 동일하였으나, 그 전력 에너지 소비가 현저하게 감소하였음을 알 수 있고, 특히 제1열교환기(200)만을 통과한 천연가스(G4)가 제2열교환기(204)를 통과하면서 열교환 효율이 더욱 향상됨을 알 수 있다.However, when the first embodiment of the present invention is compared with the conventional natural gas liquefaction method, the temperature of the natural gas G5 passing through both the first heat exchanger 200 and the second heat exchanger 204 may be the same. In this case, the conversion rate to the liquefied natural gas is the same, but it can be seen that the power energy consumption is significantly reduced, in particular, the natural gas (G4) passing only the first heat exchanger 200 is the second heat exchanger (204) It can be seen that the heat exchange efficiency is further improved while passing.

예컨대, 종래에는 제1열교환기 및 제2열교환기를 모두 통과한 천연가스의 온도가 -134.2℃인 경우, 제2열교환기를 통과하지 않은 천연가스의 온도는 114.53℃여야 함으로써, 에너지 소비(739.13kJ/kg)가 많은 반면, 본 발명의 제1실시 예에서는 제1열교환기(200) 및 제2열교환기(204)를 모두 통과한 천연가스(G5)의 온도가 -134.2℃인 경우, 제2열교환기(204)를 통과하지 않은 천연가스(G4)의 온도는 116.63℃이어도 됨으로써, 제1열교환기(200)를 통과하는 천연가스를 열교환시키기 위한 많은 에너지가 필요하지 않아 에너지 소비가 줄어드는 한편 제2열교환기(204)에서의 열교환 효율이 매우 향상되게 된다.For example, in the related art, when the temperature of natural gas passing through both the first heat exchanger and the second heat exchanger is −134.2 ° C., the temperature of the natural gas not passing through the second heat exchanger should be 114.53 ° C., thereby consuming energy (739.13 kJ / kg), while in the first embodiment of the present invention, when the temperature of the natural gas G5 passing through both the first heat exchanger 200 and the second heat exchanger 204 is -134.2 ° C., the second heat exchange The temperature of the natural gas G4 that does not pass through the group 204 may be 116.63 ° C., thus eliminating much energy for heat-exchanging the natural gas passing through the first heat exchanger 200, thereby reducing energy consumption while providing a second temperature. The heat exchange efficiency in the heat exchanger 204 is greatly improved.

[그래프 2][Graph 2]

Figure 112012041013714-pat00002

Figure 112012041013714-pat00002

한편, 열교환부를 통과한 천연가스(G5)의 온도를 고정하여 액화천연가스의 전환율을 고정한 상태에서, 기액분리기(308_로부터 분리된 기상 혼합냉매 대비 유량 분리기(600)에서 분리되어 제1열교환기(200)로 직접 유입되는 기상 혼합냉매의 양과, 또 제3열교환기(610)로 유입되는 기상 혼합냉매의 양을 아래의 표 3 및 그래프 3과 같이 조절한 결과, 89 : 11의 비율부터 열교환 효율이 저하되어 전력 에너지 소비가 늘어남을 알 수 있게 되었다.On the other hand, while fixing the conversion rate of the liquefied natural gas by fixing the temperature of the natural gas (G5) passing through the heat exchange unit, the first heat exchanger is separated from the gas phase separator refrigerant flow rate separator 600 separated from the gas-liquid separator (308_) As a result of adjusting the amount of the gaseous mixed refrigerant flowing directly into the 200 and the amount of the gaseous mixed refrigerant flowing into the third heat exchanger 610 as shown in Table 3 and Graph 3 below, the heat exchange rate is from 89:11. It has been found that the efficiency is reduced and the power energy consumption is increased.

G5
온도(˚C)
G5
Temperature (˚C)
LNG/G1
전환율(%)
LNG / G1
Conversion Rate (%)
Specific
work (kJ/kg)
Specific
work (kJ / kg)
G4
온도(˚C)
G4
Temperature (˚C)
유량분리기에서 제1열교환기로 유입되는 혼합냉매/기액분리기에서 유량분리기로 유입되는 혼합냉매
유량의 비
Mixed refrigerant flowing from the flow separator to the first heat exchanger / mixed refrigerant entering the flow separator from the gas-liquid separator
Ratio of flow rate
유량분리기에서 제3열교환기로 유입되는 혼합냉매/기액분리기에서 유량분리기로 유입되는 혼합냉매
유량의 비
Mixed refrigerant flowing from the flow separator to the third heat exchanger / mixed refrigerant entering the flow separator from the gas-liquid separator
Ratio of flow rate
-134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.69000.6900 0.310.31 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.70000.7000 0.30000.3000 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.71000.7100 0.29000.2900 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.72000.7200 0.28000.2800 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.73000.7300 0.27000.2700 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.74000.7400 0.26000.2600 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.75000.7500 0.25000.2500 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.76000.7600 0.24000.2400 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.77000.7700 0.23000.2300 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.78000.7800 0.22000.2200 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.79000.7900 0.21000.2100 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.80000.8000 0.20000.2000 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.81000.8100 0.19000.1900 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.81050.8105 0.18950.1895 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.82000.8200 0.18000.1800 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.83000.8300 0.17000.1700 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.84000.8400 0.16000.1600 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.85000.8500 0.15000.1500 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.86000.8600 0.14000.1400 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.87000.8700 0.13000.1300 -134.2-134.2 77.6777.67 670.57670.57 -116.63-116.63 0.88000.8800 0.12000.1200 -134.2-134.2 77.6777.67 672.65672.65 -116.57-116.57 0.89000.8900 0.11000.1100 -134.2-134.2 77.6777.67 678.20678.20 -116.40-116.40 0.90000.9000 0.10000.1000 -134.2-134.2 77.6777.67 683.84683.84 -116.23-116.23 0.91000.9100 0.09000.0900 -134.2-134.2 77.6777.67 689.58689.58 -116.05-116.05 0.92000.9200 0.08000.0800 -134.2-134.2 77.6777.67 695.41695.41 -115.87-115.87 0.93000.9300 0.07000.0700 -134.2-134.2 77.6777.67 701.35701.35 -115.69-115.69 0.94000.9400 0.06000.0600 -134.2-134.2 77.6777.67 707.39707.39 -115.51-115.51 0.95000.9500 0.05000.0500 -134.2-134.2 77.6777.67 713.53713.53 -115.32-115.32 0.96000.9600 0.04000.0400 -134.2-134.2 77.6777.67 719.78719.78 -115.13-115.13 0.97000.9700 0.03000.0300 -134.2-134.2 77.6777.67 726.14726.14 -114.93-114.93 0.98000.9800 0.02000.0200 -134.2-134.2 77.6777.67 732.61732.61 -114.73-114.73 0.99000.9900 0.01000.0100 -134.2-134.2 77.6777.67 739.20739.20 -114.53-114.53 1.00001.0000 0.00000.0000

[그래프 3][Graph 3]

Figure 112012041013714-pat00003

Figure 112012041013714-pat00003

또 한편, 기액분리기(308)로부터 분리된 기상 혼합냉매 대비 유량 분리기에서 분리되어 제1열교환기(200)로 직접 유입되는 기상 혼합냉매의 양과, 또 제3열교환기(610)로 유입되는 기상 혼합냉매의 양을 89 : 11의 비율로 고정하여 액화천연가스 액화공정을 수행한 결과, 아래의 표 4 및 그래프 4에서와 같이, 열교환부를 모두 통과한 천연가스(G5)의 온도가 낮아질수록 액환천연가스로의 전환율을 높아지게 되나, 열교환부를 모두 통과한 천연가스(G5)의 온도가 몇 도일 경우, 전력 에너지 소비가 가장 적게 소모됨을 확인할 수 있었다.On the other hand, the amount of gaseous mixed refrigerant which is separated in the flow rate separator compared to the gaseous mixed refrigerant separated from the gas-liquid separator 308 and flows directly into the first heat exchanger 200, and also the gaseous mixture introduced into the third heat exchanger 610. As a result of performing the liquefied natural gas liquefaction process by fixing the amount of the refrigerant at a ratio of 89: 11, as shown in Table 4 and Graph 4 below, the lower the temperature of the natural gas (G5) passing through all the heat exchange parts, the more natural The conversion to gas was increased, but when the temperature of the natural gas (G5) passed through all of the heat exchanger was a few degrees, it was confirmed that the power energy consumption was consumed the least.

G5
온도(˚C)
G5
Temperature (˚C)
LNG/G1
전환율(%)
LNG / G1
Conversion Rate (%)
Specific
work (kJ/kg)
Specific
work (kJ / kg)
G4
온도(˚C)
G4
Temperature (˚C)
유량분리기에서 제1열교환기로 유입되는 혼합냉매/기액분리기에서 유량분리기로 유입되는 혼합냉매
유량의 비
Mixed refrigerant flowing from the flow separator to the first heat exchanger / mixed refrigerant entering the flow separator from the gas-liquid separator
Ratio of flow rate
-133.2-133.2 77.0577.05 673.84673.84 -115.55-115.55 0.89000.8900 -134.2-134.2 77.6777.67 672.65672.65 -116.57-116.57 0.89000.8900 -134.7-134.7 77.9777.97 672.06672.06 -117.08-117.08 0.89000.8900 -134.8-134.8 78.0378.03 671.94671.94 -117.18-117.18 0.89000.8900 -134.9-134.9 78.1078.10 671.83671.83 -117.28-117.28 0.89000.8900 -135-135 78.1678.16 671.71671.71 -117.39-117.39 0.89000.8900 -135.1-135.1 78.2278.22 671.83671.83 -117.48-117.48 0.89000.8900 -135.2-135.2 78.2878.28 671.97671.97 -117.58-117.58 0.89000.8900 -135.3-135.3 78.3478.34 672.11672.11 -117.67-117.67 0.89000.8900 -135.4-135.4 78.4078.40 672.24672.24 -117.77-117.77 0.89000.8900 -135.7-135.7 78.5978.59 672.65672.65 -118.06-118.06 0.89000.8900 -136.2-136.2 78.8978.89 673.34673.34 -118.54-118.54 0.89000.8900 -137.2-137.2 79.5079.50 674.70674.70 -119.53-119.53 0.89000.8900 -138.2-138.2 80.1180.11 676.04676.04 -120.53-120.53 0.89000.8900 -139.2-139.2 80.7280.72 677.36677.36 -121.58-121.58 0.89000.8900 -140.2-140.2 81.3381.33 678.67678.67 -122.66-122.66 0.89000.8900 -141.2-141.2 81.9381.93 679.96679.96 -123.81-123.81 0.89000.8900

[그래프 4][Graph 4]

Figure 112012041013714-pat00004
Figure 112012041013714-pat00004

여기서, 열교환부를 모두 통과한 천연가스(G5)의 온도가 -135℃ 일 경우, 전력 에너지 소비가 가장 낮아짐을 알 수 있었는바, 전력 에너지 소비율 대비 액화천연가스의 전환율을 참고하여 운전조건을 결정지을 수 있을 것이다.Here, when the temperature of the natural gas (G5) passing through all of the heat exchanger is -135 ℃, it can be seen that the power energy consumption is the lowest. Could be.

즉, 열교환부를 모두 통과한 천연가스(G5)의 온도, 제1열교환기(200)만을 통과한 천연가스(G4)의 온도, 전환율 및 유량분리기(600)에서 제1열교환기(200)로 유입되는 혼합냉매의 비에 따라 최적의 전력 에너지 소비율로서 최적의 전환율이 이루어짐을 고려하여 액화공정을 수행함으로써, 종래의 액화공정 대비 에너지 소비효율을 향상시킬 수 있게 된다.
That is, the temperature of the natural gas (G5) passing through all of the heat exchange unit, the temperature, the conversion rate and the flow rate of the natural gas (G4) passing only the first heat exchanger 200 flows into the first heat exchanger (200). By performing the liquefaction process in consideration of the optimum conversion rate is achieved as the optimal power energy consumption rate according to the ratio of the mixed refrigerant, it is possible to improve the energy consumption efficiency compared to the conventional liquefaction process.

<제 2실시 예>Second Embodiment

도 3은 본 발명의 제 2실시 예에 따라 천연가스를 액화시키기 위한 공정도를 나타낸 것으로서, 앞선 제 1실시 예에 있어서와 동일한 부분에 대해서는 동일부호를 부여하여 설명하고 그 반복되는 설명은 생략하여 설명하기로 한다.3 shows a process diagram for liquefying natural gas according to a second embodiment of the present invention. The same parts as in the first embodiment will be described with the same reference numerals, and repeated descriptions thereof will be omitted. Let's do it.

본 발명의 제 2실시 예는 열교환부를 통과한 천연가스(G5)를 제1분리기(500)로서 액화천연가스(LNG)와 저온의 가스 스트림(G.S)으로 분리하고, 제1분리기(500)에 의해 분리된 액화천연가스(LNG)를 제5팽창밸브(502)에 의해 팽창시킨 후, 제2분리기(510)에 의해 다시 한 번 액화천연가스(LNG)와 저온의 가스 스트림(G.S)으로 재차 분리하는 공정을 더 포함한다.According to the second embodiment of the present invention, the natural gas G5 passing through the heat exchange unit is separated into a liquefied natural gas (LNG) and a low temperature gas stream (GS) as the first separator 500, and is separated into the first separator 500. The liquefied natural gas (LNG) separated by the inflation is expanded by the fifth expansion valve 502, and then again by the second separator 510 to the liquefied natural gas (LNG) and the low temperature gas stream (GS). It further comprises the step of separating.

여기서, 제1분리기(500)에 의해 분리된 저온의 가스 스트림(G.S)과, 제2분리기(510)에 의해 분리된 저온의 가스 스트림(G.S)은 가스 스트림 혼합기(520)에 의해 혼합된 상태로 제3열교환기(610)로 공급되도록 하여 유량분리기(600)에 의해 분리된 기상 혼합냉매와 열교환을 이루도록 하는 것이다.Here, the low temperature gas stream GS separated by the first separator 500 and the low temperature gas stream GS separated by the second separator 510 are mixed by the gas stream mixer 520. Furnace to be supplied to the third heat exchanger 610 to achieve heat exchange with the gas phase mixed refrigerant separated by the flow separator 600.

본 발명의 제 2실시 예는, 앞선 제 1실시 예와 상기한 바 외에는 모두 동일한 구성 및 공정에 의해 천연가스가 액화된다.In the second embodiment of the present invention, the natural gas is liquefied by the same configuration and process except for the first embodiment and the above.

이상에서와 같이, 제1분리기(500) 및 제2분리기(510)에 의해 분리된 각각의 저온의 가스 스트림(G.S)을 이용하여 기상 혼합냉매와 열교환을 이루게 됨에 따라 아래의 표 5 및 그래프 5에서와 이상에서와 같이, 전력 에너지 소비가 낮아짐에도 불구하고 천연가스(G1) 공급 대비 액화천연가스(LPG)의 전환율이 유지됨을 알 수 있었다.As described above, as the heat exchange with the gas phase mixed refrigerant using each of the low-temperature gas stream (GS) separated by the first separator 500 and the second separator 510, Table 5 and Graph 5 below. As described above and in the above, it was found that the conversion rate of LPG compared to natural gas (G1) supply was maintained despite the decrease in power energy consumption.

즉, 제1열교환기(200) 및 제2열교환기(204)를 모두 통과하여 열교환된 천연가스(G5)의 온도를 조절하여 각각 액화천연가스 전환율과 전력 에너지 소비량을 각각 측정한 결과, 아래의 표 5와 같이 나타나게 되었다.That is, by adjusting the temperature of the natural gas (G5) heat exchanged through both the first heat exchanger (200) and the second heat exchanger (204) to measure the liquefied natural gas conversion rate and power energy consumption, respectively, It appears as shown in Table 5.

이때, 기액분리기(308)에서 분리된 기상 혼합냉매 대비 유량 분리기(600)에서 분리되어 제1열교환기(200)로 직접 유입되는 기상 혼합냉매의 양이 많아질수록, 또 제3열교환기(610)로 유입되는 기상 혼합냉매의 양이 적을수록, 열교환부를 통과한 천연가스(G5)의 온도가 더 낮아지고, 이에 따라 액화천연가스의 전환율이 높아지며, 전력 에너지 소비가 많아짐을 알 수 있게 되었다.In this case, as the amount of gaseous mixed refrigerant separated from the gas phase separator 308 separated from the flow rate separator 600 and directly introduced into the first heat exchanger 200 increases, the third heat exchanger 610 As the amount of the gaseous mixed refrigerant flowing into the lower) decreases, the temperature of the natural gas (G5) passing through the heat exchanger is lowered, thereby increasing the conversion rate of the liquefied natural gas and increasing the power energy consumption.

G5
온도(˚C)
G5
Temperature (˚C)
LNG/G1
전환율(%)
LNG / G1
Conversion Rate (%)
Specific
work (kJ/kg)
Specific
work (kJ / kg)
G4
온도(˚C)
G4
Temperature (˚C)
유량분리기에서 제1열교환기로 유입되는 혼합냉매/기액분리기에서 유량분리기로 유입되는 혼합냉매
유량의 비
Mixed refrigerant flowing from the flow separator to the first heat exchanger / mixed refrigerant entering the flow separator from the gas-liquid separator
Ratio of flow rate
-133.2-133.2 77.6877.68 669.54669.54 -115.52-115.52 0.81470.8147 -134.2-134.2 78.2778.27 670.89670.89 -116.46-116.46 0.82630.8263 -135.2-135.2 78.8578.85 672.23672.23 -117.42-117.42 0.83740.8374 -136.2-136.2 79.4379.43 673.54673.54 -118.39-118.39 0.84780.8478 -137.2-137.2 80.0180.01 674.85674.85 -119.38-119.38 0.85780.8578 -138.2-138.2 80.5980.59 676.15676.15 -120.40-120.40 0.86720.8672 -139.2-139.2 81.1681.16 677.43677.43 -121.45-121.45 0.87600.8760 -140.2-140.2 81.7381.73 678.70678.70 -122.54-122.54 0.88440.8844 -141.2-141.2 82.3082.30 679.97679.97 -123.70-123.70 0.89230.8923 -142.2-142.2 82.8782.87 681.22681.22 -124.94-124.94 0.89980.8998 -143.2-143.2 83.4483.44 695.69695.69 -125.76-125.76 0.95000.9500

[그래프 5][Graph 5]

Figure 112012041013714-pat00005
Figure 112012041013714-pat00005

특히, 앞선 제 1실시 예와 비교해보면, 열교환부를 모두 통과한 천연가스(G5)의 온도가 동일할 경우, 에너지 소비율과, 제1열교환기(200)만을 통과한 천연가스(G4)의 온도 및 기액분리기(308)에서 분리된 기상 혼합냉매 대비 유량 분리기(600)에서 분리되어 제1열교환기(200)로 직접 유입되는 기상 혼합냉매 양의 비가 유사한 조건에서 액화천연가스로의 전환율이 더욱 향상됨을 알 수 있게 되었다.
In particular, when compared with the first embodiment, when the temperature of the natural gas (G5) passing through all the heat exchange unit is the same, the energy consumption rate, the temperature of the natural gas (G4) passing only the first heat exchanger 200 and It can be seen that the conversion rate to liquefied natural gas is further improved under a similar condition when the ratio of the amount of gaseous mixed refrigerant separated from the gas-liquid separator 308 separated from the flow rate separator 600 and directly introduced to the first heat exchanger 200 is similar. It became possible.

<제 3실시 예>&Lt; Third Embodiment >

도 4는 본 발명의 제 3실시 예에 따라 천연가스를 액화시키기 위한 공정도를 나타낸 것으로서, 앞선 제 1 및 제 2실시 예에 있어서와 동일한 부분에 대해서는 동일부호를 부여하여 설명하고 그 반복되는 설명은 생략하여 설명하기로 한다.4 shows a process diagram for liquefying natural gas according to a third embodiment of the present invention. The same parts as in the first and second embodiments will be described with the same reference numerals and the repeated description thereof will be described. The description will be omitted.

본 발명의 제 3실시 예는 열교환부를 통과한 천연가스를 제1분리기(500)로서 액화천연가스(LNG)와 저온의 가스 스트림(G.S)으로 분리하고, 제1분리기(500)에 의해 분리된 액화천연가스(LNG)를 제5팽창밸브(502)에 의해 팽창시킨 후, 제2분리기(510)에 의해 다시 한 번 액화천연가스(LNG)와 저온의 가스 스트림(G.S)으로 재차 분리하는 공정을 더 포함한다.According to the third embodiment of the present invention, the natural gas passing through the heat exchange unit is separated into liquefied natural gas (LNG) and a low temperature gas stream (GS) as the first separator 500, and separated by the first separator 500. After expanding the liquefied natural gas (LNG) by the fifth expansion valve 502, the second separator 510 again separates the liquefied natural gas (LNG) and the low temperature gas stream (GS) again It includes more.

여기서, 제1분리기(500)에 의해 분리된 저온의 가스 스트림(G.S)은 제3열교환기(610)로 공급되도록 하고, 제2분리기(510)에 의해 분리된 저온의 가스 스트림(G.S)은 상기 제3열교환기(610)와 나란하게 직렬로 설치된 제4열교환기(612)로 공급되도록 하여 유량 분리기(600)에 의해 분리된 기상 혼합냉매와 연속적으로 열교환을 이루도록 한다.Here, the low temperature gas stream GS separated by the first separator 500 is supplied to the third heat exchanger 610, and the low temperature gas stream GS separated by the second separator 510 is It is supplied to the fourth heat exchanger 612 installed in series with the third heat exchanger 610 so as to continuously heat exchange with the gas phase mixed refrigerant separated by the flow separator 600.

따라서, 유량 분리기(600)로부터 분리된 기상 혼합냉매는 제3열교환기(610)와 제4열교환기(612)를 순차적으로 통과하면서 2단계에 걸쳐 열교환이 이루어진 후, 혼합기(208)로 공급된다.Accordingly, the gaseous mixed refrigerant separated from the flow separator 600 is heat-exchanged in two stages while sequentially passing through the third heat exchanger 610 and the fourth heat exchanger 612, and then is supplied to the mixer 208. .

본 발명의 제 3실시 예는, 앞선 제 2실시 예와 상기한 바 외에는 모두 동일한 구성 및 공정에 의해 천연가스가 액화된다.In the third embodiment of the present invention, the natural gas is liquefied by the same configuration and process except for the second embodiment and the above.

이상에서와 같이, 제1분리기(500) 및 제2분리기(510)에 의해 분리된 각각의 저온의 가스 스트림(G.S)을 이용하여 기상 혼합냉매와 열교환을 이루게 됨에 따라 아래의 표 6 및 그래프 6에서와 같이 천연가스 공급 대비 액화천연가스의 전환율이 더욱 향상되고, 천연가스의 액화에 따른 전력 에너지가 감소하게 됨을 알 수 있었다.As described above, the heat exchange with the gaseous mixed refrigerant using each of the low-temperature gas stream (GS) separated by the first separator 500 and the second separator 510 as shown in Table 6 and Graph 6 below. As can be seen that the conversion rate of liquefied natural gas compared to natural gas supply is further improved, the power energy due to the liquefaction of natural gas is reduced.

즉, 제1열교환기(200) 및 제2열교환기(204)를 모두 통과하여 열교환된 천연가스(G5)의 온도를 조절하여 각각 액화천연가스 전환율과 전력 에너지 소비량을 각각 측정한 결과, 아래의 표 6과 같이 나타나게 되었다.That is, by adjusting the temperature of the natural gas (G5) heat exchanged through both the first heat exchanger (200) and the second heat exchanger (204) to measure the liquefied natural gas conversion rate and power energy consumption, respectively, It is shown in Table 6.

이때, 기액분리기(308)에서 분리된 기상 혼합냉매 대비 유량 분리기(600)에서 분리되어 제1열교환기(200)로 직접 유입되는 기상 혼합냉매의 양이 많아질수록, 또 제3열교환기(610) 및 제4열교환기(612)로 유입되는 기상 혼합냉매의 양이 적을수록, 열교환부를 통과한 천연가스(G5)의 온도가 더 낮아지고, 이에 따라 액화천연가스의 전환율이 높아지며, 전력 에너지 소비가 많아짐을 알 수 있게 되었다.In this case, as the amount of gaseous mixed refrigerant separated from the gas phase separator 308 separated from the flow rate separator 600 and directly introduced into the first heat exchanger 200 increases, the third heat exchanger 610 And the amount of the gaseous mixed refrigerant flowing into the fourth heat exchanger 612 is lower, the temperature of the natural gas (G5) passing through the heat exchanger is lower, and thus the conversion rate of the liquefied natural gas is higher, and the power energy consumption is increased. You can see that more.

G5
온도(˚C)
G5
Temperature (˚C)
LNG/G1
전환율(%)
LNG / G1
Conversion Rate (%)
Specific
work (kJ/kg)
Specific
work (kJ / kg)
G4
온도(˚C)
G4
Temperature (˚C)
유량분리기에서 제1열교환기로 유입되는 혼합냉매/기액분리기에서 유량분리기로 유입되는 혼합냉매
유량의 비
Mixed refrigerant flowing from the flow separator to the first heat exchanger / mixed refrigerant entering the flow separator from the gas-liquid separator
Ratio of flow rate
-133.2-133.2 77.6877.68 680.34680.34 -115.19-115.19 0.84650.8465 -134.2-134.2 78.2778.27 681.58681.58 -116.13-116.13 0.85690.8569 -135.2-135.2 78.8578.85 682.77682.77 -117.09-117.09 0.86660.8666 -136.2-136.2 79.4379.43 683.88683.88 -118.06-118.06 0.87580.8758 -137.2-137.2 80.0180.01 685.04685.04 -119.06-119.06 0.88430.8843 -138.2-138.2 80.5980.59 686.10686.10 -120.07-120.07 0.89220.8922 -139.2-139.2 81.1681.16 687.04687.04 -121.13-121.13 0.89950.8995 -140.2-140.2 81.7381.73 687.95687.95 -122.22-122.22 0.90630.9063 -141.2-141.2 82.3082.30 688.76688.76 -123.38-123.38 0.91250.9125 -142.2-142.2 82.8782.87 689.50689.50 -124.62-124.62 0.91830.9183 -142.3-142.3 82.9382.93 689.57689.57 -124.75-124.75 0.91880.9188 -142.4-142.4 82.9982.99 689.64689.64 -124.88-124.88 0.91940.9194 -142.5-142.5 83.0483.04 689.70689.70 -125.01-125.01 0.91990.9199 -142.6-142.6 83.1083.10 690.28690.28 -125.13-125.13 0.92500.9250 -143.2-143.2 83.4483.44 695.14695.14 -125.78-125.78 0.95000.9500

[그래프 6][Graph 6]

Figure 112012041013714-pat00006
Figure 112012041013714-pat00006

특히, 앞선 제 1실시 예와 비교해보면, 열교환부를 모두 통과한 천연가스(G5)의 온도가 동일할 경우, 에너지 소비율과, 제1열교환기(200)만을 통과한 천연가스(G4)의 온도 및 기액분리기(308)에서 분리된 기상 혼합냉매 대비 유량 분리기(600)에서 분리되어 제1열교환기(200)로 직접 유입되는 기상 혼합냉매 양의 비가 유사한 조건에서 액화천연가스로의 전환율이 더욱 향상됨을 알 수 있게 되었다.
In particular, when compared with the first embodiment, when the temperature of the natural gas (G5) passing through all the heat exchange unit is the same, the energy consumption rate, the temperature of the natural gas (G4) passing only the first heat exchanger 200 and It can be seen that the conversion rate to liquefied natural gas is further improved under a similar condition when the ratio of the amount of gaseous mixed refrigerant separated from the gas-liquid separator 308 separated from the flow rate separator 600 and directly introduced to the first heat exchanger 200 is similar. It became possible.

<제 4실시 예><Fourth Embodiment>

도 5는 본 발명의 제 4실시 예에 따라 천연가스를 액화시키기 위한 공정도를 나타낸 것으로서, 제 1실시 예 내지 제 3실시 예에 있어서와 동일한 부분에 대해서는 동일부호를 부여하여 설명하고 그 반복되는 설명은 생략하여 설명하기로 한다.FIG. 5 shows a process chart for liquefying natural gas according to a fourth embodiment of the present invention. The same parts as in the first to third embodiments will be described with the same reference numerals, and repeated description thereof will be given. Will be omitted.

본 발명의 제 4실시 예는 열교환부를 통과한 천연가스(G5)를 제1분리기(500)로서 액화천연가스(LNG)와 저온의 가스 스트림(G.S)으로 분리하고, 제1분리기(500)에 의해 분리된 액화천연가스(LNG)를 제5팽창밸브(502)에 의해 팽창시킨 후, 제2분리기(510)에 의해 다시 한 번 액화천연가스(LNG)와 저온의 가스 스트림(G.S)으로 재차 분리하는 공정을 더 포함한다.According to the fourth embodiment of the present invention, the natural gas G5 passing through the heat exchange unit is separated into liquefied natural gas (LNG) and a low temperature gas stream (GS) as the first separator 500, and the first separator 500 The liquefied natural gas (LNG) separated by the inflation is expanded by the fifth expansion valve 502, and then again by the second separator 510 to the liquefied natural gas (LNG) and the low temperature gas stream (GS). It further comprises the step of separating.

여기서, 제1분리기(500)에 의해 분리된 저온의 가스 스트림(G.S)은 제3열교환기(610)로 공급되도록 하고, 제2분리기(510)에 의해 분리된 저온의 가스 스트림(G.S)은 상기 제3열교환기(610)와 나란하게 직렬로 설치된 제4열교환기(612)로 공급되도록 하여 유량 분리기(600)에 의해 분리된 기상 혼합냉매와 연속적으로 열교환을 이루도록 한다.Here, the low temperature gas stream GS separated by the first separator 500 is supplied to the third heat exchanger 610, and the low temperature gas stream GS separated by the second separator 510 is It is supplied to the fourth heat exchanger 612 installed in series with the third heat exchanger 610 so as to continuously heat exchange with the gas phase mixed refrigerant separated by the flow separator 600.

따라서, 유량 분리기(600)로부터 분리된 기상 혼합냉매는 제3열교환기(610)와 제4열교환기(612)를 순차적으로 통과하면서 2단계에 걸쳐 열교환이 이루어진 후, 혼합기(208))로 공급된다.Accordingly, the gaseous mixed refrigerant separated from the flow separator 600 is sequentially heat-exchanged in two stages while sequentially passing through the third heat exchanger 610 and the fourth heat exchanger 612, and then supplied to the mixer 208. do.

이때, 상기 제4열교환기(612)를 통과하면서 기상 혼합냉매와 열교환을 이룬 저온의 가스 스트림은 다시 전처리 공정부(100)를 통과한 천연가스(G2)와 열교환이 이루어지도록 한다.At this time, the low-temperature gas stream that is heat-exchanged with the gaseous mixed refrigerant while passing through the fourth heat exchanger 612 may be heat-exchanged with the natural gas G2 passed through the pretreatment process unit 100 again.

즉, 제4열교환기(612)를 통과한 저온의 가스 스트림은 제5열교환기(120)를 통과되도록 하고, 이 제5열교환기(120)에는 전처리 공정부(100)를 통과하여 정제된 천연가스(G2)가 통과하면서 상기 저온의 가스 스트림과 열교환이 이루어진 후 열교환부로 공급되도록 한다.That is, the low temperature gas stream passing through the fourth heat exchanger 612 passes through the fifth heat exchanger 120, and the fifth heat exchanger 120 passes through the pretreatment process unit 100 to purify the natural gas. As the gas G2 passes through and exchanges heat with the low temperature gas stream, the gas G2 is supplied to the heat exchange unit.

여기서, 전처리 공정부(100)를 통과한 천연가스(G2)는, 도 5에 도시된 바와 같이, 천연가스 분리기(110)에 의해 분리되어 일부는 제5열교환기(120)를 통과하도록 하고, 나머지 일부는 제5열교환기(120)를 통과하지 않도록 한 후, 제5열교환기(120)를 통과한 천연가스와 통과하지 않은 천연가스와 다시 천연가스 혼합기(130)에서 혼합시킨 다음 열교환부로 공급되도록 할 수 있다.Here, the natural gas G2 passing through the pretreatment process unit 100 is separated by the natural gas separator 110, as shown in FIG. 5, so that a part of the natural gas G2 passes through the fifth heat exchanger 120. The remaining part is not passed through the fifth heat exchanger 120, and then mixed with natural gas not passed through the fifth heat exchanger 120 and natural gas not passed through the natural gas mixer 130 and then supplied to the heat exchange unit. You can do that.

물론, 상기 천연가스 분리기(110)와 천연가스 혼합기(130)를 배제하여, 전처리 공정부(100)를 통과한 천연가스(G2)를 모두 제5열교환기(120)를 통과시키도록 하여 저온의 가스 스트림에 의해 열교환이 이루어지도록 할 수도 있다.Of course, by removing the natural gas separator 110 and the natural gas mixer 130, all the natural gas (G2) passing through the pretreatment process unit 100 passes through the fifth heat exchanger (120). Heat exchange may also be effected by the gas stream.

본 발명의 제 4시 예는, 앞선 제 3실시 예와 상기한 바 외에는 모두 동일한 구성 및 공정에 의해 천연가스가 액화된다.In the fourth embodiment of the present invention, all of the natural gas is liquefied by the same configuration and process except for the third embodiment and the foregoing.

이상에서와 같이, 제1분리기(500) 및 제2분리기(510)에 의해 분리된 각각의 저온의 가스 스트림(G.S)을 이용하여 기상 혼합냉매와 열교환을 이루고, 기상의 혼합냉매와 열교환을 이룬 가스 스트림을 이용하여 전처리 공정부(100)를 통과한 천연가스(G2)와 다시 한 번 열교환이 이루어지게 됨에 따라 아래의 표 7 및 그래프 7에서와 같이 천연가스 공급 대비 액화천연가스의 전환율이 더욱 향상되고, 천연가스의 액화에 따른 전력 에너지가 감소하게 됨을 알 수 있었다.As described above, the low-temperature gas stream GS separated by the first separator 500 and the second separator 510 exchanges heat with the gaseous mixed refrigerant, and heat-exchanges with the mixed gaseous refrigerant. As the heat exchange is performed once again with the natural gas (G2) passing through the pretreatment process unit 100 using the gas stream, the conversion rate of the liquefied natural gas compared to the natural gas supply is further increased as shown in Table 7 and Graph 7 below. It can be seen that the power energy due to the liquefaction of natural gas is reduced.

즉, 제1열교환기(200) 및 제2열교환기(204)를 모두 통과하여 열교환된 천연가스(G5)의 온도를 조절하여 각각 액화천연가스 전환율과 전력 에너지 소비량을 각각 측정한 결과, 아래의 표 7과 같이 나타나게 되었다.That is, by adjusting the temperature of the natural gas (G5) heat exchanged through both the first heat exchanger (200) and the second heat exchanger (204) to measure the liquefied natural gas conversion rate and power energy consumption, respectively, It appears as shown in Table 7.

이때, 기액분리기(308)에서 분리된 기상 혼합냉매 대비 유량 분리기(600)에서 분리되어 제1열교환기(200)로 직접 유입되는 기상 혼합냉매의 양이 많아질수록, 또 전처리 공정부(100)를 통과한 천연가스 중, 제5열교환기(120)를 통과하는 천연가스의 양이 많아질수록 열교환부를 통과한 천연가스(G5)의 온도가 더 낮아지고, 이에 따라 액화천연가스의 전환율이 높아지며, 전력 에너지 소비가 많아짐을 알 수 있게 되었다.At this time, the amount of gaseous mixed refrigerant separated from the gas phase separator 308 separated from the gas-liquid separator 308 and flowed directly into the first heat exchanger 200 is increased, and the pretreatment process unit 100 is increased. As the amount of natural gas passing through the fifth heat exchanger 120 increases, the temperature of the natural gas G5 passing through the heat exchanger is lowered, and thus the conversion rate of liquefied natural gas is increased. As a result, power consumption has increased.

G5
온도(˚C)
G5
Temperature (˚C)
LNG/G1
전환율(%)
LNG / G1
Conversion Rate (%)
Specific
work (kJ/kg)
Specific
work (kJ / kg)
G4
온도(˚C)
G4
Temperature (˚C)
유량분리기에서 제1열교환기로 유입되는 혼합냉매/기액분리기에서 유량분리기로 유입되는 혼합냉매
유량의 비
Mixed refrigerant flowing from the flow separator to the first heat exchanger / mixed refrigerant entering the flow separator from the gas-liquid separator
Ratio of flow rate
천연가스분리기에서 제5열교환기로 유입되는 천연가스/전처리공정부에서 천연가스분리기로 유입되는 천연가스
유량의 비
Natural gas introduced from natural gas separator to the fifth heat exchanger
Ratio of flow rate
-133.2-133.2 77.6877.68 670.05670.05 -115.50-115.50 0.84590.8459 0.18030.1803 -134.2-134.2 78.2778.27 671.37671.37 -116.45-116.45 0.85640.8564 0.18030.1803 -135.2-135.2 78.8578.85 672.66672.66 -117.41-117.41 0.86620.8662 0.18030.1803 -136.2-136.2 79.4379.43 673.95673.95 -118.38-118.38 0.87540.8754 0.18030.1803 -137.2-137.2 80.0180.01 675.22675.22 -119.37-119.37 0.88390.8839 0.18030.1803 -138.2-138.2 80.5980.59 676.48676.48 -120.39-120.39 0.89190.8919 0.18040.1804 -139.2-139.2 81.1681.16 677.73677.73 -121.44-121.44 0.89930.8993 0.18070.1807 -140.2-140.2 81.7381.73 678.98678.98 -122.53-122.53 0.90610.9061 0.18250.1825 -141.2-141.2 82.3082.30 680.21680.21 -123.69-123.69 0.91230.9123 0.18320.1832 -142.2-142.2 82.8782.87 681.43681.43 -124.93-124.93 0.91810.9181 0.20000.2000 -143.2-143.2 83.4483.44 684.96684.96 -126.08-126.08 0.95000.9500 0.20000.2000

[그래프 7][Graph 7]

Figure 112012041013714-pat00007
Figure 112012041013714-pat00007

특히, 앞선 제 1실시 예와 비교해보면, 열교환부를 모두 통과한 천연가스(G5)의 온도가 동일할 경우, 에너지 소비율과, 제1열교환기(200)만을 통과한 천연가스(G4)의 온도 및 기액분리기(308)에서 분리된 기상 혼합냉매 대비 유량 분리기(600)에서 분리되어 제1열교환기(200)로 직접 유입되는 기상 혼합냉매 양의 비가 유사한 조건에서 액화천연가스로의 전환율이 더욱 향상됨을 알 수 있게 되었다.
In particular, when compared with the first embodiment, when the temperature of the natural gas (G5) passing through all the heat exchange unit is the same, the energy consumption rate, the temperature of the natural gas (G4) passing only the first heat exchanger 200 and It can be seen that the conversion rate to liquefied natural gas is further improved under a similar condition when the ratio of the amount of gaseous mixed refrigerant separated from the gas-liquid separator 308 separated from the flow rate separator 600 and directly introduced to the first heat exchanger 200 is similar. It became possible.

이상에서와 같은 본 발명의 실시 예에서 설명한 기술적 사상들은 각각 독립적으로 실시될 수 있으며, 서로 조합되어 실시될 수도 있다. 또한, 본 발명은 도면 및 발명의 상세한 설명에 기재된 실시 예를 통하여 설명되었으나 이는 예시적인 것에 불과하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시 예가 가능하다. 따라서, 본 발명의 기술적 보호범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.
Technical ideas described in the embodiments of the present invention as described above may be implemented independently, or may be implemented in combination with each other. In addition, the present invention has been described through the embodiments described in the drawings and the detailed description of the invention, which is merely exemplary, and those skilled in the art to which the present invention pertains have various modifications and equivalent other embodiments. It is possible. Accordingly, the technical scope of the present invention should be determined by the appended claims.

100 : 전처리 공정부 108 : 스크러버
110 : 천연가스 분리기 120 : 제5열교환기
130 : 천연가스 혼합기 200 : 제1열교환기
202 : 제1팽창밸브 204 : 제2열교환기
206 : 제2팽창밸브 208 : 혼합기
300 : 혼합냉매 순환부 302 : 압축기
304 : 냉각기 306 : 프로판 냉각기
308 : 기액분리기 400 : 제3팽창밸브
500 : 제1분리기 502 : 제5팽창밸브
510 : 제2분리기 600 : 유량분리기
610 : 제3열교한기 612 : 제4열교환기
620 : 제4팽창밸브
100: pretreatment step 108: scrubber
110: natural gas separator 120: fifth heat exchanger
130: natural gas mixer 200: the first heat exchanger
202: first expansion valve 204: second heat exchanger
206: second expansion valve 208: mixer
300: mixed refrigerant circulation unit 302: compressor
304: cooler 306: propane cooler
308: gas-liquid separator 400: third expansion valve
500: first separator 502: fifth expansion valve
510: second separator 600: flow separator
610: third heat bridge cooler 612: fourth heat exchanger
620: fourth expansion valve

Claims (6)

삭제delete 공급되는 천연가스 중, 불순물을 제거하고 프로판과의 열교환에 의해 설정온도로 냉각시키는 전처리 공정부와, 상기 전처리 공정부를 통과한 천연가스를 혼합냉매와의 열교환에 의해 냉각시켜 액화가 이루어지도록 하는 열교환부와, 상기 열교환부로 혼합냉매를 순환시킴에 따라 상기 열교환부를 통과하는 천연가스가 액화되도록 하는 혼합냉매 순환부를 포함하며,
상기 열교환부를 통과하여 저온으로 열교환된 천연가스를 제1분리기로서 액화천연가스와 저온의 가스 스트림으로 분리한 후, 상기 저온의 가스 스트림을 상기 열교환부로 재순환시킴에 따라 상기 열교환부를 순환하는 혼합냉매를 저온으로 열교환시킴으로써, 에너지를 저감하도록 하는 것을 특징으로 하는 혼합냉매와 열교환에 의하여 에너지를 저감하도록 하는 것으로서,
상기 열교환부는, 제1열교환기와 제2열교환기 및 제3열교환기로 이루어지되,
(A) 상기 혼합냉매 순환부로부터 액상 혼합냉매가 상기 제1열교환기 및 제2열교환기를 통과하면서 천연가스와 열교환을 이루고, 상기 제2열교환기를 다시 통과하면서 천연가스와 재차 열교환을 이룬 후, 혼합냉매 혼합기로 공급되는 단계;
(B) 상기 혼합냉매 순환부로부터 기상 혼합냉매가 유량 분리기를 거쳐 일부는 상기 제1열교환기 및 제2열교환기를 통과하면서 천연가스와 열교환을 이루고, 상기 혼합냉매 혼합기로 공급되는 단계;
(C) 상기 유량 분리기를 거친 나머지 일부의 기상 혼합냉매는 제3열교환기로 유입되고, 상기 저온의 가스 스트림은 상기 제3열교환기로 공급되어, 상기 기상 혼합냉매와 열교환을 이루는 단계;
(D) 상기 (C) 단계에서 열교환된 기상 혼합냉매는 상기 혼합냉매 혼합기로 공급되는 단계 및;
(E) 상기 혼합냉매 혼합기로 유입된 상기 (A) 단계, (B)단계 및 (D) 단계의 각 혼합냉매가 혼합되어 상기 제1열교환기로 재차 순환되는 단계를 포함하는 것을 특징으로 하는 혼합냉매와 열교환에 의하여 에너지를 저감시키기 위한 천연가스 액화방법.
Heat pretreatment process unit for removing impurities and cooling to a set temperature by heat exchange with propane and natural gas passed through the pretreatment process unit by heat exchange with a mixed refrigerant to liquefy. And a mixed refrigerant circulation unit configured to liquefy natural gas passing through the heat exchange unit as the mixed refrigerant is circulated to the heat exchange unit.
After separating the natural gas heat-exchanged at low temperature through the heat exchanger into a liquefied natural gas and a low-temperature gas stream as a first separator, the mixed refrigerant circulating the heat exchanger as the low-temperature gas stream is recycled to the heat exchanger. By reducing the energy by heat exchange at a low temperature, the mixed refrigerant and heat exchange, characterized in that to reduce the energy,
The heat exchange unit is composed of a first heat exchanger, a second heat exchanger, and a third heat exchanger,
(A) the liquid mixed refrigerant exchanges heat with the natural gas while passing through the first heat exchanger and the second heat exchanger from the mixed refrigerant circulating unit, and again exchanges heat with the natural gas while passing through the second heat exchanger again, and then mix Fed to a refrigerant mixer;
(B) the gaseous mixed refrigerant from the mixed refrigerant circulating unit through the flow separator and a part of the mixed gas through the first heat exchanger and the second heat exchanger to exchange heat with the natural gas, and is supplied to the mixed refrigerant mixer;
(C) a portion of the remaining gaseous mixed refrigerant passing through the flow separator is introduced into a third heat exchanger, and the cold gas stream is supplied to the third heat exchanger to exchange heat with the gaseous mixed refrigerant;
(D) the gaseous mixed refrigerant exchanged in the step (C) is supplied to the mixed refrigerant mixer;
(E) a mixed refrigerant comprising the steps of (A), (B) and (D) mixed refrigerant is introduced into the mixed refrigerant mixer and circulated again to the first heat exchanger Natural gas liquefaction method for reducing energy by heat exchange with.
제 2항에 있어서,
상기 (C) 단계는,
(C-1) 상기 제1분리기에서 분리된 액화천연가스를 제2분리기에 의해 재차 액화천연가스와 저온의 가스 스트림으로 분리하는 단계;
(C-2) 상기 제1분리기에서 분리된 저온의 가스 스트림과, 상기 제2분리기에서 분리된 저온의 가스 스트림을 가스 혼합기에 의해 혼합하는 단계;
(C-3) 상기 가스 혼합기에 의해 혼합된 가스 스트림을 상기 제3열교환기로 공급하는 단계를 더 포함하는 것을 특징으로 하는 혼합냉매와 열교환에 의하여 에너지를 저감시키기 위한 천연가스 액화방법.

The method of claim 2,
Step (C) is
(C-1) separating the liquefied natural gas separated in the first separator into a liquefied natural gas and a low temperature gas stream again by a second separator;
(C-2) mixing the low temperature gas stream separated in the first separator and the low temperature gas stream separated in the second separator by a gas mixer;
(C-3) A method of liquefying natural gas for reducing energy by heat exchange with a mixed refrigerant, further comprising feeding the gas stream mixed by the gas mixer to the third heat exchanger.

제 2항에 있어서,
상기 (C) 단계에서,
상기 유량 분리기를 거친 나머지 일부의 기상 혼합냉매는 제3열교환기와, 상기 제3열교환기와 나란하게 더 설치되는 제4열교환기로 연속해서 유입되고,
상기 제1분리기에서 분리된 액화천연가스를 제2분리기에 의해 재차 액화천연가스와 저온의 가스 스트림으로 분리하되,
상기 제1분리기에서 분리된 저온의 가스 스트림은 상기 제3열교환기로 공급되고, 상기 제2분리기에서 분리된 저온의 가스 스트림을 상기 제4열교환기로 공급되도록 하여, 상기 제3열교환기 및 제4열교환기에서 각각 상기 기상 혼합냉매와 열교환이 이루어지도록 하는 것을 특징으로 하는 혼합냉매와 열교환에 의하여 에너지를 저감시키기 위한 천연가스 액화방법.
The method of claim 2,
In the step (C),
The remaining gaseous mixed refrigerant passing through the flow separator is continuously introduced into a third heat exchanger and a fourth heat exchanger further installed in parallel with the third heat exchanger,
The liquefied natural gas separated in the first separator is separated into the liquefied natural gas and the low temperature gas stream by the second separator,
The low temperature gas stream separated in the first separator is supplied to the third heat exchanger, and the low temperature gas stream separated in the second separator is supplied to the fourth heat exchanger, thereby providing the third heat exchanger and the fourth heat exchanger. Natural gas liquefaction method for reducing energy by the mixed refrigerant and heat exchange, characterized in that the heat exchange with the gaseous mixed refrigerant in the air.
제 2항 내지 제 4항 중, 어느 하나의 항에 있어서,
상기 열교환부로 재순환되어 상기 열교환부를 순환하는 혼합냉매를 저온으로 열교환시킨 저온의 가스 스트림은 다시 상기 전처리 공정부로 공급되어, 상기 열교환부로 공급되는 천연가스와 열교환을 이루는 것을 특징으로 하는 혼합냉매와 열교환에 의하여 에너지를 저감시키기 위한 천연가스 액화방법.
The method according to any one of claims 2 to 4,
The low temperature gas stream, which is recycled to the heat exchange part and heat-exchanged to the low temperature of the mixed refrigerant circulating the heat exchange part, is supplied to the pretreatment process part again to exchange heat with the natural gas supplied to the heat exchange part. Natural gas liquefaction method for reducing energy by
제 5항에 있어서,
상기 전처리 공정부를 통과한 천연가스 중, 일부는 상기 저온의 가스 스트림과 열교환을 이루어 상기 열교환부로 공급되고, 나머지 일부는 상기 열교환부로 직접 공급되도록 하는 것을 특징으로 하는 혼합냉매와 열교환에 의하여 에너지를 저감시키기 위한 천연가스 액화방법.
6. The method of claim 5,
Among the natural gas that has passed through the pretreatment process unit, some of the heat is exchanged with the low temperature gas stream to be supplied to the heat exchange unit, and the other part is to be directly supplied to the heat exchange unit to reduce energy by the mixed refrigerant and heat exchange. Natural gas liquefaction method.
KR1020120054389A 2012-05-22 2012-05-22 Liquefaction method of natural gas for energy reduction KR101220207B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120054389A KR101220207B1 (en) 2012-05-22 2012-05-22 Liquefaction method of natural gas for energy reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120054389A KR101220207B1 (en) 2012-05-22 2012-05-22 Liquefaction method of natural gas for energy reduction

Publications (1)

Publication Number Publication Date
KR101220207B1 true KR101220207B1 (en) 2013-01-09

Family

ID=47841488

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120054389A KR101220207B1 (en) 2012-05-22 2012-05-22 Liquefaction method of natural gas for energy reduction

Country Status (1)

Country Link
KR (1) KR101220207B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115370467A (en) * 2022-08-02 2022-11-22 上海海事大学 Carbon reduction system for LNG power ship and EEDI calculation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504499A (en) * 2006-09-22 2010-02-12 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Methods for liquefying hydrocarbon streams

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504499A (en) * 2006-09-22 2010-02-12 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Methods for liquefying hydrocarbon streams

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115370467A (en) * 2022-08-02 2022-11-22 上海海事大学 Carbon reduction system for LNG power ship and EEDI calculation method
CN115370467B (en) * 2022-08-02 2024-04-19 上海海事大学 Carbon reduction system for LNG power ship and EEDI calculation method

Similar Documents

Publication Publication Date Title
KR101677306B1 (en) Method for producing a stream of subcooled liquefied natural gas using a natural gas feedstream, and associated facility
US6751985B2 (en) Process for producing a pressurized liquefied gas product by cooling and expansion of a gas stream in the supercritical state
RU2253809C2 (en) Mode of liquefaction of natural gas by way of cooling at the expense of expansion
US10816262B2 (en) Production equipment and production method of liquefied hydrogen and liquefied natural gas
EA006724B1 (en) Process for producing liquid natural gas (variants)
KR101153080B1 (en) Carbon dioxide liquefaction process
CN102216711A (en) Method for producing liquid and gaseous nitrogen streams, a helium-rich gaseous stream, and a denitrogened hydrocarbon stream, and associated plant
RU2009106092A (en) METHOD FOR LIQUIDING THE FLOW OF HYDROCARBONS AND A DEVICE FOR ITS IMPLEMENTATION
US20100071409A1 (en) Method and apparatus for liquefying a hydrocarbon stream
CN105823304A (en) Method and device for double-stage expansion refrigeration high methane gas liquefaction
JP2016128738A (en) Gas liquefier and gas liquefying method
AU2022256150A1 (en) Fluid cooling apparatus
RU2509967C2 (en) Liquefaction method of natural gas with preliminary cooling of cooling mixture
CN103822438B (en) A kind of shallow cold process for recovering light hydrocarbon method
US9841229B2 (en) Process for cooling a hydrocarbon-rich fraction
Bian et al. Analysis and efficiency enhancement for energy-saving re-liquefaction processes of boil-off gas without external refrigeration cycle on LNG carriers
Naquash et al. Hydrogen enrichment by CO2 anti-sublimation integrated with triple mixed refrigerant-based liquid hydrogen production process
RU2571697C2 (en) Natural gas liquefaction method by continuous change in composition of at least one cooling mixture
RU2018106658A (en) METHOD FOR PRODUCING LIQUEFIED NATURAL GAS
US20100154469A1 (en) Process and system for liquefaction of hydrocarbon-rich gas stream utilizing three refrigeration cycles
CN216620451U (en) LNG reforming hydrogen production and LNG cold energy liquefied hydrogen integrated system
JP2021169872A (en) Liquefied hydrogen production facility
KR101278587B1 (en) Liquefaction method of natural gas for energy reduction
KR101220208B1 (en) Liquefaction method of natural gas for energy reduction
KR100991859B1 (en) A fluid cooling system and a method for cooling a fluid using the same

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160105

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170104

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180103

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200103

Year of fee payment: 8