KR101214399B1 - A Ion exchange membrane by pore-filled of porous support membrane and a method of fabricating the same - Google Patents
A Ion exchange membrane by pore-filled of porous support membrane and a method of fabricating the same Download PDFInfo
- Publication number
- KR101214399B1 KR101214399B1 KR1020100080212A KR20100080212A KR101214399B1 KR 101214399 B1 KR101214399 B1 KR 101214399B1 KR 1020100080212 A KR1020100080212 A KR 1020100080212A KR 20100080212 A KR20100080212 A KR 20100080212A KR 101214399 B1 KR101214399 B1 KR 101214399B1
- Authority
- KR
- South Korea
- Prior art keywords
- ion exchange
- copolymer
- membrane
- dimethyl
- exchange membrane
- Prior art date
Links
- 239000003014 ion exchange membrane Substances 0.000 title claims abstract description 34
- 239000012528 membrane Substances 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000011148 porous material Substances 0.000 title description 6
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 claims abstract description 32
- 238000005342 ion exchange Methods 0.000 claims abstract description 24
- 229920001577 copolymer Polymers 0.000 claims abstract description 22
- 229920000642 polymer Polymers 0.000 claims abstract description 19
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000011049 filling Methods 0.000 claims abstract description 10
- 150000002009 diols Chemical class 0.000 claims abstract description 8
- HTXMGVTWXZBZNC-UHFFFAOYSA-N 3,5-bis(methoxycarbonyl)benzenesulfonic acid Chemical compound COC(=O)C1=CC(C(=O)OC)=CC(S(O)(=O)=O)=C1 HTXMGVTWXZBZNC-UHFFFAOYSA-N 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 20
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 claims description 9
- 238000006116 polymerization reaction Methods 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 4
- 239000000178 monomer Substances 0.000 claims description 4
- -1 polyethylene Polymers 0.000 claims description 4
- KPYCVQASEGGKEG-UHFFFAOYSA-N 3-hydroxyoxolane-2,5-dione Chemical compound OC1CC(=O)OC1=O KPYCVQASEGGKEG-UHFFFAOYSA-N 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 230000000379 polymerizing effect Effects 0.000 claims description 2
- ODIGIKRIUKFKHP-UHFFFAOYSA-N (n-propan-2-yloxycarbonylanilino) acetate Chemical compound CC(C)OC(=O)N(OC(C)=O)C1=CC=CC=C1 ODIGIKRIUKFKHP-UHFFFAOYSA-N 0.000 claims 1
- SPSSULHKWOKEEL-UHFFFAOYSA-N 2,4,6-trinitrotoluene Chemical compound CC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O SPSSULHKWOKEEL-UHFFFAOYSA-N 0.000 claims 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 abstract description 9
- 239000000243 solution Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000001723 curing Methods 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000012643 polycondensation polymerization Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 229920000557 Nafion® Polymers 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 229920005597 polymer membrane Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920003934 Aciplex® Polymers 0.000 description 1
- 229920003935 Flemion® Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- WIHMDCQAEONXND-UHFFFAOYSA-M butyl-hydroxy-oxotin Chemical compound CCCC[Sn](O)=O WIHMDCQAEONXND-UHFFFAOYSA-M 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002954 polymerization reaction product Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 229920001935 styrene-ethylene-butadiene-styrene Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/76—Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0006—Organic membrane manufacture by chemical reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/107—Organic support material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1213—Laminated layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/40—Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/12—Specific ratios of components used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/04—Characteristic thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/42—Ion-exchange membranes
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
본 발명은 a)디메틸-5-설퍼이소프탈레이트, 디올, 이소프탈릭 엑시드, 무수말릭산의 공중합체를 제조하는 단계;b)상기 공중합체에 디메틸-5-설퍼이소프탈레이트를 첨가하여 중합체 용액을 제조하는 단계; 및 c)상기 중합체 용액을 고분자 다공성 지지막에 충진하여 경화하는 단계; 를 포함하는 이온교환막 제조방법에 관한 것이며, 본 발명에 의해 제조된 이온교환막은 이온교환능력과 수소이온전도도가 우수한 고기능성 이온교환막이다.The present invention comprises the steps of: a) preparing a copolymer of dimethyl-5-sulfurisophthalate, diol, isophthalic acid, and maleic anhydride; b) adding dimethyl-5-sulfurisophthalate to the copolymer to prepare a polymer solution. Doing; C) filling the polymer solution into a polymer porous support membrane and curing the polymer solution; It relates to a method for producing an ion exchange membrane comprising a, the ion exchange membrane prepared by the present invention is a high functional ion exchange membrane excellent in ion exchange capacity and hydrogen ion conductivity.
Description
본 발명은 다공성 지지막의 포어 충진에 의한 고기능성 이온교환막 및 이의 제조방법에 관한 것이다. The present invention relates to a highly functional ion exchange membrane and its preparation method by pore filling of a porous support membrane.
이온교환막이란 수중에서 음이온 및 양이온을 선택적으로 분리할 수 있는 선택투과막으로써, 연료전지, 산세 폐액으로부터 산 및 금속화학종을 회수하기 위한 확산투석, 초순수 제조공정, 해수의 담수화, 산과 염기 회수를 위한 물분해 전기투석 분야에 응용되고 있다.Ion-exchange membranes are selective permeable membranes that can selectively separate anions and cations in water, and are used for diffusion dialysis to recover acids and metal species from fuel cells, pickling waste, ultrapure water production processes, desalination of seawater, and recovery of acids and bases. It is applied to the field of water decomposition electrodialysis.
이러한 이온교환막은 여러가지 특성이 요구된다. 높은 선택성을 가져야하며 용매 및 비 이온 용질의 낮은 투과성, 선택된 투과이온의 확산에 대한 낮은 저항, 높은 기계적 강도 및 내화학성을 필요로 한다.These ion exchange membranes require various properties. It must have high selectivity and require low permeability of solvents and non-ionic solutes, low resistance to diffusion of selected perions, high mechanical strength and chemical resistance.
현재 사용되는 이온교환막은 연료전지에 사용되고 있는 불소계 양이온교환막(Dupont: Nafion,7,8 Gore: Gore-select, Asahi:Aciplex & Flemion 등), styrene을 기재로 사용한 이온교환막(Tokuyama: CMX & AMX, Asahi: CMV & HJC 등), rubber계 고분자를 사용한 막(Dais-Analytic: S-SEBS) 등이 있다.Currently used ion exchange membranes include fluorine-based cation exchange membranes (Dupont: Nafion, 7, 8 Gore: Gore-select, Asahi: Aciplex & Flemion, etc.) used in fuel cells, and ion exchange membranes (Tokuyama: CMX & AMX, Asahi: CMV & HJC, etc.), rubber-based polymer (Dais-Analytic: S-SEBS).
이러한 이온교환막은 일반적으로 주사슬에 플루오르화 알킬렌을 가지고 있고, 플루오르화비닐 에테르 측쇄의 말단에 술폰산기를 가지는 과풀루오로설폰산 고분자(perfluorosulfonic acid polymer)막을 사용하고 있다(예: Nafion, Dupont사 제조).Such ion exchange membranes generally use perfluorosulfonic acid polymer membranes having alkylene fluoride in the main chain and sulfonic acid groups at the ends of the vinyl fluoride ether chain (eg, Nafion, Dupont). Produce).
상기 과플루오로설폰산 고분자 막은 두께가 두꺼워질수록 치수 안정성 및 기계적 물성은 향상되나, 수지 막의 막저항이 증가하고, 반대로 두께가 감소됨에 따라 수지 막의 저항은 낮아지나, 기계적 물성이 저하될 뿐만 아니라 전지 작동 중에 반응하지 않은 연료 기체 및 액체가 이온교환막을 통과하여 연료의 손실이 발생하고 전지 성능을 저하시키는 문제가 있다.As the perfluorosulfonic acid polymer membrane becomes thicker, dimensional stability and mechanical properties are improved, but the film resistance of the resin film increases, and as the thickness thereof decreases, the resistance of the resin film decreases, but not only the mechanical properties decrease. Fuel gases and liquids that do not react during cell operation pass through the ion exchange membrane, resulting in fuel loss and degrading cell performance.
특히, 백금 촉매 전극과 열압착된 상태에서 온도와 수화(hydration) 정도에 따라 고분자 전해질 막은 15 내지 30%의 막두께 변화와 체적 변화를 수반하고, 3 내지 50 중량%의 메탄올 연료에 의해서는 최대 200% 이상 체적 변화가 발생한다. 이와 같은 전해질 막의 팽윤에 의한 두께 증가는 전극 기재인 기체 확산층에 응력을 인가하게 되며 면방향의 치수 변화는 연료 전지의 장기 운전시 촉매 입자와 전해질 막 계면의 물리적 열화를 유발한다.In particular, the polymer electrolyte membrane has a thickness change of 15 to 30% and a volume change depending on the temperature and degree of hydration in the state of being thermally compressed with the platinum catalyst electrode, and the maximum amount is increased by 3 to 50% by weight of methanol fuel. More than 200% volume change occurs. The increase in thickness due to the swelling of the electrolyte membrane causes stress on the gas diffusion layer serving as the electrode substrate, and the dimensional change in the surface direction causes physical degradation of the interface between the catalyst particles and the electrolyte membrane during long-term operation of the fuel cell.
이러한 문제점을 해결하기 위하여 지지막에 조사를 통해서 이온교환막을 제조하는 방법과 박막화 하는 방법 그리고 이온교환 용액을 코팅 및 건조하여 지지체의 기공을 충진하는 방법이 미국 특허 제 5,547,551 호 및 제 5,599,614 호에 기술되어 있다. In order to solve this problem, a method of preparing an ion exchange membrane through irradiation of a support membrane, a method of thinning the membrane, and a method of coating and drying the ion exchange solution to fill pores of the support are described in US Pat. Nos. 5,547,551 and 5,599,614. It is.
그러나 지지막에 조사를 통해서 이온교환막을 제조하는 방법은 이온교환능력과 수소이온전도도가 낮은 단점이 있으며, 박막화 하는 방법은 박막을 통하여 과량이 메탄올 크로스오버가 일어나는 단점이 있다. However, the method of preparing an ion exchange membrane by irradiating a support membrane has a disadvantage of low ion exchange capacity and hydrogen ion conductivity, and the method of thinning has a disadvantage of excessive methanol crossover through the thin film.
지지체의 기공을 충진하는 방법으로 제조된 고분자 전해질막은 형태안정성이 우수하고, 메탄올 투과를 효과적으로 제어하는 것으로 알려져 있다. The polymer electrolyte membrane prepared by the method of filling the pores of the support is known to have excellent morphological stability and to effectively control methanol permeation.
그러나 이러한 멤브레인은 가격이 비싸고 비이온 전도성 멤브레인을 적용하기 때문에 나피온 대비 이온전도도가 낮은 단점이 있다. However, such a membrane has a disadvantage of low ion conductivity compared to Nafion because of the high price and the application of a nonionic conductive membrane.
본 발명은 종래의 문제를 해결하고자 고분자 다공성지지막에 이온교환능력이 있는 용액을 충진하고 경화하여 제조한 이온교환막 및 이의 제조방법을 제공하는데 목적이 있다. 본 발명은 다공성 지지막 포어 충진에 의하여 이온교환능력과 수소이온전도도가 우수한 고기능성 이온교환막의 제조방법을 제공하는데 목적이 있다.The present invention has been made in an effort to provide an ion exchange membrane and a method for preparing the same, which are prepared by filling and curing a solution having an ion exchange ability in a polymer porous support membrane. It is an object of the present invention to provide a method for producing a highly functional ion exchange membrane having excellent ion exchange capacity and hydrogen ion conductivity by filling porous support membrane pores.
본 발명은 a)디메틸-5-설포이소프탈레이트(Dimethyl 5-sulfoisophthalate(DMSIP)), 디올, 이소프탈릭 엑시드(Isophthalic acid), 무수말릭산( Maleic anhydride(MA))의 공중합체를 제조하는 단계;The present invention comprises the steps of: a) preparing a copolymer of dimethyl-5-sulfoisophthalate (DMSIP), diol, isophthalic acid, maleic anhydride (MA) ;
b)상기 공중합체에 디메틸-5-설포이소프탈레이트를 첨가하여 중합체 용액을 제조하는 단계; 및b) preparing a polymer solution by adding dimethyl-5-sulfoisophthalate to the copolymer; And
c)상기 중합체 용액을 고분자 다공성 지지막에 충진하여 경화하는 단계;를 포함하는 이온교환막의 제조방법을 제공한다.c) filling the polymer solution into a polymer porous support membrane and curing the polymer solution.
상기 충진은 보다 바람직하게는 캐스팅법으로 할 수 있다. 보다 구체적으로 캐스팅법으로 유리판에 충진시킬수 있다.The said filling can be made more preferably a casting method. More specifically, the glass plate may be filled by a casting method.
상기 디메틸-5-설포이소프탈레이트는 이온교환능력이 있는 단량체로서 이온교환능력을 제공한다.The dimethyl-5-sulfoisophthalate provides ion exchange ability as a monomer having ion exchange ability.
상기 a)단계에서 제조된 공중합체는 디메틸-5-설포이소프탈레이트(Dimethyl 5-sulfoisophthalate(DMSIP))을 30~50중량%포함하는 것이 바람직하다. 상기 범위를 초과할 경우 이온교환막이 깨지기 쉬우며 함량이 미달될 경우 제조된 이온교환막의 이온교환능력이 떨어질 수 있다. The copolymer prepared in step a) preferably contains 30 to 50% by weight of dimethyl-5-sulfoisophthalate (DMSIP). If the above range is exceeded, the ion exchange membrane is easily broken, and if the content is less than the ion exchange capacity of the prepared ion exchange membrane may be lowered.
상기 디올은 보다 구체적으로 헥산디올( 6-Hexanediol:HDO)을 사용할 수 있다. 상기 핵산디올은 디메틸-5-설포이소프탈레이트가 경질인 것을 고려하여 연질인 것이 좋다. 상기 무수말릭산(Maleic anhydride(MA))은 경화시 연결고리로 제공할 수 있다.More specifically, the diol may use hexanediol (6-Hexanediol: HDO). The nucleic acid diol may be soft considering that dimethyl-5-sulfoisophthalate is hard. The maleic anhydride (MA) may be provided as a link during curing.
상기 b)단계에서 디메틸-5-설포이소프탈레이트(Dimethyl 5-sulfoisophthalate: DMSIP)는 상기 a)단계에서 합성된 공중합체100중량부에 대하여 30~50중량부 포함하는 것을 특징으로 한다. 상기 b)단계에서 DMSIP는 용매에 녹여서 사용하는 것이 바람직하며, 상기 용매는 폴리프로필렌클리콜모노메틸이더( Propylene glycol monomethyl ether(PM))로부터 선택되어 사용할 수 있다. 상기 범위를 초과할 경우 상기 a)단계에서 제조된 공중합체가 완전히 용해되지 않으며, 상기 범위를 크게 미달할 경우 용액의 점도가 작아서 막이 형성되지 않으며, 막의 이온교환용량이 낮다. In step b), dimethyl-5-sulfoisophthalate (Dimethyl 5-sulfoisophthalate: DMSIP) is characterized in that it comprises 30 to 50 parts by weight based on 100 parts by weight of the copolymer synthesized in step a). In step b), DMSIP is preferably used by dissolving in a solvent. The solvent may be selected from polypropylene glycol monomethyl ether (PM). If the above range is exceeded, the copolymer prepared in step a) is not completely dissolved, and if the range is significantly below the above range, the viscosity of the solution is small so that no membrane is formed, and the ion exchange capacity of the membrane is low.
상기 a)단계에서 상기 공중합체는 디메틸-5-설포이소프탈레이트(DMSIP)와 헥산디올( 6-Hexanediol:HDO)를 중합 반응하는 1단계;In step a), the copolymer is a step of polymerizing dimethyl-5-sulfoisophthalate (DMSIP) and hexanediol (6-Hexanediol: HDO);
상기 중합 반응물에 이소프탈산(Isophthalic acid(IPA))과 무수말릭산을 첨가 하여 중합하는 2단계;Two steps of polymerization by adding isophthalic acid (IPA) and maleic anhydride to the polymerization reaction product;
로 이루어질 수 있는 2단계 축합중합과정이다. 이하 도2는 상기 a)단계의 합성메카니즘을 나타낸 것이다.It is a two-step condensation polymerization process. 2 shows the synthesis mechanism of step a).
이하 도1을 참조로 보다 구체적으로 이온교환막 제조단계를 설명하고자 한다.Hereinafter, an ion exchange membrane manufacturing step will be described in more detail with reference to FIG. 1.
상기 이소프탈산를 첨가함으로 제조된 이온교환막의 이온교환능력이 놀랍게 향상될 수 있다. 또한 우수한 수소이온전도도 및 이온교환용량을 가질 수 있다.The ion exchange capacity of the ion exchange membrane prepared by adding the isophthalic acid can be surprisingly improved. In addition, it can have excellent hydrogen ion conductivity and ion exchange capacity.
상기 c)단계에서 경화는 펜타에릭트리톨테트라아실레이트(Pentaerythritol tetraacrylate (PETA))를 사용하는 것을 특징으로 한다. 상기 c)단계에서 는 UV 경화방법을 통해 이온교환막을 제조할 수 있다.The curing in step c) is characterized in that using pentaerythritol tetraacrylate (PETA). In step c) it can be prepared an ion exchange membrane through the UV curing method.
본 발명은 또한, 이온교환기를 가진 공중합체와 이온교환기를 가진 단량체 용액을 혼합한 혼합용액을 고분자 다공성 지지막에 충진하여 경화시켜 제조하는 것을 특징으로 하는 이온교환막 제조방법에 관한 것이다.The present invention also relates to a method for preparing an ion exchange membrane, which is prepared by filling a polymer porous support membrane with a mixed solution of a copolymer having an ion exchange group and a monomer solution having an ion exchange group and curing the same.
상기 이온교환기를 가진 공중합체는 디메틸-5-설포이소프탈레이트, 디올, 이소프탈릭 엑시드, 무수말릭산의 공중합체 인 것을 특징으로 한다. 상기 이온교환기를 가진 단량체 용액은 디메틸-5-설포이소프탈레이트(DMSIP)를 사용하는 것이 좋다.The copolymer having an ion exchange group is characterized in that the copolymer of dimethyl-5-sulfoisophthalate, diol, isophthalic acid, maleic anhydride. As the monomer solution having the ion exchange group, dimethyl-5-sulfoisophthalate (DMSIP) may be used.
본 발명에서 상기 고분자 다공성 지지막은 보다 바람직하게는 폴리에틸렌 인 것이 좋다. In the present invention, the polymer porous support membrane is more preferably polyethylene.
본 발명은 또한 상기 제조방법에 의해 제조되며, 본 발명에 따라 제조된 이온교환막은 기존의 이온교환막보다 우수한 수소이온전도도 및 이온교환용량을 제공한다 보다 구체적으로 본 발명에 따라 제조된 이온교환막은 이온교환용량이 0.170~0.524 meq/g이고, 이온전도도가 0.007~0.039 S/cm이며, 두께가 0.01~0.05cm인 이온교환막을 제공한다.The present invention is also prepared by the above method, and the ion exchange membrane prepared according to the present invention provides better hydrogen ion conductivity and ion exchange capacity than conventional ion exchange membranes. An ion exchange membrane having an exchange capacity of 0.170 to 0.524 meq / g, an ion conductivity of 0.007 to 0.039 S / cm, and a thickness of 0.01 to 0.05 cm is provided.
본 발명에 따른 이온교환막은 종래 포어 충진에 의한 이온교환막에 비하여 높은 이온교환용량과 이온전도도를 가지는 이온교환막을 제조할 수 있는 효과가 있다. The ion exchange membrane according to the present invention has the effect of producing an ion exchange membrane having a high ion exchange capacity and ion conductivity as compared to the ion exchange membrane by the conventional pore filling.
도 1은 본 발명에 따른 이온교환막 및 이에 대한 제조방법을 도식화한 것이다.
도 2는 본 발명에 따른 디메틸-5-설포이소프탈레이트, 디올, 이소프탈릭 엑시드, 무수말릭산의 공중합체의 축합중합 메카니즘이다.1 is a schematic diagram of an ion exchange membrane and a method for manufacturing the same according to the present invention.
2 is a condensation polymerization mechanism of a copolymer of dimethyl-5-sulfoisophthalate, diol, isophthalic acid, and maleic anhydride according to the present invention.
이하 본 발명을 구체적인 실시예를 통하여 보다 상세히 설명하고자 한다. 하지만 본 발명은 하기 실시예에 의해 한정되는 것이 아니며, 본 발명의 사상과 범위 내에서 여러 가지 변형 또는 수정할 수 있다. Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the following examples, and various modifications or changes can be made within the spirit and scope of the present invention.
[제조예1][Production Example 1]
a)디메틸-5-설포이소프탈레이트, 디올, 이소프탈릭 엑시드, 무수말릭산의 공중합체를 제조하는 단계;(DMSIP-HDO-(IPA-MA) 합성)a) preparing a copolymer of dimethyl-5-sulfoisophthalate, diol, isophthalic acid, malic anhydride; (DMSIP-HDO- (IPA-MA) synthesis)
DMSIP-HDO-(IPA-MA) 합성은 2 단계 축합중합이다. 교반기, 냉각기, 질소 주입구, 시료 주입구 및 thermocouple이 부착된 4구 둥근플라스크를 준비하였다. 1단계는 디메틸-5-설포이소프탈레이트(DMSIP) 275g와 헥산디올(HDO) 550g을 220 ℃, 질소 상태에서 부틸스테노익엑시드(Butyl stannoic acid) 0.1g를 첨가하여 중합 반응하는 1단계를 수행하였다.DMSIP-HDO- (IPA-MA) synthesis is a two stage condensation polymerization. A four-necked round flask equipped with a stirrer, a cooler, a nitrogen inlet, a sample inlet, and a thermocouple was prepared. In the first step, 275 g of dimethyl-5-sulfoisophthalate (DMSIP) and 550 g of hexanediol (HDO) are added to a polymerization reaction by adding 0.1 g of butyl stannoic acid at 220 ° C. and nitrogen. It was.
2단계에서는 상기 질소상태에서 합성된 중합반응물을 140 ℃로 내린 후 이소프탈산(Isophthalic acid(IPA))100g와 무수말릭산(MA)100g를 첨가하고 220 ℃로 승온하여 하이드로퀴논(Hydroquinone) 0.1g을 첨가하여 합성을 실시하였다. 도 1은 디메틸-5-설포이소프탈레이트, 디올, 이소프탈릭 엑시드, 무수말릭산의 공중합체DMSIP-HDO-(IPA-MA)의 축합중합 메카니즘이다. In the second step, the polymerization reaction synthesized in the nitrogen state was lowered to 140 ° C., 100 g of isophthalic acid (IPA) and 100 g of maleic anhydride (MA) were added, and the temperature was raised to 220 ° C. to 0.1 g of hydroquinone. Synthesis was carried out by addition. 1 is a condensation polymerization mechanism of the copolymer DMSIP-HDO- (IPA-MA) of dimethyl-5-sulfoisophthalate, diol, isophthalic acid, and maleic anhydride.
상기 제조예1에서 사용된 화합물과 그 함량을 하기 표1에 나타내었다.The compound used in Preparation Example 1 and its content are shown in Table 1 below.
[제조예 2 내지 제조예 5]Production Example 2 to Production Example 5
상기 제조예1과 동일하게 실시하되 함량을 달리하였으며, 사용된 화합물과 함량을 하기 표1에 나타내었다.The preparation was carried out in the same manner as in Preparation Example 1, but the contents were different, and the used compounds and contents are shown in Table 1 below.
[표1]Table 1
[실시예1][Example 1]
상기 제조예1에 의해 제조된 공중합체 18g에 펜타에리트리톨테트라아실레이트( Pentaerythritol tetraacrylate (PETA)) 0.99g을 넣고 40 wt% 디메틸-5-설포이소프탈레이트(DMSIP) 15g(용매는 폴리프로필렌클리콜모노메틸이더( Propylene glycol monomethyl ether(PM))사용) 을 넣어 중합체 용액을 제조 하였다. 상기 중합체 용액을 고분자 다공성 지지막에 캐스팅 법으로 유리판에 충진한 후 UV를 이용하여 경화시켰다.Into 18 g of the copolymer prepared according to Preparation Example 1, 0.99 g of pentaerythritol tetraacrylate (PETA) was added thereto. 40 A polymer solution was prepared by adding 15 g of wt% dimethyl-5-sulfoisophthalate (DMSIP) (the solvent used was polypropylene glycol monomethyl ether (PM)). The polymer solution was filled in a glass plate by casting on a polymer porous support membrane, and then cured using UV.
상기 실시예1에 사용된 화합물 및 함량을 하기 표2에 나타내었다. 그리고 상기 제조된 실시예1의 이온교환용량과 수소 이온전도도를 측정하여 하기 표2에 나타내었다.Compounds and contents used in Example 1 are shown in Table 2 below. And the ion exchange capacity and the hydrogen ion conductivity of the prepared Example 1 is shown in Table 2 below.
[실시예2 내지 25][Examples 2 to 25]
상기 실시예1과 동일하게 실시하되 사용된 화합물 및 함량을 달리하였고 나머지는 상기 실시예1과 동일하게 실시하였다.Example 1 was carried out in the same manner as in Example 1, but the used compound and content were different, and the rest was performed in the same manner as in Example 1.
상기 실시예2 내지 25에 사용된 화합물 및 함량을 하기 표2에 나타내었다. 상기 실시예2 내지 25의 이온교환용량과 수소 이온전도도를 각각 측정하여 하기 표2에 나타내었다.Compounds and contents used in Examples 2 to 25 are shown in Table 2 below. The ion exchange capacity and the hydrogen ion conductivity of Examples 2 to 25 were measured, respectively, and are shown in Table 2 below.
[표2][Table 2]
[비교예1][Comparative Example 1]
상기 실시예1과 동일하게 실시하나 DMSIP 대신에 프로필렌글리콜모노메틸에테르(Propyleneglycolmonomethylether ; PGME) 를 사용한 것에 차이가 있으며 나며지는 상기 실시예1과 동일하게 실시하였다.Example 1 was carried out in the same manner as in Example 1 except that propylene glycol monomethyl ether (PGME) was used instead of DMSIP.
상기 비교예1에 사용된 화합물 및 함량을 하기 표3에 나타내었다. 상기 비교예1의 이온교환용량과 수소 이온전도도를 각각 측정하여 하기 표3에 나타내었다.Compounds and contents used in Comparative Example 1 are shown in Table 3 below. The ion exchange capacity and the hydrogen ion conductivity of Comparative Example 1 were measured, respectively, and are shown in Table 3 below.
[비교예2 내지 25][Comparative Examples 2 to 25]
상기 비교예1과 동일하게 실시하나 화합물 및 함량에 차이가 있으며, 나머지는 상기 비교예1과 동일하게 실시하였고, 그 차이를 하기 표3에 각각 나타내었다.The same procedure as in Comparative Example 1 but the difference in the compound and content, the rest was carried out in the same manner as Comparative Example 1, the difference is shown in Table 3, respectively.
상기 비교예 2 내지 25의 이온교환용량과 수소 이온전도도를 각각 측정하여 하기 표3에 나타내었다.The ion exchange capacity and the hydrogen ion conductivity of Comparative Examples 2 to 25 were measured, respectively, and are shown in Table 3 below.
[표3][Table 3]
*Dimethyl 5-sulfoisophthalate(DMSIP)Dimethyl 5-sulfoisophthalate (DMSIP)
6-Hexanediol(HDO)6-Hexanediol (HDO)
Isophthalic acid(IPA)Isophthalic acid (IPA)
Maleic anhydride(MA)Maleic anhydride (MA)
Pentaerythritol tetraacrylate (PETA)Pentaerythritol tetraacrylate (PETA)
Propylene glycol monomethyl ether (PGME)Propylene glycol monomethyl ether (PGME)
Claims (9)
b)상기 공중합체에 디메틸-5-설포이소프탈레이트를 첨가하여 중합체 용액을 제조하는 단계; 및
c)상기 중합체 용액을 고분자 다공성 지지막에 충진하여 경화하는 단계;
를 포함하는 이온교환막 제조방법.a) preparing a copolymer of dimethyl-5-sulfoisophthalate, hexanediol, isophthalic acid, malic anhydride;
b) preparing a polymer solution by adding dimethyl-5-sulfoisophthalate to the copolymer; And
c) filling the polymer solution into a polymeric porous support membrane to cure;
Ion exchange membrane production method comprising a.
상기 b)단계에서 디메틸-5-설포이소프탈레이트는 상기 a)단계에서 합성된 공중합체 100중량부에 대하여 30~50중량부 포함하는 이온교환막 제조방법.The method of claim 1,
The dimethyl-5-sulfoisophthalate in step b) is 30 to 50 parts by weight based on 100 parts by weight of the copolymer synthesized in step a).
상기 a)단계에서 상기 공중합체는 디메틸-5-설포이소프탈레이트와 헥산디올을 중합 반응하는 1단계; 및
상기 중합 반응물에 이소프탈산과 무수말릭산을 첨가 하여 중합하는 2단계;
로 이루어지는 것을 특징으로 하는 이온교환막 제조방법.The method of claim 1,
In step a), the copolymer is a step of polymerizing dimethyl-5-sulfoisophthalate and hexanediol; And
Two steps of polymerization by adding isophthalic acid and maleic anhydride to the polymerization reaction;
Method for producing an ion exchange membrane, characterized in that consisting of.
상기 c)단계에서 경화는 펜타에릭트리톨테트라아실레이트를 사용하는 것인 이온교환막 제조방법.The method of claim 1,
Curing in step c) is the ion exchange membrane manufacturing method using a pentaeric tritol tetra acylate.
상기 이온교환기를 가진 공중합체는 디메틸-5-설포이소프탈레이트, 디올, 이소프탈산, 무수말릭산의 공중합체인 이온교환막 제조방법.The method of claim 5,
The copolymer having an ion exchange group is a copolymer of dimethyl-5-sulfoisophthalate, diol, isophthalic acid and maleic anhydride.
상기 고분자 다공성 지지막은 폴리에틸렌인 이온교환막 제조방법.The method according to claim 1 or 5,
The polymer porous support membrane is polyethylene ion exchange membrane manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100080212A KR101214399B1 (en) | 2010-08-19 | 2010-08-19 | A Ion exchange membrane by pore-filled of porous support membrane and a method of fabricating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100080212A KR101214399B1 (en) | 2010-08-19 | 2010-08-19 | A Ion exchange membrane by pore-filled of porous support membrane and a method of fabricating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120017554A KR20120017554A (en) | 2012-02-29 |
KR101214399B1 true KR101214399B1 (en) | 2012-12-21 |
Family
ID=45839439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100080212A KR101214399B1 (en) | 2010-08-19 | 2010-08-19 | A Ion exchange membrane by pore-filled of porous support membrane and a method of fabricating the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101214399B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018182191A1 (en) | 2017-03-31 | 2018-10-04 | 코오롱인더스트리 주식회사 | Ion exchange membrane, manufacturing method therefor, and energy storage device comprising same |
KR20180111519A (en) | 2017-03-31 | 2018-10-11 | 코오롱인더스트리 주식회사 | Ion exchanging membrane, method for manufacturing the same and energy storage system comprising the same |
WO2018199458A1 (en) | 2017-04-27 | 2018-11-01 | 코오롱인더스트리 주식회사 | Ion exchange membrane, manufacturing method therefor, and energy storage device comprising same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5376689A (en) | 1993-09-03 | 1994-12-27 | Industrial Technology Research Institute | Aminated polysulfone membrane and process for its preparation |
US20070225386A1 (en) * | 2002-12-26 | 2007-09-27 | Hitoshi Matsuoka | Ion exchange membrane and production process therefor |
US20080226960A1 (en) | 2004-09-10 | 2008-09-18 | Tokuyama Corporation | Separation Membrane for Fuel Battery and Process for Producing the Same |
-
2010
- 2010-08-19 KR KR1020100080212A patent/KR101214399B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5376689A (en) | 1993-09-03 | 1994-12-27 | Industrial Technology Research Institute | Aminated polysulfone membrane and process for its preparation |
US20070225386A1 (en) * | 2002-12-26 | 2007-09-27 | Hitoshi Matsuoka | Ion exchange membrane and production process therefor |
US20080226960A1 (en) | 2004-09-10 | 2008-09-18 | Tokuyama Corporation | Separation Membrane for Fuel Battery and Process for Producing the Same |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018182191A1 (en) | 2017-03-31 | 2018-10-04 | 코오롱인더스트리 주식회사 | Ion exchange membrane, manufacturing method therefor, and energy storage device comprising same |
KR20180111519A (en) | 2017-03-31 | 2018-10-11 | 코오롱인더스트리 주식회사 | Ion exchanging membrane, method for manufacturing the same and energy storage system comprising the same |
US10396385B2 (en) | 2017-03-31 | 2019-08-27 | Kolon Industries, Inc. | Ion exchanging membrane, method for manufacturing the same, and energy storage device comprising the same |
WO2018199458A1 (en) | 2017-04-27 | 2018-11-01 | 코오롱인더스트리 주식회사 | Ion exchange membrane, manufacturing method therefor, and energy storage device comprising same |
US10559840B2 (en) | 2017-04-27 | 2020-02-11 | Kolon Industries, Inc. | Ion exchanging membrane, method for manufacturing the same and energy storage system comprising the same |
Also Published As
Publication number | Publication date |
---|---|
KR20120017554A (en) | 2012-02-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Fluorinated poly (aryl piperidinium) membranes for anion exchange membrane fuel cells | |
Hibbs et al. | Transport properties of hydroxide and proton conducting membranes | |
Varcoe et al. | Poly (ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells | |
Qiao et al. | Chemically modified poly (vinyl alcohol)− poly (2-acrylamido-2-methyl-1-propanesulfonic acid) as a novel proton-conducting fuel cell membrane | |
He et al. | Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors | |
Maiti et al. | Where do poly (vinyl alcohol) based membranes stand in relation to Nafion® for direct methanol fuel cell applications? | |
Gloukhovski et al. | Understanding methods of preparation and characterization of pore-filling polymer composites for proton exchange membranes: a beginner’s guide | |
Hao et al. | A simple and green preparation of PVA-based cation exchange hybrid membranes for alkali recovery | |
KR101586769B1 (en) | Manufacturing Method of Thin Ion Exchange Membrane Using High Molecular Support | |
Le Mong et al. | Pore-filling polymer electrolyte membrane based on poly (arylene ether ketone) for enhanced dimensional stability and reduced methanol permeability | |
Zhang et al. | Advanced anion exchange membranes with selective swelling-induced ion transport channels for vanadium flow battery application | |
Yameen et al. | Hybrid polymer− silicon proton conducting membranes via a pore-filling surface-initiated polymerization approach | |
Wang et al. | Reinforced poly (fluorenyl-co-terphenyl piperidinium) anion exchange membranes for fuel cells | |
CN102146204A (en) | Acid and alkali crosslinking proton exchange membrane and preparation thereof | |
KR101569719B1 (en) | Crosslinked hydrocarbon polymer electrolyte membranes with diols by radiation and manufacturing method thereof | |
Xu et al. | Performance dependence of swelling-filling treated Nafion membrane on nano-structure of macromolecular filler | |
Wang et al. | Novel amphoteric ion exchange membranes by blending sulfonated poly (ether ether ketone) with ammonium polyphosphate for vanadium redox flow battery applications | |
KR101758237B1 (en) | Ion Exchange Membrane and Method for Manufacturing the Same | |
CN112133946A (en) | Carboxyl-containing sulfonated polyaryletherketone sulfone/loaded phosphotungstic acid-ionic liquid metal organic framework composite membrane and preparation method thereof | |
Li et al. | Development of a crosslinked pore-filling membrane with an extremely low swelling ratio and methanol crossover for direct methanol fuel cells | |
Xu et al. | Surface modification of heteropoly acid/SPEEK membranes by polypyrrole with a sandwich structure for direct methanol fuel cells | |
KR101214399B1 (en) | A Ion exchange membrane by pore-filled of porous support membrane and a method of fabricating the same | |
Han et al. | Separation of methanol/methyl tert-butyl ether using sulfonated polyarylethersulfone with cardo (SPES-C) membranes | |
Kang et al. | Effect of number of cross-linkable sites on proton conducting, pore-filling membranes | |
Li et al. | Rigid–Flexible Hybrid Proton‐Exchange Membranes with Improved Water‐Retention Properties and High Stability for Fuel Cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20151208 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20161125 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20171204 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20181126 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20191209 Year of fee payment: 8 |