KR101206794B1 - Heat Pump System With 2- Stage cascade Refrigeration Cycle - Google Patents

Heat Pump System With 2- Stage cascade Refrigeration Cycle Download PDF

Info

Publication number
KR101206794B1
KR101206794B1 KR1020120116224A KR20120116224A KR101206794B1 KR 101206794 B1 KR101206794 B1 KR 101206794B1 KR 1020120116224 A KR1020120116224 A KR 1020120116224A KR 20120116224 A KR20120116224 A KR 20120116224A KR 101206794 B1 KR101206794 B1 KR 101206794B1
Authority
KR
South Korea
Prior art keywords
stage
refrigerant
condenser
stage side
pressure
Prior art date
Application number
KR1020120116224A
Other languages
Korean (ko)
Inventor
조천휘
Original Assignee
(주) 액트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 액트 filed Critical (주) 액트
Priority to KR1020120116224A priority Critical patent/KR101206794B1/en
Application granted granted Critical
Publication of KR101206794B1 publication Critical patent/KR101206794B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE: A heat pump system using a binary refrigerating cycle is provided to improve energy efficiency by respectively installing an auxiliary heat exchanger in a first stage heat pump system and a second stage heat pump system and to reduce peak load by producing cold water in summer season. CONSTITUTION: A heat pump system using a binary refrigerating cycle comprises a first stage heat pump and a second stage heat pump. A circulating line of a reservoir tank(70) is heat-exchanged with a first stage condenser(20a) or circulates hot water heated by heat-exchanging with a second stage condenser(20b) to the reservoir tank. When the outdoor temperature is over a predetermined temperature in spring, autumn, and winder, the first stage heat pump is independently operated. When the outdoor temperature is less than the predetermined temperature, the first and second stage heat pumps are simultaneously operated to generate hot water.

Description

이원냉동사이클을 이용한 히트펌프시스템{Heat Pump System With 2- Stage cascade Refrigeration Cycle}Heat Pump System With 2-Stage Cascade Refrigeration Cycle}

본 발명은 일반전력 및 전력수요가 적은 심야시간대에 심야전력을 활용하여 춘추절기 및 동절기에 온수를 공급하기 위해 이원냉동사이클을 채택하는 것으로, 1단측 히트펌프시스템과 2단측 히트펌프시스템 각각에 보조열교환기를 설치해 에너지 효율을 향상시키며, 겨울철 외기온도가 낮을 경우에도 온수온도를 일정하게 유지하여 공급하고, 하절기에는 냉수를 생산하여 하절기 피크부하를 경감시키도록 하는 히트펌프시스템에 관한 것이다.The present invention adopts a dual refrigeration cycle to supply hot water during the spring season and winter season by utilizing the late night power in the late-night time zone with low general power and electric power demand, and assists each of the first stage heat pump system and the second stage heat pump system. The present invention relates to a heat pump system that improves energy efficiency by installing a heat exchanger, maintains a constant supply of hot water even when the outdoor air temperature is low in winter, and reduces the peak load in summer by producing cold water in summer.

일반적으로 히트펌프 시스템의 냉매 순환 사이클은, 냉매가스를 고온고압의 상태로 응축 압력까지 압축하는 압축기와, 상기 압축기에서 압축된 냉매를 방열에 의하여 액상으로 응축하는 응축기와, 상기 응축기에서 응축된 고온고압 상태의 액상 냉매를 교축시켜 저압상태의 기상냉매로 팽창시키는 팽창밸브와, 그리고 팽창밸브에서 팽창된 냉매를 증발시키면서 냉매의 증발 잠열을 이용하여 송풍되는 공기를 열교환에 의하여 냉각함과 아울러 상기 압축기로 냉매가스를 복귀시키는 증발기로 이루어진다. 이러한 히트펌프 시스템은, 냉매 순환 사이클 동안 상기 냉매가 기체→액체 및 액체→기체로 연속적으로 상변화되며, 난방 및 냉방 운전을 사방변으로 전환하는 시스템으로 히트펌프는 난방열원으로서 온수를 생성시키는 시스템이다.In general, a refrigerant circulation cycle of a heat pump system includes a compressor for compressing a refrigerant gas to a condensation pressure in a state of high temperature and high pressure, a condenser for condensing the refrigerant compressed in the compressor to a liquid phase by heat radiation, and a high temperature condensed in the condenser. An expansion valve for throttling a liquid refrigerant in a high pressure state and expanding the gaseous refrigerant in a low pressure state, and cooling the air blown using latent heat of evaporation of the refrigerant while evaporating the refrigerant expanded in the expansion valve by heat exchange and Furnace to return the refrigerant gas. This heat pump system is a system in which the refrigerant is continuously phase-changed from gas to liquid and liquid to gas during a refrigerant circulation cycle, and the heating and cooling operations are switched in all directions. The heat pump generates hot water as a heating heat source. to be.

또한, 통상의 히트 펌프는 고온의 온수를 생성시키기 어렵고, 고온의 열원을 생성시킨다 해도 간헐적으로 소량만을 생성하였다. 따라서 겨울철의 외기온도 저하시에는 그 성능이 급격히 저하되어 열원온도의 저하가 발생하고, 증발 압력 및 압축기 흡입 냉매의 비체적이 커져서 압축기의 토출압력과의 비인 압축비가 커져서 압축효율이 저하하며 과다한 토출온도의 상승으로 압축기의 소손을 일으키는 원인이 된다, 또 높은 열원온도를 만들기 위하여 응축기의 압력이 높은 고온 고압으로 운전되므로 압축기의 과부하를 일으켜 소손의 원인이 된다. 또한, 기존의 냉매 증기의 과열도용 열교환기는 조절기능이 없어서 압축기의 토출 가스의 과다한 온도 상승으로 압축기 모터의 소손의 원인이 되며, 냉동유의 열분해 및 슬러지 발생의 원인이 되며, 압축기에 흡입되는 냉매의 비체적이 커져서 냉매 흡입량을 감소하여 성능을 저하되고, 기존의 히트 펌프에서는 용량 제어장치로서 인버터에 의한 회전수 제어, 압축기 자체의 실린더 대수 제어 및 압축기 내부의 바이패스 회로가 전부였다. 인버터 제어의 경우 용량제어 및 동력 절감은 좋으나 고가이며 고장이 많아 보편화되지 못한 실정이며, 압축기 실린더 대수 제어 및 바이패스 제어는 대형 냉동기에서만 가능한 실정이다.In addition, a normal heat pump is difficult to generate hot water of high temperature, and generates a small amount intermittently even if a high temperature heat source is generated. Therefore, when the outside air temperature decreases in winter, the performance decreases rapidly and the heat source temperature decreases, and the evaporation pressure and the specific volume of the compressor suction refrigerant increase, so that the compression ratio, which is the ratio of the discharge pressure of the compressor, increases, so that the compression efficiency decreases. This causes the compressor to burn out, and the condenser pressure is operated at high temperature and high pressure to make the heat source temperature high, causing the compressor to be overloaded and cause burnout. In addition, the existing heat exchanger for the superheat degree of the refrigerant vapor does not have a control function, causing the compressor motor to burn out due to excessive temperature rise of the discharge gas of the compressor, causing pyrolysis and sludge generation of the refrigerant oil, and As the specific volume is increased, the refrigerant suction amount is reduced to decrease the performance. In the conventional heat pump, as the capacity control device, the rotation speed control by the inverter, the number of cylinders of the compressor itself, and the bypass circuit inside the compressor are all. In the case of inverter control, capacity control and power saving are good, but they are expensive and there are many failures. Therefore, the number of compressor cylinders and the bypass control are available only in large refrigerators.

상기한 바와 같은 종래 히트펌프 시스템에 있어서는, 증발 압력 저하 및 응축압 상승이 급격한 성능저하 및 압축기의 운전동력이 증가하여 압축기의 소손을 발생하며 에너지의 낭비가 심하며, 겨울철에 외기 온도의 저하시, 낮은 증발온도로 인한 비체적 및 효율 저하로 낮은 성능과 높은 에너지 손실이 발생하는 실정이다. 또한, 통상적인 히트펌프 시스템에서는 하나의 히트펌프 시스템으로 운전됨으로 외기 온도 저하시, 응축압과 증발압의 비인 압축비가 커서 압축기 효율의 저하 및 성능저하를 유발하는 단점이 있다.In the conventional heat pump system as described above, when the evaporation pressure drop and the condensation pressure rise are drastically deteriorated and the driving power of the compressor is increased, the compressor burns out and wastes energy, and when the outside air temperature decreases in winter, Low performance and high energy loss occur due to lowered volume and efficiency due to low evaporation temperature. In addition, in a typical heat pump system, when operating in one heat pump system, when the outside temperature decreases, the compression ratio, which is the ratio of the condensation pressure and the evaporation pressure, is large, which causes a decrease in compressor efficiency and performance degradation.

등록특허공보 제0639104호(2006.10.20)Registered Patent Publication No. 0639104 (October 20, 2006) 공개특허공보 제10-2003-0031543호(2003.04.21)Publication No. 10-2003-0031543 (2003.04.21) 공개특허공보 제10-2010-0064751호(2010.06.15)Publication No. 10-2010-0064751 (2010.06.15)

본 발명은 일반전력 및 전력수요가 적은 심야시간대에 심야전력을 활용하여 춘추절기 및 동절기에 온수를 공급하기 위해 이원냉동사이클을 채택하는 것으로, 1단측 히트펌프시스템과 2단측 히트펌프시스템 각각에 보조열교환기를 설치해 에너지 효율을 향상시키며, 겨울철 외기온도가 낮을 경우에도 온수온도를 일정하게 유지하여 공급하고, 하절기에는 냉수를 생산하여 하절기 피크부하를 경감시키도록 하는 히트펌프시스템에 관한 것이다.The present invention adopts a dual refrigeration cycle to supply hot water during the spring season and winter season by utilizing the late night power in the late-night time zone with low general power and electric power demand, and assists each of the first stage heat pump system and the second stage heat pump system. The present invention relates to a heat pump system that improves energy efficiency by installing a heat exchanger, maintains a constant supply of hot water even when the outdoor air temperature is low in winter, and reduces the peak load in summer by producing cold water in summer.

본 발명의 이원냉동사이클을 이용한 히트펌프시스템은 제 1냉매(A)를 고온고압으로 압축하는 1단측 압축기(10a)와; 고온고압의 제 1냉매(A)를 응축하여 액화시키는 1단측 제1응축기(20a) 또는 1단측 제2응축기(200a)와; 상기 1단측 제1응축기(20a) 또는 1단측 제2응축기(200a)와 연결되어, 1단측 증발기(40a)에서 1단측 압축기(10a)으로 유동하는 저온저압의 냉매와 열교환시키는 1단측 보조열교환기유닛(100)과; 상기 1단측 보조열교환기유닛(100)을 거친 제 1냉매(A)를 고온저압의 기체상태로 만드는 1단측 팽창밸브(30a)와; 상기 1단측 팽창밸브(30a)를 거친 제 1냉매(A)를 기화시켜는 1단측 증발기(40a)와; 상기 1단측 증발기(40a)의 1단측 송풍팬(50a);을 포함하는 1단측 히트펌프로 이루어지며, 제 2냉매(B)를 고온고압으로 압축하는 2단측 압축기(10b)와; 고온고압의 제 1냉매(B)를 응축하여 액화시키는 2단측 응축기(20b)와; 상기 2단측 응축기(20b)와 연결되어, 2단측 증발기(40b)에서 2단측 압축기(10b)로 유동하는 저온저압의 냉매와 열교환시키는 2단측 루프 열사폰식 보조열교환기유닛(200)과; 상기 2단측 루프 열사폰식 보조열교환기유닛(200)은 제 3 냉매(C)가 순환되는 증발부(210), 기화증기 유동로(220), 응축부(230), 액화증기 유동로(240)로 이루어지며, 상기 2단측 루프 열사폰식 보조열교환기유닛(100)을 거친 제 2냉매(B)를 고온저압의 기체상태로 만드는 2단측 팽창밸브(30b)와; 상기 2단측 팽창밸브(30b)를 거친 제 2냉매(B)를 기화시키는 2단측 증발기(40b);를 포함하는 2단측 히트펌프로 이루어지며, 저수탱크(70)의 순환라인이 상기 1단측 응축기(20a)와 열교환되거나, 2단측 응축기(20b)와 열교환되어 가열된 온수가 저수탱크로 순환되는 순환라인으로 이루어지며, 춘추절기 및 동절기에 외기 온도가 소정온도 이상인 경우에는 1단측 히트펌프 단독운전을 수행하고, 외기온도가 소정온도 미만인 경우에는 1단측 히트펌프와 2단측 히트펌프 동시운전되어 온수를 생산하는 것을 특징으로 한다.Heat pump system using a binary refrigeration cycle of the present invention comprises a first stage compressor (10a) for compressing the first refrigerant (A) at high temperature and high pressure; A first stage first condenser 20a or a first stage second condenser 200a for condensing and liquefying the first refrigerant A having a high temperature and high pressure; The first stage side heat exchanger connected to the first stage side condenser 20a or the second stage side condenser 200a to exchange heat with the low temperature low pressure refrigerant flowing from the first stage side evaporator 40a to the first stage side compressor 10a. Unit 100; A first stage expansion valve (30a) for making the first refrigerant (A) passed through the first stage side auxiliary heat exchanger unit (100) into a gas state of high temperature and low pressure; A first stage evaporator (40a) for vaporizing the first refrigerant (A) having passed through the first stage expansion valve (30a); A first stage side heat pump including a first stage side blow fan 50a of the first stage side evaporator 40a, and a second stage side compressor 10b for compressing the second refrigerant B at a high temperature and high pressure; A two-stage side condenser 20b for condensing and liquefying the first refrigerant B having a high temperature and high pressure; A two-stage loop heat sapon type auxiliary heat exchanger unit (200) connected to the two-stage side condenser (20b) to exchange heat with a low-temperature low pressure refrigerant flowing from the two-stage side evaporator (40b) to the two-stage compressor (10b); The two-stage side loop heat sapon type auxiliary heat exchanger unit 200 includes an evaporator 210, a vaporized steam flow path 220, a condensation part 230, and a liquefied vapor flow path 240 in which a third refrigerant C is circulated. A two-stage expansion valve (30b) which makes the second refrigerant (B) passed through the two-stage side loop heat sapon type auxiliary heat exchanger unit (100) into a gas state of high temperature and low pressure; It consists of a two-stage side heat pump comprising a; two-stage side evaporator (40b) for evaporating the second refrigerant (B) through the two-stage expansion valve (30b), the circulation line of the storage tank 70 is the first stage condenser The heat exchanger 20a or the second stage condenser 20b consists of a circulation line in which heated hot water is circulated to the water storage tank, and in the spring and winter, when the outside air temperature is higher than a predetermined temperature, the single stage side heat pump is operated alone. When the outside temperature is less than the predetermined temperature, the first stage side heat pump and the second stage side heat pump are characterized in that the hot water is produced at the same time.

상기 외기온도가 소정 온도는 이상인 경우에는, 2단측 응축기(20b)와 열교환되지 않고, 온수를 생산하는 것을 특징으로 한다.When the outside temperature is higher than the predetermined temperature, hot water is produced without being heat-exchanged with the two-stage side condenser 20b.

하절기에는 1단측 사방변(60a)의 제 1냉매(A)유로를 변경하여 1단측 증발기(40a)가 응축기 기능을 하도록 함으로써 1단측 열교환기(20a)와 1단측 응축기-수 열교환기(70a)에서 열교환되어 냉수를 생산하여 냉열원으로 사용되는 것을 특징으로 한다.In the summer, the first stage (A) flow path of the one-sided four sides (60a) is changed so that the first stage side evaporator (40a) functions as a condenser, so that the first stage side heat exchanger (20a) and the first stage side condenser-water heat exchanger (70a). It is characterized in that it is used as a cold heat source to produce cold water by heat exchange in.

상기 2단측 응축기(20b)에서 응축된 제 2냉매(B)가 유동되는 냉매관이 상기 2단측 루프 열사폰식 보조열교환기유닛(200)의 증발부(210)내에 위치되어, 제 3냉매(C)와 열교환되어 제 2냉매(B)는 냉각되고, 제 3냉매(C)는 기화되어 기화증기 유동로(220)를 통해 응축부(230)로 유동되며, 상기 2단측 증발기(40b)에서 기화된 제 2냉매(B)가 유동되는 냉매관이 상기 2단측 루프 열사폰식 보조열교환기유닛(200)의 응축부(230)내에 위치되어, 제 3냉매(C)와 열교환되어 제 2냉매(B)는 과열되고, 제 3냉매(C)는 응축되어 액화증기 유동로(240)를 통해 증발부(210)으로 유동되는 것을 특징으로 한다.A refrigerant pipe through which the second refrigerant B condensed in the second stage condenser 20b flows is located in the evaporation unit 210 of the second stage side loop heat sapon type auxiliary heat exchanger unit 200, and the third refrigerant C The second refrigerant (B) is cooled, the third refrigerant (C) is evaporated and flows to the condensation unit (230) through the vaporization steam flow path (220), and vaporizes in the second stage evaporator (40b). The refrigerant pipe through which the second refrigerant B flows is located in the condensation unit 230 of the second stage side heat exchanger subsidiary heat exchanger unit 200, and is heat-exchanged with the third refrigerant C to thereby exchange the second refrigerant B. ) Is superheated, and the third refrigerant (C) is condensed and flows through the liquefied vapor flow path 240 to the evaporator 210.

상기 2단측 루프 열사폰식 보조열교환기유닛(200)의 제 3냉매(C)순환라인중 기화증기 유동로(220)에는 2단측 압축기(10b)의 토출압력에 따라 기화증기 유동로(220)에 유동되는 냉매량을 제어하는 전동밸브(221)를 더 포함하는 것을 특징으로 한다.In the vaporization steam flow path 220 of the third refrigerant (C) circulation line of the two-stage side loop heatspan auxiliary heat exchanger unit 200, the vaporization steam flow path 220 is formed according to the discharge pressure of the two-stage compressor 10b. It further comprises an electric valve 221 for controlling the amount of refrigerant flowing.

상기 2단측 루프 열사폰식 보조열교환기유닛(200)에는 응축부(230)의 일측에 2단측 보조열교환기의 용량조절용 가스저장소(250)와 2단측 보조열교환기의 용량조절용 실린더(251)를 구비하여, 증발부(210)에서의 압력이 높을 경우에는 응축부의 열교환면적을 증가시키고, 증발부(210)에서의 압력이 낮을 경우에는 응축부의 열교환면적으로 감소시키도록 2단측 보조열교환기의 용량조절용 실린더(251)가 이동되도록 제어되는 것을 특징으로 한다.The two-stage side loop heat-sponge type auxiliary heat exchanger unit 200 includes a gas storage 250 for the capacity control of the two-stage side heat exchanger and a capacity control cylinder 251 of the two-stage side heat exchanger on one side of the condenser 230. Thus, when the pressure in the evaporator 210 is high, the heat exchange area of the condensation unit is increased, and when the pressure in the evaporator 210 is low, the capacity of the second stage side heat exchanger is reduced to reduce the heat exchange area of the condenser. The cylinder 251 is characterized in that it is controlled to move.

상기 1단측 보조열교환기유닛(100)은 상기 1단측 응축기(20a)에서 응축된 제 1냉매가 유동되는 내부관(120)과 1단측 증발기(40a)에서 기화된 제 1냉매가 유동되는 외부관(130)이 동심을 이루고, 외부관(130)을 감싸는 단열커버(140)로 이루어져 고압의 액냉매과 저압의 증기냉매를 열교환시키는 것을 특징으로 한다.The first stage side heat exchanger unit 100 includes an inner tube 120 through which the first refrigerant condensed in the first stage condenser 20a flows and an external tube through which the first refrigerant vaporized in the first stage side evaporator 40a flows. 130 is concentric, and made of a heat insulating cover 140 surrounding the outer tube 130, characterized in that the high-pressure liquid refrigerant and low-pressure steam refrigerant heat exchange.

상기 1단측 보조열교환기유닛(100)의 내부관(120) 입구쪽에 설치되고, 1단측 응축기(20a)에서 응축된 고압 액냉매의 압력을 소정압력 강하시키면서 1단측 응축기(20a)의 응축압력을 유지시켜주는 압력유지밸브(110)를 더 포함하는 것을 특징으로 한다.The condensing pressure of the one-stage condenser 20a is installed at the inlet side of the inner tube 120 of the one-stage side heat exchanger unit 100 while reducing the pressure of the high-pressure liquid refrigerant condensed in the one-stage side condenser 20a by a predetermined pressure. It characterized in that it further comprises a pressure maintaining valve 110 to maintain.

입구는 상기 1단측 팽창밸브(30a) 직전과 관로로 연결되고 출구는 1단측 팽창밸브(30a) 직후와 관로로 연결되어 여분의 제 1냉매(A)를 저장하는 압력보상탱크(153)와, 상기 압력보상탱크(153)의 유입관로에 설치되어 냉매액의 압력이 소정압력 이상일 경우에만 열리는 제1압력조절용 체크밸브(152) 및 상기 압력보상탱크(153)의 유출관로에 설치되어 증발압력이 소정압력 이하일 경우에만 열리는 제2압력조절용 체크밸브(155)로 이루어진 압력보상기(150)를 더 포함하는 것을 특징으로 한다.An inlet is connected to the pipeline just before the first stage expansion valve 30a and an outlet is connected to the pipeline immediately after the first stage expansion valve 30a to store the excess first refrigerant A; The first pressure control check valve 152 and the pressure compensation tank 153 are installed in the inlet pipe of the pressure compensation tank 153 and open only when the pressure of the refrigerant liquid is higher than the predetermined pressure. It characterized in that it further comprises a pressure compensator (150) consisting of a check valve (155) for adjusting the second pressure to open only when the predetermined pressure or less.

춘추절기 및 동절기에 외기 온도가 소정온도 이상인 경우에는 1단측 히트펌프 단독운전을 수행하고, 저수탱크(70)의 순환라인중 1단측 응축기-수 열교환기(70a)는 1단측 응축기(20b)와 열교환되어 온수가 생산되고, 2단측 응축기-수 열교환기(70b)로 유동되지 않고 바이패스되어 저수탱크로 유입되며, 외기 온도가 소정온도 미만이거나 저수탱크(70)의 출수요구온도가 소정온도 이상인 경우에는 1단측 히트펌프와 2단측 히트펌프 동시운전을 수행하고, 저수탱크(70)의 순환라인 중 1단측 응축기-수 열교환기(70a)는 바이패스시키고, 2단측 응축기-수 열교환기(70b)로 유동시켜 2단측 응축기(20b)와 열교환되어 온수가 생산되어 저수탱크로 유입되도록 하는 온수순환라인을 더 포함하는 것을 특징으로 한다.When the outside air temperature is higher than the predetermined temperature in the spring and winter seasons, the single stage side heat pump is operated alone, and the first stage side condenser-water heat exchanger 70a is connected to the first stage side condenser 20b in the circulation line of the water storage tank 70. Heat is produced by heat exchange, and is bypassed without flowing into the two-stage condenser-water heat exchanger (70b) and introduced into the storage tank, and the outside air temperature is less than the predetermined temperature or the discharge water demand temperature of the storage tank 70 is more than the predetermined temperature. In this case, the first stage heat pump and the second stage heat pump are simultaneously operated, and the first stage condenser-water heat exchanger 70a is bypassed in the circulation line of the water storage tank 70, and the second stage condenser-water heat exchanger 70b is performed. It is characterized in that it further comprises a hot water circulation line for flowing to the second stage condenser (20b) to flow into the hot water is produced is introduced into the reservoir tank.

본 발명은 일반전력 및 전력수요가 적은 심야시간대에 심야전력을 활용하여 춘추절기 및 동절기에 온수를 공급하기 위해 이원냉동사이클을 채택하는 것으로, 1단측 히트펌프시스템과 2단측 히트펌프시스템 각각에 보조열교환기를 설치해 겨울철 낮은 외기온도로 인해 냉매가 증발 잠열을 충분히 흡수하지 못해 증발 불량이 야기되고, 이로 인해 저압 냉매의 건포화도가 낮아져 습압축에 의한 압축불량을 방지하고, 흡입냉매의 비체적이 커져 응축열 발생량이 줄어 충분한 온수를 생성시키지 못하는 문제를 해결하여 에너지 효율을 향상시키며, 겨울철 외기온도가 낮을 경우에도 온수온도를 일정하게 유지하여 공급하고, 하절기에는 냉수를 생산하여 하절기 피크부하를 경감시키도록 하는 히트펌프시스템에 관한 것이다.The present invention adopts a dual refrigeration cycle to supply hot water during the spring season and winter season by utilizing the late night power in the late-night time zone with low general power and electric power demand, and assists each of the first stage heat pump system and the second stage heat pump system. Due to the installation of a heat exchanger, the low outside air temperature prevents the refrigerant from absorbing the latent heat of evaporation sufficiently, resulting in poor evaporation, resulting in low dryness of the low pressure refrigerant, preventing compression failure by wet compression, and increasing the specific volume of the suction refrigerant This decreases the problem of not producing enough hot water, improving energy efficiency, and maintaining the hot water temperature even when the outside air temperature is low in winter, and producing cold water in summer to reduce the peak load in summer. It relates to a pump system.

도 1은 춘추절기 및 동절기 1단측 히트펌프만 구동시 온수순환도
도 2는 춘추절기 및 동절기 1단측 및 2단측 히트펌프 동시구동시 온수순환도
도 3은 하절기 수축냉을 위한 1단측 히트펌프 구동시 냉수순환도
도 4a,b는 2단측 보조열교환유닛(루프 열사이폰식 열교환기) 구조와 작동도
도 5a,b는 1단측 보조열교환의 구조
도 6은 1단측 보조열교환와 압력보상기의 냉매순환도
1 is a hot water circulation when only the spring and winter season 1 stage heat pump driving only
2 is a hot water circulation diagram at the same time during the spring and winter seasons 1 stage side and 2 stage side heat pump
Figure 3 is a cold water circulation when driving the one-stage side heat pump for shrinkage cooling in summer
Figure 4a, b is a two-stage secondary heat exchange unit (loop thermosiphon heat exchanger) structure and operation diagram
5A and 5B show the structure of one-stage side heat exchange
6 is a refrigerant circulation diagram of the first stage side auxiliary heat exchange and the pressure compensator;

이하 본 발명의 목적을 달성하기 위한 구체적인 기술내용을 첨부도면에 의거하여 상세히 설명한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1에 제시된 본 발명의 이원냉동사이클을 이용한 히트펌프시스템을 살펴보면, 제 1냉매(A)를 고온고압으로 압축하는 1단측 압축기(10a)와; 고온고압의 제 1냉매(A)를 응축하여 액화시키는 1단측 제1응축기(20a) 또는 1단측 제2응축기(200a)와; 상기 1단측 제1응축기(20a) 또는 1단측 제2응축기(200a)와 연결되어, 1단측 증발기(40a)에서 1단측 압축기(10a)로 유동하는 저온저압의 냉매와 열교환시키는 1단측 보조열교환기유닛(100)과; 상기 1단측 보조열교환기유닛(100)을 거친 제 1냉매(A)를 고온저압의 기체상태로 만드는 1단측 팽창밸브(30a)와; 상기 1단측 팽창밸브(30a)를 거친 제 1냉매(A)를 기화시키는 1단측 증발기(40a)와; 상기 1단측 증발기(40a)의 1단측 송풍팬(50a);를 포함하는 1단측 히트펌프로 이루어지며, 제 2냉매(B)를 고온고압으로 압축하는 2단측 압축기(10b)와; 고온고압의 제 1냉매(B)를 응축하여 액화시키는 2단측 응축기(20b)와; 상기 2단측 응축기(20b)와 연결되어, 2단측 증발기(40b)에서 2단측 압축기(10b)으로 유동하는 저온저압의 냉매와 열교환시키는 2단측 루프 열사폰식 보조열교환기유닛(200)과; 상기 2단측 루프 열사폰식 보조열교환기유닛(200)은 제 3 냉매(C)가 순환되는 증발부(210), 기화증기 유동로(220), 응축부(230), 액화증기 유동로(240)로 이루어지며, 상기 2단측 루프 열사폰식 보조열교환기유닛(200)을 거친 제 2냉매(B)를 고온저압의 기체상태로 만드는 2단측 팽창밸브(30b)와; 상기 2단측 팽창밸브(30b)를 거친 제 2냉매(B)를 기화시키는 2단측 증발기(40b);를 포함하는 2단측 히트펌프로 이루어지며, 저수탱크(70)의 순환라인이 상기 1단측 응축기(20a)와 열교환되거나, 2단측 응축기(20b)와 열교환되어 가열된 온수가 저수탱크로 순환되는 순환라인으로 이루어진다. Looking at the heat pump system using the binary refrigeration cycle of the present invention shown in Figure 1, the first stage compressor (A) for compressing the first refrigerant (A) at high temperature and high pressure; A first stage first condenser 20a or a first stage second condenser 200a for condensing and liquefying the first refrigerant A having a high temperature and high pressure; The first stage side heat exchanger is connected to the first stage side condenser 20a or the second stage side condenser 200a to exchange heat with the low temperature low pressure refrigerant flowing from the first stage side evaporator 40a to the first stage side compressor 10a. Unit 100; A first stage expansion valve (30a) for making the first refrigerant (A) passed through the first stage side auxiliary heat exchanger unit (100) into a gas state of high temperature and low pressure; A first stage evaporator (40a) for vaporizing the first refrigerant (A) having passed through the first stage expansion valve (30a); A first stage side heat pump including a first stage side blow fan (50a) of the first stage side evaporator (40a), and a second stage side compressor (10b) for compressing the second refrigerant (B) at high temperature and high pressure; A two-stage side condenser 20b for condensing and liquefying the first refrigerant B having a high temperature and high pressure; A two-stage side loop heat sapon type auxiliary heat exchanger unit (200) connected to the two-stage side condenser (20b) to exchange heat with a low temperature low pressure refrigerant flowing from the two-stage side evaporator (40b) to the two-stage compressor (10b); The two-stage side loop heat sapon type auxiliary heat exchanger unit 200 includes an evaporator 210, a vaporized steam flow path 220, a condensation part 230, and a liquefied vapor flow path 240 in which a third refrigerant C is circulated. A two-stage expansion valve (30b) which makes the second refrigerant (B) passed through the two-stage side loop heat sapon type auxiliary heat exchanger unit (200) into a gas state of high temperature and low pressure; It consists of a two-stage side heat pump comprising a; two-stage side evaporator (40b) for evaporating the second refrigerant (B) through the two-stage expansion valve (30b), the circulation line of the storage tank 70 is the first stage condenser The heat exchanger 20a or the second stage condenser 20b consists of a circulation line in which the heated hot water is circulated to the water storage tank.

또한 상기 제 1냉매(A)는 410A 이고, 제 2 냉매(B)은 134A이며, 제 3냉매는 에탄올을 적용한다.In addition, the first refrigerant A is 410A, the second refrigerant B is 134A, and the third refrigerant is ethanol.

상기 생성된 온수는 춘추절기 및 동절기에 난방용으로 사용되고, 외기온도가 소정온도인 2℃ 이상인 경우에는 도 1과 같이 1단측 히트펌프만을 구동시켜 온수를 생산한다. 이때 온수는 약 50℃ 이내의 온도범위를 갖는다. 이때 온수순환라인의 제1체크밸브(71)를 개방시켜 1단측 응축기-수 열교환기(70a)로 유동시켜 온수라인의 물은 1단측 히트펌프의 응축기(20a)의 제 1냉매(A)와 열교환되어 온수를 생산하고, 2단측 히트펌프는 구동되지 않는다. 이때 1단측 응축기-수 열교환기(70a)를 통과한 온수는 제2체크밸브(72)를 개방시켜 2단측 응축기-수 열교환기(70b)로 유동하지 않고, 저수탱크(70)로 들어간다.The generated hot water is used for heating in the spring and winter seasons, and when the outside air temperature is more than 2 ℃, a predetermined temperature, by driving only the one-stage side heat pump as shown in Figure 1 to produce hot water. The hot water has a temperature range of about 50 ℃. At this time, the first check valve 71 of the hot water circulation line is opened and flows to the first stage condenser-water heat exchanger 70a so that the water in the hot water line is connected to the first refrigerant A of the condenser 20a of the first stage heat pump. The heat exchange produces hot water, and the two stage side heat pump is not driven. At this time, the hot water passing through the first stage condenser-water heat exchanger 70a does not flow into the second stage condenser-water heat exchanger 70b by opening the second check valve 72 and enters the water storage tank 70.

또한 외기온도가 2℃ 미만이거나, 저수탱크(70)에서 출수되어야 하는 온수온도가 50℃ 이상인 경우에는 도 2와 같이 1단측 히트펌프와 2단측 히트펌프를 동시에 구동시킨다. 이때 저수탱크(70)의 온수순환라인의 제1체크밸브를 폐쇄시켜 1단측 응축기-수 열교환기(70a)는 바이패스되고, 제2체크밸브(72)를 폐쇄시켜 2단측 응축기-수 열교환기(70b)로 유동되고 온수라인의 물은 2단측 히트펌프의 응축기(20b)의 제 2냉매(B)와 열교환되어 온수가 된 후 저수탱크(70)로 들어간다. 1단측 압축기(10a)에서 토출된 제 1냉매(A)는 1단측 제1응축기(20a)로 흐르지 않고 1단측 제2응축기(200a)로 유동하여 2단측 증발기(40b)와 열교환됨으로써, 2단측 히트펌프의 증발기(40b)에서 증발압력이 부족한 문제를 해결하게 된다.In addition, when the outside temperature is less than 2 ℃ or the hot water temperature to be discharged from the water storage tank 70 is 50 ℃ or more, as shown in FIG. 2, the first stage heat pump and the second stage side heat pump are simultaneously driven. At this time, the first stage check valve of the hot water circulation line of the water storage tank 70 is closed to bypass the first stage condenser-water heat exchanger 70a, and the second stage check valve 72 is closed to close the second stage condenser-water heat exchanger. The water flows to 70b and the water of the hot water line exchanges heat with the second refrigerant B of the condenser 20b of the two-stage heat pump to become hot water, and then enters the water storage tank 70. The first refrigerant A discharged from the first stage compressor 10a flows to the first stage second condenser 200a without being flowed to the first stage side condenser 20a and is heat-exchanged with the second stage side evaporator 40b. The problem that the evaporation pressure is insufficient in the evaporator 40b of the heat pump is solved.

또한 도 4a와 같이 2단측 히트펌프에는 상기 2단측 응축기(20b)와 연결되어, 2단측 증발기(40b)에서 2단측 압축기(10b)으로 유동하는 저온저압의 냉매와 열교환시키는 2단측 루프 열사폰식 보조열교환기유닛(200)을 갖는다.In addition, as shown in Figure 4a, the two-stage side heat pump is connected to the two-stage condenser (20b), the two-stage side loop heat-sponge type auxiliary heat exchanged with the low-temperature low-pressure refrigerant flowing from the two-stage side evaporator (40b) to the two-stage compressor (10b) It has a heat exchanger unit 200.

상기 2단측 루프 열사폰식 보조열교환기유닛(200)은 제 3 냉매(C)가 순환되는 증발부(210), 기화증기 유동로(220), 응축부(230), 액화증기 유동로(240)로 이루어지며, 그 작동과정을 살펴보면, The two-stage side loop heat sapon type auxiliary heat exchanger unit 200 includes an evaporator 210, a vaporized steam flow path 220, a condensation part 230, and a liquefied vapor flow path 240 in which a third refrigerant C is circulated. If you look at the operation process,

상기 2단측 응축기(20b)에서 응축된 제 2냉매(B)가 유동되는 2단측 응축기출구 라인(21b)측 냉매관이 상기 2단측 루프 열사폰식 보조열교환기유닛(200)의 증발부(210)내에 위치되어, 제 3냉매(C)와 열교환되어 제 2냉매(B)는 냉각되어 2단측 팽창밸브 유입측 라인(22b)을 거쳐 2단측 팽창밸브(30b)으로 유동되며, 제 3냉매(C)는 기화되어 기화증기 유동로(220)를 통해 응축부(230)로 유동되며, 상기 2단측 증발기(40b)에서 기화된 제 2냉매(B)가 유동되는 2단측 증발기출구 라인(41b)측 냉매관이 상기 2단측 루프 열사폰식 보조열교환기유닛(200)의 응축부(230)내에 위치되어, 제 3냉매(C)와 열교환되어 제 2냉매(B)는 과열되어 2단측 압축기(10b)입구 라인(42b)을 거쳐 2단측 압축기(10b)로 유동되고, 제 3냉매(C)는 응축되어 액화증기 유동로(240)를 통해 증발부(210)으로 유동된다.The refrigerant pipe of the second stage condenser outlet line 21b on which the second refrigerant B condensed in the second stage condenser 20b flows is the evaporation unit 210 of the second stage side heat exchanger subsidiary heat exchanger unit 200. Located in the chamber, the second refrigerant (B) is cooled and flows to the second stage expansion valve (30b) through the second stage expansion valve inlet line (22b), and the third refrigerant (C) is heat exchanged with the third refrigerant (C). ) Is vaporized and flows through the vaporization steam flow path 220 to the condensation unit 230, the second stage evaporator outlet line 41b side through which the second refrigerant B vaporized in the second stage evaporator 40b flows. A refrigerant pipe is located in the condensation unit 230 of the two-stage side loop heat sapon type auxiliary heat exchanger unit 200, and heat exchanges with the third refrigerant C so that the second refrigerant B is overheated and the two stage side compressor 10b. The inlet line 42b flows to the second stage compressor 10b, and the third refrigerant C is condensed and flows to the evaporator 210 through the liquefied vapor flow path 240.

이때 상기 2단측 루프 열사폰식 보조열교환기유닛(200)의 응축부(230)내에 위치되는 상기 2단측 증발기(40b)에서 기화된 제 2냉매(B)가 유동되는 2단측 증발기 출구라인(41b)측 냉매관의 냉매 과열도가 충분하여 압축기에서 토출되는 압력이 정상압력의 범위이내인 경우에는 상기 기화증기 유동로(220)에 유동되는 제 3냉매(C)의 흐름을 차단하거나 감소시킬 필요가 있다. 이를 제어하는 방법으로, 압축기의 토출압력을 검출하여 기화증기 유동로(220)에 유동되는 냉매량을 제어하는 전동밸브(221)를 구동시켜 냉매량을 제어한다.At this time, the second stage side evaporator outlet line 41b through which the second refrigerant B vaporized in the second stage side evaporator 40b located in the condensation unit 230 of the two stage side side heat exchanger subsidiary heat exchanger unit 200 flows. When the refrigerant superheat of the refrigerant pipe is sufficient and the pressure discharged from the compressor is within the range of the normal pressure, it is necessary to block or reduce the flow of the third refrigerant C flowing in the vaporization steam flow path 220. have. As a method of controlling this, the amount of refrigerant is controlled by driving the electric valve 221 which detects the discharge pressure of the compressor and controls the amount of refrigerant flowing into the vaporization steam flow path 220.

상기 2단측 루프 열사폰식 보조열교환기유닛(200)에서 유동되는 제 3냉매(C)의 흐름을 제어하는 다른 방법이 도 4b에 제시되어 있다. 상기 2단측 루프 열사폰식 보조열교환기유닛(200)에는 응축부(230)의 일측에는 2단측 보조열교환기의 용량조절용 가스저장소(250)와 2단측 보조열교환기의 용량조절용 실린더(251)를 구비하여, 2단측 루프 열사폰식 보조열교환기유닛(200)의 증발부(210)에서의 압력이 높을 경우에는 응축부(230)에 위치된 용량조절용 실린더(251)를 증발된 증기냉매의 압력에 의해 후단으로 밀어 2단측 루프 열사폰식 보조열교환기유닛(100)의 응축부(230)에서의 열교환 면적을 증가시키고, 상기 2단측 루프 열사폰식 보조열교환기유닛(100)의 증발부(210)에서의 압력이 낮을 경우에는 응축부에 위치된 용량조절용 실린더(251)를 용량조절용 가스저장소(250)의 압력으로 제 3냉매(C)의 기화증기가 토출측으로 밀어 2단측 루프 열사폰식 보조열교환기유닛(100)의 응축부(230)에서의 열교환 면적을 감소시키도록 제어된다. 이 제어방식은 보조열교환기유닛(100)의 증발부(210)에서의 압력과 2단측 보조열교환기의 용량조절용 가스저장소(250)간의 상대적 압력에 따라 열교환면적을 변경시키는 것이다.Another method of controlling the flow of the third refrigerant (C) flowing in the two-stage side loop heatspan auxiliary heat exchanger unit (200) is shown in Figure 4b. The two-stage side loop heatsonic subsidiary heat exchanger unit 200 includes a gas storage unit 250 for adjusting the capacity of the two-stage side heat exchanger and a capacity control cylinder 251 for the two-stage side heat exchanger on one side of the condensation unit 230. When the pressure at the evaporation unit 210 of the two-stage side loop heatsonic auxiliary heat exchanger unit 200 is high, the capacity adjusting cylinder 251 located at the condensation unit 230 is moved by the pressure of the vaporized vapor refrigerant. Push back to increase the heat exchange area in the condensation unit 230 of the two-stage side loop heatsonic auxiliary heat exchanger unit 100, and in the evaporation unit 210 of the two-stage side loop heatsonic auxiliary heat exchanger unit 100. When the pressure is low, the vaporizing steam of the third refrigerant (C) is pushed to the discharge side by the pressure of the capacity adjusting cylinder 251 located in the condensation unit to the discharge side of the second stage heat exchanger auxiliary heat exchanger unit ( Heat exchange surface at condensation unit 230 of 100 A is controlled to decrease. This control method is to change the heat exchange area according to the pressure in the evaporator 210 of the subsidiary heat exchanger unit 100 and the relative pressure between the gas reservoir 250 for the capacity control of the second stage side subsidiary heat exchanger.

도 5a, 5b에 제시된 상기 1단측 보조열교환기유닛(100)은 내부관(120) 외측에 외부관(130), 단열커버(140)로 구성된 열교환부, 압력유지밸브(110)로 구성되고, 그 작동과정을 살펴보면,The first stage side heat exchanger unit 100 shown in Figure 5a, 5b is composed of a heat exchanger, a pressure maintaining valve 110 consisting of an outer tube 130, an insulating cover 140 on the outer side of the inner tube 120, If you look at how it works,

상기 1단측 응축기(20a) 출구라인(21a)에서 유동되는 중온고압의 제 1냉매(A)가 내부관(120)으로 유입되어, 1단측 증발기(40a) 출구라인(41a)에서 유동되는 증기냉매가 유입되는 외부관(130)과 상호 열교환되고, 내부관(120)을 흐르는 중온고압의 제 1냉매(A)는 1단측 팽창밸브(30a) 유입측 라인(22a)으로 유동되고, 외부관(130)을 흐르는 증기냉매는 1단측 압축기(10a) 유입측 라인(42a)으로 유동된다.The first refrigerant (A) of medium temperature and high pressure flowing in the outlet line (21a) of the first stage condenser (20a) is introduced into the inner tube (120), and the steam refrigerant flowing in the outlet line (41a) of the first stage side evaporator (40a). Heat exchanged with the outer tube 130 into which the inlet is introduced, and the first refrigerant A having a medium temperature and high pressure flowing through the inner tube 120 flows to the inlet side line 22a of the first stage expansion valve 30a, and the outer tube ( The steam refrigerant flowing through 130 is flowed into the inlet line 42a of the first stage compressor 10a.

또한 도 6에는 상기 1단측 보조열교환기유닛(100)과 1단측 응축기(20a) 사이에 배치되어 1단측 응축기(20a)의 응축압력을 유지시켜 주면서 응축된 고압고온의 액냉매를 중압중온으로 소정압력 낮추어주는 압력유지밸브(110)가 더 구성된다. 상기 1단측 보조열교환기유닛(100)은 소정의 열교환길이를 갖도록 지그재그 형태로 연속 밴딩되어 이루어진 내부관(120)과, 이 내부관(120)을 동심으로 수용하는 외부관(130) 및 이들의 열손실을 방지하는 단열커버(140)로 이루어진다. 외부관(130)은 내부에 내부관(120)을 동심으로 수용하며, 그 유로의 단면적이 내부관(120)의 두께를 포함한 전체 단면적을 제외한 나머지가 증발기(40a)의 유로 단면적과 동일하도록 구성된다. 단열커버(140)는 관상의 단열재로 구성되어 외부관(130) 자체를 감싸준다.In addition, Figure 6 is arranged between the first stage side heat exchanger unit 100 and the first stage side condenser (20a) while maintaining the condensation pressure of the first stage side condenser (20a) to the predetermined high-pressure high-temperature liquid refrigerant to medium pressure medium temperature Pressure maintaining valve 110 for lowering the pressure is further configured. The first stage side heat exchanger unit 100 has an inner tube 120 which is continuously banded in a zigzag form to have a predetermined heat exchange length, an outer tube 130 which concentrically receives the inner tube 120, and their It is made of a heat insulating cover 140 to prevent heat loss. The outer tube 130 accommodates the inner tube 120 concentrically therein and is configured such that the cross section of the flow path is the same as the flow cross section of the evaporator 40a except for the entire cross-sectional area including the thickness of the inner pipe 120. do. The insulation cover 140 is composed of a tubular insulation material to surround the outer tube 130 itself.

상기 압력유지밸브(110)는 1단측 보조열교환기유닛(100)의 내부관(120) 입구쪽에 설치되어 응축기(20a)에서 응축된 고압중온의 냉매액이 무화되지 않을 정도로 유로의 단면적을 감소시켜 줌으로써 그 전?후 냉매액의 압력을 상이하게 유지시킨다.The pressure maintaining valve 110 is installed at the inlet side of the inner tube 120 of the first stage side heat exchanger unit 100 to reduce the cross-sectional area of the flow path such that the refrigerant liquid condensed in the condenser 20a is not atomized. To keep the pressure of the refrigerant liquid different before and after.

부하변동 등의 여건에 구애받지 않도록 냉매액의 압력과 증발압력을 일정하게 유지하기 위한 압력보상기(150)를 함께 구비할 수 있다. 압력보상기(150)는 시스템내의 여분의 냉매를 저장하는 압력보상탱크(153)와, 냉매액의 압력이 소정의 설정치보다 높을 경우 여분의 냉매액을 압력보상탱크(153)로 유도하는 제1압력조절용 체크밸브(152) 및 증발압력이 소정의 설정치보다 낮을 경우 압력보상탱크(153)내의 냉매를 유출시키는 제2압력조절용 체크밸브(155)로 구성된다. 압력보상탱크(153)는 입구가 팽창밸브 직전 관로(151)와 연결되고, 출구는 팽창밸브 직후 관로(41a)로 연결된다. 제1압력조절용 체크밸브(152)는 압력보상탱크(153)의 입구쪽 관로(151)에 설치되어 냉매액의 압력이 소정압력 이상일 경우에만 열리고, 제2압력조절용 체크밸브 (155)는 압력보상탱크(153)의 출구쪽 관로(154)에 설치되어 팽창된 냉매의 압력이 소정압력 이하일 경우에만 열린다.The pressure compensator 150 may be provided together to maintain a constant pressure and evaporation pressure of the refrigerant liquid so as not to be affected by load variation. The pressure compensator 150 includes a pressure compensating tank 153 for storing excess refrigerant in the system, and a first pressure for guiding the extra refrigerant fluid to the pressure compensating tank 153 when the pressure of the refrigerant is higher than a predetermined set value. The control check valve 152 and the second pressure control check valve 155 for flowing out the refrigerant in the pressure compensation tank 153 when the evaporation pressure is lower than a predetermined set value. The pressure compensation tank 153 has an inlet connected to the conduit 151 immediately before the expansion valve and an outlet connected to the conduit 41a immediately after the expansion valve. The first pressure control check valve 152 is installed in the inlet conduit 151 of the pressure compensation tank 153 to open only when the pressure of the refrigerant liquid is greater than or equal to the predetermined pressure, and the second pressure control check valve 155 is pressure compensated. It is installed in the outlet duct 154 of the tank 153 and is opened only when the pressure of the expanded refrigerant is below a predetermined pressure.

다른 실시예로 하절기 피크부하시 심야전력을 이용해 냉수를 생산하여 저수텡크에 저장하였다가, 주간 피크부하에 생산된 냉수를 이용해 냉방시키기 위한 수축열 방식에 대하여 설명한다.As another example, a shrinkage heat method for cooling cold water by using cold water produced during a peak peak load during the summer during the peak load is stored in the storage tank.

도3에는 심야전력을 이용하여 1단측 히트펌프만을 냉방구동시켜, 냉수를 축열하는 수축열 히트펌프 방식이 제시되어 있다. 상기 1단측 열교환기(20a)와 저수탱크의 순환라인의 1단측 증발기-수 열교환기(70a)와 열교환시켜 냉수를 생산하여 저수탱크(70)에 저장한다. 그 작동과정을 살펴보면,3 shows a shrinkage heat pump for cooling cold water by only driving the one-stage side heat pump by using a late-night electric power. The first stage side heat exchanger 20a and the first stage side evaporator-water heat exchanger 70a of the circulation line of the storage tank produce cold water and are stored in the storage tank 70. If you look at how it works,

1단측 제 1냉매(A)의 유동방향은 난방시 운전의 역방향으로 작동된다. 즉, 1단측 압축기(10a)로부터 고온고압의 제 1냉매(A)를 열교환기(40a)로 흘려보내 열교환하고 1단측 팽창변(30a)를 통과한 후 1단측 보조열교환유닛(100)와 1단측 압력유지밸브(110)을 거친 후 1단측 열교환기(20a)와 1단측 열교환기(70a)에서 열교환 후 1단측 압축기(10a) 입구 라인으로 들어간다.The flow direction of the first stage first refrigerant A is operated in the reverse direction of operation during heating. That is, the first refrigerant (A) of high temperature and high pressure flows from the first stage compressor (10a) to the heat exchanger (40a) to exchange heat, and then passes through the first stage expansion valve (30a) and then the first stage side secondary heat exchange unit (100) and the first stage. After passing through the pressure holding valve 110, the first stage side heat exchanger (20a) and the first stage side heat exchanger (70a) after heat exchange enters the first stage compressor (10a) inlet line.

도 1과 도 2에는 히트펌프 1단측 단독운전 또는 1단측과 2단측 동시운전 시 저수탱크(70)의 순환라인이 제시되어 있는데, 그 순환라인을 살펴보면,1 and 2 shows a circulation line of the water storage tank 70 during the single stage operation or the first stage and the second stage simultaneous operation of the heat pump. Looking at the circulation line,

외기 온도가 소정온도 이상이면, 1단측 히트펌프 단독운전을 수행하고, 저수탱크(70)의 순환라인 중 제1체크밸브(71)이 개방되어 1단측 응축기-수 열교환기(70a)로 순환라인의 물이 유동되어 1단측 응축기(20a)의 제 1냉매(A)와 열교환되어 온수가 생산되고, 제2체크밸브(72)가 개방되어 2단측 응축기-수 열교환기(70b)로 유동되지 않고 바이패스되어 저수탱크로 유입된다.If the outside air temperature is higher than the predetermined temperature, the single stage side heat pump is operated alone, and the first check valve 71 is opened in the circulation line of the water storage tank 70 to the first stage side condenser-water heat exchanger 70a. Water is flowed to exchange heat with the first refrigerant (A) of the first stage condenser (20a) to produce hot water, and the second check valve (72) is opened to not flow to the second stage condenser-water heat exchanger (70b). Bypassed into the reservoir tank.

또한 외기 온도가 소정온도 미만이거나 저수탱크(70)의 출수요구온도가 소정온도 이상인 경우에는, 1단측 히트펌프와 2단측 히트펌프 동시운전을 수행하고, 저수탱크(70)의 순환라인 중 제1체크밸브(71)을 폐쇄시켜 순환라인의 물이 1단측 응축기-수 열교환기(70a)는 바이패스시키고, 제2체크밸브(72)를 폐쇄시켜 순환라인의 물을 2단측 응축기-수 열교환기(70b)로 유동시켜 2단측 응축기(20b)의 제 2냉매(B) 와 열교환되어 온수가 생산되어 저수탱크로 유입되도록 하는 온수순환라인을 갖는다.In addition, when the outside temperature is less than the predetermined temperature or the discharge water demand temperature of the water storage tank 70 is more than the predetermined temperature, the first stage side heat pump and the second stage side heat pump are simultaneously operated, and the first of the circulation lines of the storage tank 70 is operated. By closing the check valve 71, the water in the circulation line is bypassed to the first stage condenser-water heat exchanger 70a, and the second check valve 72 is closed to close the water in the circulation line to the second stage condenser-water heat exchanger. It has a hot water circulation line that flows to (70b) to heat exchange with the second refrigerant (B) of the two-stage condenser (20b) to produce hot water is introduced into the reservoir tank.

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 갖는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 게시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이런 실시예에 의하여 본 발명의 기술 사상 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention but to describe the present invention, and the technical scope of the present invention is not limited by these embodiments. The scope of protection of the present invention should be construed according to the following claims, and all technical ideas within the scope of equivalents should be construed as falling within the scope of the present invention.

10a: 1단측 압축기 10b: 2단측 압축기
20a: 1단측 제1응축기 20b: 2단측 응축기
200a: 1단측 제2응축기
21a: 1단측 응축기출구 라인 21b: 2단측 응축기출구 라인
22a: 1단측 팽창밸브 유입측 라인 22b: 2단측 팽창밸브 유입측 라인
23a, 230a: 응축기 입구 개폐밸브 24a, 240a: 응축기출구 개폐밸브
30a: 1단측 팽창밸브 30b: 2단측 팽창밸브
40a: 1단측 증발기 40b: 2단측 증발기
41a: 1단측 증발기측 출구 라인 41b: 2단측 증발기측 출구 라인
42a: 1단측 압축기 유입측 라인 42b: 2단측 압축기 유입측 라인
50a: 1단측 송풍팬
60a: 1단측 사방변 60b: 2단측 사방변
70a: 1단측 응축기-수 열교환기 70b: 2단측 응축기-수 열교환기
70: 저수탱크 71, 72: 제1,2체크밸브
75: 순환펌프
100: 1단측 보조열교환유닛
110: 압력유지밸브 120: 내부관
130: 외부관 140: 단열커버
150: 압력보상기 151: 1단측 보조열교환후 분기라인
152: 제1압력조절용 체크밸브 153: 압력보상탱크
155: 제2압력조절용 체크밸브
200: 2단측 보조열교환유닛(루프 열사이폰식 열교환기)
210: 2단측 보조열교환기의 증발부 220: 2단측 보조열교환기의 기화증기 유동로
221: 2단측 보조열교환기의 냉매량 제어용 전동밸브
230: 2단측 보조열교환기의 응축부 240: 2단측 보조열교환기의 액화증기 유동로
250: 2단측 보조열교환기의 용량조절용 가스저장소
251: 2단측 보조열교환기의 용량조절용 실린더
10a: single stage compressor 10b: two stage compressor
20a: 1st stage first condenser 20b: 2nd stage condenser
200a: 1st stage 2nd condenser
21a: 1st stage condenser outlet line 21b: 2nd stage condenser outlet line
22a: 1st stage expansion valve inlet line 22b: 2nd stage expansion valve inlet line
23a, 230a: condenser inlet open / close valve 24a, 240a: condenser outlet open / close valve
30a: 1st stage expansion valve 30b: 2nd stage expansion valve
40a: single stage evaporator 40b: two stage evaporator
41a: 1st stage evaporator side outlet line 41b: 2nd stage evaporator side outlet line
42a: 1st stage compressor inlet line 42b: 2nd stage compressor inlet line
50a: 1 stage blower
60a: One-sided Four Sides 60b: Two-sided Four Sides
70a: one-stage condenser-water heat exchanger 70b: two-stage condenser-water heat exchanger
70: reservoir tank 71, 72: first and second check valve
75: circulation pump
100: 1 side auxiliary heat exchange unit
110: pressure holding valve 120: inner tube
130: outer tube 140: insulation cover
150: pressure compensator 151: branch line after the first stage secondary heat exchange
152: check valve for the first pressure adjustment 153: pressure compensation tank
155: second pressure control check valve
200: 2-stage auxiliary heat exchange unit (loop thermosiphon heat exchanger)
210: evaporation section of the two-stage side heat exchanger 220: vaporization steam flow path of the two-stage side heat exchanger
221: electric valve for controlling the amount of refrigerant in the second stage side heat exchanger
230: Condensation unit of the two-stage side heat exchanger 240: Liquefied steam flow path of the two-stage side heat exchanger
250: gas storage for capacity control of two stage secondary heat exchanger
251: cylinder for capacity regulation of the second stage side heat exchanger

Claims (10)

제 1냉매(A)를 고온고압으로 압축하는 1단측 압축기(10a)와;
고온고압의 제 1냉매(A)를 응축하여 액화시키는 1단측 제1응축기(20a) 또는 1단측 제2응축기(200a)와;
상기 1단측 제1응축기(20a) 또는 1단측 제2응축기(200a)와 연결되어, 1단측 증발기(40a)에서 1단측 압축기(10a)로 유동하는 저온저압의 냉매와 열교환시키는 1단측 보조열교환기유닛(100)과;
상기 1단측 보조열교환기유닛(100)을 거친 제 1냉매(A)를 고온저압의 기체상태로 만드는 1단측 팽창밸브(30a)와;
상기 1단측 팽창밸브(30a)를 거친 제 1냉매(A)를 기화시키는 1단측 증발기(40a)와;
상기 1단측 증발기(40a)의 1단측 송풍팬(50a);를 포함하는 1단측 히트펌프로 이루어지며,
제 2냉매(B)를 고온고압으로 압축하는 2단측 압축기(10b)와;
고온고압의 제 1냉매(B)를 응축하여 액화시키는 2단측 응축기(20b)와;
상기 2단측 응축기(20b)와 연결되어, 2단측 증발기(40b)에서 2단측 압축기(10b)으로 유동하는 저온저압의 냉매와 열교환시키는 2단측 루프 열사폰식 보조열교환기유닛(200)과;
상기 2단측 루프 열사폰식 보조열교환기유닛(200)은 제 3 냉매(C)가 순환되는 증발부(210), 기화증기 유동로(220), 응축부(230), 액화증기 유동로(240)로 이루어지며,
상기 2단측 루프 열사폰식 보조열교환기유닛(200)을 거친 제 2냉매(B)를 고온저압의 기체상태로 만드는 2단측 팽창밸브(30b)와;
상기 2단측 팽창밸브(30b)를 거친 제 2냉매(B)를 기화시키는 2단측 증발기(40b);를 포함하는 2단측 히트펌프로 이루어지며,
저수탱크(70)의 순환라인이 상기 1단측 응축기(20a)와 열교환되거나, 2단측 응축기(20b)와 열교환되어 가열된 온수가 저수탱크로 순환되는 순환라인으로 이루어지며,
춘추절기 및 동절기에 외기 온도가 소정온도 이상인 경우에는 1단측 히트펌프 단독운전을 수행하고, 외기온도가 소정온도 미만인 경우에는 1단측 히트펌프와 2단측 히트펌프가 동시운전되어 온수를 생산하는 것을 특징으로 하는 이원냉동사이클을 이용한 히트펌프시스템.
A first stage compressor (10a) for compressing the first refrigerant (A) at high temperature and high pressure;
A first stage first condenser 20a or a first stage second condenser 200a for condensing and liquefying the first refrigerant A having a high temperature and high pressure;
The first stage side heat exchanger is connected to the first stage side condenser 20a or the second stage side condenser 200a to exchange heat with the low temperature low pressure refrigerant flowing from the first stage side evaporator 40a to the first stage side compressor 10a. Unit 100;
A first stage expansion valve (30a) for making the first refrigerant (A) passed through the first stage side auxiliary heat exchanger unit (100) into a gas state of high temperature and low pressure;
A first stage evaporator (40a) for vaporizing the first refrigerant (A) having passed through the first stage expansion valve (30a);
Consists of a one-stage side heat pump including; one-stage side blowing fan 50a of the one-stage side evaporator 40a,
A two stage compressor (10b) for compressing the second refrigerant (B) at high temperature and high pressure;
A two-stage side condenser 20b for condensing and liquefying the first refrigerant B having a high temperature and high pressure;
A two-stage side loop heat sapon type auxiliary heat exchanger unit (200) connected to the two-stage side condenser (20b) to exchange heat with a low temperature low pressure refrigerant flowing from the two-stage side evaporator (40b) to the two-stage compressor (10b);
The two-stage side loop heat sapon type auxiliary heat exchanger unit 200 includes an evaporator 210, a vaporized steam flow path 220, a condensation part 230, and a liquefied vapor flow path 240 in which a third refrigerant C is circulated. It consists of
A two-stage expansion valve (30b) for making the second refrigerant (B), which has passed through the two-stage side loop heatsonic auxiliary heat exchanger unit (200), into a gas state at high temperature and low pressure;
Consists of a two-stage side heat pump comprising a; two-stage side evaporator (40b) for evaporating the second refrigerant (B) through the two-stage expansion valve (30b),
The circulation line of the reservoir tank 70 is heat-exchanged with the first stage condenser 20a, or the hot water heated by heat exchange with the second stage condenser 20b.
In the spring and winter, when the outside air temperature is higher than the predetermined temperature, the single-stage heat pump is operated alone, and when the outside temperature is less than the predetermined temperature, the first-stage heat pump and the second-stage heat pump are operated simultaneously to produce hot water. Heat pump system using a binary refrigeration cycle.
제1항에 있어서,
상기 외기온도가 소정 온도는 미만인 경우에는, 1단측 제1응축기(20a)와 온수 순환라인의 1단측 응축기-수 열교환기(70a)는 열교환되지 않고, 2단측 응축기(20b)와 온수 순환라인의 2단측 응축기-수 열교환기(70b)가 열교환되어 온수를 생산하는 것을 특징으로 하는 이원냉동사이클을 이용한 히트펌프시스템.
The method of claim 1,
When the outside air temperature is less than a predetermined temperature, the first stage condenser 20a and the first stage condenser-water heat exchanger 70a of the hot water circulation line are not heat-exchanged, and the second stage condenser 20b and the hot water circulation line are Heat pump system using a two-stage side condenser-water heat exchanger (70b) heat exchange to produce hot water.
제1항에 있어서,
하절기에는 1단측 사방변(60a)의 제 1냉매(A)유로를 변경하여 1단측 증발기(40a)가 응축기 기능을 하도록 함으로써 1단측 제1열교환기(20a)와 1단측 응축기-수 열교환기(70a)가 열교환되어 냉수를 생산하는 것을 특징으로 하는 이원냉동사이클을 이용한 히트펌프시스템.
The method of claim 1,
In the summer season, the first stage (A) flow path of the first stage side-side (60a) is changed so that the first stage side evaporator (40a) functions as a condenser so that the first stage side heat exchanger (20a) and the first stage side condenser-water heat exchanger ( Heat pump system using a dual refrigeration cycle, characterized in that 70a) is heat exchanged to produce cold water.
제1항에 있어서,
상기 2단측 응축기(20b)에서 응축된 제 2냉매(B)가 유동되는 냉매관이 상기 2단측 루프 열사폰식 보조열교환기유닛(200)의 증발부(210)내에 위치되어, 제 3냉매(C)와 열교환되어 제 2냉매(B)는 냉각되고, 제 3냉매(C)는 기화되어 기화증기 유동로(220)를 통해 응축부(230)로 유동되며, 상기 2단측 증발기(40b)에서 기화된 제 2냉매(B)가 유동되는 냉매관이 상기 2단측 루프 열사폰식 보조열교환기유닛(200)의 응축부(230)내에 위치되어, 제 3냉매(C)와 열교환되어 제 2냉매(B)는 과열되고, 제 3냉매(C)는 응축되어 액화증기 유동로(240)를 통해 증발부(210)으로 유동되는 것을 특징으로 하는 이원냉동사이클을 이용한 히트펌프시스템.
The method of claim 1,
A refrigerant pipe through which the second refrigerant B condensed in the second stage condenser 20b flows is located in the evaporation unit 210 of the second stage side loop heat sapon type auxiliary heat exchanger unit 200, and the third refrigerant C The second refrigerant (B) is cooled, the third refrigerant (C) is evaporated and flows to the condensation unit (230) through the vaporization steam flow path (220), and vaporizes in the second stage evaporator (40b). The refrigerant pipe through which the second refrigerant B flows is located in the condensation unit 230 of the second stage side heat exchanger subsidiary heat exchanger unit 200, and is heat-exchanged with the third refrigerant C to thereby exchange the second refrigerant B. ) Is overheated, and the third refrigerant (C) is condensed and flows to the evaporator 210 through the liquefied vapor flow path 240, the heat pump system using a two-way refrigeration cycle.
제4항에 있어서,
상기 2단측 루프 열사폰식 보조열교환기유닛(200)의 제 3냉매(C)순환라인중 기화증기 유동로(220)에는 2단측 압축기(10b)의 토출압력에 따라 기화증기 유동로(220)에 유동되는 냉매량을 제어하는 전동밸브(221)를 더 포함하는 것을 특징으로 하는 이원냉동사이클을 이용한 히트펌프시스템.
5. The method of claim 4,
In the vaporization steam flow path 220 of the third refrigerant (C) circulation line of the two-stage side loop heatspan auxiliary heat exchanger unit 200, the vaporization steam flow path 220 is formed according to the discharge pressure of the two-stage compressor 10b. Heat pump system using a binary refrigeration cycle, characterized in that it further comprises an electric valve for controlling the amount of refrigerant flowing.
제4항에 있어서,
상기 2단측 루프 열사폰식 보조열교환기유닛(200)에는 응축부(230)의 일측에는 2단측 보조열교환기의 용량조절용 가스저장소(250)와 2단측 보조열교환기의 용량조절용 실린더(251)를 구비하여, 증발부(210)에서의 압력이 높을 경우에는 응축부의 열교환면적을 증가시키고, 증발부(210)에서의 압력이 낮을 경우에는 응축부의 열교환면적으로 감소시키도록 2단측 보조열교환기의 용량조절용 실린더(251)가 이동되도록 제어되는 것을 특징으로 하는 이원냉동사이클을 이용한 히트펌프시스템.
5. The method of claim 4,
The two-stage side loop heatsonic subsidiary heat exchanger unit 200 includes a gas storage unit 250 for adjusting the capacity of the two-stage side heat exchanger and a capacity control cylinder 251 for the two-stage side heat exchanger on one side of the condensation unit 230. Thus, when the pressure in the evaporator 210 is high, the heat exchange area of the condensation unit is increased, and when the pressure in the evaporator 210 is low, the capacity of the second stage side heat exchanger is reduced to reduce the heat exchange area of the condenser. Heat pump system using a binary refrigeration cycle, characterized in that the cylinder 251 is controlled to move.
제1항 또는 제3항 중 어느 하나의 항에 있어서,
상기 1단측 보조열교환기유닛(100)은 상기 1단측 제1응축기(20a) 또는 1단측 제2응축기(200a)에서 응축된 제 1냉매가 유동되는 내부관(120)과 1단측 증발기(40a)에서 기화된 제 1냉매가 유동되는 외부관(130)이 동심을 이루고, 외부관(130)을 감싸는 단열커버(140)로 이루어져 고압의 액냉매과 저압의 증기냉매를 열교환시키는 것을 특징으로 하는 이원냉동사이클을 이용한 히트펌프시스템.
The method according to any one of claims 1 to 3,
The first stage side heat exchanger unit 100 includes an inner tube 120 and a first stage evaporator 40a through which the first refrigerant condensed in the first stage first condenser 20a or the first stage second condenser 200a flows. The outer tube 130, the condensation of the first refrigerant flows in the condensation, and consists of a heat insulating cover 140 surrounding the outer tube 130, two-way refrigeration characterized in that the high-pressure liquid refrigerant and low-pressure steam refrigerant heat exchange Cycle heat pump system.
제7항에 있어서,
상기 1단측 보조열교환기유닛(100)의 내부관(120) 입구쪽에 설치되고, 1단측 응축기(20a)에서 응축된 고압 액냉매의 압력을 소정압력 강하시키면서 1단측 제1응축기(20a) 또는 1단측 제2응축기(200a)의 응축압력을 유지시켜주는 압력유지밸브(110)를 더 포함하는 것을 특징으로 하는 이원냉동사이클을 이용한 히트펌프시스템.
The method of claim 7, wherein
The first stage side condenser 20a or 1 is installed at the inlet side of the inner tube 120 of the first stage side heat exchanger unit 100 and the pressure of the high pressure liquid refrigerant condensed in the first stage side condenser 20a is reduced by a predetermined pressure. Heat pump system using a two-way refrigeration cycle, characterized in that it further comprises a pressure maintaining valve (110) for maintaining the condensation pressure of the second side condenser (200a).
제8항에 있어서,
입구는 상기 1단측 팽창밸브(30a) 직전 관로로 연결되고 출구는 1단측 팽창밸브(30a) 직후 관로로 연결되어 여분의 제 1냉매(A)를 저장하는 압력보상탱크(153)와, 상기 압력보상탱크(153)의 유입관로에 설치되어 냉매액의 압력이 소정압력 이상일 경우에만 열리는 제1압력조절용 체크밸브(152) 및 상기 압력보상탱크(153)의 유출관로에 설치되어 증발압력이 소정압력 이하일 경우에만 열리는 제2압력조절용 체크밸브(155)로 이루어진 압력보상기(150)를 더 포함하는 것을 특징으로 하는 이원냉동사이클을 이용한 히트펌프시스템.
9. The method of claim 8,
Inlet is connected to the pipeline immediately before the first stage expansion valve (30a) and the outlet is connected to the pipeline immediately after the first stage expansion valve (30a) and the pressure compensation tank 153 for storing the first refrigerant (A) and the pressure The first pressure control check valve 152 installed in the inlet pipe of the compensation tank 153 and opened only when the pressure of the refrigerant liquid is equal to or greater than the predetermined pressure, and the evaporation pressure is installed in the outlet pipe of the pressure compensation tank 153. Heat pump system using a dual refrigeration cycle, characterized in that it further comprises a pressure compensator (150) consisting of a second pressure control check valve (155) to open only when the following.
제1항에 있어서,
춘추절기 및 동절기에 외기 온도가 소정온도 이상인 경우에는 1단측 히트펌프 단독운전을 수행하고, 저수탱크(70)의 순환라인중 1단측 응축기-수 열교환기는 1단측 제1응축기(20a)와 열교환되어 온수가 생산되고, 2단측 응축기-수 열교환기(70b)로 유동되지 않고 바이패스되어 저수탱크로 유입되며,
외기 온도가 소정온도 미만이거나 저수탱크(70)의 출수요구온도가 소정온도 이상인 경우에는 1단측 히트펌프와 2단측 히트펌프 동시운전을 수행하고, 저수탱크(70)의 순환라인 중 1단측 응축기-수 열교환기(70a)는 바이패스시키고, 2단측 응축기-수 열교환기(70b)로 유동시켜 2단측 응축기(20b)와 열교환되어 온수가 생산되어 저수탱크로 유입되도록 하는 온수순환라인을 더 포함하는 것을 특징으로 하는 이원냉동사이클을 이용한 히트펌프시스템.
The method of claim 1,
When the outside air temperature is higher than the predetermined temperature in the spring and winter seasons, the single stage side heat pump is operated alone, and the first stage side condenser-water heat exchanger in the circulation line of the water storage tank 70 exchanges heat with the first stage side condenser 20a. Hot water is produced, bypassed without flowing into the two-stage condenser-water heat exchanger (70b) and introduced into the reservoir tank,
If the outside air temperature is lower than the predetermined temperature or the water discharge demand temperature of the water storage tank 70 is higher than the predetermined temperature, the first stage side heat pump and the second stage side heat pump are simultaneously operated, and the first stage condenser in the circulation line of the storage tank 70 The water heat exchanger 70a bypasses and flows to the two-stage condenser-water heat exchanger 70b to exchange heat with the two-stage condenser 20b so that hot water is produced and introduced into the water storage tank. Heat pump system using a binary refrigeration cycle, characterized in that.
KR1020120116224A 2012-10-18 2012-10-18 Heat Pump System With 2- Stage cascade Refrigeration Cycle KR101206794B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120116224A KR101206794B1 (en) 2012-10-18 2012-10-18 Heat Pump System With 2- Stage cascade Refrigeration Cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120116224A KR101206794B1 (en) 2012-10-18 2012-10-18 Heat Pump System With 2- Stage cascade Refrigeration Cycle

Publications (1)

Publication Number Publication Date
KR101206794B1 true KR101206794B1 (en) 2012-11-30

Family

ID=47565707

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120116224A KR101206794B1 (en) 2012-10-18 2012-10-18 Heat Pump System With 2- Stage cascade Refrigeration Cycle

Country Status (1)

Country Link
KR (1) KR101206794B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103216936A (en) * 2013-04-11 2013-07-24 王子忠 Environment-friendly energy-saving five-heating five-efficiency high temperature heat pump hot water unit system
KR20160096990A (en) * 2015-02-06 2016-08-17 주식회사 성진플랜트 Heat pump and driving method for the same
CN109028571A (en) * 2018-09-19 2018-12-18 东莞市正旭新能源设备科技有限公司 overlapping air source heat pump
CN110500686A (en) * 2019-09-05 2019-11-26 天津商业大学 A kind of multi-temperature zone multi-generation system
CN110822754A (en) * 2019-12-13 2020-02-21 苏州必信空调有限公司 Distributed heating system
KR102101881B1 (en) * 2018-11-02 2020-04-17 유대영 High temperature water heat pump system of using water heat source
KR20200050688A (en) * 2018-11-02 2020-05-12 유대영 Heat pump system with cleaning device
CN111197874A (en) * 2020-02-28 2020-05-26 克莱门特捷联制冷设备(上海)有限公司 Cascade type air conditioner heat pump system and control method thereof
CN111219910A (en) * 2019-12-16 2020-06-02 浙江工业大学 Frostless air source cascade heat pump for solution icing
CN114109475A (en) * 2021-11-17 2022-03-01 中煤科工集团沈阳研究院有限公司 Two-stage compression refrigeration type nitrogen low-temperature cooling system for underground coal mine and control method
CN114777355A (en) * 2022-04-28 2022-07-22 浙江中广电器集团股份有限公司 Novel ultra-high temperature energy-saving heat pump using EVI (air supply and enthalpy increase) technology

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200274119Y1 (en) 2002-01-28 2002-05-03 류옥란 Heat pump system
KR100794271B1 (en) 2006-11-13 2008-01-11 주식회사 국민에너지 Heat pump system that use duality compression type

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200274119Y1 (en) 2002-01-28 2002-05-03 류옥란 Heat pump system
KR100794271B1 (en) 2006-11-13 2008-01-11 주식회사 국민에너지 Heat pump system that use duality compression type

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103216936A (en) * 2013-04-11 2013-07-24 王子忠 Environment-friendly energy-saving five-heating five-efficiency high temperature heat pump hot water unit system
KR20160096990A (en) * 2015-02-06 2016-08-17 주식회사 성진플랜트 Heat pump and driving method for the same
KR101664239B1 (en) * 2015-02-06 2016-10-10 주식회사 성진플랜트 Heat pump and driving method for the same
CN109028571A (en) * 2018-09-19 2018-12-18 东莞市正旭新能源设备科技有限公司 overlapping air source heat pump
KR102101881B1 (en) * 2018-11-02 2020-04-17 유대영 High temperature water heat pump system of using water heat source
KR20200050688A (en) * 2018-11-02 2020-05-12 유대영 Heat pump system with cleaning device
KR102156101B1 (en) * 2018-11-02 2020-09-15 유대영 Heat pump system with cleaning device
CN110500686A (en) * 2019-09-05 2019-11-26 天津商业大学 A kind of multi-temperature zone multi-generation system
CN110822754A (en) * 2019-12-13 2020-02-21 苏州必信空调有限公司 Distributed heating system
CN111219910A (en) * 2019-12-16 2020-06-02 浙江工业大学 Frostless air source cascade heat pump for solution icing
CN111197874A (en) * 2020-02-28 2020-05-26 克莱门特捷联制冷设备(上海)有限公司 Cascade type air conditioner heat pump system and control method thereof
CN114109475A (en) * 2021-11-17 2022-03-01 中煤科工集团沈阳研究院有限公司 Two-stage compression refrigeration type nitrogen low-temperature cooling system for underground coal mine and control method
CN114777355A (en) * 2022-04-28 2022-07-22 浙江中广电器集团股份有限公司 Novel ultra-high temperature energy-saving heat pump using EVI (air supply and enthalpy increase) technology

Similar Documents

Publication Publication Date Title
KR101206794B1 (en) Heat Pump System With 2- Stage cascade Refrigeration Cycle
Jensen et al. Optimal operation of simple refrigeration cycles: Part I: Degrees of freedom and optimality of sub-cooling
EP2397782B1 (en) Hot water supply device associated with heat pump
CN102667366B (en) Aircondition
US9618214B2 (en) Energy exchange system and method
JP2006522310A (en) Energy efficiency improvement device for refrigeration cycle
KR20100059170A (en) Heat pump storage system
JP2018132269A (en) Heat pump system
KR20100059176A (en) Storage system
KR20130044889A (en) A regenerative air-conditioning apparatus
Konrad et al. Cold climate air source heat pumps: Industry progress and thermodynamic analysis of market-available residential units
JP2012123786A (en) Automatic vending machine
JP2018096560A (en) Heat transfer unit and binary hot water generation device
CN213089944U (en) Constant temperature refrigerating plant
KR101823469B1 (en) High temperature hot water supply and heating and air conditioning system with partial load using dual cycle
JP2012117717A (en) Heat pump type heat storage water heater capable of reheating, and chiller
KR20100005734U (en) Heat pump storage system
KR20100046365A (en) Heat pump system
KR200412598Y1 (en) Heat pump system for having function of hot water supply
CN216385030U (en) Heat increasing type heat pump heating and drying device
KR20100005735U (en) storage system
KR20110076529A (en) The dualistic regenerative system air-conditioning apparatus
KR101258096B1 (en) Two step compression heat pump system
CN108759156B (en) Secondary throttling middle incomplete cooling two-stage compression heat pump system
KR101961170B1 (en) Method for Multiple Heat Source Multi Heat Pump System with Air Heat Source Cooling Operation, Air Heat Source Heating Operation, Water Heat Source Cooling and Heating Simultaneous Operation, Water Heat Source Heating and Cooling Simultaneous Operation

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151120

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161125

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171124

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181126

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191111

Year of fee payment: 8