KR101203384B1 - Production of lithium diphenylphosphide - Google Patents

Production of lithium diphenylphosphide Download PDF

Info

Publication number
KR101203384B1
KR101203384B1 KR1020107020130A KR20107020130A KR101203384B1 KR 101203384 B1 KR101203384 B1 KR 101203384B1 KR 1020107020130 A KR1020107020130 A KR 1020107020130A KR 20107020130 A KR20107020130 A KR 20107020130A KR 101203384 B1 KR101203384 B1 KR 101203384B1
Authority
KR
South Korea
Prior art keywords
solvent
solution
lithium
dem
reaction
Prior art date
Application number
KR1020107020130A
Other languages
Korean (ko)
Other versions
KR20100112649A (en
Inventor
제프리 앨런 맥콜
마크 제이 힌체
Original Assignee
록우드 리튬 잉크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 록우드 리튬 잉크 filed Critical 록우드 리튬 잉크
Publication of KR20100112649A publication Critical patent/KR20100112649A/en
Application granted granted Critical
Publication of KR101203384B1 publication Critical patent/KR101203384B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5045Complexes or chelates of phosphines with metallic compounds or metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/04Halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5022Aromatic phosphines (P-C aromatic linkage)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은, 예를 들면 디에톡시메탄(diethoxymethane; DEM)과 같이, 테트라하이드로푸란(tetrahydrofuran; THF)이 용매로서 사용될 때 보다 더 안정된 용매내 리튬 디페닐포스피드(lithium diphenyphosphide) 용액에 관한 것이다. 또한, 본 발명은 이들을 제조하는 방법을 제공한다.The present invention relates to a solution of lithium diphenylyphosphide in a solvent which is more stable than when tetrahydrofuran (THF) is used as the solvent, for example diethoxymethane (DEM). The present invention also provides a method of making them.

Description

리튬 디페닐포스피드의 제조{PRODUCTION OF LITHIUM DIPHENYLPHOSPHIDE}Production of lithium diphenyl phosphide {PRODUCTION OF LITHIUM DIPHENYLPHOSPHIDE}

본 출원은 2008년 2월 15일에 출원된 미국 가 특허출원 번호 제61/029,273호로서 미국특허법 35의 제119(e)조 규정의 적용을 청구한다.This application claims the application of the provisions of section 119 (e) of US Patent Law No. 61 / 029,273, filed February 15, 2008.

본 발명은 테트라하이드로푸란(tetrahydrofuran; THF)이 용매로서 사용될 때 보다 더 안정된 용매, 예를 들면, 디에톡시메탄(dimethoxymethane; DEM) 내의 리튬 디페닐포스피드(디페닐인화 리튬; lithium diphenylphosphide) 용액, 및 이들의 제조방법에 관한 것이다.The present invention provides a more stable solvent than tetrahydrofuran (THF) when used as a solvent, for example, a solution of lithium diphenylphosphide (lithium diphenylphosphide) in dimethoxymethane (DEM), And it relates to a production method thereof.

리튬 디페닐포스피드는 상업적으로, 예를 들면 유기 및 무기 화합물질 합성에서 수산기(hydroxyl group)를 제거하는데 사용되거나, 유기금속 촉매에서 리간드로서 사용된다. 일반적으로, 리튬 디페닐포스피드는 테트라하이드로푸란내에 용매로서 제공된다. 이러한 상업적으로 이용가능한 용액인 리튬 디페일포스피드가 테트라하이드로푸란내에 이용될 수는 하지만, 이들은 매우 안정적이지 못하여 상업적으로 실용적이지 못하다. 디페닐포스피드의 신규하고 안정된 제형이 필요로 된다.Lithium diphenylphosphide is used commercially, for example to remove hydroxyl groups in organic and inorganic compound synthesis, or as ligand in organometallic catalysts. In general, lithium diphenylphosphide is provided as a solvent in tetrahydrofuran. Although these commercially available solutions, lithium dipalephosphide, can be used in tetrahydrofuran, they are not very stable and are not commercially viable. There is a need for new and stable formulations of diphenylphosphide.

미국 특허출원 제5,866,720호에는 트리아릴포스핀(triarylphosphine)을 분자 수소의 존재하의 희석된 무수 유기 액체내에 2상 혼합물 하나 또는 그 이상의 알칼리 금속, 바람직하게는 나트륨 및 칼륨의 혼합 형성된 알칼리디아릴포스피드가 개시되어 있다.U.S. Patent Application No. 5,866,720 discloses triarylphosphine in which an alkali diaryl phosphide is formed by mixing one or more alkali metals, preferably sodium and potassium, in a biphasic mixture in a dilute anhydrous organic liquid in the presence of molecular hydrogen. Is disclosed.

시클로알킬디아릴포스핀(cycloalkyldiarylphosphine)을 형성하기 위하여, 앞서 언급한 공정에서 형성된 반응 혼합물중 적어도 일부분(또는 이로부터 회수된 알칼리 금속 디아릴포스피드) 및 시클로알킬 메실레이트(mesylate) 또는 토실레이트(tosylate)를 함께 혼합하고 적당한 반응 조건하에 유지시킨다. 후 반응은 전 반응으로부터의 나트륨 잔류물의 존재로 수행된다. 수소 대기하에서 후 반응 수행은은 바람직하지 못한 부반응을 억제하게 된다.In order to form cycloalkyldiarylphosphine, at least a portion (or alkali metal diarylphosphide recovered therefrom) and cycloalkyl mesylate or tosylate (recovered therefrom) formed in the aforementioned process tosylate) are mixed together and maintained under appropriate reaction conditions. The post reaction is carried out in the presence of sodium residues from the previous reaction. Performing the post reaction under hydrogen atmosphere will inhibit undesirable side reactions.

따라서, 본 발명의 목적은 용액이 THF하의 용액보다 더 안정되게 하는, 용매내 디페닐포스피드의 안정된 용액을 제공하는 것이다. 상기 용액을 제조하고 사용하는 방법은, 또한 본 발명의 범위내에 포함되는 것임을 밝혀둔다. 용매는 에테를 포함하는 것이 바람직하고, 산소 주위에 최소한의 입체 장애를(steric hindrance) 갖는 에테르들(예를 들면, C1-C5)을 포함하는 것이 더 바람직하다. 또 다른 바람직한 용매로는 2-메틸테트라하이드로푸란(2-methyltetrahydrofuran; 2MeTHF)을 들 수 있고, 이것은 THF와 비교하여 개선된 안정성을 갖고 있다. It is therefore an object of the present invention to provide a stable solution of diphenylphosphide in a solvent which makes the solution more stable than the solution under THF. It is to be understood that the methods for preparing and using such solutions are also within the scope of the present invention. The solvent preferably comprises an ether and more preferably comprises ethers (eg C 1 -C 5 ) with minimal steric hindrance around oxygen. Another preferred solvent is 2-methyltetrahydrofuran (2MeTHF), which has improved stability compared to THF.

본 발명의 요약SUMMARY OF THE INVENTION

본 발명은 부분적으로는 리튬 디페닐포스피드 및 용액 조성물이 테트라하이드로푸란일 때 보다 더 안정된 용액을 생성하는 용매를 포함하는 용액에 관한 것이다. 1 내지 4주의 기간, 바람직하게는 4주 동안 비활성의 정압 아르곤 대기상태로 조절된 배양기에서 20℃ 및 35℃로 온도 조절된 대기하에서 테스트할 때, THF 제형과 비교하여 안정성이 상당히 향상된다. 바람직한 실시예로서, 상기 용매는 유기 용매를 포함하거나 유기용매 자체이다. 상기 용매는 1 내지 5 탄소 유기체를 포함하고, 적어도 하나의 산소 원자를 포함하는 것이 바람직하다. 상기 용매는 2-메틸테트라하이드로푸란 또는 에테르, 예를 들어, 디에틸에테르; 디메톡시메탄, 및 트리에틸오르토포르메이트(triethylorthoformate)를 포함하는 것이 바람직하다. 용매의 혼합액은 본 발명의 범위내 임을 밝혀 둔다. The present invention relates, in part, to a solution comprising lithium diphenylphosphide and a solvent that produces a more stable solution than when the solution composition is tetrahydrofuran. Stability is significantly improved compared to THF formulations when tested under temperature controlled atmospheres at 20 ° C. and 35 ° C. in incubators adjusted to an inert static pressure argon atmosphere for a period of 1 to 4 weeks, preferably 4 weeks. In a preferred embodiment, the solvent comprises an organic solvent or is the organic solvent itself. The solvent preferably contains 1 to 5 carbon organisms, preferably at least one oxygen atom. The solvent may be 2-methyltetrahydrofuran or an ether such as diethyl ether; It is preferred to include dimethoxymethane, and triethylorthoformate. It is noted that the mixed solution of the solvent is within the scope of the present invention.

본 발명의 조성물을 제조하는 바람직한 방법은, 예를 들면 상기에서 설명한 바와 같이, 용매에 리튬 금속과 클로로디페닐포스핀(chlorophenylphosphine)을 함께 첨가하는 단계, 상기 용매의 용액내 리튬 디페닐포스피드를 형성하도록 반응시키는 단계를 포함하고, 이때 상기 용매는 테트라하이드로푸란의 등가 몰량이 용매로써 사용될 때 보다 더 안정된 용액을 생성시키는 것을 특징으로 한다. 그러나, 어떠한 양의 THF가 사용되더라도 생성물의 안정도는 감소된다.Preferred method for preparing the composition of the present invention, for example, as described above, by adding lithium metal and chlorophenyl phosphine (chlorophenylphosphine) to the solvent, the lithium diphenyl phosphide in the solution of the solvent Reacting to form, wherein the solvent is characterized by producing a more stable solution than when the equivalent molar amount of tetrahydrofuran is used as the solvent. However, whatever amount of THF is used, the stability of the product is reduced.

본 반응은 30℃ 내지 80℃의 온도에서 수행된다.The reaction is carried out at a temperature of 30 ° C to 80 ° C.

바람직한 실시예에 있어서, 개시제(initiator)는 디페닐포스피드의 제형을 향상시키기 위하여 용액에 첨가된다. 개시제는 1,2-디브로모에탄(dibromoethane)이 바람직하다.
In a preferred embodiment, an initiator is added to the solution to enhance the formulation of diphenylphosphide. The initiator is preferably 1,2-dibromoethane.

발명의 상세한 설명DETAILED DESCRIPTION OF THE INVENTION

본 발명의 디페닐포스피드 용액은, 용매가 THF인 용액에 비교하여 향상된 안정성을 제공한다. 2MeTHF가 용매로서 사용될 때 향상된 결과를 나타내지만, 전반적으로 향상된 안정성을 제공하는 어떠한 종류의 유기 용매도 사용될 수 있다.The diphenylphosphide solution of the present invention provides improved stability compared to a solution where the solvent is THF. Although 2MeTHF shows improved results when used as a solvent, any kind of organic solvent that provides improved overall stability can be used.

바람직한 용매는 C1-C5 화합물이고, 산소를 포함하거나 산소가 적어도 하나 의 탄소를 치환하는 형태의 화합물이 바람직하다. 예를 들면 에테르의 경우와 같이, 산소가 하나의 탄소 원자를 치환할 때, 적어도 2개의 탄소 원자(디메틸에테르의 경우와 같이)가 존재하는 것이 바람직하다. 푸란과 동일하게, 에테르는 바람직한 용매 그룹이다. 에테르는 1 또는 2개의 에테르 단위(-C-O-C-)를 갖는 에테르를 포함하는 것이 바람직하고, 선형의 사슬 형태인 에테르들이 보다 바람직하다. 디에틸에테르, 메틸에틸에테르 및 디프로필에테르가 가장 바람직하고, 따라서 6개의 탄소를 갖는 화합물이 또한 선호된다.Preferred solvents are C 1 -C 5 compounds, with compounds of the form comprising oxygen or of which oxygen replaces at least one carbon. For example, as in the case of ethers, when oxygen substitutes for one carbon atom, it is preferred that at least two carbon atoms (as in the case of dimethyl ether) are present. Like furan, ethers are the preferred solvent group. The ether preferably comprises an ether having one or two ether units (-COC-), more preferably ethers in linear chain form. Diethyl ether, methylethyl ether and dipropyl ether are most preferred, and therefore compounds having 6 carbons are also preferred.

바람직한 푸란은 2MeTHF이고, 이것은 메틸기를 갖지 않는 대응 THF에 비교하여 향상된 결과를 생성한다.Preferred furan is 2MeTHF, which produces improved results compared to the corresponding THF without the methyl group.

리튬 금속은 거의 불순물을 갖지 않는 순수 리튬이 바람직하지만, 보다 실질적으로는 0.001 내지 2 중량%, 1.0 내지 1.5 중량% 범위의 나트륨을 포함하는 것이 바람직하다. 상기 리튬 금속은 어떠한 형태로도 제공될 수 있지만, 리튬 금속입자가 특히 바람직하고, 통상적으로는 1 내지 150 마이크론, 바람직하게는 20 내지 30 마이크론의 범위의 평균 입자 크기를 갖는 유기 액체내 분산물(dispersion)로서 제공된다. 만일 리튬 금속이, 예를 들면 헵탄과 같은 분산제(dispersant)내에 분산물로서 제공된다면, 예를 들면, LDPP를 생산하기 위한 선택된 용매로 세척하여, 상기 분산제를 제거할 수 있다. Lithium metal is preferably pure lithium with little impurities, but more preferably comprises sodium in the range of 0.001 to 2% by weight, 1.0 to 1.5% by weight. The lithium metal may be provided in any form, but lithium metal particles are particularly preferred and usually have dispersions in organic liquids having an average particle size in the range of 1 to 150 microns, preferably 20 to 30 microns ( as a dispersion. If lithium metal is provided as a dispersion in a dispersant such as, for example, heptane, the dispersant can be removed, for example, by washing with a selected solvent to produce LDPP.

개시제로는 출발 물질인 p-클로로디페닐포스핀(chlorodiphenyphosphine) 및 리튬을 리튬 디페닐포스피드로 전환시키는 초기 반응 속도를 증가시키는 어떠한 개시제를 사용할 수 있다.As the initiator, p-chlorodiphenyphosphine, which is a starting material, and any initiator that increases the initial reaction rate for converting lithium into lithium diphenylphosphide can be used.

바람직한 실시예에 있어서, 상기 리튬, 상기 용매 및 상기 p-클로로디페닐포스핀은 함께 첨가되고, 30℃ 내지 80℃, 바람직하게는 30℃ 내지 40℃, 또는 40℃ 내지 80℃ 보다 높은 온도에서 반응이 이루어진다. 상기 온도는 50℃ 이하인 것이 바람직한데, 그것은 생성물이 상기 온도 또는 그 이상의 온도에서 분해될 수 있기 때문이다.In a preferred embodiment, the lithium, the solvent and the p-chlorodiphenylphosphine are added together and at a temperature higher than 30 ° C. to 80 ° C., preferably 30 ° C. to 40 ° C., or 40 ° C. to 80 ° C. The reaction takes place. The temperature is preferably below 50 ° C. because the product can decompose at or above this temperature.

상기 반응물은 어떠한 순서로도 혼합될 수 있지만, p-클로로디페닐포스핀을 첨가하기 전에 상기 용매에 상기 리튬 금속을 첨가하는 것이 바람직하다.The reactants may be mixed in any order, but it is preferred to add the lithium metal to the solvent before adding p-chlorodiphenylphosphine.

상기 반응은 반응을 종료시키기에 앞서, 적당한 시간 동안 진행되어야 하는데, 바람직하게는 1분 내지 10시간, 더욱 바람직하게는 20분 내지 5시간 동안 진행되어야 한다. The reaction should proceed for a suitable time, prior to terminating the reaction, preferably for 1 minute to 10 hours, more preferably 20 minutes to 5 hours.

상기 생성물인 리튬 디페닐포스피드는 어떠한 적당한 수단, 예를 들면, 여과에 의해 회수할 수 있다. 온도가 낮으면 낮을수록, 여과를 위해 필요로 되는 시간은 늘어난다.The product, lithium diphenylphosphide, can be recovered by any suitable means, for example by filtration. The lower the temperature, the longer the time required for filtration.

본 발명의 상기 생성물 및 상기 방법의 바람직한 실시예는 하기의 예에서 상세히 설명된다.Preferred embodiments of the product and method of the present invention are described in detail in the following examples.

본 발명의 용액은 THF 이외의 용매를 사용하여 향상되고 안정한 리튬 디페닐포스피드 제형을 제조할 수 있다.The solution of the present invention can be used to prepare enhanced and stable lithium diphenylphosphide formulations using solvents other than THF.

[0010] 도 1은 실시예 38에 따른 DEM내 LDPP의 DSC를 나타내고,
[0011] 도 2 내지 12는 다양한 실시예에 대한 NMR 스펙트럼을 나타내고,
[0012] 도 13 내지 36은 시료의 리튬 디페닐포스피드 안정성 사진이고,
[0013] 도 37은 상기 실시예에 따라 제조된 시료의 적정에 사용된 기구를 나타낸다.
1 shows the DSC of LDPP in the DEM according to Example 38,
[0011] Figures 2 to 12 show the NMR spectra for the various embodiments,
[0012] FIGS. 13 to 36 is a lithium diphenyl phosphide photo stability of the sample,
37 shows the instrument used for titration of samples prepared according to the above examples.

실시예Example 1 One

시료:sample:

헵탄내에 저장된 리튬(New Johnsonville, Chemetall Forte로부터 기술용 등급 금속)(20 내지 30 마이크론의 평균 입자 크기를 갖는 금속내 불순물로서 약 1% 나트륨을 포함함)을 헥산으로 재분산 및 세척하였고, 아르곤으로 건조시켰다. 상기 건조된 분산된 금속을 미네랄 오일과 1: 0.5 wt/wt 비율로 혼합하였고 글러브박스(glovebox)내에 저장하였다. 리튬 분산물에 미네랄 오일을 첨가함으로써 건조된 금속이 글러브박스내 공기중에 비산되는 것을 방지했다. 포함된 것 이상으로 상기 금속에 추가적으로 나트륨을 첨가하지는 않았다.Lithium (technical grade metal from New Johnsonville, Chemetall Forte) stored in heptane (containing about 1% sodium as an impurity in metal with an average particle size of 20 to 30 microns) was redispersed and washed with hexane and Dried. The dried dispersed metal was mixed with mineral oil at a ratio of 1: 0.5 wt / wt and stored in a glovebox. Adding mineral oil to the lithium dispersion prevented the dried metal from scattering in the air in the glovebox. No additional sodium was added to the metal above that contained.

Aldrich(St. Louis, MO)(cat# C39601, 98%)로부터 상업적으로 이용가능한 p-클로로디페닐포스핀(chlorodiphenyphosphine)은 구입된 그대로 사용하였다.Commercially available p-chlorodiphenyphosphine from Aldrich (St. Louis, MO) (cat # C39601, 98%) was used as purchased.

테스트된 용매는 테트라하이드로푸란(비교를 위한 것임), 디에틸에테르 및 2MeTHF를 포함한다. 용매를 건조시켜 사용하기에 전에, 나트륨 금속상에서 상기 용매들을 증류시켰다. 다른 용매는 사용하기에 전에, 분자체(molecular sieve)로 건조시키거나 수분량에 대하여 테스트하였다. 사용하기에 전에 어떠한 정제도 수행하지 않았다.
Solvents tested include tetrahydrofuran (for comparison), diethyl ether and 2MeTHF. Prior to drying the solvent, the solvents were distilled on sodium metal. Other solvents were dried with molecular sieves or tested for moisture content before use. No purification was done before use.

장치:Device:

별도로 기술되지 않는다면, 언급된 모든 반응은 유리 둥근바닥 플라스크내에서 수행하였고, 테플론(Teflon)으로 코팅된 교반봉으로 교반하었다. 모든 반응은 미네랄 오일 분출기(bubbler)를 사용하여 유지된 정압의 아르곤 분위기로 유지시켰다. 보다 적은 반응(70 ㎖)을 위하여, 긴 스테인레스강 바늘이 삽입도된 주사기가 장착된 플라스크에 상기 클로로디페닐포스핀을 첨가하였다.Unless otherwise stated, all reactions mentioned were carried out in glass round bottom flasks and stirred with Teflon coated stir bars. All reactions were maintained in a constant pressure argon atmosphere maintained using a mineral oil bubbler. For less reaction (70 mL), the chlorodiphenylphosphine was added to a flask equipped with a syringe inserted with a long stainless steel needle.

보다 큰 반응(700 ㎖)을 위하여, 균압용 첨가 깔때기(pressure equalizing addition funnel)을 통해 상기 클로로디페닐포스핀을 첨가하였고, 정확한 반응 온도를 유지하도록 상기 첨가 속도를 변화시켰다.For larger reactions (700 mL), the chlorodiphenylphosphine was added via a pressure equalizing addition funnel and the addition rate was changed to maintain the correct reaction temperature.

필요에 따라서, 40℃ 또는 그 이하가 유지되도록 반응을 냉각시켰다. 온도는 유리온도계로 측정하였다. 상기 작은 스케일의 반응은 유리 프릿 여과기(25-50 ㎛)를 통하여 여과시켰고, 보다 큰 반응은 폴리프로필렌 여과포(filter cloth)를 갖는 스테인레스강 여과 하우징(3인치)을 통하여 여과시켰다. 모든 여과기는 여상(filter bed)으로 이글피쳐 세라톰 FW-12(Eagle-Picher Celatom FW-12) 여과 보조제(filter aid)를 사용하였다.If necessary, the reaction was cooled to maintain 40 ° C. or lower. The temperature was measured with a glass thermometer. The small scale reaction was filtered through a glass frit filter (25-50 μm) and the larger reaction was filtered through a stainless steel filtration housing (3 inches) with a polypropylene filter cloth. All filters used Eagle-Picher Celatom FW-12 filter aids as filter bed.

용매로서 중수소화된 벤젠을 사용하는 바리안(Varian) 400MR에서 NMR 스펙트럼을 얻었고, 프로톤 스펙트럼은 테트라메틸실란을 참조했다. 인을 함유한 스펙트럼은 교정되지 않았다(즉, ppm 단위를 설정하기 위한 어떠한 내부 표준도 없음).
NMR spectra were obtained from Varian 400MR using deuterated benzene as solvent, and the proton spectra referred to tetramethylsilane. The phosphorus containing spectrum was not calibrated (ie there is no internal standard to set ppm units).

DEMDEM 내의 undergarment 실시예Example 반응: reaction:

Figure 112010058625359-pct00001
Figure 112010058625359-pct00001

상기 실험에 사용된 시료의 양:Amount of sample used in the experiment:

리튬: 9.57 g(1.38 ㏖)Lithium: 9.57 g (1.38 mol)

클로로디페닐포스핀: 126.22g(0.572 ㏖)Chlorodiphenylphosphine: 126.22 g (0.572 mol)

디에톡시메탄: 489.12 g
Diethoxymethane: 489.12 g

교반봉이 장착된 1 리터 플라스크에 리튬(상기에서 설명한 바와 같음, 미네랄 오일내 1:0.5)을 충전했다. 상기 플라스크에는 온도계 및 투입 깔때기(addition funnel)가 장착되었다. DEM을 첨가하고 교반을 개시하였다. 대략 출발 물질의 10%(10 ㎖)를 상기 플라스크에 첨가하였다. 3시간 후에 온도는 21℃로 상승되었고, 추가적인 첨가를 시작하였다. 필요에 따라서, 냉각에 의해 30℃ ± 2℃로 온도를 유지시켰다. 추가적인 첨가는 80분 동안 이루어졌다. 1.5시간 후에 NMR 스펙트럼을 얻었고, 상기 반응은 완결되지 않았음을 나타내었으므로, 하룻밤 동안 상기 용액을 교반시켰다. 다음날 아침, 상기 반응을 종료시켰다. 그리고 나서, 상기 용액을 여과시켜서 리튬 디페닐포스핀을 회수하였고, 이어서 상기 여과 잔류물(filter cake)을 16.442 g의 DEM으로 세척하였다. 601.96 g의 깨끗한 갈색의 용액을 채취하였고, 분석을 위하여 약간의 시료를 사용하였다(활성: 17.91%, 수율:98.09%).A 1 liter flask equipped with a stir bar was charged with lithium (as described above, 1: 0.5 in mineral oil). The flask was equipped with a thermometer and an addition funnel. DEM was added and stirring was started. Approximately 10% (10 mL) of starting material was added to the flask. After 3 hours the temperature was raised to 21 ° C. and further addition was started. As needed, the temperature was maintained at 30 ° C ± 2 ° C by cooling. Additional addition was made for 80 minutes. NMR spectra were obtained after 1.5 hours, indicating that the reaction was not complete, so the solution was stirred overnight. The next morning, the reaction was terminated. The solution was then filtered to recover lithium diphenylphosphine, and then the filter residue was washed with 16.442 g of DEM. 601.96 g of a clean brown solution was taken and some samples were used for analysis (activity: 17.91%, yield: 98.09%).

표 1(하기 참조)은 테스트된 용매와 얻은 수율의 목록이다. 리튬 디페닐포스피드를 제조하기 위한 상기 반응을 30℃ 내지 80℃ 범위의 온도에서 수행하였다. 데이터는 40℃ 이하의 온도에서 상기 반응을 수행하는 것이 수율을 향상시키고 여과 시간을 감소시키므로, 이것이 본 발명의 바람직한 실시예 임을 알 수 있다. 30℃-40℃에서 반응을 수행하였을 때, 여과 시간은 단지 30-60분 만에 이루어지는 반면에, 보다 높은 온도에서 반응을 수행하는 경우에는 대략 3시간의 여과 시간이 필요하였다. 시차주사 열량법(differential scanning calorimetry; DSC) 도표(도 1)로부터, 상기 생성물이 대략 50℃에서 분해되기 시작함을 관찰할 수 있다.Table 1 (see below) is a list of the solvents tested and the yields obtained. The reaction for preparing lithium diphenylphosphide was carried out at a temperature in the range of 30 ° C. to 80 ° C. The data shows that performing the reaction at temperatures below 40 ° C. improves yield and reduces filtration time, which is a preferred embodiment of the present invention. When the reaction was carried out at 30 ° C.-40 ° C., the filtration time was only 30-60 minutes, whereas a filtration time of approximately 3 hours was required when the reaction was carried out at higher temperatures. From the differential scanning calorimetry (DSC) diagram (FIG. 1), one can observe that the product starts to decompose at approximately 50 ° C.

작은 스케일(70 ㎖)에서 반응의 개시는 10-20분이 걸렸다. 그러나, 보다 큰 스케일(700 ㎖)에서 반응의 개시는 3시간 까지 걸릴 수 있었다.On small scale (70 mL) the initiation of the reaction took 10-20 minutes. However, on larger scale (700 mL) the initiation of the reaction could take up to 3 hours.

플라스크에 상기 리튬 디페닐포스피드의 출발 물질 용액을 첨가한다면, 상기 반응이 빠르게 개시되는 것을 확인할 수 있지만, 이것은 바람직한 실시예이기는 하더라도 본 발명을 수행하기 위해 필수적인 것은 아니다.If adding the starting material solution of lithium diphenylphosphide to the flask, it can be seen that the reaction is initiated quickly, although this is a preferred embodiment, but not essential to the practice of the present invention.

실시예 37(4.2 gm)에서, 또한 1,2-디브로모에탄을 첨가하였고, 대용량 스케일 실험(700 ㎖)에서 개시를 위해 필요로 되는 시간이 대략 1시간으로 감소됨을 나타내었다.In Example 37 (4.2 gm), 1,2-dibromoethane was also added and the large scale scale experiment (700 mL) showed that the time required for initiation was reduced to approximately 1 hour.

온도 및 NMR 모두에 의해, 상기 반응의 전개 과정을 모니터링 하였다. 반응이 개시될 때, 온도의 상승과 함께 용액 색상이 녹색으로 변화됨에 따라 상기 반응이 시작됨을 알 수 있었다. 상기 반응의 전개 과정을 체크하기 위하여, NMR 시료를 얻었고, 방향족 부위에서의 피크를 비교하였다(도 10 및 도 11).The evolution of the reaction was monitored by both temperature and NMR. When the reaction was initiated, it was found that the reaction started as the color of the solution changed to green with an increase in temperature. To check the evolution of the reaction, NMR samples were obtained and the peaks at the aromatic sites were compared (FIGS. 10 and 11).

비활성의 정압 아르곤 대기하의 조절된 온도배양기의 20℃ 및 35℃에서 상기 생성물의 안정성을 테스트하였다(표 2-표 9 참조). 테플론 마개를 갖는 2 온스의 유리병에 시료를 넣었고, 4주의 기간까지 상기 온도에 보관하였다. 실시예 28은 반응의 종료시에 용액에 남아 있는 출발 물질의 양이 통상의 양보다 더 많음을 나타내었다(생성물과 출발 물질의 비율이 통상적인 비율인 4:0.3과 대비되는 4:1의 비율임). 4주 안정성 테스트에 의하여, 상기 시료는 유리병의 벽에 필름이 형성되고 발달되었다. 상기 필름은 어떠한 다른 시료에서도 발견되지 않았다.
The stability of the product was tested at 20 ° C. and 35 ° C. of a controlled temperature incubator under an inert static pressure argon atmosphere (see Table 2-Table 9). Samples were placed in 2 ounce vials with Teflon stoppers and stored at this temperature for a period of 4 weeks. Example 28 showed that the amount of starting material remaining in the solution at the end of the reaction was greater than the usual amount (the ratio of product to starting material is 4: 1 compared to 4: 0.3, which is the usual ratio). ). By a 4-week stability test, the sample formed and developed a film on the wall of the vial. The film was not found in any other samples.

실시예 1-42에 대한 데이터Data for Examples 1-42 실시예Example Li(g)Li (g) CDP(g)CDP (g) Li/CDPLi / CDP 용매 형태Solvent form 용매(g)Solvent (g) 온도(℃)Temperature (℃) 활성(%)activation(%) 수율(%)yield(%) 1One 0.910.91 13.28213.282 1.091.09 THFTHF 60.8160.81 4040 9.29.2 60.2360.23 22 0.940.94 13.20313.203 1.131.13 THFTHF 61.4561.45 5050 15.0415.04 93.6593.65 33 0.9330.933 13.29113.291 1.121.12 THFTHF 61.2961.29 4949 13.1613.16 86.9186.91 44 0.910.91 13.34413.344 1.081.08 THFTHF 60.2660.26 5656 13.2113.21 83.8983.89 55 1.011.01 13.41913.419 1.201.20 THFTHF 59.7859.78 6565 14.2814.28 90.8490.84 66 0.6470.647 9.1059.105 1.131.13 THFTHF 59.9959.99 5656 11.1411.14 99.7899.78 77 7.2337.233 99.6699.66 1.151.15 THFTHF 498.4498.4 6262 13.913.9 94.7594.75 88 7.47.4 100.08100.08 1.181.18 THFTHF 503.81503.81 6262 14.0614.06 96.7996.79 99 1.621.62 22.86722.867 1.131.13 THFTHF 61.4861.48 6060 21.5821.58 92.3692.36 1010 2.192.19 30.24430.244 1.151.15 THFTHF 50.3650.36 6767 29.2729.27 88.0288.02 1111 0.9070.907 NANA THF/헥산THF / hexane 8.78/51.408.78 / 51.40 5555 nana nana 1212 0.940.94 13.40813.408 1.111.11 디부틸에테르Dibutyl ether 53.2753.27 6464 9.029.02 48.4348.43 1313 0.9530.953 13.16913.169 1.151.15 DEMDEM 59.9859.98 6565 14.914.9 93.2693.26 1414 0.940.94 13.04613.046 1.151.15 DEMDEM 57.9157.91 7070 14.8114.81 85.9485.94 1515 0.9470.947 13.17913.179 1.141.14 DEMDEM 51.751.7 5050 16.5816.58 90.9590.95 1616 0.940.94 13.07913.079 1.141.14 DEMDEM 52.7252.72 5252 16.3616.36 92.2192.21 1717 0.930.93 13.09713.097 1.131.13 DEMDEM 52.8952.89 6868 15.7615.76 88.1288.12 1818 0.930.93 13.31313.313 1.111.11 MTBEMTBE 52.2652.26 4848 nrnr nrnr 1919 0.9270.927 13.16313.163 1.121.12 2MeTHF2MeTHF 52.6652.66 5151 15.815.8 89.3589.35 2020 0.920.92 13.17113.171 1.111.11 DMEDME 52.1952.19 5050 10.4110.41 5353 2121 0.9130.913 이소프로필에테르Isopropyl ether 51.9451.94 nrnr NrNr 2222 0.9330.933 13.23413.234 1.121.12 DMMDMM 50.7850.78 4242 14.514.5 73.4773.47 2323 0.9130.913 13.36313.363 1.091.09 에테르ether 53.8553.85 3434 14.2514.25 75.3575.35 2424 0.940.94 13.08213.082 1.141.14 DMEDME 53.1553.15 5050 13.3213.32 75.9375.93 2525 0.940.94 13.20413.204 1.13161.1316 TEOFTEOF 51.4851.48 5151 12.8412.84 68.5968.59 2626 0.920.92 13.1713.17 1.11041.1104 DEMDEM 51.751.7 5252 16.3216.32 89.4489.44 2727 0.920.92 13.31513.315 1.09831.0983 에테르ether 52.3152.31 3434 17.3217.32 89.9289.92 2828 8.7338.733 124.74124.74 1.11281.1128 DEMDEM 479.384479.384 6060 15.5315.53 78.7178.71 2929 8.728.72 121.69121.69 1.1391.139 DEMDEM 469.1469.1 6060 17.4417.44 92.492.4 3030 9.479.47 122.73122.73 1.22651.2265 2MeTHF2MeTHF 466.69466.69 8080 15.2615.26 76.676.6 3131 9.8279.827 122.93122.93 1.27071.2707 DEMDEM 475.56475.56 7878 16.4716.47 83.6383.63 3232 0.920.92 13.4413.44 1.08811.0881 DEMDEM 51.8951.89 3131 16.7616.76 89.8789.87 3333 1.041.04 13.17913.179 1.25441.2544 DEMDEM 51.8751.87 3131 17.217.2 94.1694.16 3434 9.579.57 126.22126.22 1.20521.2052 DEMDEM 489.12489.12 3131 17.9117.91 98.0998.09 3535 1.011.01 13.3313.33 1.20441.2044 DEMDEM 51.2551.25 3131 17.8217.82 95.4295.42 3636 9.6939.693 122.62122.62 1.25651.2565 DEMDEM 471.24471.24 3131 17.1917.19 94.7494.74 3737 9.519.51 124.19124.19 1.21721.2172 DEMDEM 493.97493.97 3131 17.3417.34 94.9794.97 3838 1.0131.013 13.21913.219 1.21811.2181 DEMDEM 51.1851.18 4141 17.9617.96 96.5696.56 3939 19.1719.17 250.47250.47 1.21661.2166 DEMDEM 720.68720.68 3131 22.3522.35 98.2598.25 4040 19.1719.17 259.78259.78 1.17291.1729 DEMDEM 721.94721.94 3030 21.121.1 91.1491.14 4141 19.0619.06 251.2251.2 1.20611.2061 DEMDEM 717.43717.43 3131 22.0122.01 99.5299.52 4242 11.9411.94 155.81155.81 1.21811.2181 DEMDEM 434.45434.45 3232 20.920.9 93.8493.84

nr = 반응 없음nr = no reaction

TEOF = 트리에틸오르토포르메이트(triethylorthoformate)TEOF = triethylorthoformate

THF = 테트라하이드로푸란(tetrahydrofuran)THF = tetrahydrofuran

DEM = 디에톡시메탄(diethoxymethane)DEM = diethoxymethane

DMM = 디메톡시메탄(dimethoxymethane)DMM = dimethoxymethane

2MeTHF = 2 메틸테트라하이드로푸란(methyltetrahydrofuran)2MeTHF = 2 methyltetrahydrofuran

에테르 = 디에틸에테르(diethylether)Ether = diethylether

NA = 실시예 11에 있어서, NA는 생성물이 형성되지만 분산물을 형성하기 보다는 용액밖에서 결정화됨을 의미한다.
NA = In Example 11, NA means that the product is formed but crystallized out of solution rather than forming a dispersion.

다음은 표 1의 데이터를 계산하기 위하여 사용된 방법론이다:
The following is the methodology used to calculate the data in Table 1:

sec-sec- 부탄올로Butanolo 적정(Titration)에 의한 리튬 디페닐포스피드( Lithium diphenyl phosphide by titration ( LithiumLithium diphenylphosphidediphenylphosphide ; LDPP)내 활성 염기의 결정 ; Determination of active base in LDPP)

일반적 사항 모든 유리기구는 오븐 건조되고 아르곤으로 세정하여야 한다. 자일렌(xylene) 및 2-부탄올은 사용하기 전에 활성화된 분자체로 건조되었다. 적정은 건조 아르곤의 비활성 대기하에서 수행되었다.
General All glassware should be oven dried and cleaned with argon. Xylene and 2-butanol were dried over activated molecular sieves before use. Titration was performed under an inert atmosphere of dry argon.

적정 구성( Titration set - up ). 건조되고, 아르곤으로 세정된, 3개의 목을 갖는 둥근 바닥 플라스크가 격막으로 밀봉되고 아르곤 라인을 갖는 아르곤 대기중에 유지되었다. 건조된 뷰렛을 냉각하고, 격벽으로 밀봉되며, 이것의 말단을 격벽내에 형성된 구멍을 관통하여 상기 둥근 바닥 플라스크내로 도입하였다(도 37 참조). 적정 동안에 압력을 평형으로 유지시키기 위하여, 뷰렛의 상단에서 격벽을 통하여 아르곤이 가득찬 유리 주사기를 연결하였다. Proper configuration (Titration set - up ) . A three necked round bottom flask, dried and cleaned with argon, was sealed with a septum and kept in an argon atmosphere with an argon line. The dried burette was cooled, sealed with a septum, and its end was introduced into the round bottom flask through a hole formed in the septum (see FIG. 37). To maintain pressure equilibrium during the titration, an argon-filled glass syringe was connected through a septum at the top of the burette.

용매 제조 및 건조. 둥근바닥 플라스크에 자일렌 20 ㎖을 이동시키기 위해서 위하여, 아르곤 세정된 주사기를 사용하였다. 상기 플라스크에 자일렌내 0.05 M 1,10-페난트롤린(phenanthroline) 지시약 0.5 ㎖을 이동시키기 위하여, 아르곤 세정된 주사기를 사용하였다. 진한 자주색으로 색깔이 변할 때까지 상기 플라스크내 용액에 상기 시료 몇 방울을 첨가하기 위하여, 바늘이 삽입된 다른 세정된 주사기를 사용하였다. 상기 지시약의 종점(endpoint)에 도달할 때까지, 자일렌 적정제에 0.5 M sec-부탄올로 플라스크 내에 있는 시료를 적정하였다. 출발 부피로써 뷰렛으로 부피를 측정하였다. Solvent Preparation and Drying . In order to transfer 20 ml of xylene to the round bottom flask, an argon washed syringe was used. An argon washed syringe was used to transfer 0.5 ml of 0.05 M 1,10-phenanthroline indicator in xylene to the flask. Another washed syringe with a needle was used to add a few drops of the sample to the solution in the flask until it turned dark purple. Samples in flasks were titrated with 0.5 M sec-butanol in xylene titrant until the endpoint of the indicator was reached. The volume was measured with a burette as the starting volume.

적정. 2 ㎖ 시료를 얻기 위하여, 바늘이 삽입된 아르곤 세정 주사기를 사용하였고, 시료의 질량은 wgt시료로서 0.0001 그람까지 가장 근접되도록 기록하였다. 상기 시료를 적정 플라스크내로 주입하였고 지시약 종점까지 적정하였다. 최종 부피를 기록하였고 적정 동안에 사용된 부피를 계산하였다. 사용된 적정제의 부피는 리터 단위로 V적정제로 계산하였다. Titration . In order to obtain a 2 ml sample, an argon rinse syringe with a needle inserted was used and the mass of the sample was recorded as closest to 0.0001 gram as wgt sample . The sample was injected into a titration flask and titrated to the indicator endpoint. The final volume was recorded and the volume used during the titration was calculated. The volume of titrant used was calculated as V titrant in liters.

활성 염기 농도Active base concentration

Figure 112010058625359-pct00002

Figure 112010058625359-pct00002

안정성stability

다양한 용매내 LDPP의 몇 가지 용액의 안정성을 테스트하였다. 그 결과를 하기 표에 제시했다. 온도를 표시하지 않은 시료는 20℃에서 수행된 것이고, 그 분석은 동일한 시료에 대해 수행되었다. 온도를 표시한 시료는 동일한 배치로부터 복수의 시료를 갖는다. 모든 데이터를 중량%로 표시하였다.
The stability of several solutions of LDPP in various solvents was tested. The results are shown in the table below. Samples without temperature were run at 20 ° C. and the analysis was performed on the same sample. Samples showing temperature have a plurality of samples from the same batch. All data are expressed in weight percent.

테트라하이드로푸란내 LDPP의 안정성Stability of LDPP in Tetrahydrofuran LDPP in THF
실시예 19
LDPP in THF
Example 19
Day 0Day 0 week 1week 1 week 2week 2 week 4week 4
20℃20 ℃ 35℃35 ℃ 20℃20 ℃ 35℃35 ℃ 20℃20 ℃ 35℃35 ℃ 활성activation 11.0811.08 10.110.1 8.88.8 9.239.23 4.584.58 7.627.62 1One 전체all 11.9711.97 1212 1212 12.0212.02 12.0412.04 12.0112.01 12.0412.04

디에톡시메탄내 LDPP의 안정성Stability of LDPP in Diethoxymethane LDPP in DEM
실시예 13
LDPP in DEM
Example 13
Day 0Day 0 week 1week 1 week 2week 2 week 4week 4
활성activation 14.914.9 14.5614.56 14.5414.54 14.5214.52 전체all 15.515.5 15.5615.56 15.6615.66 15.6515.65

2-메틸테트라하이드로푸란내 LDPP의 안정성Stability of LDPP in 2-methyltetrahydrofuran LDPP in 2MeTHF
실시예 19
LDPP in 2MeTHF
Example 19
Day 0Day 0 week 1week 1 week 2week 2 week 4week 4
활성activation 15.815.8 15.515.5 15.4815.48 15.4215.42 전체all 16.0616.06 16.1716.17 16.2116.21 16.2416.24

에테르내 LDPP의 안정성Stability of LDPP in Ether LDPP in ether
실시예 23
LDPP in ether
Example 23
Day 0Day 0 week 1week 1 week 2week 2 week 4week 4
활성activation 14.2814.28 14.0614.06 14.0414.04 14.0414.04 전체all 15.5415.54 15.5615.56 15.5415.54 15.5515.55

트리에틸오르토포르메이트내 LDPP의 안정성Stability of LDPP in Triethylorthoformate LDPP in triethyl orthoformate
실시예 25
LDPP in triethyl orthoformate
Example 25
Day 0Day 0 week 1week 1 week 2week 2 week 4week 4
활성activation 12.8412.84 10.9610.96 8.988.98 6.346.34 전체all 13.0313.03 13.0413.04 12.98512.985 12.9912.99

디에톡시메탄내 LDPP의 안정성Stability of LDPP in Diethoxymethane LDPP in DEM
실시예 28
LDPP in DEM
Example 28
Day 0Day 0 week 1week 1 week 2week 2 week 4week 4
20℃20 ℃ 35℃35 ℃ 20℃20 ℃ 35℃35 ℃ 20℃20 ℃ 35℃35 ℃ 활성activation 15.5315.53 15.5415.54 15.4415.44 15.5215.52 15.2515.25 15.4815.48 14.8814.88 전체all 17.117.1 17.1117.11 17.1317.13 17.0817.08 17.117.1 17.0317.03 16.9616.96

디에톡시메탄내 LDPP의 안정성Stability of LDPP in Diethoxymethane LDPP in DEM
실시예 29
LDPP in DEM
Example 29
Day 0Day 0 week 1week 1 week 2week 2 week 4week 4
20℃20 ℃ 35℃35 ℃ 20℃20 ℃ 35℃35 ℃ 20℃20 ℃ 35℃35 ℃ 활성activation 17.4417.44 17.4217.42 17.3617.36 17.4117.41 17.2617.26 17.3917.39 17.1217.12 전체all 18.0318.03 18.0218.02 18.0118.01 18.0618.06 18.0918.09 18.0418.04 18.0618.06

2MeTHF내 LDPP의 안정성2 Stability of LDPP in MeTHF LDPP in 2MeTHF
실시예 30
LDPP in 2MeTHF
Example 30
Day 0Day 0 week 1week 1 week 2week 2 week 4week 4
20℃20 ℃ 35℃35 ℃ 20℃20 ℃ 35℃35 ℃ 20℃20 ℃ 35℃35 ℃ 활성activation 15.2615.26 15.1815.18 14.8014.80 15.1615.16 14.5914.59 15.1315.13 14.3914.39 전체all 15.6415.64 15.6615.66 15.6615.66 15.6215.62 15.6615.66 15.3815.38 15.6415.64

상기 결과는 THF 이외의 용매를 사용하여 향상되고 안정한 리튬 디페닐포스피드 제형이 제조될 수 있음을 나타낸다. 트리에틸오르토포메이트를 제외하고는, 상기 실험에 사용된 모든 용매가 THF 제형에 비교하여 향상된 결과를 나타내었다.
The results indicate that improved and stable lithium diphenylphosphide formulations can be prepared using solvents other than THF. Except for triethylorthoformate, all solvents used in the experiments showed improved results compared to THF formulations.

상기에서 인용된 모든 문헌은 모든 목적을 위해 전체적으로 참고를 위해 포함된다.All documents cited above are incorporated by reference in their entirety for all purposes.

Claims (16)

리튬 디페닐포스피드(lithium diphenylphosphide) 및 용액 조성물이 메틸테트라하이드로푸란(methyltetrahydrofuran), 디메톡시메탄(dimethoxymethane) 또는 디에톡시메탄(diethoxymethane) 중 적어도 하나를 포함하는 용매를 포함하고, 상기 용매는 테트라하이드로푸란(tetrahydrofuran)일 때 보다 더 안정된 용액을 생성하는 용액.Lithium diphenylphosphide and the solution composition comprises a solvent comprising at least one of methyltetrahydrofuran, dimethoxymethane or diethoxymethane, the solvent being tetrahydro A solution that produces a more stable solution than when it is tetrahydrofuran. 삭제delete 삭제delete 삭제delete 제 1항에 있어서, 상기 메틸테트라하이드로푸란은 2-메틸테트라하이드로푸란인 것을 특징으로 하는 용액.The solution of claim 1 wherein the methyltetrahydrofuran is 2-methyltetrahydrofuran. 삭제delete 제 1항에 있어서, 개시제를 더 포함하는 것을 특징으로 하는 용액.The solution of claim 1 further comprising an initiator. 제 7항에 있어서, 상기 개시제는 1,2-디브로모에탄(dibromoethane)인 것을 특징으로 하는 용액.The solution of claim 7, wherein the initiator is 1,2-dibromoethane. 용매내에 리튬 금속과 함께 클로로디페닐포스핀(chlorodiphehnyphosphine)을 첨가하는 단계;
상기 용매의 용액내에 리튬 디페닐포스피드를 형성하기 위하여 반응시키는 단계를 포함하고,
여기서, 상기 용매는 메틸테트라하이드로푸란, 디메톡시메탄 또는 디에톡시메탄 중 적어도 하나를 포함하고, 용매로서 테트라하이드로푸란의 등가의 몰량이 사용될 때 보다 더 안정된 용액을 생성하는 것을 특징으로 하는 방법.
Adding chlorodiphehnyphosphine with lithium metal in the solvent;
Reacting to form lithium diphenylphosphide in a solution of the solvent,
Wherein the solvent comprises at least one of methyltetrahydrofuran, dimethoxymethane or diethoxymethane and produces a more stable solution when an equivalent molar amount of tetrahydrofuran is used as the solvent.
제 9항에 있어서, 상기 반응은 30℃ 내지 80℃의 온도에서 수행되는 것을 특징으로 하는 방법.The method of claim 9, wherein the reaction is carried out at a temperature of 30 ℃ to 80 ℃. 제 9항에 있어서, 개시제를 더 첨가하는 단계를 포함하는 것을 특징으로 하는 방법.10. The method of claim 9, further comprising adding an initiator. 제 11항에 있어서, 상기 개시제는 1,2-디브로모에탄인 것을 특징으로 하는 방법.12. The method of claim 11, wherein the initiator is 1,2-dibromoethane. 삭제delete 삭제delete 삭제delete 삭제delete
KR1020107020130A 2008-02-15 2009-02-13 Production of lithium diphenylphosphide KR101203384B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US2927308P 2008-02-15 2008-02-15
US61/029,273 2008-02-15
PCT/US2009/000936 WO2009102481A1 (en) 2008-02-15 2009-02-13 Production of lithium diphenylphosphide

Publications (2)

Publication Number Publication Date
KR20100112649A KR20100112649A (en) 2010-10-19
KR101203384B1 true KR101203384B1 (en) 2012-11-21

Family

ID=40957231

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107020130A KR101203384B1 (en) 2008-02-15 2009-02-13 Production of lithium diphenylphosphide

Country Status (7)

Country Link
US (2) US9175020B2 (en)
EP (1) EP2240498B1 (en)
JP (1) JP5455242B2 (en)
KR (1) KR101203384B1 (en)
CN (1) CN101952299B (en)
CA (1) CA2712076C (en)
WO (1) WO2009102481A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101481388B (en) * 2008-12-12 2011-02-23 信诺美(北京)化工科技有限公司 Process for synthesizing O-diphenylphosphinolbenzoic acid
US8970880B2 (en) 2010-12-10 2015-03-03 Open Text S.A. System, method and computer program product for multi-tenant facsimile server

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243829A (en) * 1976-10-04 1981-01-06 Charles U. Pittman, Jr. Production of 1,7-octadiene from butadiene
DE3446303A1 (en) * 1984-12-19 1986-06-19 Degussa Ag, 6000 Frankfurt METHOD FOR PRODUCING OPTICALLY ACTIVE 1-BENZYL-3,4-BIS (DIPHENYLPHOSPHINO) PYRROLIDINE
DD259194A1 (en) 1987-02-27 1988-08-17 Akad Wissenschaften Ddr PROCESS FOR THE PREPARATION OF PHOSPHINOALKANSULFONSAEURES AND THEIR ALKALISALCES
GB9103214D0 (en) * 1991-02-15 1991-04-03 Shell Int Research Process for the preparation of diarylphosphino pyridines
DE4424222C1 (en) * 1994-07-09 1995-09-14 Metallgesellschaft Ag Stable solns of methyl lithium
US5654486A (en) * 1996-03-25 1997-08-05 Albemarle Corporation Synthesis of cycloalkyldiarylphosphines
US5654485A (en) * 1996-03-25 1997-08-05 Albemarle Corporation Synthesis of cycloalkyldiarylphosphines
US5710340A (en) * 1996-04-29 1998-01-20 Albemarle Corporation Synthesis of cycloalkyldiarylphosophines
US5892110A (en) 1996-05-21 1999-04-06 Air Products And Chemicals, Inc. Heterogeneous catalyst for the production of acetic anhydride from methyl acetate
GB9706460D0 (en) * 1997-03-27 1997-05-14 Great Lakes Fine Chem Ltd Preparation of substituted phosphide salts and their subsequent reactions to substituted phosphines
US5777169A (en) * 1997-07-01 1998-07-07 Albemarle Corporation Production of high purity alkali metal diarylphosphide and cycloalkyldiarylphosphines
JP2000109491A (en) * 1998-10-02 2000-04-18 Kankyo Kagaku Center:Kk Production of secondary phosphine
JP4145548B2 (en) * 2002-04-05 2008-09-03 株式会社クラレ Sulfonated bisphosphine, its production method and its use
DE10223593A1 (en) * 2002-05-27 2003-12-11 Degussa Hydroxydiphosphines and their use in catalysis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Inorg. Chem., 2004, 43 (15), pp 4555-4557*

Also Published As

Publication number Publication date
CA2712076C (en) 2014-08-19
US20100298121A1 (en) 2010-11-25
WO2009102481A1 (en) 2009-08-20
JP5455242B2 (en) 2014-03-26
CA2712076A1 (en) 2009-08-20
EP2240498B1 (en) 2016-01-06
US9175020B2 (en) 2015-11-03
JP2011513207A (en) 2011-04-28
EP2240498A1 (en) 2010-10-20
US9464101B2 (en) 2016-10-11
US20150336990A1 (en) 2015-11-26
CN101952299A (en) 2011-01-19
CN101952299B (en) 2016-08-17
EP2240498A4 (en) 2012-03-28
KR20100112649A (en) 2010-10-19

Similar Documents

Publication Publication Date Title
Maassarani et al. Reaction of cyclopalladated compounds Part 16. Stepwise insertion of one, two, and three alkyne molecules into the palladium-carbon bond of a six-membered palladocycle. One-pot synthesis of spirocyclic compounds
KR101203384B1 (en) Production of lithium diphenylphosphide
Reger et al. Poly (pyrazolyl) borate complexes of zirconium (IV)
Hariharasarma et al. Synthesis, reactions and X-ray crystal structures of metallacrown ethers with unsymmetrical bis (phosphinite) and bis (phosphite) ligands derived from 2-hydroxy-2′-(1, 4-bisoxo-6-hexanol)-1, 1′-biphenyl
Lennartson et al. Absolute asymmetric synthesis of five-coordinate complexes
Kalita et al. Organotitanium phosphates with free P–OH groups: Synthesis, spectroscopy and solid state structures
RU2470029C2 (en) Dibenzylidene acetone complexes of palladium (0)
Becker et al. para-Chlorotetrafluorophenyl-boranes–syntheses and structures of a series of mono-and bidentate Lewis acids
Langer et al. Synthesis and crystal structures of bis (diphenylphosphanyl) methanides of lithium and calcium as well as of their borane adducts
Clark et al. Reactions of iridium and rhodium hydrides with anhydrous HF; crystal structure of [Rh (CO)(PPh3) 3][BF4]· thf
US10941039B2 (en) Dihydrogen tetrametaphosphate, its derivatives, and preparation thereof
EP2361919A1 (en) Imidazo[1,5-b] pyridazin-amino-phosphorous ligands and their complex compounds
Rojo-Gómez et al. Reactivity and structural patterns of phenylphosphines in acetylene and acetylide carbonyl trinuclear ruthenium clusters
JP2012149065A (en) Process for preparing alkyl phosphate
Alnasr Novel hypercoordinated element compounds: Contributions to contemporary main group elements chemistry
Schrader Synthesis and Properties of Acylphosphines
Elliot et al. Bridged derivatives of the heteronuclear carbonyl complexes [CoM (CO) 9](M= manganese, rhenium)
US20210380613A1 (en) Methods for preparing arylphosphine-borane complexes
Pasto et al. Transfer reactions involving boron: XXVI. A kinetic study of the lewis acid catalyzed dealkoxyboronations of β-alkoxyorganoboranes
Glootz Ga (I) chemistry: from cationic clusters towards catalysis
George et al. Group 11 complexes of a bulky triazene ligand
Sheff Metallacrown Ethers as Hydroformylation Catalysts with Alkali Metal Salts
Cotton et al. Reduction of rhenium pentachloride in the presence of methyldiphenylphosphine to give mer-ReCl3 (PMePh2) 3, ReCl (. eta. 2-H2)(PMePh2) 4, ReH3 (PMePh2) 4, or ReCl (CO) 3 (PMePh2) 2, depending on conditions
METALLACROWN Christina H. DufFey" and Gary M. Grayf
Sockwell et al. Formation and reactions of mono-and bis (peralkylcyclopentadienyl) complexes of calcium and barium. The x-ray crystal structure of [cyclic][(Me4EtC5) Ca (. mu.-NSiMe2CH2CH2SiMe2)] 2

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151016

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161019

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171026

Year of fee payment: 6