KR101202362B1 - Catalyst Including Pt-Ru of Working Electrode for COD Measuring Sensor and Manufacturing Process thereof - Google Patents

Catalyst Including Pt-Ru of Working Electrode for COD Measuring Sensor and Manufacturing Process thereof Download PDF

Info

Publication number
KR101202362B1
KR101202362B1 KR1020110018657A KR20110018657A KR101202362B1 KR 101202362 B1 KR101202362 B1 KR 101202362B1 KR 1020110018657 A KR1020110018657 A KR 1020110018657A KR 20110018657 A KR20110018657 A KR 20110018657A KR 101202362 B1 KR101202362 B1 KR 101202362B1
Authority
KR
South Korea
Prior art keywords
working electrode
oxygen demand
chemical oxygen
cnt
sensor
Prior art date
Application number
KR1020110018657A
Other languages
Korean (ko)
Other versions
KR20110099662A (en
Inventor
성영식
김한수
김지선
이익재
Original Assignee
주식회사 과학기술분석센타
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 과학기술분석센타 filed Critical 주식회사 과학기술분석센타
Publication of KR20110099662A publication Critical patent/KR20110099662A/en
Application granted granted Critical
Publication of KR101202362B1 publication Critical patent/KR101202362B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • G01N27/3335Ion-selective electrodes or membranes the membrane containing at least one organic component
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Biological oxygen demand [BOD] or chemical oxygen demand [COD]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1893Water using flow cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 수중의 화학적 산소요구량 (Chemical Oxygen Demand. COD)을 측정하기 위한 전기화학 센서, 그 중에서도 특히 산화반응이 일어나는 작용전극의 촉매와 그 제조방법, 나아가 이를 포함한 작용전극 그리고 측정센서에 관한 것이다. 구체적으로 본 발명의 작용전극 촉매는, 전도성 지지체인 탄소나노튜브 (Carbon Nano Tubes. CNT)와 감도 증가물질인 폴리비닐에 활성이 아주 뛰어난 Pt-Ru 금속을 감마선으로 고정시켜 센서의 감도를 최대화시킨 것을 특징으로 한다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical sensor for measuring chemical oxygen demand (COD) in water, particularly a catalyst for a working electrode in which an oxidation reaction takes place, a method for producing the same, and a working electrode including the same and a measuring sensor. . Specifically, the working electrode catalyst of the present invention is to maximize the sensitivity of the sensor by fixing carbon nanotubes (CNT), a conductive support, and Pt-Ru metal, which is very active in polyvinyl, a sensitivity increasing material, with gamma rays. It is characterized by.

Description

백금-루테늄을 포함한 화학적 산소요구량 측정센서용 작용전극 촉매 및 그 제조방법 {Catalyst Including Pt-Ru of Working Electrode for COD Measuring Sensor and Manufacturing Process thereof}Catalytic Including Pt-Ru of Working Electrode for COD Measuring Sensor and Manufacturing Process

본 발명은 수중의 화학적 산소요구량 (Chemical Oxygen Demand. COD)을 측정하기 위한 전기화학 센서, 그 중에서도 특히 산화반응이 일어나는 작용전극의 촉매와 그 제조방법, 나아가 이를 포함한 작용전극 그리고 측정센서에 관한 것이다. 구체적으로 본 발명의 작용전극 촉매는, 전도성 지지체인 탄소나노튜브 (Carbon Nano Tubes. CNT)와 감도 증가물질인 폴리비닐에 활성이 아주 뛰어난 Pt-Ru 금속을 감마선으로 고정시켜 센서의 감도를 최대화시킨 것을 특징으로 한다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical sensor for measuring chemical oxygen demand (COD) in water, particularly a catalyst for a working electrode in which an oxidation reaction takes place, a method for producing the same, and a working electrode including the same and a measuring sensor. . Specifically, the working electrode catalyst of the present invention is to maximize the sensitivity of the sensor by fixing carbon nanotubes (CNT), a conductive support, and Pt-Ru metal, which is very active in polyvinyl, a sensitivity increasing material, with gamma rays. It is characterized by.

생물학적 산소요구량 (Biological Oxygen Demand. BOD)과 더불어 폐수의 유기물 함유도를 간접적으로 나타내는 중요한 지표로서, 화학적 산소요구량이라는 지표가 있다.Along with the Biological Oxygen Demand (BOD), there is an indicator of chemical oxygen demand as an indirect indicator of the organic content of wastewater.

화학적 산소요구량이란 물속의 피산화성 물질을 산화제인 중크롬산칼륨 (K2Cr2O7) 또는 과망간산칼륨(KMnO4)을 이용하여 화학적으로 산화시킬 때 소비되는 산화제에 해당하는 산소 당량을 ppm단위로 표시한 것을 말한다. 측정시간을 비교해 볼 때, 일반적으로 BOD 측정은 5 일이나 걸리지만 COD는 2 시간으로 측정이 가능하고, 공장폐수와 같이 생물에 의해 분해하기 어려운 물질도 측정할 수 있기 때문에 BOD를 알 수 없는 폐수에 대하여 COD 측정이 흔히 채택된다.Chemical oxygen demand is the oxygen equivalent of the oxidant consumed when chemically oxidizing an oxidizing substance in water using potassium dichromate (K 2 Cr 2 O 7 ) or potassium permanganate (KMnO 4 ), which is an oxidizing agent, in ppm. Say what you did. Compared to the measurement time, BOD measurement generally takes 5 days, but COD can be measured in 2 hours, and wastewater whose BOD is unknown because it can measure substances that are difficult to decompose by living things, such as factory wastewater. COD measurements are often adopted for.

수질오염공정시험법에 의하면 일정 과잉량의 산화제를 가하여 2 시간 동안 가열반응시킨 후 소비된 산화제의 양을 산소로 환산하여 COD를 측정한다. 현재 상용화되어 있는 COD 측정기들은 구체적으로 망간이나 크롬 화합물 등 산화제를 첨가하여 일정 시간 동안 반응시켜 유기물들을 산화시킨 뒤 적정을 하거나 분광법을 이용하여 반응에 사용된 산화제의 양을 결정하여 이에 해당하는 당량의 산소를 계산하는 방법이다. BOD 측정과 같이 장시간은 아니지만, 이 방법 역시 30 분에서 2 시간 가량 가열하여야 하므로 측정시간이 오래 걸리고 자동화된 분석장비를 제작하는 데 어려움이 있으며 사용되는 산화제에 의한 2 차 오염의 문제가 있다.According to the water pollution process test method, a certain excess amount of oxidizing agent is added and heated for 2 hours. Currently commercially available COD analyzers specifically react with oxidizing agents such as manganese or chromium compounds for a certain period of time to oxidize organic materials and then titrate or determine the amount of oxidizing agent used in the reaction by spectroscopy. It is a way to calculate oxygen. Although not as long as the BOD measurement, this method also needs to be heated for about 30 minutes to 2 hours, it takes a long measurement time, it is difficult to manufacture an automated analysis equipment, and there is a problem of secondary contamination by the oxidant used.

정전위 전류 측정법 (chronoamperometry)을 이용한 전기화학적 분석법은 측정하고자 하는 분석물이 산화 혹은 환원될 수 있는 일정한 전위를 작용전극에 가해주면 작용전극 표면에서 분석물의 산화 혹은 환원반응이 일어나고 상대전극에서는 반대의 반응이 일어나면서 작용전극과 상대전극 사이에 전류가 흐르게 되므로 이때의 전류를 측정함으로써 분석물을 정량할 수 있는 기술이다. 정전위 전류 측정법에서는 일반적으로 금이나 백금과 같은 비활성 귀금속 전극을 많이 사용하는데 이런 전극을 이용해 수용액 상의 유기물질을 산화시키기 위해서는 상당히 높은 산화전위를 가해주어야 하나 이와 같은 조건에서는 물이 전기분해되어 전류를 발생시키므로 유기물 농도에 비례하는 전류를 측정할 수 없어, 전극의 개선이 절실히 요구되는 실정이다.In electrochemical analysis using chronoamperometry, if an applied potential is applied to the working electrode to which the analyte to be measured can be oxidized or reduced, oxidation or reduction of the analyte occurs on the surface of the working electrode. As a reaction occurs, a current flows between the working electrode and the counter electrode, so that the analyte can be quantified by measuring the current at this time. In general, the potentiometric current measurement method uses a lot of inert precious metal electrodes such as gold and platinum. To oxidize organic substances in an aqueous solution using these electrodes, it is necessary to apply a very high oxidation potential. Since it is not possible to measure a current proportional to the concentration of organic matter, an improvement of the electrode is urgently required.

이러한 문제를 해결하기 위하여 본 발명은, 전도성 지지체인 탄소나노튜브 (Carbon Nano Tubes. CNT)와 감도 증가물질인 폴리비닐에 유기물 산화활성이 아주 뛰어난 Pt-Ru 금속을 감마선으로 고정시켜 센서의 감도를 최대화시킨 화학적 산소요구량 측정센서용 작용전극 촉매를 제공하는 것을 그 목적으로 한다.In order to solve this problem, the present invention, the carbon nanotubes (Cbon Nano Tubes, CNT) and the conductive material of the polyvinyl chloride to increase the sensitivity of the sensor by fixing the Pt-Ru metal having excellent organic oxidation activity with gamma rays. It is an object of the present invention to provide a working electrode catalyst for a sensor for maximizing chemical oxygen demand measurement.

또한, 본 발명은 상기 화학적 산소요구량 측정센서용 작용전극 촉매를 포함한 화학적 산소요구량 측정센서용 작용전극을 제공하는 것을 또 다른 목적으로 한다.Another object of the present invention is to provide a working electrode for a chemical oxygen demand measuring sensor including the working electrode catalyst for the chemical oxygen demand measuring sensor.

또한, 본 발명은 상기 화학적 산소요구량 측정센서용 작용전극을 포함한 화학적 산소요구량 측정센서를 제공하는 것을 또 다른 목적으로 한다.Another object of the present invention is to provide a chemical oxygen demand measuring sensor including a working electrode for the chemical oxygen demand measuring sensor.

또한, 본 발명은 상기 화학적 산소요구량 측정센서용 작용전극 촉매의 제조방법을 제공하는 것을 또 다른 목적으로 한다.Another object of the present invention is to provide a method for preparing a working electrode catalyst for a chemical oxygen demand measurement sensor.

상기 목적의 달성을 위해 본 발명의 화학적 산소요구량 측정센서용 작용전극 촉매는 In order to achieve the above object, the working electrode catalyst for the chemical oxygen demand measurement sensor of the present invention

탄소나노튜브 (Carbon Nano Tube. CNT) 100 중량부; 100 parts by weight of carbon nanotubes (CNT);

폴리비닐 70 내지 140 중량부; 70 to 140 parts by weight of polyvinyl;

백금 20 내지 45 중량부; 20 to 45 parts by weight of platinum;

루테늄, 코발트, 주석, 금, 니켈 또는 그 합금 20 내지 45 중량부; 및 20 to 45 parts by weight of ruthenium, cobalt, tin, gold, nickel or an alloy thereof; And

고체 전해질 50 내지 250 중량부50 to 250 parts by weight of the solid electrolyte

를 포함하는 것을 특징으로 한다.Characterized in that it comprises a.

또한, 상기 탄소나노튜브는 다층벽 탄소나노튜브 (Multi Wall Carbon Nano Tube. MWCNT)일 수 있다.In addition, the carbon nanotubes may be multi wall carbon nanotubes (MWCNTs).

또한, 상기 폴리비닐은 4-비닐페닐보론산 (4-vinylphenylboronic acid)의 중합체일 수 있다.In addition, the polyvinyl may be a polymer of 4-vinylphenylboronic acid.

또한, 상기 고체 전해질은 테트라플루오로에틸렌-퍼플루오로-3,6-디옥사-4-메틸-7-옥텐술폰산 공중합체 (tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octenesulfonic acid copolymer)일 수 있다.In addition, the solid electrolyte is a tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octensulfonic acid copolymer (tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octenesulfonic acid copolymer).

한편, 본 발명의 화학적 산소요구량 측정센서용 작용전극은 상기 화학적 산소요구량 측정센서용 작용전극 촉매가 코팅된 것을 특징으로 한다.On the other hand, the working electrode for the chemical oxygen demand measuring sensor of the present invention is characterized in that the working electrode catalyst for the chemical oxygen demand measuring sensor is coated.

한편, 본 발명의 화학적 산소요구량 측정센서는 상기 화학적 산소요구량 측정센서용 작용전극을 포함한 것을 특징으로 한다.On the other hand, the chemical oxygen demand measuring sensor of the present invention is characterized in that it comprises a working electrode for the chemical oxygen demand measuring sensor.

또한, 본 발명의 화학적 산소요구량 측정센서는 Ag/AgCl의 기준전극 및 백금 와이어 (Pt wire)의 보조전극을 추가로 포함한 것을 특징으로 한다.In addition, the chemical oxygen demand sensor of the present invention is characterized in that it further comprises a reference electrode of Ag / AgCl and the auxiliary electrode of platinum wire (Pt wire).

한편, 본 발명의 화학적 산소요구량 측정센서용 작용전극 촉매의 제조방법은 On the other hand, the production method of the working electrode catalyst for the chemical oxygen demand sensor

(A) 탄소나노튜브 100 중량부 및 4-비닐페닐보론산 70 내지 140 중량부를 물에 첨가하고, 감마선을 조사하여 탄소나노튜브 및 폴리비닐의 혼합물인 VP-CNT를 제조하는 단계; (A) adding 100 parts by weight of carbon nanotubes and 70 to 140 parts by weight of 4-vinylphenylboronic acid to water and irradiating gamma rays to prepare VP-CNT, which is a mixture of carbon nanotubes and polyvinyl;

(B) 2-프로판올을 3 내지 10 부피% 함유한 물에 H2PtCl6의 수화물, RuCl3의 수화물 및 VP-CNT를 H2PtCl6의 수화물 : RuCl3의 수화물 : VP-CNT의 중량비가 3 내지 10 : 3 내지 10 : 10 이 되도록 첨가하고, 감마선을 조사하여 백금 및 루테늄이 VP-CNT에 고정화된 Pt-Ru-VP-CNT를 제조하는 단계; (B) The weight ratio of H 2 PtCl 6 hydrate, RuCl 3 hydrate and VP-CNT in H 2 PtCl 6 hydrate: RuCl 3 hydrate: VP-CNT in water containing 3 to 10% by volume of 2-propanol Adding 3 to 10: 3 to 10: 10 and irradiating with gamma rays to prepare Pt-Ru-VP-CNT having platinum and ruthenium immobilized on VP-CNT;

(C) 상기 제조된 Pt-Ru-VP-CNT를 가는 단계; 및 (C) grinding the prepared Pt-Ru-VP-CNT; And

(D) 물에 상기 간 Pt-Ru-VP-CNT 및 고체 전해질을 Pt-Ru-VP-CNT : 고체 전해질의 중량비가 10 : 2 내지 10 이 되도록 첨가하고 혼합하는 단계(D) adding and mixing the liver Pt-Ru-VP-CNT and the solid electrolyte in water so that the weight ratio of Pt-Ru-VP-CNT: solid electrolyte is 10: 2 to 10

를 포함하는 것을 특징으로 한다.Characterized in that it comprises a.

또한, 본 발명의 화학적 산소요구량 측정센서용 작용전극 촉매의 제조방법은 상기 단계 (A), 단계 (B), 또는 단계 (A) 및 단계 (B)의 감마선 조사 전에 질소를 물에 주입하는 단계를 추가로 포함할 수 있다.In addition, the method for preparing a working electrode catalyst for a chemical oxygen demand measurement sensor of the present invention is a step of injecting nitrogen into the water before the gamma irradiation of step (A), step (B), or step (A) and step (B) It may further include.

또한, 본 발명의 화학적 산소요구량 측정센서용 작용전극 촉매의 제조방법은 상기 단계 (A) 이전에 탄소나노튜브를 황산과 질산의 혼합물로 정제하는 단계를 추가로 포함할 수 있다.In addition, the method for preparing a working electrode catalyst for a chemical oxygen demand sensor can further comprise the step of purifying the carbon nanotubes with a mixture of sulfuric acid and nitric acid before step (A).

또한, 본 발명의 화학적 산소요구량 측정센서용 작용전극 촉매의 제조방법은 상기 단계 (A), 단계 (B), 또는 단계 (A) 및 단계 (B)의 감마선은 코발트-60 광원을 통해 조사할 수 있다.In addition, in the method for preparing a working electrode catalyst for a chemical oxygen demand sensor, the gamma rays of step (A), step (B), or step (A) and step (B) may be irradiated through a cobalt-60 light source. Can be.

본 발명의 화학적 산소요구량 측정센서는 유기물을 산화시키는 능력이 아주 뛰어난 활성물질 Pt-Ru을 감마선 조사를 통하여 제조하고, 전기적 감도를 증가시키기 위하여 전도성 지지체인 탄소나노튜브와 감도 증가물질인 폴리비닐을 이용함으로써, 전압환류 측정장비를 이용하여 유기물질과의 산화가 최대로 일어나고 방해물질에 의한 효과가 없는 산화전위를 측정할 수 있었으며, 표준물질인 포도당을 농도별로 실험한 결과 현장에서 적용이 가능한 우수한 성능을 발휘했다.The chemical oxygen demand measurement sensor of the present invention is prepared by gamma irradiation of the active material Pt-Ru excellent in the ability to oxidize organic matter, and to increase the electrical sensitivity, carbon nanotubes and conductive materials polyvinyl increase sensitivity By using the voltage reflux measuring equipment, it was possible to measure the oxidation potential that has the maximum oxidation with organic substance and has no effect by the interfering substance. Performance.

도 1은 촉매가루를 가는 과정을 촬영한 사진이다.
도 2는 촉매가루를 교반하는 과정을 촬영한 사진이다.
도 3은 전극 표면에 코팅막을 형성하는 과정을 촬영한 사진이다.
도 4는 본 발명의 작용전극의 촉매 구성을 나타낸 도면이다.
도 5는 본 발명의 전극 구성을 촬영한 사진이다.
도 6은 포도당 농도별 검량선 작성 실험을 나타낸 그래프이다.
도 7은 Pt-Ru 코팅 전극에서의 포도당 농도별 검량선 작성 실험을 나타낸 그래프이다.
도 8은 Pt-Ru 코팅 전극에서의 포도당 농도별 재현성 실험을 나타낸 그래프이다.
1 is a photograph of the process of grinding the catalyst powder.
Figure 2 is a photograph of the process of stirring the catalyst powder.
3 is a photograph of a process of forming a coating film on the electrode surface.
4 is a view showing the catalyst configuration of the working electrode of the present invention.
5 is a photograph of the electrode configuration of the present invention.
6 is a graph showing a calibration curve preparation experiment for each glucose concentration.
7 is a graph showing a calibration curve preparation experiment for each glucose concentration in a Pt-Ru coated electrode.
8 is a graph showing reproducibility experiments for each glucose concentration in a Pt-Ru coated electrode.

이하, 본 발명의 바람직한 실시예에 대하여 상세히 설명한다. 또한, 하기의 설명에서는 구체적인 구성요소 등과 같은 많은 특정사항들이 설명되어 있는데, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐 이러한 특정 사항들 없이도 본 발명이 실시될 수 있음은 이 기술분야에서 통상의 지식을 가진 자에게는 자명하다 할 것이다. 그리고, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Hereinafter, preferred embodiments of the present invention will be described in detail. In the following description, numerous specific details, such as specific elements, are set forth in order to provide a thorough understanding of the present invention, and it is to be understood that the present invention may be practiced without these specific details, It will be obvious to those who have knowledge of. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

본 발명의 화학적 산소요구량 측정센서용 작용전극 촉매를 포함한 측정센서는, 수중의 화학적 산소요구량을 측정하고자, 기준전극과 작용전극, 보조전극으로 이루어지고, 기준전극은 Ag/AgCl(염화은), 작용전극은 Pt-Ru 촉매, 보조전극은 백금 와이어 (Pt wire)로 구성된다. 작용전극은 실질적으로 수중 유기물질과 산화반응이 이루어지는 부분으로서 본 발명에서는 감마선을 조사함으로써 활성이 아주 뛰어난 Pt-Ru 촉매를 합성하여 제조하였다. 나아가, Pt-Ru 촉매는 측정센서의 전기적 감도를 증가시키기 위하여 전도성 지지체인 탄소나노튜브와 감도 증가물질인 폴리비닐을 이용함으로써 화학적 산소요구량 측정용 전극으로써의 효율을 최대로 상승시켰다.The measuring sensor including the working electrode catalyst for the chemical oxygen demand sensor of the present invention, to measure the chemical oxygen demand in the water, consisting of a reference electrode, a working electrode, an auxiliary electrode, the reference electrode is Ag / AgCl (silver chloride), The electrode is composed of Pt-Ru catalyst and the auxiliary electrode is made of platinum wire. The working electrode is a part where the oxidation reaction with the organic material in water is substantially performed. In the present invention, a Pt-Ru catalyst having excellent activity was synthesized by irradiating gamma rays. Furthermore, the Pt-Ru catalyst maximizes the efficiency as an electrode for measuring the chemical oxygen demand by using carbon nanotubes, which are conductive supports, and polyvinyl, which is a sensitivity increasing material, in order to increase the electrical sensitivity of the measurement sensor.

즉, 본 발명의 화학적 산소요구량 측정센서용 작용전극 촉매는 That is, the working electrode catalyst for the chemical oxygen demand measurement sensor of the present invention

탄소나노튜브 (Carbon Nano Tube. CNT) 100 중량부; 100 parts by weight of carbon nanotubes (CNT);

폴리비닐 70 내지 140 중량부; 70 to 140 parts by weight of polyvinyl;

백금 20 내지 45 중량부; 20 to 45 parts by weight of platinum;

루테늄, 코발트, 주석, 금, 니켈 또는 그 합금 20 내지 45 중량부; 및 20 to 45 parts by weight of ruthenium, cobalt, tin, gold, nickel or an alloy thereof; And

고체 전해질 50 내지 250 중량부50 to 250 parts by weight of the solid electrolyte

를 포함하는 것을 특징으로 한다.Characterized in that it comprises a.

상기 탄소나노튜브는 특히 다층벽 탄소나노튜브 (Multi Wall Carbon Nano Tube. MWCNT)인 것이 지지체의 전도성 증가에 따른 센서의 감도 향상에 바람직하다.The carbon nanotubes, in particular, are multi-walled carbon nanotubes (MWCNTs), which are preferable for improving the sensitivity of the sensor according to the increase in conductivity of the support.

그리고, 상기 폴리비닐은 탄소나노튜브와 함께 지지체를 구성하는 것으로서 다양한 비닐 중합체가 사용될 수 있으며, 특히 4-비닐페닐보론산 (4-vinylphenylboronic acid)의 중합체가 바람직하다.In addition, the polyvinyl may be used as a constituent support with carbon nanotubes, and various vinyl polymers may be used, and a polymer of 4-vinylphenylboronic acid is particularly preferable.

고체전해질 (固體電解質, solid electrolyte)은 고체상태에서 이온의 이동에 의하여 전류를 통할 수 있는 물질로서, 산화지르코늄, 나트륨 β-알루미나, 테트라플루오로에틸렌-퍼플루오로-3,6-디옥사-4-메틸-7-옥텐술폰산 공중합체 (tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octenesulfonic acid copolymer), Nafion?, 아사히막 등의 고분자 물질 등이 있으며, 새로운 종류의 전지들과 센서를 만드는데 이용되고 전해질 공업에서 격막으로 이용되기도 한다. 본 발명에서 상기 고체 전해질은 테트라플루오로에틸렌-퍼플루오로-3,6-디옥사-4-메틸-7-옥텐술폰산 공중합체 (tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octenesulfonic acid copolymer)인 것이 특히 바람직하다.Solid electrolyte is a substance that can pass current through the movement of ions in the solid state. Zirconium oxide, sodium β-alumina, tetrafluoroethylene-perfluoro-3,6-dioxa- 4-methyl-7-octensulfonic acid copolymer (tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octenesulfonic acid copolymer), Nafion ? And polymer materials such as the Asahi membrane. They are used to make new kinds of batteries and sensors, and they are also used as diaphragms in the electrolyte industry. In the present invention, the solid electrolyte is tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octensulfonic acid copolymer (tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7- octenesulfonic acid copolymer).

한편, 본 발명의 화학적 산소요구량 측정센서용 작용전극은 본 발명의 상기 화학적 산소요구량 측정센서용 작용전극 촉매가 코팅된 것을 특징으로 하고, 본 발명의 화학적 산소요구량 측정센서는 본 발명의 상기 화학적 산소요구량 측정센서용 작용전극을 포함한 것을 특징으로 한다.On the other hand, the working electrode for the chemical oxygen demand measuring sensor of the present invention is characterized in that the working electrode catalyst for the chemical oxygen demand measuring sensor of the present invention is coated, the chemical oxygen demand measuring sensor of the present invention is the chemical oxygen of the present invention It is characterized in that it comprises a working electrode for the required measurement sensor.

한편, 본 발명의 화학적 산소요구량 측정센서용 작용전극 촉매의 제조방법은 먼저 탄소나노튜브 100 중량부 및 4-비닐페닐보론산 70 내지 140 중량부를 물에 첨가하고, 감마선을 조사하여 지지체인 탄소나노튜브 및 폴리비닐의 혼합물 VP-CNT를 제조하고, 별도로 2-프로판올을 3 내지 10 부피% 함유한 물에 H2PtCl6의 수화물, RuCl3의 수화물 및 상기 제조한 VP-CNT를 H2PtCl6의 수화물 : RuCl3의 수화물 : VP-CNT의 중량비가 3 내지 10 : 3 내지 10 : 10 이 되도록 첨가하고, 감마선을 조사하여 백금 및 루테늄이 VP-CNT에 고정화된 Pt-Ru-VP-CNT를 제조하는 것으로 이루어진다.On the other hand, in the method for producing a working electrode catalyst for a chemical oxygen demand measurement sensor of the present invention, first, 100 parts by weight of carbon nanotubes and 70 to 140 parts by weight of 4-vinylphenylboronic acid are added to water, and irradiated with gamma rays to support carbon nano. A mixture of the tube and polyvinyl was prepared VP-CNT, and separately a hydrate of H 2 PtCl 6 , a hydrate of RuCl 3 , and the prepared VP-CNT in H 2 PtCl 6 in water containing 3 to 10% by volume of 2-propanol. Pt-Ru-VP-CNT in which the weight ratio of hydrate to RuCl 3 : VP-CNT is 3 to 10: 3 to 10: 10, and irradiated with gamma rays to fix Pt-Ru-VP-CNT immobilized on VP-CNT. It consists of manufacturing.

본 발명의 특징 중 하나인 감마선은 비닐 중합체의 생성 및 금속 촉매의 생성과 같은 역할을 수행하며, 구체적으로 다음과 같은 기작을 따른다.Gamma rays, which are one of the features of the present invention, play a role such as the production of vinyl polymers and the production of metal catalysts, and specifically follow the following mechanism.

먼저 수용액에 감마선이 조사되면, 아래 나타낸 식과 같이 여러 종류의 물질들이 생성되는데, When gamma rays are irradiated to the aqueous solution, various kinds of substances are produced as shown below.

[반응식 1][Reaction Scheme 1]

H2O → eaq -, H+, H·, OH·, H2O2, H2 H 2 O → e aq -, H +, H ·, OH ·, H 2 O 2, H 2

용해되어 있는 전자 eaq - 와 H 라디칼은 강력한 환원제로 사용되며, 반응식 2와 반응식 3에 나타낸 바와 같이 금속이온들을 제로 원자가수(zero-valent)로 환원시킨다.The dissolved electrons e aq - and H radicals are used as strong reducing agents, reducing the metal ions to zero-valent valences as shown in Schemes 2 and 3.

[반응식 2]Scheme 2

M+ + eaq - → M0 M + + e aq - → M 0

[반응식 3]Scheme 3

M+ + H· → M0 + H+ M + + H · → M 0 + H +

유사하게, Pt4 +, Ru3 + 와 같은 다원자가 이온들은 여러 단계의 반응에 의해 환원된다. Similarly, the multi such as Pt 4 +, Ru 3 + ions are reduced by the self-reaction of the different stages.

OH 라디칼 역시 반응식 2와 반응식 3과 같이 이온이나 제로 원자가수의 금속원자를 산화시킬 수 있는데, 산화제(OH·)를 보호하기 위해, 2-프로판올을 반응용액에 첨가하면, OH 라디칼 (OH·)은 2-프로판올과 반응식 4와 같이 반응하고, 그 결과로 금속이온은 반응식 5와 같이 2-프로판올에 의해 제로 원자가 금속원자로 환원된다. The OH radicals can also oxidize ions or zero valence metal atoms as in Scheme 2 and Scheme 3. To protect the oxidizer (OH ·), 2-propanol is added to the reaction solution. The silver reacts with 2-propanol as in Scheme 4. As a result, the metal ion is reduced to zero valence metal atom by 2-propanol as in Scheme 5.

[반응식 4][Reaction Scheme 4]

(CH3)2CHOH + ·OH → (CH3)2C·OH + H2O (CH 3 ) 2 CHOH + · OH → (CH 3 ) 2 COH + H 2 O

[반응식 5]Scheme 5

M+ + (CH3)2C·OH → M0 + (CH3)2C=O + H+ M + + (CH 3 ) 2 COH → M 0 + (CH 3 ) 2 C = O + H +

이렇게 제조된 Pt-Ru-VP-CNT를 막자사발 등에서 곱게 갈고 물에 첨가한 후, 고체 전해질을 Pt-Ru-VP-CNT : 고체 전해질의 중량비가 10 : 2 내지 10 이 되도록 첨가하고 혼합함으로써 본 발명의 화학적 산소요구량 측정센서용 작용전극 촉매를 제조한다.The Pt-Ru-VP-CNT thus prepared was ground finely in a mortar and the like, and then added to water, and the solid electrolyte was added and mixed so that the weight ratio of Pt-Ru-VP-CNT: solid electrolyte was 10: 2 to 10 and mixed. A working electrode catalyst for a chemical oxygen demand measurement sensor of the invention is prepared.

또한, 본 발명의 화학적 산소요구량 측정센서용 작용전극 촉매의 제조방법은 상기 감마선 조사 전에 질소를 물에 주입하여 반응매질 중에서 산소를 제거하는 단계를 추가로 포함하는 것이 바람직하다. 그리고, 제조과정 중에 혼입될 수 있는 촉매와 비결정화된 탄소 불순물 제거를 위해 본 발명에 사용되는 탄소나노튜브는 폴리비닐과의 혼합 전에 황산과 질산의 혼합물로 정제하는 단계를 추가로 포함하는 것이 바람직하다.In addition, the method for producing a working electrode catalyst for a chemical oxygen demand measurement sensor of the present invention preferably further comprises the step of removing oxygen from the reaction medium by injecting nitrogen into the water before the gamma irradiation. In addition, the carbon nanotubes used in the present invention for removing the catalyst and amorphous carbon impurities that may be incorporated during the manufacturing process may further include purifying with a mixture of sulfuric acid and nitric acid before mixing with polyvinyl. Do.

또한, 본 발명의 화학적 산소요구량 측정센서용 작용전극 촉매의 제조시 사용되는 감마선은 코발트-60 광원을 통해 발생한 감마선이 바람직하다.
In addition, the gamma ray used in the preparation of the working electrode catalyst for the chemical oxygen demand sensor is preferably a gamma ray generated through a cobalt-60 light source.

실시예Example

실시예Example 1:  One: CODCOD 측정 촉매용  For measuring catalysts PtPt -- RuRu -- VPVP -- MWCNTMWCNT 의 제조방법Manufacturing Method

H2PtCl6·xH2O (37.5 % Pt), RuCl3·xH2O (41.0 % Ru), 4-비닐페닐보론산(VPBAc)은 분석시약용 등급으로 Sigma-Aldrich (USA) 제품이며 추가적인 정제는 하지 않았다. 다층벽 탄소나노튜브 (MWCNT. CM-95)는 한화 나노테크 사(한국)에서 공급받아 사용하였다.H 2 PtCl 6 xH 2 O (37.5% Pt), RuCl 3 xH 2 O (41.0% Ru), 4-vinylphenylboronic acid (VPBAc) are grades of analytical reagents manufactured by Sigma-Aldrich (USA) and additionally No purification was done. Multi-walled carbon nanotubes (MWCNT.CM-95) were used by Hanwha Nanotech (Korea).

4-비닐페닐보론산과 다층벽 탄소나노튜브의 혼합물 (VP-MWCNT)에 대한 제조방법은, 촉매와 비결정화된 탄소 불순물 제거를 위해 다층벽 탄소나노튜브를 황산과 질산의 혼합물 (H2SO4 / HNO3 = 3 / 1 부피비)로 처리하여 분해하는 과정으로부터 시작되는데, 이렇게 정제 분해된 다층벽 탄소나노튜브는 다양한 비닐 단량체들을 융합시키기 위한 지지체로 사용되었다. 다음으로, 물 20 ml에 다층벽 탄소나노튜브 2.0 g 및 VPBAc 2.0 g을 혼합하고, 산소기체를 제거하기 위해 수용액에 30 분 동안 질소기체를 불어 넣은 후, 상온, 상압조건에서 Co-60 광원으로 감마(γ)선을 30 kGy (dose rate = 1.0 × 104 Gy/h)양으로 조사하였다. The process for the preparation of 4-vinylphenylboronic acid and multi-walled carbon nanotubes (VP-MWCNT) is characterized in that the multi-walled carbon nanotubes are mixed with sulfuric acid and nitric acid (H 2 SO 4) to remove catalyst and amorphous carbon impurities. / HNO 3 = 3/1 (volume ratio) by the process of decomposition, this purified multi-walled multi-walled carbon nanotubes were used as a support for fusing a variety of vinyl monomers. Next, 2.0 g of multi-walled carbon nanotubes and 2.0 g of VPBAc were mixed in 20 ml of water, and nitrogen gas was blown into the aqueous solution for 30 minutes to remove oxygen gas, followed by Co-60 light source at room temperature and atmospheric pressure. Gamma (γ) rays were irradiated with 30 kGy (dose rate = 1.0 x 10 4 Gy / h).

감마선 조사에 의한 Pt-Ru-VP-MWCNT 촉매 제조방법에 있어서, Pt-Ru 적용 VP-MWCNT 촉매는 다음과 같이 준비하였다. 라디칼제거제 역할을 하는 2-프로판올이 12.0 ml 포함되어 있는 탈이온수 188 mL에 H2PtCl6·xH2O 0.43 g 및 RuCl3·xH2O 0.41 g를 용해시켰다. 위의 용액에 1 g의 VP-MWCNT 지지체를 첨가하였다. 혼합된 수용액에 질소가스를 불어 넣어 산소를 제거하고 상온, 상압조건에서 30 kGy (dose rate = 6.48 × 105 Gy/h)양으로 감마선을 조사하였으며, 최종적으로,VP-MWCNT 촉매에 침적된 Pt-Ru 나노입자는 감마선 조사에 의해 침전되었다. In the Pt-Ru-VP-MWCNT catalyst production method by gamma irradiation, the Pt-Ru applied VP-MWCNT catalyst was prepared as follows. 0.41 g of H 2 PtCl 6 .xH 2 O and 0.41 g of RuCl 3 .xH 2 O were dissolved in 188 mL of deionized water containing 12.0 ml of 2-propanol serving as a radical scavenger. 1 g of VP-MWCNT support was added to the above solution. Nitrogen gas was blown into the mixed aqueous solution to remove oxygen, and gamma rays were irradiated at 30 kGy (dose rate = 6.48 × 10 5 Gy / h) at room temperature and atmospheric pressure. Finally, Pt deposited on the VP-MWCNT catalyst was used. -Ru nanoparticles were precipitated by gamma irradiation.

실시예Example 2:  2: CODCOD 측정용  For measurement 작용전극의Working electrode 제조 Produce

COD 측정용 Pt-Ru-VP-MWCNT 전극의 제조는 작용전극의 제작 재료, 즉 VP-MWCNT 지지체 + 촉매제 (Pt + Ru, Co, Sn, Au, Ni) + Nafion?을 준비하는 것으로 시작된다. 여기서, COD 측정용 촉매제는 실시예 1의 Pt+Ru 뿐만 아니라 Pt+Co, Pt+Sn, Pt+Au, Pt+Ni 형태로도 제조가 가능하다. 도 1과 같이 Pt-Ru-VP-MWCNT를 막자사발에 넣고 막 형성을 용이하게 하기 위해 곱게 갈았다. 다음, 도 2와 같이 촉매 가루 0.1 g을 3 mL 뚜껑 달린 병에 넣고 Nafion? 1 mL를 넣고 교반시켰다. 도 3과 같이 만들어진 상기 Pt-Ru-VP-MWCNT 촉매와 Nafion?의 혼합용액에 작용전극 (glassy carbon) 끝을 살짝 찍어 전극표면에 코팅막을 형성시킴으로써 본 발명의 화학적 산소요구량 측정센서용 작용전극을 최종 제작하였으며, 그 구성은 도 4와 같다.The production of the Pt-Ru-VP-MWCNT electrode for COD measurement was carried out using the material of preparation of the working electrode, namely the VP-MWCNT support + catalyst (Pt + Ru, Co, Sn, Au, Ni) + Nafion ? Begins with preparing. Here, the catalyst for measuring COD may be prepared in the form of Pt + Co, Pt + Sn, Pt + Au, and Pt + Ni as well as Pt + Ru of Example 1. As shown in Fig. 1, Pt-Ru-VP-MWCNT was placed in a mortar and finely ground to facilitate film formation. Next, 0.1 g of catalyst powder was placed in a 3 mL cap bottle as shown in FIG . 1 mL was added and stirred. The Pt-Ru-VP-MWCNT catalyst and Nafion ? By slightly dipping the end of the working electrode (glassy carbon) in the mixed solution of the electrode to form a coating film on the electrode surface of the chemical oxygen demand measuring sensor of the present invention was finally produced, the configuration is as shown in FIG.

시험예Test Example : : 작용전극의Working electrode CODCOD 측정 시험 Measurement test

최종적으로 센서의 구성은 도 5와 같이 촉매제가 코팅된 작용전극과 Ag/AgCl 코팅된 기준전극, 그리고 백금 와이어로 된 보조전극으로 이루어지며 CV (Cyclic voltametry:순환 전류 측정) 측정기를 이용하여 각각을 연결하여 실험하였다. 촉매제의 금속 이온이 유기화합물을 산화시키는 원리를 이용한 것이므로 표준물질은 대표적인 유기화합물인 0.01 내지 2 mol의 다양한 포도당 표준액을 만들어 사용하였으며, 0.1 M PBS 용액에서 실험을 하였다. Finally, the sensor is composed of a catalyst-coated working electrode, an Ag / AgCl-coated reference electrode, and an auxiliary electrode made of platinum wire, as shown in FIG. 5. It was connected and experimented. Since the metal ions of the catalyst used the principle of oxidizing the organic compound, the standard material was used to make various glucose standard solutions of 0.01 to 2 mol, which are representative organic compounds, and were tested in 0.1 M PBS solution.

CV 측정은 -1.0 내지 +1.0 V 사이에서 진행하였으며 실험 결과 도 6 내지 도 8에 도시한 바와 같이 -0.2 V에서 표준 유기물질인 포도당의 양에 따라 전류의 값이 증가하였고 재현성 또한 우수한 결과를 얻을 수 있었다.The CV measurement was carried out between -1.0 and +1.0 V. As a result of the experiment, the current value increased with the amount of glucose, a standard organic substance, at -0.2 V as shown in FIGS. 6 to 8, and the reproducibility was also excellent. Could.

이상에서는 본 발명의 바람직한 실시예에 대해서 설명하였으나, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 당해 기술분야에서 통상의 지식을 가진 자라면 본원 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능함은 물론이다. 따라서, 본 발명의 범위는 위의 실시예에 국한해서 해석되어서는 안되며, 후술하는 특허청구범위 뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 할 것이다.
While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, Of course it is possible. Accordingly, the scope of the present invention should not be construed as being limited to the above-described embodiments, but should be determined by equivalents to the appended claims, as well as the following claims.

Claims (11)

탄소나노튜브 (Carbon Nano Tube. CNT) 100 중량부;
폴리비닐 70 내지 140 중량부;
백금 20 내지 45 중량부;
루테늄, 코발트, 주석, 금, 니켈 또는 그 합금 20 내지 45 중량부; 및
고체 전해질 50 내지 250 중량부
를 포함하는 화학적 산소요구량 (Chemical Oxygen Demand. COD) 측정센서용 작용전극 촉매.
100 parts by weight of carbon nanotubes (CNT);
70 to 140 parts by weight of polyvinyl;
20 to 45 parts by weight of platinum;
20 to 45 parts by weight of ruthenium, cobalt, tin, gold, nickel or an alloy thereof; And
50 to 250 parts by weight of the solid electrolyte
Chemical Oxygen Demand (COD) measuring electrode comprising a working electrode catalyst for the sensor.
청구항 1에 있어서,
상기 탄소나노튜브는 다층벽 탄소나노튜브 (Multi Wall Carbon Nano Tube. MWCNT)인 것을 특징으로 하는 화학적 산소요구량 측정센서용 작용전극 촉매.
The method according to claim 1,
The carbon nanotubes are multi-walled carbon nanotubes (MWCNT), the working electrode catalyst for a chemical oxygen demand measurement sensor, characterized in that.
청구항 1에 있어서,
상기 폴리비닐은 4-비닐페닐보론산 (4-vinylphenylboronic acid)의 중합체인 것을 특징으로 하는 화학적 산소요구량 측정센서용 작용전극 촉매.
The method according to claim 1,
The polyvinyl is a working electrode catalyst for a chemical oxygen demand sensor, characterized in that the polymer of 4-vinylphenylboronic acid (4-vinylphenylboronic acid).
청구항 1에 있어서,
상기 고체 전해질은 테트라플루오로에틸렌-퍼플루오로-3,6-디옥사-4-메틸-7-옥텐술폰산 공중합체 (tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octenesulfonic acid copolymer)인 것을 특징으로 하는 화학적 산소요구량 측정센서용 작용전극 촉매.
The method according to claim 1,
The solid electrolyte is a tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octensulfonic acid copolymer (tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octenesulfonic acid copolymer A working electrode catalyst for a chemical oxygen demand sensor, characterized in that).
청구항 1 내지 청구항 4 중 어느 한 청구항의 화학적 산소요구량 측정센서용 작용전극 촉매가 코팅된 화학적 산소요구량 측정센서용 작용전극.The working electrode for a chemical oxygen demand measuring sensor according to any one of claims 1 to 4, wherein the working electrode for a chemical oxygen demand measuring sensor coated with a catalyst. 청구항 5의 화학적 산소요구량 측정센서용 작용전극을 포함한 화학적 산소요구량 측정센서.Chemical oxygen demand measuring sensor comprising a working electrode for a chemical oxygen demand measuring sensor of claim 5. 청구항 6에 있어서,
Ag/AgCl의 기준전극 및 백금 와이어 (Pt wire)의 보조전극을 추가로 포함하는 것을 특징으로 하는 화학적 산소요구량 측정센서.
The method of claim 6,
A chemical oxygen demand measurement sensor further comprises a reference electrode of Ag / AgCl and an auxiliary electrode of a platinum wire (Pt wire).
(A) 탄소나노튜브 100 중량부 및 4-비닐페닐보론산 70 내지 140 중량부를 물에 첨가하고, 감마선을 조사하여 탄소나노튜브 및 폴리비닐의 혼합물인 VP-CNT를 제조하는 단계;
(B) 2-프로판올을 3 내지 10 부피% 함유한 물에 H2PtCl6의 수화물, RuCl3의 수화물 및 VP-CNT를 H2PtCl6의 수화물 : RuCl3의 수화물 : VP-CNT의 중량비가 3 내지 10 : 3 내지 10 : 10 이 되도록 첨가하고, 감마선을 조사하여 백금 및 루테늄이 VP-CNT에 고정화된 Pt-Ru-VP-CNT를 제조하는 단계;
(C) 상기 제조된 Pt-Ru-VP-CNT를 가는 단계; 및
(D) 물에 상기 간 Pt-Ru-VP-CNT 및 고체 전해질을 Pt-Ru-VP-CNT : 고체 전해질의 중량비가 10 : 2 내지 10 이 되도록 첨가하고 혼합하는 단계
를 포함하는 화학적 산소요구량 측정센서용 작용전극 촉매의 제조방법.
(A) adding 100 parts by weight of carbon nanotubes and 70 to 140 parts by weight of 4-vinylphenylboronic acid to water and irradiating gamma rays to prepare VP-CNT, which is a mixture of carbon nanotubes and polyvinyl;
(B) The weight ratio of H 2 PtCl 6 hydrate, RuCl 3 hydrate and VP-CNT in H 2 PtCl 6 hydrate: RuCl 3 hydrate: VP-CNT in water containing 3 to 10% by volume of 2-propanol Adding 3 to 10: 3 to 10: 10 and irradiating with gamma rays to prepare Pt-Ru-VP-CNT having platinum and ruthenium immobilized on VP-CNT;
(C) grinding the prepared Pt-Ru-VP-CNT; And
(D) adding and mixing the liver Pt-Ru-VP-CNT and the solid electrolyte in water so that the weight ratio of Pt-Ru-VP-CNT: solid electrolyte is 10: 2 to 10
Method for producing a working electrode catalyst for a chemical oxygen demand measuring sensor comprising a.
청구항 8에 있어서,
상기 단계 (A), 단계 (B), 또는 단계 (A) 및 단계 (B)의 감마선 조사 전에 질소를 물에 주입하는 단계를 추가로 포함하는 것을 특징으로 하는 화학적 산소요구량 측정센서용 작용전극 촉매의 제조방법.
The method according to claim 8,
The working electrode catalyst for chemical oxygen demand measurement sensor further comprises the step of injecting nitrogen into water before the gamma irradiation of step (A), step (B), or step (A) and step (B). Manufacturing method.
청구항 8 또는 청구항 9에 있어서,
상기 단계 (A) 이전에 탄소나노튜브를 황산과 질산의 혼합물로 정제하는 단계를 추가로 포함하는 것을 특징으로 하는 화학적 산소요구량 측정센서용 작용전극 촉매의 제조방법.
The method according to claim 8 or 9,
Method of producing a working electrode catalyst for a chemical oxygen demand measurement sensor, characterized in that further comprising the step of purifying the carbon nanotubes with a mixture of sulfuric acid and nitric acid before step (A).
청구항 8 또는 청구항 9에 있어서,
상기 단계 (A), 단계 (B), 또는 단계 (A) 및 단계 (B)의 감마선은 코발트-60 광원을 통해 조사하는 것을 특징으로 하는 화학적 산소요구량 측정센서용 작용전극 촉매의 제조방법.
The method according to claim 8 or 9,
The gamma ray of step (A), step (B), or step (A) and step (B) is irradiated with a cobalt-60 light source, characterized in that the method for producing a working electrode catalyst for a chemical oxygen demand sensor.
KR1020110018657A 2010-03-02 2011-03-02 Catalyst Including Pt-Ru of Working Electrode for COD Measuring Sensor and Manufacturing Process thereof KR101202362B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100018676 2010-03-02
KR20100018676 2010-03-02

Publications (2)

Publication Number Publication Date
KR20110099662A KR20110099662A (en) 2011-09-08
KR101202362B1 true KR101202362B1 (en) 2012-11-16

Family

ID=44952455

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110018657A KR101202362B1 (en) 2010-03-02 2011-03-02 Catalyst Including Pt-Ru of Working Electrode for COD Measuring Sensor and Manufacturing Process thereof

Country Status (1)

Country Link
KR (1) KR101202362B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334772B1 (en) 2013-08-30 2013-12-05 (주)케이디티엠에스 Cod testing apparatus reference electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030003849A (en) * 2001-07-04 2003-01-14 주식회사 에코아이티이십일 Copper electrode-based electrochemical sensor for measurement of COD and the method of measuring of COD and the automatic analyzer thereof
KR20040023169A (en) * 2002-09-11 2004-03-18 한국바이오시스템(주) Composite electrode for COD measurement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030003849A (en) * 2001-07-04 2003-01-14 주식회사 에코아이티이십일 Copper electrode-based electrochemical sensor for measurement of COD and the method of measuring of COD and the automatic analyzer thereof
KR20040023169A (en) * 2002-09-11 2004-03-18 한국바이오시스템(주) Composite electrode for COD measurement

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
2007 *
DAE-SOO YANG et al., Radiation Physics and Chemistry, vol 79, pp. 434-440 (2009.11.10.). *
Electroanalysis,2008 *
ELECTROCHIMICA ACTA,2007 *
LEI YANG et al., Electrochimica Acta, vol. 53, pp. 777-784 (2007.07.25.). *
Nanotechnology,2010 *
RADIATION PHYSICS AND CHEMISTRY,2009 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334772B1 (en) 2013-08-30 2013-12-05 (주)케이디티엠에스 Cod testing apparatus reference electrode

Also Published As

Publication number Publication date
KR20110099662A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
Ensafi et al. A new non-enzymatic glucose sensor based on copper/porous silicon nanocomposite
Huang et al. Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly (3-methylthiophene) composites coated glassy carbon electrode
Patella et al. A nanostructured sensor of hydrogen peroxide
Zhu et al. Anodic stripping voltammetric determination of lead in tap water at an ordered mesoporous carbon/Nafion composite film electrode
Ensafi et al. Facile synthesis of Pt-Cu@ silicon nanostructure as a new electrocatalyst supported matrix, electrochemical detection of hydrazine and hydrogen peroxide
Ai et al. Electrocatalytic sensor for the determination of chemical oxygen demand using a lead dioxide modified electrode
Mohammad et al. Ag-modified SnO2-graphitic-carbon nitride nanostructures for electrochemical sensor applications
Thota et al. Simple and facile preparation of silver–polydopamine (Ag–PDA) core–shell nanoparticles for selective electrochemical detection of cysteine
Atta et al. Gold-doped nano-perovskite-decorated carbon nanotubes for electrochemical sensing of hazardous hydrazine with application in wastewater sample
Aparna et al. FeTiO3 nanohexagons based electrochemical sensor for the detection of dopamine in presence of uric acid
Butmee et al. A portable selective electrochemical sensor amplified with Fe3O4@ Au-cysteamine-thymine acetic acid as conductive mediator for determination of mercuric ion
Šljukić et al. Disposable manganese oxide screen printed electrodes for electroanalytical sensing
Song et al. A novel electrochemical sensor based on the copper-doped copper oxide nano-particles for the analysis of hydrogen peroxide
Gong et al. A glucose biosensor based on the polymerization of aniline induced by a bio-interphase of glucose oxidase and horseradish peroxidase
Rashed et al. Highly sensitive and selective amperometric hydrazine sensor based on Au nanoparticle-decorated conducting polythiophene prepared via oxidative polymerization and photo-reduction techniques
Li et al. An electrochemical sensor based on platinum nanoparticles and mesoporous carbon composites for selective analysis of dopamine
Ojani et al. An efficient sensor for determination of concentrated hydrogen peroxide based on nickel oxide modified carbon paste electrode
Ganjali et al. Bio-mimetic cadmium ion imprinted polymer based potentiometric nano-composite sensor
Nazari et al. Sensitive determination of hydroxylamine by using modified electrode by La2O3–Co3O4 nanocomposite and ionic liquid
Zhao et al. A study on the adsorption voltammetry of the iron (III)-2-(5'-bromo-2'-pyridylazo)-5-diethylaminophenol system
Elfeky et al. Developing the sensing features of copper electrodes as an environmental friendly detection tool for chemical oxygen demand
Yan et al. Microwave-assisted synthesis of carbon dots–zinc oxide/multi-walled carbon nanotubes and their application in electrochemical sensors for the simultaneous determination of hydroquinone and catechol
Gao et al. Bifunctional high-entropy alloys for sensitive nitrite detection and oxygen reduction reaction
Xiong et al. The highly sensitive electrocatalytic sensing of catechol using a gold/titanium dioxide nanocomposite-modified gold electrode
Li et al. Electrochemical determination of nitrite and iodate based on Pt nanoparticles self-assembled on a chitosan modified glassy carbon electrode

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151112

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180213

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181112

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191105

Year of fee payment: 8