KR101197663B1 - Tower Installation for Elastomeric bearing of Wind power generator - Google Patents

Tower Installation for Elastomeric bearing of Wind power generator Download PDF

Info

Publication number
KR101197663B1
KR101197663B1 KR1020090072887A KR20090072887A KR101197663B1 KR 101197663 B1 KR101197663 B1 KR 101197663B1 KR 1020090072887 A KR1020090072887 A KR 1020090072887A KR 20090072887 A KR20090072887 A KR 20090072887A KR 101197663 B1 KR101197663 B1 KR 101197663B1
Authority
KR
South Korea
Prior art keywords
tower
metal plate
power generator
wind power
rubber
Prior art date
Application number
KR1020090072887A
Other languages
Korean (ko)
Other versions
KR20110015255A (en
Inventor
임태규
송원진
Original Assignee
송원진
임태규
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 송원진, 임태규 filed Critical 송원진
Priority to KR1020090072887A priority Critical patent/KR101197663B1/en
Publication of KR20110015255A publication Critical patent/KR20110015255A/en
Application granted granted Critical
Publication of KR101197663B1 publication Critical patent/KR101197663B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/22Foundations specially adapted for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/30Manufacture with deposition of material
    • F05B2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vibration Prevention Devices (AREA)
  • Wind Motors (AREA)

Abstract

본 발명은 풍력발전기의 타워설치용 탄성받침에 관한 것으로서, 풍력발전기의 타워를 설치함에 있어, 타워와 타워 사이를 결합하기 위한 플랜지 결합부의 원주 둘레에 다수의 탄성받침을 분할 설치하되, 상기 탄성받침은 고무판과 금속판이 교대로 적층되도록 하고, 상기 고무판과 금속판의 접지면이 음각부 및 양각부로 이루어진 요철부를 형성하는 것을 특징으로 한다.The present invention relates to an elastic support for installing a tower of a wind power generator, in installing a tower of a wind power generator, a plurality of elastic supports are dividedly installed around a circumference of a flange coupling portion for coupling between a tower and a tower, and the elastic support is The rubber plate and the metal plate are alternately stacked, and the ground planes of the rubber plate and the metal plate form an uneven portion formed of a negative portion and an embossed portion.

상기 구성에 따른 본 발명은 고무판 사이에 금속판을 적층시켜 수직하중에 대한 강성을 보강하는 한편, 상기 고무판과 금속판 사이의 접지면적을 확장시키기 위한 요철부를 형성함으로써, 고무판과 금속판 사이의 접착력이 향상되고 아울러 탄성받침의 탄성계수를 향상시켜 풍력발전기의 타워에서 발생되는 진동을 흡수하는 능력 및 바람에 의해 휨변형 후에 복원하는 능력이 향상되어 타워구조물의 안전시공에 기여하게 되는 효과를 갖는다.The present invention according to the above configuration by reinforcing the rigidity against the vertical load by stacking the metal plate between the rubber plate, while forming an uneven portion for expanding the ground area between the rubber plate and the metal plate, the adhesion between the rubber plate and the metal plate is improved In addition, by improving the elastic modulus of the elastic support has the ability to absorb the vibration generated in the tower of the wind power generator and the ability to restore after bending deformation by the wind is improved to contribute to the safe construction of the tower structure.

탄성받침, 금속판, 요철부, 풍력발전기, 타워 Elastic bearing, metal plate, irregularities, wind power generator, tower

Description

풍력발전기의 타워설치용 탄성받침{Tower Installation for Elastomeric bearing of Wind power generator}Tower installation for Elastomeric bearing of Wind power generator

본 발명은 타워 설치용 탄성받침에 관한 것으로서, 보다 상세하게는 풍력발전기 등과 같은 타워 구조물의 타워와 타워 사이를 플랜지 결합하여 시공할 때, 타워의 플랜지연결부에 끼워져서 방진기능을 수행하도록 된 풍력발전기의 타워설치용 탄성받침에 관한 것이다.The present invention relates to an elastic bearing for tower installation, and more particularly, when a flange is coupled between a tower and a tower of a tower structure such as a wind power generator, the wind turbine is inserted into the flange connection part of the tower to perform a dustproof function. It relates to an elastic bearing for tower installation.

일반적으로 풍력발전은 지상으로부터 일정한 높이에 설치된 회전자인 로터 블레이드를 바람의 운동에너지를 이용하여 회전시키고, 로터 블레이드의 회전에 의하여 발생하는 기계적 에너지를 사용하여 풍력발전기의 내부에 설치된 발전기를 구동시켜 전기를 발생시키는 것으로서, 환경오염에 대한 우려가 전혀 없을 뿐만 아니라, 그 에너지 자원의 거대한 잠재성으로 인하여 세계 각국에서 대체 에너지원의 일환으로 폭넓게 개발되어 사용되고 있다.In general, wind power is generated by rotating a rotor blade, a rotor installed at a constant height from the ground, using kinetic energy of wind, and driving a generator installed inside the wind turbine using mechanical energy generated by the rotation of the rotor blades. It is not only concerned about environmental pollution, but also due to the huge potential of its energy resources, it has been widely developed and used as part of alternative energy sources around the world.

풍력발전기는 지면으로부터 소정의 높이만큼 타워가 설치되고, 상기 타워의 상단에는 로터 블레이드가 피치 콘트롤러에 결합되어 설치되며, 상기 로터 블레이드의 회전을 증속시키는 증속기어박스와, 증속기어박스의 회전을 전달하는 기어결 합부 및 증속기어박스로부터 전달받은 회전력을 사용하여 전기를 발생시키는 발전기가 모두 타워의 상부에 설치되어 있으며, 지면에 해당하는 타워의 바닥부에는 기어결합부와 회전축으로서 연결되는 또 다른 발전기가 설치되어 있으며, 방향조절기에 의해 회전부가 회전하여 바람이 불어오는 방향으로 로터 블레이드가 향하도록 한다.The wind power generator has a tower installed at a predetermined height from the ground, and a rotor blade is coupled to a pitch controller at an upper end of the tower, and a gearbox for increasing the rotation of the rotor blade and a gearbox for transmitting the rotation of the gearbox are transmitted. The generator that generates electricity by using the torque transmitted from the gear coupling part and the gearbox is installed at the top of the tower, and another generator connected as a gear coupling part and a rotating shaft at the bottom of the tower corresponding to the ground. Is installed, the rotor is rotated by the direction adjuster so that the rotor blades in the wind blowing direction.

상기한 바와 같은 종래기술의 타워는 양끝단에 플랜지를 형성하는 강관을 지상에 대해 수직방향으로 계속연결시켜 형성하게 된다. 이때 타워의 플랜지 결합부를 볼트조립하는 구성으로 이루어져 있다.The prior art tower as described above is formed by continuously connecting the steel pipe forming a flange at both ends in a vertical direction with respect to the ground. At this time, the flange coupling portion of the tower is composed of a configuration.

그러나, 상기와 같은 구성의 풍력발전기는 바람에 의한 영향에 노출되어 있는 구조로서, 특히 타워의 플랜지 결합부에서 진동충격으로 인한 파손 및 피로누적으로 인한 복원력 저하 및 이로 인한 형상변형의 문제가 있었다.However, the wind power generator having the above-described configuration is a structure that is exposed to the influence of the wind, in particular, there is a problem of the shape deformation due to the damage caused by the vibration shock and the deterioration of the restoring force due to fatigue accumulation in the flange coupling portion of the tower.

이는, 타워의 교체 작업으로 인한 발전기의 사용이 중단되는 문제가 있었다.This is a problem that the use of the generator is stopped due to the replacement operation of the tower.

상기 종래기술의 문제점을 해결하기 위해 안출된 본 발명의 목적은 고무판 사이에 금속판을 적층시켜 수직하중에 대한 강성을 보강하는 한편, 상기 고무판과 금속판 사이의 접지면적을 확장시키기 위한 요철부를 형성함으로써, 고무판과 금속판 사이의 접착력이 향상되고 아울러 탄성받침의 탄성계수를 향상시켜 풍력발전기의 타워에서 발생되는 진동을 흡수하는 능력 및 바람에 의해 휨변형 후에 복원하는 능력이 향상되어 타워 구조물의 안전시공에 기여하도록 하는 풍력발전기의 타워설치용 탄성받침을 제공함에 있다.An object of the present invention devised to solve the problems of the prior art by stacking the metal plate between the rubber plate to reinforce the rigidity against the vertical load, while forming the uneven portion for expanding the ground area between the rubber plate and the metal plate, The adhesive force between the rubber plate and the metal plate is improved, and the elastic modulus of the elastic bearing is improved to improve the ability to absorb vibrations generated in the tower of the wind turbine and to restore after bending deformation by wind, contributing to the safety construction of the tower structure. To provide an elastic support for the tower installation of the wind turbine.

본 발명의 목적을 달성하기 위한 풍력발전기의 타워설치용 탄성받침은, 풍력발전기의 타워를 설치함에 있어, 타워와 타워 사이를 결합하기 위한 플랜지 결합부의 원주 둘레에 다수의 탄성받침을 분할 설치하되, 상기 탄성받침은 고무판과 금속판이 교대로 적층되도록 하고, 상기 고무판과 금속판의 접지면이 음각부 및 양각부로 이루어진 요철부를 형성하는 것을 특징으로 한다.The elastic support for installing the tower of the wind power generator for achieving the object of the present invention, in the installation of the tower of the wind power generator, divided into a plurality of elastic support around the circumference of the flange coupling portion for coupling between the tower and the tower, The elastic bearing is characterized in that the rubber plate and the metal plate are alternately stacked, and the ground plane of the rubber plate and the metal plate forms an uneven portion consisting of an intaglio portion and an embossed portion.

여기서, 상기 요철부는 금속판의 상하면에 동시에 형성되는 것을 특징으로 한다.Here, the uneven portion is characterized in that formed on the upper and lower surfaces of the metal plate at the same time.

그리고, 상기 고무판과 금속판이 관통되도록 볼트체결공이 형성되는 것을 특징으로 한다.Then, the bolt fastening hole is formed so that the rubber plate and the metal plate penetrates.

상기 구성에 따른 본 발명은 고무판 사이에 금속판을 적층시켜 수직하중에 대한 강성을 보강하는 한편, 상기 고무판과 금속판 사이의 접지면적을 확장시키기 위한 요철부를 형성함으로써, 고무판과 금속판 사이의 접착력이 향상되고 아울러 탄성받침의 탄성계수를 향상시켜 풍력발전기의 타워에서 발생되는 진동을 흡수하는 능력 및 바람에 의해 휨변형 후에 복원하는 능력이 향상되어 타워구조물의 안전시공에 기여하게 되는 효과를 갖는다.The present invention according to the above configuration by reinforcing the rigidity against the vertical load by stacking the metal plate between the rubber plate, while forming an uneven portion for expanding the ground area between the rubber plate and the metal plate, the adhesion between the rubber plate and the metal plate is improved In addition, by improving the elastic modulus of the elastic support has the ability to absorb the vibration generated in the tower of the wind power generator and the ability to restore after bending deformation by the wind is improved to contribute to the safe construction of the tower structure.

이하, 본 발명의 바람직한 실시예에 대해 첨부된 도면을 참조하여 자세히 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 풍력발전기의 타워설치구조를 도시한 개략도이고, 도 2는 본 발명에 따른 풍력발전기의 타워 결합부에 탄성받침이 설치된 상태를 도시한 평면도이며, 도 3은 도 1의 "A"부 확대단면도이고, 도 4는 본 발명에 따른 풍력발전기의 타워설치용 탄성받침의 구조를 도시한 평면도이며, 도 5는 도 4의 A-A선 단면도이고, 도 6은 본 발명에 따른 탄성받침에 적용된 금속판을 도시한 평면도이다.1 is a schematic view showing a tower installation structure of a wind turbine according to the present invention, Figure 2 is a plan view showing a state in which the elastic support is installed in the tower coupling portion of the wind turbine according to the invention, Figure 3 "A" part is an enlarged cross-sectional view, Figure 4 is a plan view showing the structure of the elastic support for tower installation of the wind turbine according to the invention, Figure 5 is a cross-sectional view taken along line AA of Figure 4, Figure 6 is an elastic bearing according to the present invention It is a top view which shows the metal plate applied to the.

동 도면에서 보는 바와 같은 본 발명은 풍력발전기의 타워 플랜지 결합부에 설치되어 방진역할을 수행하도록 된 탄성받침(120)에 관한 것이다.The present invention as shown in the figure relates to the elastic support 120 is installed in the tower flange coupling portion of the wind power generator to perform the role of vibration.

본 발명의 타워(110) 구조를 설명하면, 원형 강관의 상하측 양끝단에 볼트 체결이 가능하도록 플랜지(111)를 형성하고 있다.Referring to the structure of the tower 110 of the present invention, the flange 111 is formed to be bolted to the upper and lower ends of the circular steel pipe.

상기 타워(110)는 수직방향으로 다수가 연결되어 일정높이 지상으로 연장되는 구조로 이루어져 있다.The tower 110 has a structure in which a plurality is connected in the vertical direction and extends to the ground at a predetermined height.

즉, 플랜지(111)와 플랜지(111)를 맞댄 상태에서 체결볼트(130)를 관통시켜 조립하게 된다.That is, the flange 111 and the flange 111 to pass through the fastening bolt 130 to be assembled.

이때, 상기 결합되는 상하측 플랜지(111)의 사이에는 원주둘레를 따라 다수의 탄성받침(120)을 설치시켜 방진기능을 수행할 수 있도록 한다.At this time, between the upper and lower flanges 111 to be coupled to install a plurality of elastic support 120 along the circumference to perform the dust-proof function.

상기한 탄성받침(120)은 플랜지(111) 둘레에 대략 30~70개 사이로 분할하여 설치하게 된다.The elastic bearing 120 is installed by dividing the flange 111 between about 30 to 70 pieces.

상기 탄성받침(120)의 구성에 대해 보다 자세히 설명하면, 내외면의 곡률이 타워(110)의 플랜지(111) 곡률반경과 일치하는 판상으로 제작되며, 다수의 고무판(121)과 금속판(125)이 교대로 적층되는 구조로 이루어져 있다.In more detail with respect to the configuration of the elastic support 120, the curvature of the inner and outer surface is made of a plate shape that matches the radius of curvature of the flange 111 of the tower 110, a plurality of rubber plate 121 and the metal plate 125 It consists of a structure which is alternately laminated.

이때, 상기 고무판(121)과 금속판(125)의 접지면적을 넓히기 위한 방법으로 금속판(125)의 일면 또는 상하측 양면에 음각부 및 양각부로 이루어진 요철부(127)를 형성한다.At this time, as a method for widening the ground area of the rubber plate 121 and the metal plate 125, the concave-convex portion 127 consisting of an intaglio portion and an embossed portion is formed on one surface or both upper and lower sides of the metal plate 125.

상기 요철부(127)의 음각 및 양각의 형태는 곡선이나 삼각, 사각 파형이 모두 가능하다.The intaglio and embossed shapes of the uneven parts 127 may be curved, triangular, or square waveforms.

상기한 바와 같이 고무판(121)과 금속판(125) 사이의 접지면적을 넓히게 되면, 탄성받침(120)의 탄성계수를 높여 진동흡수 및 복원력을 향상시킬 수 있게 된다.As described above, when the ground area between the rubber plate 121 and the metal plate 125 is widened, the elastic modulus of the elastic support 120 may be increased to improve vibration absorption and restoring force.

여기서, 상기 고무판(121)은 물과 유사하게 포아손비가 0.5에 근접하는 이상적인 비압축성 재질인 관계로 탄성받침의 팽출량은 사용되는 고무판(121)의 강성 및 사용되는 고무판(121) 한층의 두께에 지배적인 영향을 받게 된다.Here, since the rubber plate 121 is an ideal incompressible material having a Poisson's ratio close to 0.5, similar to water, the amount of expansion of the elastic support is dependent on the rigidity of the rubber plate 121 and the thickness of the rubber plate 121 used. You will be dominantly affected.

또한, 외관상의 팽출량은 사용되는 피복고무의 두께에 따라서 상당히 달라지게 된다.In addition, the apparent amount of swelling varies considerably depending on the thickness of the coated rubber used.

포아손비란 압축하중에 대한 압축변형율과 측면방향의 인장변형율과의 비를 말하지만, 포아손비가 0.5란 물리적인 의미는 수직하중에 의한 압축변형량에 해당하는 체적감소와 동일한 부피가 수평방향으로 돌출하는 비압축성 재료라는 것이다.Poisson's ratio refers to the ratio of compressive strain to compressive load and tensile strain in the lateral direction.However, the Poisson's ratio of 0.5 means that a volume equal to the volume reduction corresponding to the compressive strain caused by the vertical load protrudes in the horizontal direction. It is called an incompressible material.

즉, 고무는 압축하중에 의한 압축되는 겉보기 부피와 수평으로 팽창하는 실제 부피가 동일한 포아손비가 0.5인 물체이다. In other words, rubber is an object with a Poisson's ratio of 0.5 equal to the apparent volume compressed by the compressive load and the actual volume expanding horizontally.

이에 비하여 코르크는 수직하중에 의한 압축변형량을 물체 내부의 공극이 흡수하기 때문에 수평돌출량이 전혀없는 포아손비가 0인 물체이며, 콘크리트는 어느 정도는 흡수하고 어느 정도는 돌출하는 포아손비가 0.25정도 되는 물체이다.Cork, on the other hand, is an object with zero porosity ratio with no horizontal protrusion because the void inside the object absorbs the compressive strain due to vertical load. It is an object.

하기 실험예를 통해 탄성받침(120)의 수직탄성계수 및 단면적과의 함수관계에 대해 살펴보면 다음과 같다.Looking at the functional relationship between the vertical elastic modulus and the cross-sectional area of the elastic support 120 through the following experimental example.

수직탄성계수의 계산 (예 : 사각형 135톤)Calculation of vertical modulus of elasticity (e.g. 135 tons square)

받침의 제원: 300mm(단변)×400mm(장변)×105mm(높이), 고무 한층의 두께: 12mm, 철판 한층의 두께: 4mm, 총 고무층수: 6층, 상하 피복두께: 2.5mm, 측면 피복두께: 4mm, 탄성받침의 높이: 12mm×6ea + 4mm×(6+1)ea + 2.5mm×2ea= 105mmSpecifications of the base: 300 mm (short side) × 400 mm (long side) × 105 mm (height), thickness of one rubber layer: 12 mm, thickness of one steel sheet: 4 mm, total number of rubber layers: 6 layers, top and bottom coating thickness: 2.5 mm, side cover thickness : 4mm, height of elastic base: 12mm × 6ea + 4mm × (6 + 1) ea + 2.5mm × 2ea = 105mm

탄성받침(120)의 수직탄성계수 Kv는 하기 [수학식1]에서 보는 바와 같이 고무의 탄성계수(E)와 단면적(A), 그리고 순고무두께(∑te)와의 함수관계에 있으며 다음 [수학식1]으로 평가될 수 있다.The vertical elastic modulus Kv of the elastic support 120 is a function of the elastic modulus of rubber (E), the cross-sectional area (A), and the pure rubber thickness (∑te), as shown in Equation 1 below. Equation 1 can be evaluated.

Kv = E × A / ∑te = 2,962kg/㎠ × (39.2㎝×29.2㎝)/7.2㎝ = 470,989㎏/㎝Kv = E × A / ∑te = 2,962kg / ㎠ × (39.2 cm x 29.2 cm) /7.2 cm = 470,989 kg / cm

여기서, here,

E: (3+6.58S2)×G = (3+6.58×6.972)×9.18 = 2,962㎏/㎠,E: (3 + 6.58S 2 ) × G = (3 + 6.58 × 6.97 2 ) × 9.18 = 2,962 kg / cm 2,

G : 고무의 전단탄성계수 (G=9.18㎏/㎠)G: Shear modulus of rubber (G = 9.18㎏ / ㎠)

S (형상계수) : a×b/[2(a+b)×te] = 29.2×39.2/[2(29.2+39.2)×1.2]= 6.97S (shape coefficient): a × b / [2 (a + b) × te] = 29.2 × 39.2 / [2 (29.2 + 39.2) × 1.2] = 6.97

∑te : 순수고무의 총두께 (상하 피복두께 제외) = 7.2cm∑te: Total thickness of pure rubber (excluding top and bottom cover thickness) = 7.2cm

상기한 바와 같은 구성을 갖는 본 발명에 따른 탄성받침(120)은 고무판(121)과 금속판(125)이 관통되도록 볼트체결공(129)이 형성되고 있어 플랜지(111) 결합시 체결볼트(130)를 관통시켜 결합하게 된다.The elastic support 120 according to the present invention having the configuration as described above is a bolt fastening hole 129 is formed so that the rubber plate 121 and the metal plate 125 penetrates the fastening bolt 130 when the flange 111 is coupled Through to combine.

상기 구성에 따른 본 발명은 고무판(121) 사이에 금속판(125)을 적층시켜 수직하중에 대한 강성을 보강하는 한편, 상기 고무판(121)과 금속판(125) 사이의 접지면적을 확장시키기 위한 요철부(127)를 형성함으로써, 고무판(121)과 금속판(125) 사이의 접착력이 향상되고 아울러 탄성받침(120)의 탄성계수를 향상시켜 풍력발전기의 타워에서 발생되는 진동을 흡수하는 능력 및 바람에 의해 휨변형 후 에 복원하는 능력이 향상되어 타워구조물의 안전한 시공이 가능하게 된다.According to the present invention, the metal plate 125 is laminated between the rubber plates 121 to reinforce the rigidity against the vertical load, and the uneven portion for extending the ground area between the rubber plate 121 and the metal plate 125 is provided. By forming the 127, the adhesive force between the rubber plate 121 and the metal plate 125 is improved, and the elastic modulus of the elastic bearing 120 is improved to absorb the vibration generated in the tower of the wind power generator and by the wind. The ability to recover after flexural deformation is improved, enabling safe construction of tower structures.

이상과 같은 본 발명의 설명에서는 특정한 실시예를 들어 설명하고 있으나 본 발명은 이에 한정되는 것이 아니며, 본 발명의 개념을 이탈하지 않는 범위내에서 이 기술 분야의 통상의 지식을 가진 자에 의해 다양하게 실시될 수 있을 뿐만 아니라, 이러한 다양한 실시는 본 발명의 권리범위에 속한다 할 것이다. In the above description of the present invention, a specific embodiment has been described and described. However, the present invention is not limited thereto, and various modifications may be made by those skilled in the art without departing from the concept of the present invention. In addition to being practiced, these various implementations will be within the scope of the present invention.

도 1은 본 발명에 따른 풍력발전기의 타워설치구조를 도시한 개략도1 is a schematic diagram showing a tower installation structure of a wind power generator according to the present invention

도 2는 본 발명에 따른 풍력발전기의 타워 결합부에 탄성받침이 설치된 상태를 도시한 평면도.Figure 2 is a plan view showing a state in which the elastic support is installed in the tower coupling portion of the wind power generator according to the present invention.

도 3은 도 1의 "A"부 확대단면도.3 is an enlarged cross-sectional view of portion “A” of FIG. 1;

도 4는 본 발명에 따른 풍력발전기의 타워설치용 탄성받침의 구조를 도시한 평면도.Figure 4 is a plan view showing the structure of the elastic support for tower installation of the wind turbine according to the present invention.

도 5는 도 4의 A-A선 단면도.5 is a cross-sectional view taken along the line A-A of FIG.

도 6은 본 발명에 따른 탄성받침에 적용된 금속판을 도시한 평면도.Figure 6 is a plan view showing a metal plate applied to the elastic support according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

110: 타워110: tower

111: 플랜지111: flange

120: 탄성받침120: elastic bearing

121: 고무판121: rubber plate

125: 금속판125: metal plate

127: 요철부127: uneven portion

129: 볼트체결공129: bolt fastener

130: 체결볼트130: fastening bolt

Claims (3)

풍력발전기의 타워를 설치함에 있어, 원형 강관으로 된 타워와 타워 사이를 결합하기 위한 플랜지 결합부의 원주 둘레에 다수의 탄성받침(120)을 분할 설치하되, 상기 탄성받침(120)은 고무판(121)과 금속판(125)이 교대로 적층되도록 하고, 상기 고무판(121)과 금속판(125)의 접지면에는 음각부 및 양각부로 이루어진 요철부(127)가 형성되며,In installing the tower of the wind power generator, a plurality of elastic support 120 is dividedly installed around the circumference of the flange coupling portion for coupling between the tower made of a circular steel pipe, the elastic support 120 is a rubber plate 121 And the metal plate 125 are alternately stacked, and the concave-convex portion 127 formed of an intaglio portion and an embossed portion is formed on the ground surface of the rubber plate 121 and the metal plate 125. 상기 요철부(127)는 금속판(125)의 상하면에 동시에 형성되며,The uneven portion 127 is formed on the upper and lower surfaces of the metal plate 125 at the same time, 상기 고무판(121)과 금속판(125)이 관통되도록 볼트체결공(129)이 형성되며,The bolt fastening hole 129 is formed to penetrate the rubber plate 121 and the metal plate 125, 상기 탄성받침(120)의 수직탄성계수 Kv는 하기의 [수학식 1]을 만족하는 것을 특징으로 하는 풍력발전기의 타워설치용 탄성받침.The vertical elastic modulus Kv of the elastic support 120 is the elastic support for tower installation of the wind turbine, characterized in that to satisfy the following [Equation 1]. [수학식 1][Equation 1] Kv = E × A / ∑te Kv = E × A / ∑te E : 고무의 탄성계수, A : 단면적, ∑te : 순고무두께E: elastic modulus of rubber, A: cross-sectional area, ∑te: pure rubber thickness 삭제delete 삭제delete
KR1020090072887A 2009-08-07 2009-08-07 Tower Installation for Elastomeric bearing of Wind power generator KR101197663B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090072887A KR101197663B1 (en) 2009-08-07 2009-08-07 Tower Installation for Elastomeric bearing of Wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090072887A KR101197663B1 (en) 2009-08-07 2009-08-07 Tower Installation for Elastomeric bearing of Wind power generator

Publications (2)

Publication Number Publication Date
KR20110015255A KR20110015255A (en) 2011-02-15
KR101197663B1 true KR101197663B1 (en) 2012-11-07

Family

ID=43774115

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090072887A KR101197663B1 (en) 2009-08-07 2009-08-07 Tower Installation for Elastomeric bearing of Wind power generator

Country Status (1)

Country Link
KR (1) KR101197663B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101352599B1 (en) 2012-06-04 2014-01-20 주식회사 에니텍시스 A wind power generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200189243Y1 (en) * 2000-02-14 2000-07-15 이은용 A gasket which is reinforced by metal
JP2005330675A (en) * 2004-05-19 2005-12-02 Sumitomo Mitsui Construction Co Ltd Tower-like structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200189243Y1 (en) * 2000-02-14 2000-07-15 이은용 A gasket which is reinforced by metal
JP2005330675A (en) * 2004-05-19 2005-12-02 Sumitomo Mitsui Construction Co Ltd Tower-like structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101352599B1 (en) 2012-06-04 2014-01-20 주식회사 에니텍시스 A wind power generator

Also Published As

Publication number Publication date
KR20110015255A (en) 2011-02-15

Similar Documents

Publication Publication Date Title
US8834127B2 (en) Extension for rotor blade in wind turbine
CN102505772A (en) Buckling restrained energy-consumption supporting device of building frame structure
CN1940186A (en) System and method for driving a monopile for supporting an offshore wind turbine
CN202416619U (en) Buckling-preventive energy-dissipating supporting device of building frame structure
CN212053197U (en) Replaceable steel beam with buckling-restrained cover plate
CN110905077A (en) Replaceable steel beam with buckling-restrained cover plate
EP3812164A1 (en) Elastic wheel noise reduction damper and assembly and installation method therefor
CN201217776Y (en) Vibration damping pot type rubber support
CN201381949Y (en) Foundation ring damping device for MW wind turbine generator system
KR101197663B1 (en) Tower Installation for Elastomeric bearing of Wind power generator
CN104164835A (en) High-damping vibration attenuation rubber support for bridge
CN112281641A (en) Grid damping support
CN205779468U (en) A kind of driftage main breaking zone device and wind-driven generator
CN108590301B (en) Electric eddy current type coupling beam damper
CN206987189U (en) One kind can recover function coupling beam
CN206448394U (en) A kind of attachment structure of replaceable coupling beam and the building containing it
CN213837198U (en) Shear wall for steel frame
CN201635003U (en) Prestressed type multi-way shift comb-shaped plate expansion device
CN102102339B (en) Prestressed multidirectional displacement comb plate expansion device
CN210887282U (en) Steel grating ring type wind power tower foundation ring facility
CN101922682B (en) Lamp vibration absorber and lamp device using same
KR101352599B1 (en) A wind power generator
CN111088749A (en) Railway bridge passive anti-collision device and design method thereof
KR20110055446A (en) Tower installation for elastomeric bearing of wind power generator
CN204040053U (en) Steel tower bolt fixture

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161028

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171025

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181025

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191029

Year of fee payment: 8