KR101193987B1 - Method for Preparing High-insulation Aerogel-Impregnated Fiber - Google Patents

Method for Preparing High-insulation Aerogel-Impregnated Fiber Download PDF

Info

Publication number
KR101193987B1
KR101193987B1 KR1020100002337A KR20100002337A KR101193987B1 KR 101193987 B1 KR101193987 B1 KR 101193987B1 KR 1020100002337 A KR1020100002337 A KR 1020100002337A KR 20100002337 A KR20100002337 A KR 20100002337A KR 101193987 B1 KR101193987 B1 KR 101193987B1
Authority
KR
South Korea
Prior art keywords
airgel
nonwoven fabric
solution
butanol
fibers
Prior art date
Application number
KR1020100002337A
Other languages
Korean (ko)
Other versions
KR20110082379A (en
Inventor
오영제
김경호
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020100002337A priority Critical patent/KR101193987B1/en
Publication of KR20110082379A publication Critical patent/KR20110082379A/en
Application granted granted Critical
Publication of KR101193987B1 publication Critical patent/KR101193987B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • D06M11/59Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with ammonia; with complexes of organic amines with inorganic substances
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/84Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising combined with mechanical treatment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/30Flame or heat resistance, fire retardancy properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2400/00Specific information on the treatment or the process itself not provided in D06M23/00-D06M23/18
    • D06M2400/02Treating compositions in the form of solgel or aerogel
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/02Curtains
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/04Floor or wall coverings; Carpets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S57/00Textiles: spinning, twisting, and twining
    • Y10S57/904Flame retardant

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

본 발명은 내열특성을 크게 향상시킨 에어로젤 함유 부직포의 관한 것이다. 에어로젤 부직포는 에어로젤이 고유하게 가지고 있는 넓은 표면적, 낮은 밀도, 높은 기공율로 인하여 기존 부직포의 방음 및 열적특성을 크게 향상시킨다. 유리 또는 플라스틱 기판 사이에 위치하여 벽, 커튼, 바닥, 창 등과 같은 곳에 응용할 수 있으며 반투명한 패널 등에도 단열 효과를 부여할 수 있는 에어로젤 함침 부직포에 관한 것이다. 본 공정은 TEOS-IPA 축합을 포함하는 솔-젤 공법을 이용하면서 용매 치환/표면개질/용매치환 후 상압건조시키는 공정으로 이루어져 부직포의 대면적화 코팅에 적합하다. 에어로젤 입자는 섬유들 사이에 균일하게 분산되어 있다. 또한, 본 발명에 사용되는 에어로젤 입자는 소수성의 표면기를 갖기 때문에, 기공 내의 수분의 응결에 의해 후속적으로 일어나는 에어로젤의 붕괴를 피할 수 있다.The present invention relates to an airgel-containing nonwoven fabric which greatly improves heat resistance. Airgel nonwoven fabrics greatly improve the sound insulation and thermal properties of existing nonwoven fabrics due to their large surface area, low density and high porosity. The present invention relates to an airgel-impregnated nonwoven fabric that can be placed between glass or plastic substrates and applied to walls, curtains, floors, windows, and the like, and can also provide thermal insulation to translucent panels. This process consists of a solvent-drying / surface modification / solvent replacement followed by atmospheric pressure drying using a sol-gel process including TEOS-IPA condensation, which is suitable for large area coating of nonwoven fabrics. The airgel particles are uniformly dispersed between the fibers. In addition, since the airgel particles used in the present invention have hydrophobic surface groups, it is possible to avoid the collapse of the airgel that is subsequently caused by condensation of moisture in the pores.

Description

고단열 에어로젤 함침 섬유의 제조 방법 {Method for Preparing High-insulation Aerogel-Impregnated Fiber}Method for preparing high insulation airgel impregnated fiber {Method for Preparing High-insulation Aerogel-Impregnated Fiber}

본 발명은 에어로젤(aerogel)의 우수한 단열성과 높은 방음 및 수분 흡수성을 동시에 가져 습도 조절이 가능한 에어로젤 함침 섬유, 특히 부직포에 관한 것이다. 이러한 에어로젤 섬유의 단열성 및 높은 태양열 방사율과 반사율은 섬유에 함침된 에어로젤 내의 미세 공극에 의해서 단열효과를 높이거나 또 소리도 흡수하여 방음성을 높여 결과적으로 낮은 비용으로 건축물의 내?외부 건축 자재로 사용할 수 있으며 결과적으로 에너지 절감 효율을 높인다.The present invention relates to an airgel impregnated fiber, in particular a nonwoven fabric, capable of controlling humidity by simultaneously having excellent heat insulation of aerogel, high sound insulation and water absorption. The thermal insulation and high solar emissivity and reflectance of these airgel fibers can be used as internal and external building materials of buildings at low cost by increasing the insulation effect by absorbing the sound by the micro voids in the airgel impregnated into the fiber or by absorbing sound. As a result, the energy saving efficiency is increased.

본 발명의 에어로젤은 3차원의 망목구조를 가진 현존하는 물질 중에 가장 높은 기공률과(~90%), 저밀도(0.03~0.1 g/cm3), 고비표면적(≥800), 저유전율(~1.1) 그리고 매우 낮은 열전도도(~0.01 W/Km)의 물성을 가진 매우 미세한 고체분말로서 망목상의 나노기공 구조에 의하여 특이한 물리적 성질을 가진다. 따라서 에어로젤 소재는 단열재, 절연막 등 에너지?환경?전기전자 분야에서 매우 다양한 응용성을 가진 신소재이다. The airgel of the present invention has the highest porosity (~ 90%), low density (0.03 ~ 0.1 g / cm 3 ), high specific surface area (≥800), and low dielectric constant (~ 1.1) among the existing materials having a three-dimensional network structure. It is a very fine solid powder with very low thermal conductivity (~ 0.01 W / Km) and has unique physical properties due to the mesh-like nanopore structure. Therefore, aerogel material is a new material with a wide variety of applications in energy, environment, electrical and electronic fields, such as insulation, insulating film.

한편 기존의 부직포는 그 내부에 큰 틈이 많고 이 큰 틈새는 공기의 대류로 인하여 단열효과가 비교적 낮을 뿐만 아니라 또 방음도 잘되지 않는 결점으로 인해 내?외장 단열재로 쓰이는데 제한이 있어 왔다. 즉, 부직포에 에어로젤을 함유시킬 경우 그렇지 않은 경우에 비하여 약 15%정도 낮은 열전도율을 보일 수 있고 에어로젤을 함침시킨 부직포는 초임계건조법으로 쉽게 제조할 수 있지만, 대면적화 하기에는 초임계건조법에 사용되는 오토글레이브 장비의 높은 가격과 용적제한 등의 높은 장애요인이 있다. 본 발명에서 택한 상압건조법은 이러한 점을 해결할 수 있게 해준다. 즉, 공정비용을 낮추고 특히 대면적화시킬 경우 더욱 유리한 장점이 있다.On the other hand, the existing nonwoven fabric has a large gap in the interior, and this large gap has been limited to be used as interior and exterior insulation due to the defect that the insulation effect is relatively low due to the air convection and the sound insulation is not good. In other words, if the nonwoven fabric contains airgel, the thermal conductivity may be about 15% lower than that of the nonwoven fabric. The nonwoven fabric impregnated with the airgel may be easily manufactured by the supercritical drying method, but the supercritical drying method used for the supercritical drying method may be used for large area. There are high obstacles such as high price and volume limitation of glave equipment. The atmospheric pressure drying method chosen in the present invention makes it possible to solve this point. In other words, it is more advantageous if the process cost is lowered and particularly large area.

일반적으로, 에어로젤 함침 부직포는 무기물질인 테트라에톡시실란(TEOS)과 이소프로필 알코올(IPA)을 출발물질로 하여 솔-젤(sol-gel) 공정으로, 분자 레벨까지의 균일성을 갖도록 실리카 졸(silica sol)을 제조한 후, 이를 부직포에 담근 후 적절한 상압건조 조건에서 에어로젤을 형성시키기 위하여 우선 n-부탄올로 용매치환시킨다. 그 다음 표면개질제를 사용하여 부직포내 에어로젤의 표면의 히드록시기(OH)를 알킬기(alkyl)나 아릴기(aryl)로 치환시킴으로써 친수성의 에어로젤 부직포의 상태를 소수성으로 변화시킨 후, 상압건조를 실시하여 최종 에어로젤 함침 부직포를 얻는다.In general, aerogel-impregnated nonwoven fabric is a sol-gel process using inorganic tetraethoxysilane (TEOS) and isopropyl alcohol (IPA) as starting materials. After preparing (silica sol), it is immersed in a nonwoven fabric and then solvent-substituted first with n-butanol to form an airgel under appropriate atmospheric pressure drying conditions. Then, by changing the hydroxy group (OH) on the surface of the airgel in the nonwoven fabric with an alkyl group or an aryl group using a surface modifier, the state of the hydrophilic airgel nonwoven fabric is changed to hydrophobic, followed by atmospheric drying. Obtain airgel impregnated nonwovens.

이 에어로젤 부직포는 단열성이 크고 열전도율이 낮으며, 또 부직포 내 형성된 에어로젤 내의 미세 공극은 소리뿐만 아니라 수분까지도 흡수할 수 있어 방음 효과를 높여 건축물의 내?외부 자재로 사용할 수 있을 뿐만 아니라 사용시 에너지 효율을 높여준다.This airgel nonwoven fabric has high thermal insulation and low thermal conductivity, and the micro voids in the aerogel formed in the nonwoven fabric can absorb not only sound but also moisture. Increase it.

본 발명의 목적은 일반 부직포/섬유보다 내열 특성 및 방음 특성을 향상시킬 목적으로 에어로젤이 함침된 에어로젤 부직포/섬유를 제작하여 기존의 일반 부직포/섬유에 비하여 높은 단열성과 낮은 열전도율, 방음성을 갖고 에너지 절감 효율이 향상된 상압건조형 에어로젤 부직포/섬유를 제공하는 것이다. 기존의 에어로젤 함유 부직포의 제조방법에는 니들펀치법(한국공개특허 제2009-0078357호) 및 분사법(한국 공개특허 제2009-0065496호)이 있으나 니들펀치방법은 부직포에 에어로젤이 균일하게 분포되지 않고 분사(spraying) 방법은 졸의 점도에 매우 민감하므로, 본 발명에서는 점도에 영향을 비교적 받지 않는 방법을 사용하였다. 또한 고강도 또는 고투명성의 에어로젤의 벌크제조 방법은 한국등록특허 제0896790호가 개시하고 있지만, 여기에서는 숙성과 제1 용매치환공정, 표면개질, 제2 용매치환공정, 제3 용매치환공정과 삼성분계 공비(ternary azeotropic) 혼합법을 이용한 습윤젤의 용매 치환공정을 사용하고 있어, 제조 공정시간이 길고 또한 삼성분계 공비 혼합물 사용시에는 상압건조 시간이 더욱 길어지게 되고 온도조건이 까다로우며, 고품질의 에어로젤 제조에는 적합할지 몰라도 저가의 부직포 제작에는 비용이 많이 든다는 단점이 있다.It is an object of the present invention to produce airgel impregnated airgel fabrics / fibers with the aim of improving heat resistance and sound insulation properties than general nonwoven fabrics / fibers, and have high thermal insulation, low thermal conductivity, sound insulation, and energy saving compared to conventional nonwoven fabrics / fibers. It is to provide an atmospheric pressure dry airgel nonwoven fabric / fiber with improved efficiency. Conventional methods for manufacturing airgel-containing nonwoven fabrics include a needle punch method (Korean Patent Publication No. 2009-0078357) and a spraying method (Korean Patent Publication No. 2009-0065496), but the needle punch method does not uniformly distribute the airgel in the nonwoven fabric. Since the spraying method is very sensitive to the viscosity of the sol, the present invention uses a method that is relatively unaffected by the viscosity. In addition, Korean Patent No. 0896790 discloses a bulk manufacturing method of a high-strength or high-transparent airgel, but here it is aged and the first solvent replacement process, surface modification, the second solvent replacement process, the third solvent replacement process and the Samsung system azeotropy. The solvent substitution process of the wet gel using the ternary azeotropic mixing method is used, and the process time is long, and when the azeotropic azeotrope mixture is used, the atmospheric pressure drying time is longer, the temperature conditions are difficult, and the high quality airgel is manufactured. Although it may be suitable for the fabrication of low-cost nonwoven fabrics, it is expensive.

이밖에도 에어로젤 함유 부직포는 본 발명의 상압건조법 외에도 초임계건조법 또는 진공추출법으로도 쉽게 제조할 수 있지만 초임계건조법(한국공개특허 제 2009-0078357호, 미국공개특허 2009-029109)을 이용하는 경우 본 발명에 비하여 대면적화 하기에는 크기에 제약이 크고 또 높은 장비 가격과 장비 사용시 위험성등의 장애요인이 있다. 또한, 진공추출법(한국 공개특허 제2009-0065496호)도 부직포내의 에어로젤을 완전히 건조시키는데 어려움이 있을 뿐만 아니라 더욱이 부직포의 크기가 커지게 되면 진공장비의 크기 또한 커져 정확한 공정 조절이 어렵고 비용 역시 많이 드는 단점이 있다. 또한 특허(한국 공개특허 2009-0065496)에서와 같이 세척 공정 대신에 진공추출법을 사용할 경우(청구항 1, 3 참조) 부산물 등을 제거 하는데 어려움이 있으며 부산물이 분말이나, 에어로젤 부직포에 남아있어 순도가 좋지 않고 잔류 용매를 완전히 추출하지 못하여 건조 및 열처리시 시간 또한 많이 걸리는 단점이 있으며, 에어로젤 분말을 분사하여 에어로젤 부직포를 제조한다고 기술하고 있지만(청구항 2 참조) 이와같이 분말을 분사시키면 부직포에 잘 붙어있지 않고 용매치환공정과 진공추출공정시 분말이 떨어지는 경우가 많아 에어로젤 부직포로서 부적합하다.In addition, the airgel-containing nonwoven fabric can be easily manufactured by a supercritical drying method or a vacuum extraction method in addition to the atmospheric pressure drying method of the present invention, but in the case of using a supercritical drying method (Korean Patent Publication No. 2009-0078357, US Patent Publication 2009-029109) On the other hand, there are big obstacles such as large size and high equipment price and risk of using equipment. In addition, the vacuum extraction method (Korean Patent Publication No. 2009-0065496) also has difficulty in completely drying the airgel in the nonwoven fabric. Furthermore, when the size of the nonwoven fabric increases, the size of the vacuum equipment also increases, making it difficult to control the process accurately and costly. There are disadvantages. In addition, if the vacuum extraction method is used instead of the cleaning process as described in the patent (Korean Patent Publication No. 2009-0065496) (see Claims 1 and 3), it is difficult to remove by-products and the like, and the by-products remain in the powder or airgel nonwoven fabric, so that the purity is poor. Although it does not fully extract residual solvents, it takes a lot of time during drying and heat treatment, and it describes that airgel powder is manufactured by spraying airgel powder (see claim 2). Powders often fall during substitution and vacuum extraction processes, making them unsuitable for aerogel nonwovens.

따라서 상기 종래기술의 단점들, 특히 기존의 니들펀치법 및 분사법과 같은 에어로젤 부직포의 합성방법이 갖는 여러 단점들을 해결하고자, 본 발명자들은 상압건조 에어로젤 함유 고단열 부직포를 함침법으로 제조하였고, 본 발명에 따라 보다 균일한 에어로젤 부직포를 제조할 수 있게 되었다. Therefore, in order to solve the disadvantages of the prior art, in particular, the disadvantages of the synthesis method of the airgel nonwoven fabric, such as the conventional needle punching method and injection method, the present inventors prepared a high-pressure dry airgel-containing high-insulation nonwoven fabric by the impregnation method, the present invention As a result, a more uniform airgel nonwoven fabric can be produced.

본 발명은 출발물질로서 테트라에톡시실란(TEOS) 및 이소프로필 알코올(IPA)과 촉매로서 약 0.1M HCl 및, 약 0.15M NH4OH을 사용하여 졸의 점도 5~35, 바람직하게는 10~30cP에서 졸을 부직포 매트릭스에 함침시켜 제작하는 것을 특징으로 한다. 에어로젤의 제조시 단점은 점도가 높아지면 급격히 굳어지는 현상이 있기 때문에 약 0.1M HCl로 안정적인 가수분해를 유도하고 이어서 약 0.15M NH4OH를 사용하여 에어로젤의 점도유지 시간을 적절히 조절할 수 있다. 일반적으로 용매치환시 혼합된 삼성분계 공비혼합물로 이루어진 용매로 치환시켜 에어로젤 부직포를 제작하는 경우에는 상압건조 공정에서 공정시간 지연 등 영향을 주어 양산화 측면에서 불리하다. The present invention utilizes tetraethoxysilane (TEOS) and isopropyl alcohol (IPA) as a starting material and about 0.1 M HCl and about 0.15 M NH 4 OH as catalysts, so that the viscosity of the sol is 5 to 35, preferably 10 to It is characterized in that the sol is prepared by impregnating the sol in a non-woven matrix at 30cP. Disadvantages of the preparation of the airgel is that the viscosity increases rapidly, so that the stable hydrolysis is induced to about 0.1M HCl, and then about 0.15M NH 4 OH can be used to properly adjust the viscosity retention time of the airgel. In general, in the case of manufacturing an airgel nonwoven fabric by substituting with a solvent composed of a mixture of three-phase azeotrope mixed during solvent replacement, it is disadvantageous in terms of mass production because it has an effect such as a process time delay in an atmospheric drying process.

본 발명에서는 흔히 사용하는 IPA대신 n-부탄올을 사용함에 의하여 숙성과 용매치환공정을 동시에 실시할 수 있게 되어 시간과 제조 비용을 절감하였다. 여기서, 에어로젤 함침 부직포를 얻기 위해 n-부탄올로 용매치환을 한 후 n-부탄올 중 6~10 부피%의 트리메틸클로로실란(TMCS) 혼합 용액을 사용하여 부직포내 생성된 에어로젤의 표면의 OH기를 알킬기나 아릴기로 바꿔줌으로서 친수성의 에어로젤 부직포를 소수성으로 변환시킬 수 있다. 그 다음, 반응 후 남은 부산물을 n-부탄올 수용액으로 세척하여 순도 높은 에어로젤 부직포를 제작하였다. 또한 에어로젤 함침 부직포는 초임계건조법(super critical drying) 또는 진공추출법(vacuum extractive method)으로 쉽게 제조할 수 있지만 초임계건조법은 대면적화하기에는 크기에 제한이 따르며 진공추출법에서는 완전한 건조가 힘들고 이 역시 크기에 제한을 받는다. 본 발명은 크기에 제한을 받지 않는 상압(ambient pressure)하에서 이루어졌는데 n-부탄올을 에어로젤 부직포의 10부피% ~ 40부피%의 양을 넣은 뒤 대기압하에서 70℃~100℃까지 약 1℃/분의 속도로 상승시킨 후 약 24시간 동안 건조시켜 넓은 면적의 완전한 에어로젤 부직포를 얻었다.In the present invention, by using n-butanol instead of commonly used IPA, it is possible to simultaneously perform the aging process and the solvent replacement process, thereby saving time and manufacturing cost. Herein, solvent-substituted with n-butanol to obtain an airgel impregnated nonwoven fabric, and then an OH group on the surface of the airgel formed in the nonwoven fabric using a mixed solution of 6 to 10% by volume of trimethylchlorosilane (TMCS) in n-butanol is used as an alkyl group or By converting to aryl groups, hydrophilic airgel nonwovens can be converted to hydrophobic. Then, the by-products remaining after the reaction was washed with an aqueous n-butanol solution to prepare a high-purity airgel nonwoven fabric. In addition, aerogel-impregnated nonwovens can be easily manufactured by super critical drying or vacuum extractive methods, but supercritical drying is limited in size to large areas and is difficult to dry completely in vacuum extraction methods. Restricted The present invention was carried out under an atmospheric pressure (restriction of size), n-butanol in an amount of 10% to 40% by volume of the airgel nonwoven fabric, and then about 1 ℃ / min to 70 ℃ ~ 100 ℃ under atmospheric pressure The speed was increased and then dried for about 24 hours to obtain a large area of complete airgel nonwoven.

부직포 또는 섬유에 상기와 같이 구성되는 본 발명의 에어로젤을 함침시켜 만든다. 상압건조 에어로젤 부직포 또는 섬유는 높은 단열성과 낮은 열전도율(에어로젤 함침이 없는 동일 섬유에 대하여 적어도 15% 이상 낮은 열전도도) 및 방음성과 또 에너지 절감 효율이 향상된 에어로젤 함침 부직포 또는 섬유를 제공한다.It is made by impregnating the airgel of the present invention configured as described above in a nonwoven fabric or fiber. Atmospheric dry airgel nonwovens or fibers provide airgel impregnated nonwovens or fibers with high thermal insulation and low thermal conductivity (at least 15% lower thermal conductivity for the same fiber without aerogel impregnation), sound insulation and improved energy saving efficiency.

도 1은 본 발명에 따른 에어로젤 함침 섬유의 제조공정을 개략적으로 도시한 제조공정도이다.
도 2는 실시예 1에서 제조된 실리카 에어로젤을 함침시킨 시편 부직포의 SEM 미세구조 사진 및 EDS 분석이다.
도 3은 에어로젤의 표면개질 여부를 확인하기 위하여 FT-IR 분석한 그래프로서 표면개질 여부에 따른 친수성과 소수성을 비교하여 보여준다.
1 is a manufacturing process diagram schematically showing a manufacturing process of the airgel impregnated fiber according to the present invention.
Figure 2 is a SEM microstructure photograph and EDS analysis of the specimen nonwoven fabric impregnated with silica airgel prepared in Example 1.
Figure 3 is a graph of the FT-IR analysis to confirm the surface modification of the airgel as shown by comparing the hydrophilicity and hydrophobicity according to the surface modification.

이하, 본 발명을 첨부 도면을 참고로 실시예 및 실험예에 의해 보다 자세하게 설명하지만, 본 발명의 범위가 이들 실시예에 한정되는 것이 아님은 물론이다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings by way of examples and experimental examples, but the scope of the present invention is not limited to these examples.

<실시예 1>&Lt; Example 1 >

아래에 나타난 바와 같이 본 발명에 따른 에어로젤 부직포는 실리카 졸(silica sol)을 사용하여, 도 1에 나타난 바와 같은 제조공정에 따라 제조하였다. As shown below, the airgel nonwoven fabric according to the present invention was prepared using a silica sol according to the manufacturing process as shown in FIG. 1.

본 발명에서는 TEOS를 출발물질로 하여 IPA를 혼합하여 자력교반기에서 1시간 동안 혼합 시킨 후 0.1M HCl 용액을 첨가하여 1시간 동안 가수분해를 유도하였다. 그 다음 0.15M NH4OH를 천천히 소량 첨가하여 실리카 졸의 중합반응을 촉진 시켰다. 0.1M HCl로 안정적인 가수분해를 유도할 수 있고, 0.15M NH4OH로 점도가 급속히 상승하는 것을 막아줄 수 있어 점도의 유지시간을 적절히 조절할 수 있었다. 부직포에 에어로젤을 함침시키는 경우 점도가 매우 중요하다. 점도가 낮으면 부직포에 붙어 있는 양이 작아 단열효과가 없으며 점도가 너무 높으면 부직포에 고루 합성되지 않아 불균질한 부직포가 된다. 따라서 본 발명에서는 젤화(gelation) 공정에서 졸의 점도를 정확하게 조절하기 위하여 브룩필드(Brookfield) 점도계 (programmable DV-Ⅱ+)를 사용하여 점도를 측정하여 졸의 점도 10~30cP에서 부직포 (또는 유리섬유)에 에어로졸을 함침시켰다. 그 다음 합성된 에어로젤 부직포(또는 에어로젤 유리섬유)를 용기에 넣어 상온에서 1시간동안 방치하여 젤화를 유도하였다. 이를 다시 다른 용기에 바꿔 넣어 n-부탄올을 채워 밀봉한 후 50℃ 오븐에서 약 24시간 용매치환과 동시에 숙성시켰으며 이후 n-부탄올 용매로 치환된 습윤젤 샘플을 n-부탄올 중 6 부피%의 TMCS를 이용하여 약 24시간 동안 표면개질 시켰다. 이때 표면개질 반응에 의해 생성된 부산물을 제거하기 위하여 습윤젤을 세척하였는데 용매치환 및 표면개질이 완료된 실리카 젤을 상압에서 저온 건조시키기 위하여 n-부탄올을 이용하여 세척하였다. n-부탄올을 사용하면 다른 용매보다 에어로젤을 투명하게 만들어 부직포의 색을 변화시키지 않을 뿐만 아니라 강도도 약간 증가하였다. 또한 에어로젤이 상압건조 하는 동안 크랙으로 인해 부서지는 현상을 보다 쉽게 방지 할 수 있었다. 세척 후 초임계건조법과 진공추출법으로 제조할 수는 있지만 초임계건조법은 대면적화 하기에는 장비 가격과 공정상 위험성이 높은 장애요인이 있고 진공추출법으로는 완전한 건조가 힘들고 부직포의 크기가 커지면 진공장비의 정확한 조절과 제조 비용이 많이 든다. 또한 기존의 상압건조에서는 삼성분계 공비혼합물로 이루어진 용매 사용으로 말미암아 여러 단계를 두어 건조하기 때문에 공정 시간이 많이 걸린다. 따라서 본 발명에서는 건조의 시간을 크게 줄이기 위해 n-부탄올을 에어로젤 부직포의 무게의 10% ~ 40% 정도의 양을 넣고 70℃ ~ 100℃까지 1℃/분의 속도로 상승시켜 24시간 동안만 상압건조하여 에어로젤 부직포를 제조 하였다. In the present invention, TEA was used as a starting material, and IPA was mixed and mixed in a magnetic stirrer for 1 hour, and then 0.1 M HCl solution was added to induce hydrolysis for 1 hour. Then a small amount of 0.15M NH 4 OH was added slowly to promote the polymerization of the silica sol. Stable hydrolysis can be induced with 0.1 M HCl, and the viscosity can be prevented from rapidly rising with 0.15 M NH 4 OH. Viscosity is very important when impregnating airgel into a nonwoven fabric. If the viscosity is low, the amount attached to the nonwoven fabric is small and there is no thermal insulation effect. If the viscosity is too high, it is not uniformly synthesized on the nonwoven fabric, resulting in a heterogeneous nonwoven fabric. Therefore, in the present invention, in order to accurately control the viscosity of the sol in the gelation process (Brookfield viscometer (programmable DV-II +) using a non-woven fabric (or glass fiber at a viscosity of 10 ~ 30 cP by measuring the viscosity ) Was impregnated with aerosol. Then, the synthesized airgel nonwoven fabric (or airgel glass fiber) was placed in a container and left at room temperature for 1 hour to induce gelation. It was replaced with another container, filled with n-butanol, sealed, and aged at the same time for about 24 hours with solvent replacement in an oven at 50 ° C. Then, a wet gel sample substituted with n-butanol solvent was 6% by volume of TMCS in n-butanol. The surface was modified for about 24 hours using. At this time, the wet gel was washed to remove the by-products generated by the surface modification reaction. The silica gel after solvent replacement and surface modification was washed with n-butanol to dry at low pressure at normal pressure. The use of n-butanol not only changed the color of the nonwovens by making the airgel more transparent than other solvents, but also slightly increased the strength. In addition, it was easier to prevent breakage due to cracks during air pressure drying. Although it can be manufactured by supercritical drying method and vacuum extraction method after cleaning, supercritical drying method has a high risk of equipment price and process risk to large area, and vacuum extraction method is difficult to completely dry and the size of non-woven fabric is increased. It is expensive to adjust and manufacture. In addition, the conventional atmospheric drying takes a lot of processing time because it is dried in several steps due to the use of a solvent composed of a samsung system azeotrope. Therefore, in the present invention, in order to significantly reduce the drying time, n-butanol is added in an amount of about 10% to 40% of the weight of the airgel nonwoven fabric, and then raised at a rate of 1 ° C./min to 70 ° C. to 100 ° C., and the atmospheric pressure is maintained for only 24 hours. It was dried to prepare an airgel nonwoven fabric.

열전도율 분석은 25℃에서 EKO HC-074-314장비로 에서 측정하였다. FT-IR 분석은 써모 맷슨모델 인피니티 골드(THERMO MATTSONMODEL INFINITY GOLD) FT-IR 장비를 이용하였으며 공기 분위기에서 측정하였다. 또한 주사전자현미경(SEM, JEOL JSM-35 CF)을 이용하여 에어로젤의 미세구조를 관찰 비교하였다. Thermal conductivity analysis was measured at 25 ° C. with EKO HC-074-314 instrument. FT-IR analysis was performed using a THERMO MATTSONMODEL INFINITY GOLD FT-IR instrument and measured in an air atmosphere. In addition, the microstructure of the airgel was observed and compared using a scanning electron microscope (SEM, JEOL JSM-35 CF).

<실시예 2><Example 2>

상기 실시예 1에서 부직포를 유리섬유로 대체한 것을 제외하고는 동일한 방식으로 에어로젤 함침 유리섬유를 만들었다. An airgel-impregnated glass fiber was made in the same manner except that the nonwoven fabric was replaced with glass fiber in Example 1.

<실험예 1> 미세구조 관찰Experimental Example 1 Observation of Microstructure

도 2에 나타난 사진은 <실시예 1>에 의하여 제조된 실리카 에어로젤을 함침시킨 시편의 부직포 SEM 미세구조 사진이다. (a)는 에어로젤 함침 부직포의 800배 확대 사진으로 부직포의 섬유상 표면에 에어로젤이 잘 부착되어 있음을 보여준다. (b)는 부직포(a)에 부착된 에어로젤 입자만을 10만배로 확대한 것으로 실리카 에어로젤의 본래 형태인 나노기공의 미세구조를 갖는다. 또 (C)는 이 부직포면을 10만배 확대한 것으로 부직포의 섬유 표면에 에어로젤 입자들이 잘 부착되어 있음을 보여주고 있다. (C)에 부착된 입자를 EDS로 분석한 결과 부직포로부터 C, N, O성분만이 검출되었으며 부직포에 붙어있는 에어로젤 입자로부터는 Si, O, C의 원소가 검출되어 실리카 에어로젤 입자들만이 부직포상에 잘 부착되어 있어 기존의 타 방법으로 제조한 에어로젤 부직포처럼 에어로젤 입자들이 쉽게 떨어지지 않았다. The photo shown in Figure 2 is a non-woven fabric SEM microstructure photograph of the specimen impregnated with silica airgel prepared by <Example 1>. (a) is a 800x magnification of the airgel impregnated nonwoven fabric, showing that the airgel is well adhered to the fibrous surface of the nonwoven fabric. (b) is an enlarged 100,000 times only the airgel particles attached to the nonwoven fabric (a) and has a microstructure of nanopores, which is the original form of silica airgel. In addition, (C) shows that the surface of the nonwoven fabric is enlarged 100,000 times, showing that airgel particles adhere well to the fiber surface of the nonwoven fabric. As a result of analyzing the particles attached to (C) by EDS, only C, N, and O components were detected from the nonwoven fabric, and the elements of Si, O, and C were detected from the airgel particles attached to the nonwoven fabric, and only silica airgel particles were formed into the nonwoven fabric. It adheres well to the airgel particles, which do not fall as easily as conventional airgel nonwoven fabrics.

<실험예 2> 친수성 및 소수성 비교 Experimental Example 2 Comparison of Hydrophilicity and Hydrophobicity

도 3은 에어로젤의 표면개질 여부를 확인하기 위하여 FT-IR 분석한 그래프이다. 표면개질시킨 아래 곡선을 보면 에어로젤 내의 C-H결합이 선명하게 관찰되고 있다. 이는 친수성인 수산기의 일부가 알킬기로 치환 되어 소수성을 나타내는 것으로 설명할 수 있다. Figure 3 is a graph of the FT-IR analysis to determine whether the surface modification of the airgel. The surface-modified lower curve shows clear C-H bonds in the aerogels. This can be explained by the fact that a part of the hydrophilic hydroxyl group is substituted with an alkyl group to show hydrophobicity.

<실험예 3> 열전도도 비교 Experimental Example 3 Comparison of Thermal Conductivity

표 1은 실시예 1에 따라 에어로젤을 함침시킨 부직포와 그러지 아니한 일반 부직포의 열전도도와 실시예 2에 따라 에어로젤을 함침시킨 유리섬유와 그러지 아니한 일반 유리섬유의 열전도도를 비교한 표로서 측정방식은 부직포/유리섬유의 상?하에 각각 센서가 있어 아래는 35℃로 위는 15℃로 맞추어 놓아 높아 평균 25℃가 되도록 맞춘 다음 상하에 부착된 센서가 아래에서 위로 지나가는 열류량을 측정하므로서 이를 열전도도로 나타낸 것이다. Table 1 is a table comparing the thermal conductivity of the nonwoven fabric impregnated with the airgel and the general nonwoven fabric according to Example 1 and the thermal conductivity of the glass fiber impregnated with the airgel and the non-woven glass fiber according to Example 2. It has a sensor at the top and the bottom of the glass fiber, so it is set at 35 ℃ below and 15 ℃ above the average so that the average is 25 ℃, and then the sensor attached at the top and bottom measures the amount of heat flow passing from the bottom to the top, which is expressed as a thermal conductivity. .

측정 결과, 일반 부직포는 0.037W/mK의 열전도도를, 또 에어로젤 함유한 부직포는 0.030W/mK의 열전도도를 가져 단열특성이 향상되었음을 알 수 있다. 즉, 본 발명에 따른 에어로젤을 함유하는 부직포는 일반부직포에 비해 약 18%정도 낮은 열전도도 값을 나타내었다. 또한 유리섬유는 0.034W/mK의 열전도도를, 본 발명에 따른 에어로젤이 함침된 유리섬유는 0.021W/mK의 열전도도 값을 가져 30% 개선된 내열특성을 나타내었다.As a result, it can be seen that the general nonwoven fabric has a thermal conductivity of 0.037 W / mK, and the airgel-containing nonwoven fabric has a thermal conductivity of 0.030 W / mK. That is, the nonwoven fabric containing the airgel according to the present invention exhibited a thermal conductivity value about 18% lower than that of the general nonwoven fabric. In addition, the glass fiber exhibited a thermal conductivity of 0.034 W / mK, and the glass fiber impregnated with the airgel according to the present invention had a thermal conductivity value of 0.021 W / mK, indicating a 30% improvement in heat resistance.

부직포 및 유리섬유의 열전도도 비교Comparison of thermal conductivity of nonwovens and glass fibers 부직포의 열전도도(W/mK)Thermal Conductivity of Nonwovens (W / mK) 유리섬유의 열전도도(W/mK)Thermal Conductivity of Glass Fibers (W / mK) 에어로젤 없는 경우Without airgel 0.0370.037 0.0340.034 에어로젤 함침 경우If airgel impregnation 0.0300.030 0.0210.021

Claims (13)

(a) 출발물질로서 알콕시실레인과 이소프로필 알코올을 혼합한 후, 상기 혼합액에 산성 용액을 첨가하여 가수분해를 진행시키고, 이어서 염기성 용액을 천천히 소량 첨가하여 실리카 졸의 중합반응을 진행시켜 실리카 졸을 제조하는 단계;
(b) 상기 (a)의 실리카 졸을 졸의 점도가 10~30cP인 상태에서 섬유에 함침시키는 단계;
(c) 상기 (b)의 섬유를 n-부탄올하에서 숙성 및 용매치환시키는 단계;
(d) 상기 (c)의 용매치환 후 표면개질시키는 단계;
(e) 상기 (d)의 표면개질 후 n-부탄올로 세척하는 단계;
(f) 70℃ ~ 100℃ 범위 내에서 상압건조시키는 단계를 포함하는, 에어로젤 함침 섬유의 제조 방법.
(a) After mixing alkoxysilane and isopropyl alcohol as starting materials, an acidic solution is added to the mixed solution to proceed hydrolysis, and then a small amount of basic solution is added slowly to proceed with polymerization of the silica sol to give a silica sol. Preparing a;
(b) impregnating the silica sol of (a) onto the fiber in a state in which the sol has a viscosity of 10 to 30 cP;
(c) aging and solvent substitution of the fibers of (b) under n-butanol;
(d) surface modification after solvent replacement of (c);
(e) washing with n-butanol after surface modification of (d);
(f) atmospheric pressure drying in the range of 70 ° C to 100 ° C.
제1항에 있어서, 알콕시실레인이 테트라에톡시실란(TEOS) 또는 테트라메톡시실란(TMOS)인 에어로젤 함침 섬유의 제조 방법.The process for producing airgel impregnated fibers according to claim 1, wherein the alkoxysilane is tetraethoxysilane (TEOS) or tetramethoxysilane (TMOS). 제1항에 있어서, 산성 용액은 HCl 용액이고, 염기성 용액은 NH4OH 용액인, 에어로젤 함침 섬유의 제조 방법.The method of claim 1, wherein the acidic solution is HCl solution and the basic solution is NH 4 OH solution. 제3항에 있어서, HCl 용액과 NH4OH 용액의 농도가 각각 0.1M과 0.15M인, 에어로젤 함침 섬유의 제조 방법.The method of claim 3, wherein the concentration of HCl solution and NH 4 OH solution is 0.1M and 0.15M, respectively. 제1항에 있어서, 섬유가 부직포 또는 유리섬유인, 에어로젤 함침 섬유의 제조 방법. The method for producing airgel impregnated fibers according to claim 1, wherein the fibers are nonwoven or glass fibers. 삭제delete 삭제delete 제1항에 있어서, 상기 단계(d)에서 표면개질은 에어로젤 함침 섬유를 극성용매와 표면개질제로 소수성의 표면으로 개질시키는 것인, 에어로젤 함침 섬유의 제조 방법. The method of claim 1, wherein the surface modification in step (d) is to modify the airgel impregnated fiber to a hydrophobic surface with a polar solvent and a surface modifier. 제8항에 있어서, 상기 표면개질제가 트리메틸클로로실란(TMCS)이고 극성용매로서 n-부탄올에 대하여 6~10 부피%의 양으로 사용되는 것인, 에어로젤 함침 섬유의 제조 방법.The method of claim 8, wherein the surface modifier is trimethylchlorosilane (TMCS) and is used in an amount of 6 to 10% by volume based on n-butanol as a polar solvent. 삭제delete 삭제delete 제1항에 있어서, 상압건조가 n-부탄올을 에어로젤 함침 섬유 무게의 10% ~ 40% 의 양을 넣고 이루어지는 것인, 에어로젤 함침 섬유의 제조 방법.The method for producing airgel impregnated fibers according to claim 1, wherein the atmospheric drying comprises n-butanol in an amount of 10% to 40% of the weight of the airgel impregnated fiber. 제1항 내지 제5항, 제8항, 제9항 및 제12항 중 어느 한 항에 따른 제조 방법에 의하여 얻어진, 에어로젤 함침 섬유.An airgel impregnated fiber obtained by the manufacturing method according to any one of claims 1 to 5, 8, 9 and 12.
KR1020100002337A 2010-01-11 2010-01-11 Method for Preparing High-insulation Aerogel-Impregnated Fiber KR101193987B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100002337A KR101193987B1 (en) 2010-01-11 2010-01-11 Method for Preparing High-insulation Aerogel-Impregnated Fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100002337A KR101193987B1 (en) 2010-01-11 2010-01-11 Method for Preparing High-insulation Aerogel-Impregnated Fiber

Publications (2)

Publication Number Publication Date
KR20110082379A KR20110082379A (en) 2011-07-19
KR101193987B1 true KR101193987B1 (en) 2012-10-24

Family

ID=44920418

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100002337A KR101193987B1 (en) 2010-01-11 2010-01-11 Method for Preparing High-insulation Aerogel-Impregnated Fiber

Country Status (1)

Country Link
KR (1) KR101193987B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101654795B1 (en) * 2016-02-05 2016-09-06 김현철 Method for Preparing High-insulation Aerogel - Impregnated Mat
KR101918664B1 (en) * 2016-11-18 2018-11-14 한국세라믹기술원 A manufacturing method of violacein coated fiber, and violacein coated fiber manufactured thereby
KR20200013921A (en) 2018-07-31 2020-02-10 에스지원테크(주) A Insulating Material for Pipe and A Manufacturing Method therefor
KR20200088260A (en) 2020-07-14 2020-07-22 에스지원테크(주) A Insulating Material for Pipe and A Manufacturing Method therefor

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPD20120065A1 (en) * 2012-03-05 2013-09-06 Everlux S R L PROCEDURE FOR THE REALIZATION OF A MATTER CONTAINING AEROGEL AND PLANT TO REALIZE THIS PROCEDURE
KR101400354B1 (en) * 2012-03-12 2014-05-27 (주)모린스코퍼레이션 Water repellent e-glass fiber heat insulating materials and its manufacturing method
CN103352363B (en) * 2013-07-15 2015-07-08 陕西盟创纳米新型材料股份有限公司 Manufacturing method of compound fabric, compound fabric and shoes with compound fabric
PT107101A (en) 2013-08-02 2015-02-02 Univ De Coimbra FLEXIBLE HYDROFOVIC AEROGEL PANELS REINFORCED WITH FIBER FELT
DE102015200191A1 (en) * 2015-01-09 2016-07-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Flexible composites based on aerogels
KR101789371B1 (en) 2015-02-13 2017-10-23 주식회사 엘지화학 Preparation method of silica aerogel-containing blanket and silica aerogel-containing blanket prepared by using the same
KR20160101330A (en) * 2015-02-16 2016-08-25 알이엠텍 주식회사 micro-powder impregnated non-woven fabric and the method for preparing the same
KR101931569B1 (en) 2015-11-03 2018-12-21 주식회사 엘지화학 Preparation method of hydrophobic metal oxide-silica complex aerogel and hydrophobic metal oxide-silica complex aerogel produced by the same
KR101774140B1 (en) 2016-01-19 2017-09-01 주식회사 엘지화학 Preparation method and apparatus of aerogel sheet
KR101953346B1 (en) 2016-01-19 2019-02-28 주식회사 엘지화학 Preparation method and apparatus of aerogel sheet
KR101748532B1 (en) 2016-01-19 2017-06-19 주식회사 엘지화학 Preparation method and apparatus of aerogel sheet
KR101953347B1 (en) 2016-02-16 2019-05-22 주식회사 엘지화학 Preparation apparatus for aerogel sheet
KR101966358B1 (en) 2016-02-16 2019-04-08 주식회사 엘지화학 Preparation method and apparatus of aerogel sheet
KR102024140B1 (en) 2016-03-16 2019-09-23 주식회사 엘지화학 Aerogel precursor and aerogel preparaed by using the same
KR20170110993A (en) 2016-03-24 2017-10-12 주식회사 엘지화학 Silica aerogel manufacturing system
US11279622B2 (en) 2016-09-12 2022-03-22 Lg Chem, Ltd. Method for producing silica aerogel and silica aerogel produced thereby
US11332378B2 (en) * 2018-11-27 2022-05-17 Lg Chem, Ltd. Method for producing silica aerogel
WO2021045484A1 (en) * 2019-09-03 2021-03-11 주식회사 엘지화학 Aerogel blanket
US20220098046A1 (en) * 2019-09-30 2022-03-31 Lg Chem, Ltd. Silica sol, silica aerogel blanket manufactured using same, and method for manufacturing same
KR20220137360A (en) * 2021-04-02 2022-10-12 주식회사 엘지화학 Method for preparing aerogel composite and aerogel composite
CN116425554B (en) * 2023-04-27 2024-05-14 郑州大学 Boron nitride@silicon dioxide composite ceramic aerogel and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101654795B1 (en) * 2016-02-05 2016-09-06 김현철 Method for Preparing High-insulation Aerogel - Impregnated Mat
KR101918664B1 (en) * 2016-11-18 2018-11-14 한국세라믹기술원 A manufacturing method of violacein coated fiber, and violacein coated fiber manufactured thereby
KR20200013921A (en) 2018-07-31 2020-02-10 에스지원테크(주) A Insulating Material for Pipe and A Manufacturing Method therefor
KR20200088260A (en) 2020-07-14 2020-07-22 에스지원테크(주) A Insulating Material for Pipe and A Manufacturing Method therefor

Also Published As

Publication number Publication date
KR20110082379A (en) 2011-07-19

Similar Documents

Publication Publication Date Title
KR101193987B1 (en) Method for Preparing High-insulation Aerogel-Impregnated Fiber
KR100385829B1 (en) Aerogel-containing composite material and method for manufacturing the same
KR100366475B1 (en) Fabrication method of fiber-reinforced xerogel and its use
KR101409884B1 (en) Preparation method of hydrophobic monolith type silica aerogel
JP6655776B2 (en) Silica airgel, heat insulating material and method for producing silica airgel
KR102641244B1 (en) Core-hydrophobic insulation sheet with hardened surface
US20070154379A1 (en) Process for producing silica aerogel
KR101955307B1 (en) Preparation method of hydrophobic silica aerogel and hydrophobic silica aerogel produced by the same
CN108569912A (en) A kind of preparation method of hydrophobic type aerosil composite fibre felt material
KR100710887B1 (en) Method for manufacturing aerogel blanket
KR20130051304A (en) Super hydrophobic silica aerogel powders
CN108884960B (en) Heat insulating sheet and method for producing same
KR20120076997A (en) Fibrous aerogel sheet and preparation method therof
JP7196852B2 (en) Coating liquid, method for producing coating film, and coating film
KR20210132031A (en) Ceramic foam, manufacturing method thereof, and use thereof
CN112135795B (en) Method for producing aerogel blanket
KR20180029501A (en) Method of preparing for silica aerogel and silica aerogel prepared by the same
KR100823072B1 (en) A method for preparation of aerogel having high transparency and an aerogel prepared therefrom
CN113526513B (en) Massive lignin-silicon dioxide composite aerogel
KR100896790B1 (en) Fabrication method for silica aerogel and silica aerogel fabricated therefrom
KR101695628B1 (en) Fibrous polymer/aerogel sheet and preparation method therof
CN104016354A (en) Preparation method of nano silicon oxide material with high specific surface area
KR101111662B1 (en) Method for Preparing Large-area Silica Aerogel Coatings by Using DCCA
KR100823071B1 (en) A method for preparation of large area aerogel film having nano pores
KR101555571B1 (en) A manufacturing method of multiple insulting material with aerogel and the multiple insulting material with aerogel thereby

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151002

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161004

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170928

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181002

Year of fee payment: 7

R401 Registration of restoration