KR101189548B1 - Calculation Method of Velocity Vector for automobile - Google Patents

Calculation Method of Velocity Vector for automobile Download PDF

Info

Publication number
KR101189548B1
KR101189548B1 KR1020100088717A KR20100088717A KR101189548B1 KR 101189548 B1 KR101189548 B1 KR 101189548B1 KR 1020100088717 A KR1020100088717 A KR 1020100088717A KR 20100088717 A KR20100088717 A KR 20100088717A KR 101189548 B1 KR101189548 B1 KR 101189548B1
Authority
KR
South Korea
Prior art keywords
vehicle
vector
axis
speed
wheel
Prior art date
Application number
KR1020100088717A
Other languages
Korean (ko)
Other versions
KR20120026690A (en
Inventor
왕현민
Original Assignee
왕현민
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 왕현민 filed Critical 왕현민
Priority to KR1020100088717A priority Critical patent/KR101189548B1/en
Publication of KR20120026690A publication Critical patent/KR20120026690A/en
Application granted granted Critical
Publication of KR101189548B1 publication Critical patent/KR101189548B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/62Devices characterised by the determination or the variation of atmospheric pressure with height to measure the vertical components of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/005Electro-mechanical devices, e.g. switched
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/101Side slip angle of tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R2021/0027Post collision measures, e.g. notifying emergency services

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

자동차의 지능형 자율 주행 시스템 개발에 있어, 자동차 벡터 속도의 정확한 측정은 정확한 예측 시스템을 구현할 수 있다. 이러한 정확한 벡터속도는 자동차의 주행성능 및 안정성과도 직결된다.
따라서 본 발명에서는 주행하는 운동 물체, 즉 자동차의 움직임에 따라 벡터속도를 정확하게 측정 계산하여 보다 안정성 있는 지능형 자율 주행 시스템을 구현할 수 있도록 한다.
본 발명에서는 x축, z축의 벡터속도는 자동차 앞바퀴 조향 각도에 따라 변화하는 자동차 요각을 계산하여 구하였다. 또한 y축의 벡터속도는 시간에 대한 자동차의 상하 움직임, 즉 쇼버의 길이변화와 쇼버와 지면과의 길이변화를 계산하여 구하였다.
움직이는 물체의 x,y,z축에 대한 정확한 벡터 속도는, 자동차 움직임의 경로를 정확하게 예측하기 위한 중요 파라미터로서 사용된다. 이러한 파라미터는 보다 안정성 있는 지능형 자율 주행 자동차 구현을 위해 사용된다.
In the development of intelligent autonomous driving systems for cars, accurate measurement of car vector speeds can lead to accurate prediction systems. This accurate vector speed is also directly related to the driving performance and stability of the vehicle.
Therefore, in the present invention, it is possible to implement a more stable intelligent autonomous driving system by accurately measuring and calculating the vector speed according to the movement of the moving object, that is, the vehicle.
In the present invention, the vector velocities of the x-axis and z-axis are calculated by calculating the vehicle yaw angle which varies depending on the steering angle of the front wheel of the vehicle. In addition, the vector velocity of the y-axis was calculated by calculating the up and down movement of the vehicle over time, that is, the change in the length of the shock absorber and the length between the shock absorber and the ground.
The exact vector velocity for the x, y, z axis of the moving object is used as an important parameter for accurately predicting the path of vehicle movement. These parameters are used for more reliable intelligent autonomous vehicle implementation.

Description

자동차용 벡터 속도 계산 방법{Calculation Method of Velocity Vector for automobile}Calculation Method of Velocity Vector for automobile

자동차의 지능형 자율 주행 시스템 개발에 있어서, 자동차 벡터 속도의 정확한 측정은 정확한 주행 예측 시스템을 구현할 수 있다. 이러한 정확한 벡터속도는 지능형 자동차의 주행성능 및 안정성과 직결된다. In developing an autonomous autonomous driving system for a vehicle, accurate measurement of the vehicle vector speed can implement an accurate driving prediction system. This accurate vector speed is directly related to the driving performance and stability of the intelligent vehicle.

지능형 자율 주행 자동차의 운동 예측을 위해서는 자동차의 정확한 벡터 속도가 필요로 한다. 정확한 벡터 속도로부터 자동차의 예측 경로, 예측 속도, 예측제동 거리등이 계산된다. Predicting the motion of an intelligent autonomous car requires the exact vector speed of the car. From the exact vector speed, the car's predicted path, predicted speed and predicted braking distance are calculated.

왕현민, 엠아이엔 설계 방법, 등록번호 10-0954627Hyunmin Wang, Design Method of MI, Registration No. 10-0954627 왕현민, 하중 계산 방법과 하중 측정 장치, 출원번호 10-2010-0037136Hyunmin Wang, Load Calculation Method and Load Measuring Apparatus, Application No. 10-2010-0037136

(논문) 왕현민, 하중 모델을 이용한 자동차 운동 분석과 자율예측 시스템 알고리즘, 전자공학회논문지SC,2010년 7월.     (Thesis) Wang, Min-Min, Automated Motion Analysis and Autonomous Prediction System Algorithm Using Load Model, Journal of the Institute of Electronics Engineers of Korea, SC, July 2010. (논문) 왕현민, 비행물체의 유도제어시스템설계를 위한 하중(중력수) 제어모델의 성능분석, 전자공학회논문지SC, 2009년 11월.     (Thesis) Wang, Hyun-Min, Performance Analysis of Load (Gravity) Control Model for Design of Induction Control System of Flying Objects, Journal of the Institute of Electronics Engineers of Korea, November 2009.

주행하는 운동 물체, 즉 자동차의 움직임에 따라 x,y,z축에 대한 벡터속도를 정확하게 측정 계산하여야 보다 안정성 있는 지능형 자율 주행 시스템을 구현할 수 있다. 또한 정확한 벡터 속도로 자동차의 예측 경로, 예측 속도, 예측 제동 거리등을 보다 정확하게 계산할 수 있다.In order to realize a more stable intelligent autonomous driving system, it is necessary to accurately measure and calculate the vector speeds on the x, y, and z axes according to the moving object, that is, the vehicle movement. In addition, accurate vector speeds can be used to more accurately calculate the vehicle's predicted path, predicted speed, and predicted braking distance.

따라서 보다 안정성 있는 지능형 자율 주행 자동차 구현을 위해, 정확한 벡터 속도 측정 및 계산이 이루어져야 한다.Therefore, accurate vector speed measurement and calculation must be made to realize more reliable intelligent autonomous vehicle.

자동차의 벡터 속도를 정확하게 측정하기 위해서, 앞바퀴와 뒤바퀴에 속도측정 센서가 장착한다. 또한 앞 바퀴의 조향 각도를 측정하기 위해 각도 측정기를 장착한다.In order to accurately measure the vector speed of the car, speed sensors are mounted on the front and rear wheels. It also has an angle meter to measure the steering angle of the front wheels.

앞바퀴의 조향각으로부터 자동차의 선회각을 계산하고, 각각의 속도측정 장치로부터 자동차의 실제 방향 속도를 구한다. 진행 방향 속도와 선회각으로부터 자동차의 x축, z축에 대한 속도를 계산한다.The vehicle's turning angle is calculated from the steering angle of the front wheel, and the actual direction speed of the vehicle is obtained from each speed measuring device. Calculate the velocities for the x and z axes of the car from the heading speed and the turning angle.

또한 y축에 대한 속도, 즉 수직 벡터속도를 측정하기 위해 각각의 쇼버에 쇼버 길이 변화 측정 장치를 장착한다. 쇼버의 길이 변화량을 연산하여 수직 벡터 속도를 계산한다.In addition, a shock absorber length change measuring device is mounted on each shock absorber to measure the velocity about the y axis, that is, the vertical vector velocity. The vertical vector velocity is calculated by calculating the change in the length of the shock absorber.

MEMS를 이용한, 즉 소형 IC형태의 가속도 센서를 이용한, 자동차 벡터 속도 측정은 저속에서 많은 오차를 야기할 수 있으며, 주행 중 벡터 속도는 적분 오차를 야기할 수 있다. 또한 MEMS를 이용한 벡터 속도 계산은 MEMS반응속도와 계산량 및 계산 프로세서의 성능에 좌우되며, 외란에 많은 영향을 받는다. 즉 MEMS를 이용한 벡터 속도계산에는 일정한 오류를 발생시킬 수 있다.Automotive vector speed measurements using MEMS, i.e., acceleration sensors in the form of small ICs, can cause a lot of errors at low speeds, and vector speeds can cause integration errors while driving. In addition, vector velocity calculation using MEMS depends on the MEMS response rate, the amount of computation, and the performance of the computational processor. That is, a constant error may occur in the vector velocity calculation using MEMS.

따라서 본 발명은 MEMS를 이용한 방법보다 실시간에서 정확한 벡터 속도를 계산할 수 있다. 또한 자동차의 저속 주행에서 신뢰성과 안정성을 높이기 위해 보다 정확한 벡터 속도를 계산, 측정할 수 있다.Therefore, the present invention can calculate the accurate vector velocity in real time than the method using MEMS. In addition, more accurate vector speeds can be calculated and measured to increase reliability and stability at low speeds.

도1은

Figure 112010058881601-pat00001
,
Figure 112010058881601-pat00002
속도 계산을 위한 파라미터 개념도.
도2는
Figure 112010058881601-pat00003
속도 계산을 위한 쇼버 파라미터 개념도.
도3는 운동하는 물체의 좌표축.1
Figure 112010058881601-pat00001
,
Figure 112010058881601-pat00002
Conceptual parameter diagram for speed calculation.
2 is
Figure 112010058881601-pat00003
Conceptual diagram of the shock absorber parameter for speed calculation.
3 is a coordinate axis of a moving object.

자동차의 벡터 속도를 측정하기 위해서, 뒷바퀴에 속도측정 센서가 장착하여

Figure 112010058881601-pat00004
,
Figure 112010058881601-pat00005
를 측정한다. 앞 바퀴에서 선회 각도 센서를 장착하여
Figure 112010058881601-pat00006
을 측정한다. To measure the vector speed of a car, a speed sensor is mounted on the rear wheel
Figure 112010058881601-pat00004
,
Figure 112010058881601-pat00005
Measure By turning the angle sensor on the front wheels
Figure 112010058881601-pat00006
Measure

바퀴에서 쇼버의 길이

Figure 112010058881601-pat00007
을 측정한다. 이때
Figure 112010058881601-pat00008
(앞 왼쪽 바퀴),
Figure 112010058881601-pat00009
(앞 오른쪽 바퀴),
Figure 112010058881601-pat00010
(뒤 왼쪽 바퀴) ,
Figure 112010058881601-pat00011
(뒤 왼쪽 바퀴) 이다. Length of shocker at wheel
Figure 112010058881601-pat00007
Measure At this time
Figure 112010058881601-pat00008
(Front left wheel),
Figure 112010058881601-pat00009
(Front right wheel),
Figure 112010058881601-pat00010
(Rear left wheel),
Figure 112010058881601-pat00011
(Rear left wheel).

쇼버와 지면과의 길이를 측정한다면

Figure 112010058881601-pat00012
,
Figure 112010058881601-pat00013
를 측정한다.If you measure the length between the shock absorber and the ground
Figure 112010058881601-pat00012
,
Figure 112010058881601-pat00013
Measure

앞 바퀴 축에서부터 길이가

Figure 112010058881601-pat00014
인 지점에서 x축과 z측에 대한 벡터 속도는 다음의 수학식1,2로 계산된다. From the front wheel axle
Figure 112010058881601-pat00014
The vector velocities for the x-axis and z-side at the point of is calculated by the following equations (1, 2).

Figure 112010058881601-pat00015
Figure 112010058881601-pat00015

Figure 112010058881601-pat00016
Figure 112010058881601-pat00016

이때

Figure 112010058881601-pat00017
는 다음의 수학식 3에서 구해진다. At this time
Figure 112010058881601-pat00017
Is obtained from the following equation (3).

Figure 112010058881601-pat00018
Figure 112010058881601-pat00018

만일 뒷바퀴 중 하나의 바퀴에서 속도가 측정될 때는

Figure 112010058881601-pat00019
Figure 112010058881601-pat00020
또는
Figure 112010058881601-pat00021
를 적용한다. If speed is measured on one of the rear wheels
Figure 112010058881601-pat00019
silver
Figure 112010058881601-pat00020
or
Figure 112010058881601-pat00021
Apply.

그리고

Figure 112010058881601-pat00022
Figure 112010058881601-pat00023
에서 구해진다.And
Figure 112010058881601-pat00022
The
Figure 112010058881601-pat00023
.

여기서

Figure 112010058881601-pat00024
,
Figure 112010058881601-pat00025
이다. here
Figure 112010058881601-pat00024
,
Figure 112010058881601-pat00025
to be.

또한 앞 바퀴 축에서부터 길이가

Figure 112010058881601-pat00026
지점에서는
Figure 112010058881601-pat00027
Figure 112010058881601-pat00028
와 같다.Also, the length from the front wheel axle
Figure 112010058881601-pat00026
At the branch
Figure 112010058881601-pat00027
The
Figure 112010058881601-pat00028
Same as

다시 말해 앞 바퀴 축에서부터 임의의 길이

Figure 112010058881601-pat00029
인 지점에서의
Figure 112010058881601-pat00030
는 다음의 수학식 4에서 구해진다. In other words, any length from the front wheel axle
Figure 112010058881601-pat00029
At the point of
Figure 112010058881601-pat00030
Is obtained from the following equation (4).

Figure 112010058881601-pat00031
Figure 112010058881601-pat00031

단, 위 식에서 계산의 간략화를 위하여

Figure 112010058881601-pat00032
으로 계산할 수 있다. However, in order to simplify the calculation
Figure 112010058881601-pat00032
Can be calculated as

만일 속도 측정 장치가 앞바퀴 한쪽에만 설치된 경우, 앞바퀴에서의 벡터 속도는 다음의 수학식 5,6으로 계산한다. If the speed measuring device is installed on one side of the front wheel, the vector speed at the front wheel is calculated by the following equations (5) and (6).

Figure 112010058881601-pat00033
Figure 112010058881601-pat00033

또는 or

Figure 112010058881601-pat00034
Figure 112010058881601-pat00034

다음으로 y축에서의 벡터속도는 다음과 같이 계산된다.Next, the vector velocity on the y-axis is calculated as

경우1. 샘풀링 시간

Figure 112010058881601-pat00035
에 대한 쇼버의 길이변화로 계산Case 1. Sampling time
Figure 112010058881601-pat00035
Calculated by varying the length of the shock absorber

Figure 112010058881601-pat00036
Figure 112010058881601-pat00036

경우2. 샘풀링 시간

Figure 112010058881601-pat00037
에 대한 쇼버의 상단과 지면과의 길이변화로 계산Case 2. Sampling time
Figure 112010058881601-pat00037
Calculated by the change in length between the top of the shock absorber and the ground

Figure 112010058881601-pat00038
Figure 112010058881601-pat00038

여기서

Figure 112010058881601-pat00039
은 쇼버 길이가 측정되는 쇼버 개수,
Figure 112010058881601-pat00040
는 시간
Figure 112010058881601-pat00041
동안 길이변화,
Figure 112010058881601-pat00042
는 적응 계수를 뜻한다. here
Figure 112010058881601-pat00039
Is the number of shock absorbers whose length is measured,
Figure 112010058881601-pat00040
Time
Figure 112010058881601-pat00041
While changing the length,
Figure 112010058881601-pat00042
Is an adaptation coefficient.

Figure 112010058881601-pat00043
: 앞 왼쪽 바퀴에서 속도,
Figure 112010058881601-pat00044
: 앞 오른쪽 바퀴에서 속도
Figure 112010058881601-pat00045
: 뒤 왼쪽 바퀴에서 속도,
Figure 112010058881601-pat00046
: 뒤 오른쪽 바퀴에서 속도
Figure 112010058881601-pat00047
: 뒤 바퀴 축 중앙에서의 속도
Figure 112010058881601-pat00048
: x축에서의 벡터 속도
Figure 112010058881601-pat00049
: z축에서의 벡터 속도
Figure 112010058881601-pat00050
: y축에서의 벡터 속도
Figure 112010058881601-pat00051
: 앞바퀴에서 선회 각도
Figure 112010058881601-pat00052
: 앞바퀴 축에서부터 길이가
Figure 112010058881601-pat00053

Figure 112010058881601-pat00054
: 앞바퀴 축에서부터 길이가
Figure 112010058881601-pat00055

Figure 112010058881601-pat00056
:
Figure 112010058881601-pat00057
지점에서
Figure 112010058881601-pat00058
에 따른 선회각도
Figure 112010058881601-pat00059
:
Figure 112010058881601-pat00060
지점에서
Figure 112010058881601-pat00061
에 따른 선회각도
Figure 112010058881601-pat00062
: 앞바퀴의 직경
Figure 112010058881601-pat00063
: 선회각
Figure 112010058881601-pat00064
에 따른 가로성분 길이
Figure 112010058881601-pat00065
: 선회각
Figure 112010058881601-pat00066
에 따른 세로성분 길이
Figure 112010058881601-pat00067
: 쇼버의 길이
Figure 112010058881601-pat00068
: 쇼버 상단과 지면과의 길이
Figure 112010058881601-pat00069
: 앞 왼쪽 바퀴
Figure 112010058881601-pat00070
: 앞 오른쪽 바퀴
Figure 112010058881601-pat00071
: 뒤 왼쪽 바퀴
Figure 112010058881601-pat00072
: 뒤 왼쪽 바퀴
Figure 112010058881601-pat00073
: 샘풀링 시간, 즉 데이터를 읽어들이는 시간 간격.
Figure 112010058881601-pat00043
: Speed from front left wheel,
Figure 112010058881601-pat00044
: Speed from the front right wheel
Figure 112010058881601-pat00045
: Speed from rear left wheel,
Figure 112010058881601-pat00046
: Speed from rear right wheel
Figure 112010058881601-pat00047
: Speed at center of rear wheel axle
Figure 112010058881601-pat00048
: vector velocity on the x-axis
Figure 112010058881601-pat00049
: vector velocity in the z-axis
Figure 112010058881601-pat00050
: vector velocity in the y-axis
Figure 112010058881601-pat00051
Turning angle from front wheel
Figure 112010058881601-pat00052
: Length from front wheel axle
Figure 112010058881601-pat00053

Figure 112010058881601-pat00054
: Length from front wheel axle
Figure 112010058881601-pat00055

Figure 112010058881601-pat00056
:
Figure 112010058881601-pat00057
At the point
Figure 112010058881601-pat00058
Turning angle
Figure 112010058881601-pat00059
:
Figure 112010058881601-pat00060
At the point
Figure 112010058881601-pat00061
Turning angle
Figure 112010058881601-pat00062
: Diameter of front wheel
Figure 112010058881601-pat00063
: Turning angle
Figure 112010058881601-pat00064
Transverse component length
Figure 112010058881601-pat00065
: Turning angle
Figure 112010058881601-pat00066
Vertical component length according to
Figure 112010058881601-pat00067
: Length of shock absorber
Figure 112010058881601-pat00068
: Length of the top of the shock absorber and the ground
Figure 112010058881601-pat00069
Front left wheel
Figure 112010058881601-pat00070
Front right wheel
Figure 112010058881601-pat00071
Rear left wheel
Figure 112010058881601-pat00072
Rear left wheel
Figure 112010058881601-pat00073
: Sampling time, i.e. the time interval for reading data.

Claims (5)

앞바퀴의 선회각도 측정장치와 뒷바퀴 2개의 속도 측정장치가 설치된 경우, 자동차가 전방 직선운동을 한다고 가정할 때 상기 자동차의 운동방향을 x축이라 하고, 상기 x축을 중심으로 좌측 직각방향을 z축이라고 하면, 앞바퀴의 축에서부터 뒷바퀴의 축 방향으로 임의의 지점
Figure 112012012734341-pat00110
에서의 상기 자동차 주행 중 벡터 속도(
Figure 112012012734341-pat00111
,
Figure 112012012734341-pat00112
)는 뒷바퀴 평균 속도(
Figure 112012012734341-pat00113
)와 차량 회전 각도(
Figure 112012012734341-pat00114
)를 이용한 하기의 수학식 3 및 4를 하기의 수학식 1 및 2에 대입하여 계산하는 자동차용 벡터 속도 계산 방법,
[수학식 1]
Figure 112012012734341-pat00115

[수학식 2]
Figure 112012012734341-pat00116

[수학식 3]
Figure 112012012734341-pat00117

[수학식 4]
Figure 112012012734341-pat00118

(여기서
Figure 112012012734341-pat00119
은 앞바퀴 축에서부터 뒷바퀴 축방향으로 임의의 지점까지의 길이가
Figure 112012012734341-pat00120
인 지점,
Figure 112012012734341-pat00121
,
Figure 112012012734341-pat00122
,
Figure 112012012734341-pat00123
는 앞바퀴의 직경,
Figure 112012012734341-pat00124
는 자동차 앞 바퀴가 상기 x축 방향을 중심으로 휘어진 정도를 나타내는 선회 각도).
When the turning angle measuring device of the front wheel and the speed measuring device of two rear wheels are installed, the direction of movement of the vehicle is called the x-axis, and the left right-angle direction about the x-axis is called the z-axis, assuming that the vehicle is linearly moving forward. At any point in the axial direction of the rear wheel,
Figure 112012012734341-pat00110
Vector speed while driving the car at
Figure 112012012734341-pat00111
,
Figure 112012012734341-pat00112
) Is the average rear wheel speed (
Figure 112012012734341-pat00113
) And the angle of rotation of the vehicle (
Figure 112012012734341-pat00114
A vector speed calculation method for automobiles calculated by substituting Equations 3 and 4 into Equations 1 and 2 below using
[Equation 1]
Figure 112012012734341-pat00115

&Quot; (2) "
Figure 112012012734341-pat00116

&Quot; (3) "
Figure 112012012734341-pat00117

&Quot; (4) "
Figure 112012012734341-pat00118

(here
Figure 112012012734341-pat00119
Is the length from the front wheel axis to an arbitrary point in the rear wheel axis direction
Figure 112012012734341-pat00120
Phosphorus Branch,
Figure 112012012734341-pat00121
,
Figure 112012012734341-pat00122
,
Figure 112012012734341-pat00123
Is the diameter of the front wheel,
Figure 112012012734341-pat00124
Is a turning angle indicating the degree of curvature of the front wheel of the vehicle about the x-axis direction.
제1항에 있어서,
상기 뒷바퀴 중 하나에 속도 측정장치가 있는 경우, 상기
Figure 112012012734341-pat00125
인 것을 특징으로 하는 자동차용 벡터 속도 계산 방법.
The method of claim 1,
If one of the rear wheels has a speed measuring device,
Figure 112012012734341-pat00125
The vector speed calculation method for automobiles characterized by the above-mentioned.
제1항에 있어서,
속도측정장치를 이용하여,
상기 자동차의 앞측 왼쪽 바퀴에서 측정되는 속도인
Figure 112012012734341-pat00126
또는 앞측 오른쪽 바퀴에서 측정되는 속도인
Figure 112012012734341-pat00127
중 어느 하나의 값을 측정할 수 있을 때,
상기
Figure 112012012734341-pat00128
또는
Figure 112012012734341-pat00129
이며,
상기
Figure 112012012734341-pat00130
또는
Figure 112012012734341-pat00131
인 것을 특징으로 하는 자동차용 벡터 속도 계산 방법.
The method of claim 1,
Using the speed measuring device,
The speed measured at the front left wheel of the vehicle
Figure 112012012734341-pat00126
Or the speed measured at the front right wheel
Figure 112012012734341-pat00127
When you can measure the value of either
remind
Figure 112012012734341-pat00128
or
Figure 112012012734341-pat00129
Is,
remind
Figure 112012012734341-pat00130
or
Figure 112012012734341-pat00131
The vector speed calculation method for automobiles characterized by the above-mentioned.
삭제delete 삭제delete
KR1020100088717A 2010-09-10 2010-09-10 Calculation Method of Velocity Vector for automobile KR101189548B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100088717A KR101189548B1 (en) 2010-09-10 2010-09-10 Calculation Method of Velocity Vector for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100088717A KR101189548B1 (en) 2010-09-10 2010-09-10 Calculation Method of Velocity Vector for automobile

Publications (2)

Publication Number Publication Date
KR20120026690A KR20120026690A (en) 2012-03-20
KR101189548B1 true KR101189548B1 (en) 2012-10-16

Family

ID=46132402

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100088717A KR101189548B1 (en) 2010-09-10 2010-09-10 Calculation Method of Velocity Vector for automobile

Country Status (1)

Country Link
KR (1) KR101189548B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101281499B1 (en) * 2013-03-15 2013-07-02 박수민 Automatic vehicle driving system
WO2014163307A1 (en) * 2013-04-01 2014-10-09 박영일 Automatic driving system for vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265472A (en) 1989-07-26 1993-11-30 Daimler-Benz Aktiengesellschaft Process for compensating acceleration sensor errors
US6466887B1 (en) 1999-03-03 2002-10-15 Richard L. Weinbrenner Gravimetric rotation sensors: dead reckoning, velocity, and heading sensor system for vehicle navigation systems
JP2005128630A (en) 2003-10-21 2005-05-19 Fujitsu Ten Ltd Device for detecting moving body abnormality, and method therefor
JP2007198795A (en) 2006-01-24 2007-08-09 Toyota Motor Corp Angular velocity measurement device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265472A (en) 1989-07-26 1993-11-30 Daimler-Benz Aktiengesellschaft Process for compensating acceleration sensor errors
US6466887B1 (en) 1999-03-03 2002-10-15 Richard L. Weinbrenner Gravimetric rotation sensors: dead reckoning, velocity, and heading sensor system for vehicle navigation systems
JP2005128630A (en) 2003-10-21 2005-05-19 Fujitsu Ten Ltd Device for detecting moving body abnormality, and method therefor
JP2007198795A (en) 2006-01-24 2007-08-09 Toyota Motor Corp Angular velocity measurement device

Also Published As

Publication number Publication date
KR20120026690A (en) 2012-03-20

Similar Documents

Publication Publication Date Title
CN113819914A (en) Map construction method and device
JP7073052B2 (en) Systems and methods for measuring the angular position of a vehicle
US20100007550A1 (en) Positioning apparatus for a mobile object
CN107063305B (en) Method for correcting downhill suspended rear wheel odometer error by using inertial navigation and pressure sensors
US9534891B2 (en) Method and system of angle estimation
TWI625260B (en) Method and system for detecting lane curvature by using body signal
KR20140067119A (en) Orientation model for a sensor system
CN109791049A (en) Method for determining the posture of vehicle
US11584183B2 (en) Damping control apparatus and method for a vehicle
JP7344895B2 (en) How to calibrate a gyrometer installed in a vehicle
CN114167470A (en) Data processing method and device
KR101226767B1 (en) System and Method for localizationing of Autonomous Vehicle
KR101189548B1 (en) Calculation Method of Velocity Vector for automobile
CN112046491B (en) Method and device for estimating cornering stiffness of wheel, vehicle and readable storage medium
KR101160630B1 (en) Method for motion mode decision, navigation system using the method, and providing method thereof
WO2018140482A1 (en) Road grade measurement system for moving vehicles
CN113048987A (en) Vehicle navigation system positioning method
KR101733880B1 (en) Apparatus and method for estimating position of vehicle using nonlinear tire model
JP7028223B2 (en) Self-position estimator
Huttner et al. Offset and misalignment estimation for the online calibration of an MEMS-IMU using FIR-filter modulating functions
US9791277B2 (en) Apparatus and method for measuring velocity of moving object in a navigation system
TWI394944B (en) Vehicle attitude estimation system and method
CN110954096A (en) Method for measuring course attitude based on MEMS device
KR101194562B1 (en) Method for calculating a degree of fatigue and apparatus thereof
US20220041167A1 (en) Information processing apparatus, mobile apparatus, method, and program

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150819

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee