KR101189548B1 - Calculation Method of Velocity Vector for automobile - Google Patents
Calculation Method of Velocity Vector for automobile Download PDFInfo
- Publication number
- KR101189548B1 KR101189548B1 KR1020100088717A KR20100088717A KR101189548B1 KR 101189548 B1 KR101189548 B1 KR 101189548B1 KR 1020100088717 A KR1020100088717 A KR 1020100088717A KR 20100088717 A KR20100088717 A KR 20100088717A KR 101189548 B1 KR101189548 B1 KR 101189548B1
- Authority
- KR
- South Korea
- Prior art keywords
- vehicle
- vector
- axis
- speed
- wheel
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/62—Devices characterised by the determination or the variation of atmospheric pressure with height to measure the vertical components of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/005—Electro-mechanical devices, e.g. switched
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/101—Side slip angle of tyre
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R2021/0027—Post collision measures, e.g. notifying emergency services
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Mathematical Physics (AREA)
- Transportation (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
자동차의 지능형 자율 주행 시스템 개발에 있어, 자동차 벡터 속도의 정확한 측정은 정확한 예측 시스템을 구현할 수 있다. 이러한 정확한 벡터속도는 자동차의 주행성능 및 안정성과도 직결된다.
따라서 본 발명에서는 주행하는 운동 물체, 즉 자동차의 움직임에 따라 벡터속도를 정확하게 측정 계산하여 보다 안정성 있는 지능형 자율 주행 시스템을 구현할 수 있도록 한다.
본 발명에서는 x축, z축의 벡터속도는 자동차 앞바퀴 조향 각도에 따라 변화하는 자동차 요각을 계산하여 구하였다. 또한 y축의 벡터속도는 시간에 대한 자동차의 상하 움직임, 즉 쇼버의 길이변화와 쇼버와 지면과의 길이변화를 계산하여 구하였다.
움직이는 물체의 x,y,z축에 대한 정확한 벡터 속도는, 자동차 움직임의 경로를 정확하게 예측하기 위한 중요 파라미터로서 사용된다. 이러한 파라미터는 보다 안정성 있는 지능형 자율 주행 자동차 구현을 위해 사용된다. In the development of intelligent autonomous driving systems for cars, accurate measurement of car vector speeds can lead to accurate prediction systems. This accurate vector speed is also directly related to the driving performance and stability of the vehicle.
Therefore, in the present invention, it is possible to implement a more stable intelligent autonomous driving system by accurately measuring and calculating the vector speed according to the movement of the moving object, that is, the vehicle.
In the present invention, the vector velocities of the x-axis and z-axis are calculated by calculating the vehicle yaw angle which varies depending on the steering angle of the front wheel of the vehicle. In addition, the vector velocity of the y-axis was calculated by calculating the up and down movement of the vehicle over time, that is, the change in the length of the shock absorber and the length between the shock absorber and the ground.
The exact vector velocity for the x, y, z axis of the moving object is used as an important parameter for accurately predicting the path of vehicle movement. These parameters are used for more reliable intelligent autonomous vehicle implementation.
Description
자동차의 지능형 자율 주행 시스템 개발에 있어서, 자동차 벡터 속도의 정확한 측정은 정확한 주행 예측 시스템을 구현할 수 있다. 이러한 정확한 벡터속도는 지능형 자동차의 주행성능 및 안정성과 직결된다. In developing an autonomous autonomous driving system for a vehicle, accurate measurement of the vehicle vector speed can implement an accurate driving prediction system. This accurate vector speed is directly related to the driving performance and stability of the intelligent vehicle.
지능형 자율 주행 자동차의 운동 예측을 위해서는 자동차의 정확한 벡터 속도가 필요로 한다. 정확한 벡터 속도로부터 자동차의 예측 경로, 예측 속도, 예측제동 거리등이 계산된다. Predicting the motion of an intelligent autonomous car requires the exact vector speed of the car. From the exact vector speed, the car's predicted path, predicted speed and predicted braking distance are calculated.
주행하는 운동 물체, 즉 자동차의 움직임에 따라 x,y,z축에 대한 벡터속도를 정확하게 측정 계산하여야 보다 안정성 있는 지능형 자율 주행 시스템을 구현할 수 있다. 또한 정확한 벡터 속도로 자동차의 예측 경로, 예측 속도, 예측 제동 거리등을 보다 정확하게 계산할 수 있다.In order to realize a more stable intelligent autonomous driving system, it is necessary to accurately measure and calculate the vector speeds on the x, y, and z axes according to the moving object, that is, the vehicle movement. In addition, accurate vector speeds can be used to more accurately calculate the vehicle's predicted path, predicted speed, and predicted braking distance.
따라서 보다 안정성 있는 지능형 자율 주행 자동차 구현을 위해, 정확한 벡터 속도 측정 및 계산이 이루어져야 한다.Therefore, accurate vector speed measurement and calculation must be made to realize more reliable intelligent autonomous vehicle.
자동차의 벡터 속도를 정확하게 측정하기 위해서, 앞바퀴와 뒤바퀴에 속도측정 센서가 장착한다. 또한 앞 바퀴의 조향 각도를 측정하기 위해 각도 측정기를 장착한다.In order to accurately measure the vector speed of the car, speed sensors are mounted on the front and rear wheels. It also has an angle meter to measure the steering angle of the front wheels.
앞바퀴의 조향각으로부터 자동차의 선회각을 계산하고, 각각의 속도측정 장치로부터 자동차의 실제 방향 속도를 구한다. 진행 방향 속도와 선회각으로부터 자동차의 x축, z축에 대한 속도를 계산한다.The vehicle's turning angle is calculated from the steering angle of the front wheel, and the actual direction speed of the vehicle is obtained from each speed measuring device. Calculate the velocities for the x and z axes of the car from the heading speed and the turning angle.
또한 y축에 대한 속도, 즉 수직 벡터속도를 측정하기 위해 각각의 쇼버에 쇼버 길이 변화 측정 장치를 장착한다. 쇼버의 길이 변화량을 연산하여 수직 벡터 속도를 계산한다.In addition, a shock absorber length change measuring device is mounted on each shock absorber to measure the velocity about the y axis, that is, the vertical vector velocity. The vertical vector velocity is calculated by calculating the change in the length of the shock absorber.
MEMS를 이용한, 즉 소형 IC형태의 가속도 센서를 이용한, 자동차 벡터 속도 측정은 저속에서 많은 오차를 야기할 수 있으며, 주행 중 벡터 속도는 적분 오차를 야기할 수 있다. 또한 MEMS를 이용한 벡터 속도 계산은 MEMS반응속도와 계산량 및 계산 프로세서의 성능에 좌우되며, 외란에 많은 영향을 받는다. 즉 MEMS를 이용한 벡터 속도계산에는 일정한 오류를 발생시킬 수 있다.Automotive vector speed measurements using MEMS, i.e., acceleration sensors in the form of small ICs, can cause a lot of errors at low speeds, and vector speeds can cause integration errors while driving. In addition, vector velocity calculation using MEMS depends on the MEMS response rate, the amount of computation, and the performance of the computational processor. That is, a constant error may occur in the vector velocity calculation using MEMS.
따라서 본 발명은 MEMS를 이용한 방법보다 실시간에서 정확한 벡터 속도를 계산할 수 있다. 또한 자동차의 저속 주행에서 신뢰성과 안정성을 높이기 위해 보다 정확한 벡터 속도를 계산, 측정할 수 있다.Therefore, the present invention can calculate the accurate vector velocity in real time than the method using MEMS. In addition, more accurate vector speeds can be calculated and measured to increase reliability and stability at low speeds.
도1은 , 속도 계산을 위한 파라미터 개념도.
도2는 속도 계산을 위한 쇼버 파라미터 개념도.
도3는 운동하는 물체의 좌표축.1 , Conceptual parameter diagram for speed calculation.
2 is Conceptual diagram of the shock absorber parameter for speed calculation.
3 is a coordinate axis of a moving object.
자동차의 벡터 속도를 측정하기 위해서, 뒷바퀴에 속도측정 센서가 장착하여 , 를 측정한다. 앞 바퀴에서 선회 각도 센서를 장착하여 을 측정한다. To measure the vector speed of a car, a speed sensor is mounted on the rear wheel , Measure By turning the angle sensor on the front wheels Measure
바퀴에서 쇼버의 길이 을 측정한다. 이때 (앞 왼쪽 바퀴), (앞 오른쪽 바퀴), (뒤 왼쪽 바퀴) , (뒤 왼쪽 바퀴) 이다. Length of shocker at wheel Measure At this time (Front left wheel), (Front right wheel), (Rear left wheel), (Rear left wheel).
쇼버와 지면과의 길이를 측정한다면 ,를 측정한다.If you measure the length between the shock absorber and the ground , Measure
앞 바퀴 축에서부터 길이가 인 지점에서 x축과 z측에 대한 벡터 속도는 다음의 수학식1,2로 계산된다. From the front wheel axle The vector velocities for the x-axis and z-side at the point of is calculated by the following equations (1, 2).
이때 는 다음의 수학식 3에서 구해진다. At this time Is obtained from the following equation (3).
만일 뒷바퀴 중 하나의 바퀴에서 속도가 측정될 때는 은 또는 를 적용한다. If speed is measured on one of the rear wheels silver or Apply.
그리고 는 에서 구해진다.And The .
여기서 , 이다. here , to be.
또한 앞 바퀴 축에서부터 길이가 지점에서는 는 와 같다.Also, the length from the front wheel axle At the branch The Same as
다시 말해 앞 바퀴 축에서부터 임의의 길이 인 지점에서의 는 다음의 수학식 4에서 구해진다. In other words, any length from the front wheel axle At the point of Is obtained from the following equation (4).
단, 위 식에서 계산의 간략화를 위하여 으로 계산할 수 있다. However, in order to simplify the calculation Can be calculated as
만일 속도 측정 장치가 앞바퀴 한쪽에만 설치된 경우, 앞바퀴에서의 벡터 속도는 다음의 수학식 5,6으로 계산한다. If the speed measuring device is installed on one side of the front wheel, the vector speed at the front wheel is calculated by the following equations (5) and (6).
또는 or
다음으로 y축에서의 벡터속도는 다음과 같이 계산된다.Next, the vector velocity on the y-axis is calculated as
경우1. 샘풀링 시간 에 대한 쇼버의 길이변화로 계산Case 1. Sampling time Calculated by varying the length of the shock absorber
경우2. 샘풀링 시간 에 대한 쇼버의 상단과 지면과의 길이변화로 계산Case 2. Sampling time Calculated by the change in length between the top of the shock absorber and the ground
여기서 은 쇼버 길이가 측정되는 쇼버 개수, 는 시간 동안 길이변화, 는 적응 계수를 뜻한다. here Is the number of shock absorbers whose length is measured, Time While changing the length, Is an adaptation coefficient.
: 앞 왼쪽 바퀴에서 속도, : 앞 오른쪽 바퀴에서 속도
: 뒤 왼쪽 바퀴에서 속도, : 뒤 오른쪽 바퀴에서 속도
: 뒤 바퀴 축 중앙에서의 속도
: x축에서의 벡터 속도 : z축에서의 벡터 속도
: y축에서의 벡터 속도
: 앞바퀴에서 선회 각도
: 앞바퀴 축에서부터 길이가
: 앞바퀴 축에서부터 길이가
: 지점에서 에 따른 선회각도
: 지점에서 에 따른 선회각도
: 앞바퀴의 직경
: 선회각 에 따른 가로성분 길이
: 선회각 에 따른 세로성분 길이
: 쇼버의 길이
: 쇼버 상단과 지면과의 길이
: 앞 왼쪽 바퀴
: 앞 오른쪽 바퀴
: 뒤 왼쪽 바퀴
: 뒤 왼쪽 바퀴
: 샘풀링 시간, 즉 데이터를 읽어들이는 시간 간격. : Speed from front left wheel, : Speed from the front right wheel
: Speed from rear left wheel, : Speed from rear right wheel
: Speed at center of rear wheel axle
: vector velocity on the x-axis : vector velocity in the z-axis
: vector velocity in the y-axis
Turning angle from front wheel
: Length from front wheel axle
: Length from front wheel axle
: At the point Turning angle
: At the point Turning angle
: Diameter of front wheel
: Turning angle Transverse component length
: Turning angle Vertical component length according to
: Length of shock absorber
: Length of the top of the shock absorber and the ground
Front left wheel
Front right wheel
Rear left wheel
Rear left wheel
: Sampling time, i.e. the time interval for reading data.
Claims (5)
[수학식 1]
[수학식 2]
[수학식 3]
[수학식 4]
(여기서 은 앞바퀴 축에서부터 뒷바퀴 축방향으로 임의의 지점까지의 길이가 인 지점, , , 는 앞바퀴의 직경, 는 자동차 앞 바퀴가 상기 x축 방향을 중심으로 휘어진 정도를 나타내는 선회 각도).When the turning angle measuring device of the front wheel and the speed measuring device of two rear wheels are installed, the direction of movement of the vehicle is called the x-axis, and the left right-angle direction about the x-axis is called the z-axis, assuming that the vehicle is linearly moving forward. At any point in the axial direction of the rear wheel, Vector speed while driving the car at , ) Is the average rear wheel speed ( ) And the angle of rotation of the vehicle ( A vector speed calculation method for automobiles calculated by substituting Equations 3 and 4 into Equations 1 and 2 below using
[Equation 1]
&Quot; (2) "
&Quot; (3) "
&Quot; (4) "
(here Is the length from the front wheel axis to an arbitrary point in the rear wheel axis direction Phosphorus Branch, , , Is the diameter of the front wheel, Is a turning angle indicating the degree of curvature of the front wheel of the vehicle about the x-axis direction.
상기 뒷바퀴 중 하나에 속도 측정장치가 있는 경우, 상기인 것을 특징으로 하는 자동차용 벡터 속도 계산 방법.The method of claim 1,
If one of the rear wheels has a speed measuring device, The vector speed calculation method for automobiles characterized by the above-mentioned.
속도측정장치를 이용하여,
상기 자동차의 앞측 왼쪽 바퀴에서 측정되는 속도인 또는 앞측 오른쪽 바퀴에서 측정되는 속도인 중 어느 하나의 값을 측정할 수 있을 때,
상기 또는 이며,
상기 또는 인 것을 특징으로 하는 자동차용 벡터 속도 계산 방법.The method of claim 1,
Using the speed measuring device,
The speed measured at the front left wheel of the vehicle Or the speed measured at the front right wheel When you can measure the value of either
remind or Is,
remind or The vector speed calculation method for automobiles characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100088717A KR101189548B1 (en) | 2010-09-10 | 2010-09-10 | Calculation Method of Velocity Vector for automobile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100088717A KR101189548B1 (en) | 2010-09-10 | 2010-09-10 | Calculation Method of Velocity Vector for automobile |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120026690A KR20120026690A (en) | 2012-03-20 |
KR101189548B1 true KR101189548B1 (en) | 2012-10-16 |
Family
ID=46132402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100088717A KR101189548B1 (en) | 2010-09-10 | 2010-09-10 | Calculation Method of Velocity Vector for automobile |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101189548B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101281499B1 (en) * | 2013-03-15 | 2013-07-02 | 박수민 | Automatic vehicle driving system |
WO2014163307A1 (en) * | 2013-04-01 | 2014-10-09 | 박영일 | Automatic driving system for vehicle |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5265472A (en) | 1989-07-26 | 1993-11-30 | Daimler-Benz Aktiengesellschaft | Process for compensating acceleration sensor errors |
US6466887B1 (en) | 1999-03-03 | 2002-10-15 | Richard L. Weinbrenner | Gravimetric rotation sensors: dead reckoning, velocity, and heading sensor system for vehicle navigation systems |
JP2005128630A (en) | 2003-10-21 | 2005-05-19 | Fujitsu Ten Ltd | Device for detecting moving body abnormality, and method therefor |
JP2007198795A (en) | 2006-01-24 | 2007-08-09 | Toyota Motor Corp | Angular velocity measurement device |
-
2010
- 2010-09-10 KR KR1020100088717A patent/KR101189548B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5265472A (en) | 1989-07-26 | 1993-11-30 | Daimler-Benz Aktiengesellschaft | Process for compensating acceleration sensor errors |
US6466887B1 (en) | 1999-03-03 | 2002-10-15 | Richard L. Weinbrenner | Gravimetric rotation sensors: dead reckoning, velocity, and heading sensor system for vehicle navigation systems |
JP2005128630A (en) | 2003-10-21 | 2005-05-19 | Fujitsu Ten Ltd | Device for detecting moving body abnormality, and method therefor |
JP2007198795A (en) | 2006-01-24 | 2007-08-09 | Toyota Motor Corp | Angular velocity measurement device |
Also Published As
Publication number | Publication date |
---|---|
KR20120026690A (en) | 2012-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113819914A (en) | Map construction method and device | |
JP7073052B2 (en) | Systems and methods for measuring the angular position of a vehicle | |
US20100007550A1 (en) | Positioning apparatus for a mobile object | |
CN107063305B (en) | Method for correcting downhill suspended rear wheel odometer error by using inertial navigation and pressure sensors | |
US9534891B2 (en) | Method and system of angle estimation | |
TWI625260B (en) | Method and system for detecting lane curvature by using body signal | |
KR20140067119A (en) | Orientation model for a sensor system | |
CN109791049A (en) | Method for determining the posture of vehicle | |
US11584183B2 (en) | Damping control apparatus and method for a vehicle | |
JP7344895B2 (en) | How to calibrate a gyrometer installed in a vehicle | |
CN114167470A (en) | Data processing method and device | |
KR101226767B1 (en) | System and Method for localizationing of Autonomous Vehicle | |
KR101189548B1 (en) | Calculation Method of Velocity Vector for automobile | |
CN112046491B (en) | Method and device for estimating cornering stiffness of wheel, vehicle and readable storage medium | |
KR101160630B1 (en) | Method for motion mode decision, navigation system using the method, and providing method thereof | |
WO2018140482A1 (en) | Road grade measurement system for moving vehicles | |
CN113048987A (en) | Vehicle navigation system positioning method | |
KR101733880B1 (en) | Apparatus and method for estimating position of vehicle using nonlinear tire model | |
JP7028223B2 (en) | Self-position estimator | |
Huttner et al. | Offset and misalignment estimation for the online calibration of an MEMS-IMU using FIR-filter modulating functions | |
US9791277B2 (en) | Apparatus and method for measuring velocity of moving object in a navigation system | |
TWI394944B (en) | Vehicle attitude estimation system and method | |
CN110954096A (en) | Method for measuring course attitude based on MEMS device | |
KR101194562B1 (en) | Method for calculating a degree of fatigue and apparatus thereof | |
US20220041167A1 (en) | Information processing apparatus, mobile apparatus, method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20150819 Year of fee payment: 4 |
|
LAPS | Lapse due to unpaid annual fee |