KR101175413B1 - Continuous casting method for rolled steel products - Google Patents

Continuous casting method for rolled steel products Download PDF

Info

Publication number
KR101175413B1
KR101175413B1 KR1020090103204A KR20090103204A KR101175413B1 KR 101175413 B1 KR101175413 B1 KR 101175413B1 KR 1020090103204 A KR1020090103204 A KR 1020090103204A KR 20090103204 A KR20090103204 A KR 20090103204A KR 101175413 B1 KR101175413 B1 KR 101175413B1
Authority
KR
South Korea
Prior art keywords
continuous casting
less
slab
present
steel
Prior art date
Application number
KR1020090103204A
Other languages
Korean (ko)
Other versions
KR20110046682A (en
Inventor
이승하
김성주
도형협
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020090103204A priority Critical patent/KR101175413B1/en
Publication of KR20110046682A publication Critical patent/KR20110046682A/en
Application granted granted Critical
Publication of KR101175413B1 publication Critical patent/KR101175413B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 고로에서 생산된 쇳물을 제강공정에서 조성 성분을 제어하여 연속 주조시 가로 및 코너 크랙의 발생을 억제하도록 한 크랙 저감을 위한 열연 강판용 슬라브의 연속 주조법에 관한 것이다.The present invention relates to a continuous casting method of the slab for hot-rolled steel sheet for crack reduction to control the composition of the molten metal produced in the blast furnace in the steelmaking process to suppress the occurrence of horizontal and corner cracks during continuous casting.

본 발명의 강종 소재는 중량 %로, C : 0.15~0.20%, Mn : 0.5~2.0%, Si : 0.01~0.5%, Nb : 0.005~0.1%, Ti : 0.02~0.05%, P : 0.02%이하, S : 0.01%이하, Al : 0.02~0.04%, B : 0.0010~0.0040% 이고, Cu : 0.02%이하, Ni : 0.2% 이하 중 적어도 1종을 포함하며, 나머지 잔부가 Fe와 기타 불가피한 불순물로 조성된다.The steel material of the present invention is a weight%, C: 0.15 to 0.20%, Mn: 0.5 to 2.0%, Si: 0.01 to 0.5%, Nb: 0.005 to 0.1%, Ti: 0.02 to 0.05%, P: 0.02% or less , S: 0.01% or less, Al: 0.02 ~ 0.04%, B: 0.0010 ~ 0.0040%, Cu: 0.02% or less, Ni: 0.2% or less, including at least one of the remaining residues, Fe and other unavoidable impurities It is created.

이에 따르면 본 발명은 연속 주조시 직선화 온도 구간에서 슬라브의 크랙 발생을 억제하여 제품의 품질을 향상시킬 수 있는 유용한 효과를 갖는다.Accordingly, the present invention has a useful effect of suppressing the occurrence of cracks in the slab in the straightening temperature range during continuous casting to improve the quality of the product.

Description

크랙 저감을 위한 열연 강판용 슬라브의 연속 주조법{CONTINUOUS CASTING METHOD FOR ROLLED STEEL PRODUCTS}Continuous casting method of slab for hot rolled steel plate for crack reduction {CONTINUOUS CASTING METHOD FOR ROLLED STEEL PRODUCTS}

본 발명은 크랙 저감을 위한 열연 강판용 슬라브의 연속 주조법에 관한 것으로, 특히 티타늄, 보론의 조성을 제어하여 연속 주조 조업에 따른 입계 페라이트 변태시 오스테나이트 입계의 크랙 민감성을 저감시키고 단면 감소율을 증가시켜 크랙 발생을 억제시킬 수 있도록 한 것이다. The present invention relates to a continuous casting method of slabs for hot-rolled steel sheets for crack reduction, in particular, by controlling the composition of titanium and boron to reduce the crack sensitivity of the austenite grain boundaries during grain boundary ferrite transformation due to continuous casting operation and increase the rate of cross-sectional reduction It is to be able to suppress.

일반적으로 액상의 용강은 연속주조설비를 통과하면서 냉각되어 고상의 슬라브로 응고된다.Generally, liquid molten steel is cooled while passing through a continuous casting facility and solidified into a solid slab.

연속주조설비에서 액상의 용강은 먼저 몰드를 통과하면서 20% 정도 응고되고, 이후 스트랜드를 통과하면서 나머지 80%가 완전히 냉각되어 전술한 바와 같이 고상의 슬라브가 된다.In the continuous casting facility, the molten steel in the liquid is solidified by 20% while passing through the mold, and then the remaining 80% is completely cooled as it passes through the strand to become a solid slab as described above.

이로 인해 연속주조법에서는 급격한 냉각으로 인해 슬라브 내부와 표면에 발생하는 온도 구배에 의한 열응력과, 슬라브와 롤과의 주기적인 접촉에 의한 기계적 응력이 복합적으로 작용하여 슬라브의 내부와 표면에 다양한 형태의 크랙이 발생하는 문제점이 있다.Therefore, in the continuous casting method, the thermal stress due to the temperature gradient occurring on the inside and the surface of the slab due to the rapid cooling and the mechanical stress due to the periodic contact between the slab and the roll are combined to form various forms on the inside and the surface of the slab. There is a problem that cracks occur.

특히, 수직 만곡형 연주기의 경우에는 직선화되는 온도 구간(700~900℃)에서 굽혀졌던 슬라브가 펴지면서 상부면에는 인장응력이 작용하고 하부면에는 압축응력이 작용하게 된다.Particularly, in the case of the vertical curved player, the slab that was bent in the temperature range (700 to 900 ° C.) to be straightened is stretched, and the tensile stress acts on the upper surface and the compressive stress acts on the lower surface.

따라서, 고온 연성이 낮은 강종의 경우 상부면의 인장 응력에 의해 슬라브 상부 및 코너에 단면의 가로 방향으로 표면 크랙이 형성되는 경향이 있으며, 이때 발생되는 크랙을 가로 크랙 및 코너 크랙이라 한다.Therefore, in the case of low-temperature ductility steel, surface cracks tend to be formed in the transverse direction of the cross section at the upper and corners of the slab by the tensile stress of the upper surface, and the cracks generated at this time are called horizontal cracks and corner cracks.

따라서, 이들 크랙은 설비의 특성과 강종 소재의 고온 특성이 서로 결합되어 발생되며, 크랙 발생을 억제하기 위해 제조 조건과 합금 설계 측면에서 엄밀한 제어가 필요하다.Therefore, these cracks are generated by combining the characteristics of the facility and the high temperature properties of the steel material, and tight control is required in terms of manufacturing conditions and alloy design to suppress cracking.

또 직선화 되는 구간에서 발생한 이들 크랙은 열간 압연 공정에서 판재 파단의 원인이 되므로 이를 방지하고자 슬라브를 상온까지 냉각한 후, 토치(torch) 등의 장비로 표면 크랙을 제거하는 공정이 별도로 요구되어, 인력 및 에너지 손실에 의한 원가 상승 및 생산 효율이 저하되는 문제점이 있다.In addition, these cracks generated in the straightening section cause plate breakage during the hot rolling process, and thus, a process of removing the surface cracks by using a torch or the like after cooling the slab to room temperature is required to prevent this. And there is a problem that the cost rise and production efficiency is lowered by the energy loss.

가로 및 코너 크랙은 입계가 취약한 강종에서 입계를 따라 진행하는 것이 대부분이며, 니오븀(Nb), 바나듐(V), 알루미늄(Al)등의 석출상 형성원소가 첨가된 강에서 발생 빈도가 높다.Lateral and corner cracks are mostly progressed along grain boundaries in steel grades with weak grain boundaries, and occur frequently in steels with precipitation-forming elements such as niobium (Nb), vanadium (V), and aluminum (Al).

특히, 니요븀을 0.02~0.05wt% 함유하는 50kg 이상급 고강도강의 경우에는 그 발생 빈도가 아주 높다.In particular, the occurrence frequency of 50kg or more high strength steel containing niobium 0.02 ~ 0.05wt% is very high.

연속주조 공정 중에서 슬라브가 펴지는 직선화 영역에서 발생하는 크랙은 입계를 따라 진행하는 입계 파괴에 해당되며, 이는 강의 고온 연성 취화 구간의 연성 감소에 의해 발생한다.In the continuous casting process, cracks generated in the straightening region where the slab is spread correspond to grain boundary fractures that progress along the grain boundaries, which is caused by the decrease in the ductility of the hot ductile embrittlement section of the steel.

따라서, 크랙의 발생을 억제하기 위해서는 취화 구간에서의 연성을 향상시킬 필요가 있으며, 취화 구간에서의 연성 감소는 입계에 형성되는 입계 페라이트에 변형이 집중되면서 발생되므로, 입계 페라이트의 특성을 개선하는 것이 중요하다.Therefore, in order to suppress the occurrence of cracks, it is necessary to improve the ductility in the embrittlement section, and the decrease in the ductility in the embrittlement section is caused by the concentration of strain in the grain boundary ferrite formed at the grain boundary, thus improving the characteristics of the grain boundary ferrite. It is important.

그 중에서도 니오븀 단독 첨가강의 경우 입계에서 우선 석출되는 니오븀 탄질화물이 공공을 형성하기 쉽고, 기지에 석출된 니오븀 탄질화물이 기지를 강화하므로 입계 변형 집중을 증가시켜 크랙 발생율을 증가시킨다.Among them, in the case of niobium alone-added steel, niobium carbonitride which is first precipitated at the grain boundary tends to form voids, and since niobium carbonitride precipitated at the base strengthens the matrix, the concentration of grain boundary strain is increased to increase the crack generation rate.

본 발명은 상기한 제반 문제점을 감안하여 이를 해결하고자 제안된 것으로, 그 목적은 60kg/mm2 급 고강도 강판의 연속 주조시 고온 단면 감소율을 향상시켜 슬라브의 가로 및 코너 크랙을 저감시킬 수 있도록 한 크랙 저감을 위한 열연 강판용 슬라브의 연속 주조법을 제공하는 데 있다.The present invention has been proposed to solve the above problems, the purpose of which is to reduce the cracks to reduce the horizontal and corner cracks of the slab by improving the high temperature cross-sectional reduction rate during continuous casting of 60kg / mm2 high strength steel sheet It is to provide a continuous casting method of slabs for hot rolled steel sheet for.

상기한 목적을 달성하기 위한 본 발명은 중량 %로, C : 0.15~0.20%, Mn : 0.5~2.0%, Si : 0.01~0.5%이하, Nb : 0.005~0.1%, Ti : 0.02~0.05%, P : 0.02%이하, S : 0.01%이하, Al : 0.02~0.04%, B : 0.0010~0.0040% 이고, The present invention for achieving the above object by weight%, C: 0.15 ~ 0.20%, Mn: 0.5 ~ 2.0%, Si: 0.01 ~ 0.5% or less, Nb: 0.005 ~ 0.1%, Ti: 0.02 ~ 0.05%, P: 0.02% or less, S: 0.01% or less, Al: 0.02 ~ 0.04%, B: 0.0010 ~ 0.0040%,

Cu : 0.02%이하, Ni : 0.2% 이하 중 1종 또는 2종을 포함하며,Cu: 0.02% or less, Ni: 0.2% or less of one or two,

나머지 잔부가 Fe와 기타 불가피한 불순물로 조성된 강종을 연속 주조공정을통해 슬라브로 제조하는 것을 특징으로 한다.The remaining balance is characterized in that steel grades composed of Fe and other unavoidable impurities are manufactured into slabs through a continuous casting process.

상기 슬라브의 단면 감소율이 연속 주조가 가능한 50% 이상인 것이다.The reduction rate of the cross section of the slab is 50% or more capable of continuous casting.

본 발명은 고로에서 생산된 쇳물을 제강공정에서 조성 성분을 제어하여 연속 주조시 가로 및 코너 크랙의 발생을 억제하도록 한 것인 바, 이에 따르면 본 발명은 연속 주조시 직선화 온도 구간에서 슬라브의 크랙 발생을 억제하여 제품의 품질을 향상시킬 수 있는 유용한 효과를 갖는다.The present invention is to control the composition of the molten metal produced in the blast furnace in the steelmaking process to suppress the occurrence of horizontal and corner cracks during continuous casting, according to the present invention is crack generation of the slab in the straightening temperature range during continuous casting It has a useful effect to improve the quality of the product by suppressing.

이하, 본 발명의 바람직한 실시 예를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail.

먼저, 본 발명의 강종 소재는 중량 %로, C : 0.15~0.20%, Mn : 0.5~2.0%, Si : 0.01~0.5%, Nb : 0.005~0.1%, Ti : 0.02~0.05%, P : 0.02%이하, S : 0.01%이하, Al : 0.02~0.04%, B : 0.0010~0.0040% 이고, First, the steel material of the present invention in weight%, C: 0.15 to 0.20%, Mn: 0.5 to 2.0%, Si: 0.01 to 0.5%, Nb: 0.005 to 0.1%, Ti: 0.02 to 0.05%, P: 0.02 % Or less, S: 0.01% or less, Al: 0.02 to 0.04%, B: 0.0010 to 0.0040%,

Cu : 0.02%이하, Ni : 0.2% 이하 중 적어도 1종을 포함하며,Cu: 0.02% or less, Ni: at least one of 0.2% or less,

나머지 잔부가 Fe와 기타 불가피한 불순물로 조성된다.The remainder is composed of Fe and other unavoidable impurities.

이러한 조성을 갖는 강종 소재의 연속 주조공정은 고로공정을 통해 생산된 쇳물을 제강공정을 거쳐 레들로에서 정련하여 상기한 합금 성분을 갖도록 조정함과 아울러 불순물을 제거한 후에, 연속 주조설비인 턴디쉬와 몰드를 통과시키고 냉각시켜 반제품인 주편 슬라브로 제조하는 공정을 갖는다.The continuous casting process of the steel grade material having such a composition is performed by refining the water produced through the blast furnace process in ladle through the steelmaking process to adjust to have the alloying element as described above, and removing impurities, followed by a tundish and mold as a continuous casting facility. Pass through and cooled to produce a semi-finished slab slab.

이때, 연속 주조과정에서 냉각되어 슬라브로 제조되는 과정은 몰드를 통과한 일부 응고된 용강이 다수개의 롤을 통해 이송되면서 냉각된다.At this time, the process of cooling into a slab in the continuous casting process is cooled while some solidified molten steel passing through the mold is transferred through a plurality of rolls.

이하에서는 본 발명 강종 소재의 합금 원소의 성분 및 이에 따른 임계적 의의를 기재한다.Hereinafter, the components of the alloying elements of the steel material of the present invention and the critical significance thereof will be described.

탄소[C]:0.15~0.20wt%Carbon [C]: 0.15 ~ 0.20wt%

탄소는 강판에 고강도를 부여하기 위해 불가결한 원소로써, 그 함량과 제조방법에 따라 소재 조직 내부에서 고용탄소가 되기도 하고, 탄소와 결합하려는 성질이 아주 높은 원소들과 결합하여 탄화물을 형성하게 된다. Carbon is an indispensable element to give high strength to the steel sheet, and depending on its content and manufacturing method, carbon may be a solid solution carbon in the material structure, and carbon may be combined with elements having a very high bond property to carbon to form carbide.

탄소는 0.15~0.20 중량%로 사용하며, 이때 탄소 사용량이 상기 범위 미만일 경우 강도가 떨어지는 문제가 있고, 상기 범위를 초과하게 되면 용접성이 열화되는 문제가 생기므로 바람직하지 않다.Carbon is used in an amount of 0.15 to 0.20% by weight, and in this case, when the amount of carbon used is less than the above range, there is a problem that the strength is lowered.

망간[Mn]:0.5~2.0 wt%Manganese [Mn]: 0.5-2.0 wt%

망간은 경화능을 향상 시켜 강도를 증가시키는 원소로 펄라이트상 생성을 억 제하고 오스테나이트 형성 및 내부에 탄소 농화를 촉진하여 잔류 오스테나이트 형성에 기여한다.Manganese is an element that improves the hardenability and increases strength. It suppresses the formation of pearlite phase and promotes austenite formation and carbon enrichment inside, contributing to the formation of residual austenite.

망간 함량이 0.5% 미만일 경우 매우 빠른 냉각속도가 필요하여 펄라이트 생성을 막기가 산업적으로 불가능하고, 2.0% 초과시 망간 밴드 조직이 형성되고 편석이 급격하게 증가하여 강의 가공성 및 용접성을 저해하므로, 망간 함량은 0.5~2.0% 의 범위내로 규제한다. If the manganese content is less than 0.5%, a very fast cooling rate is required, and industrially it is impossible to prevent the production of pearlite.If the manganese content exceeds 2.0%, manganese band structure is formed and segregation increases rapidly, which impairs the workability and weldability of the steel. Regulate in the range of 0.5 ~ 2.0%.

실리콘[Si]:0.01~0.5wt%Silicon [Si]: 0.01 to 0.5wt%

실리콘은 페라이트에 고용되는 페라이트 안정화 원소로 강도에 기여하며, 가장 중요한 역할은 탈산 작용이다. 0.01wt% 미만 첨가시 강도 향상 효과가 미미하고, 0.5% 초과 첨가시 용접성을 저하시킨다.Silicon is a ferrite stabilizing element employed in ferrite, which contributes to strength, and the most important role is deoxidation. When the addition amount is less than 0.01wt%, the effect of improving strength is insignificant, and when it is added more than 0.5%, the weldability is lowered.

니오븀[Nb]:0.005~0.1 wt%Niobium [Nb]: 0.005 to 0.1 wt%

니오븀은 강 중의 강탄질화물 형성원소로서 고강도저합금강에 있어서 탄소와 함께 미세조직 제어를 위해 첨가하는 가장 중요한 원소로서, 고온에서 석출상을 형성함으로써 오스테나이트의 재결정을 억제하고 결정립을 미세하게 하며, 석출상을 형성하여 강도를 증가시킨다. Niobium is a strong carbonitride-forming element in steel and is the most important element added to control microstructure with carbon in high-strength low-alloy steel. Formation of precipitated phase at high temperature suppresses recrystallization of austenite and makes grains fine. Form a phase to increase strength.

석출온도는 제조조건과 다른 첨가성분에 따라 달라지며, 석출거동은 주로 열간 압연을 위한 재고용 온도에서 고용된 원소들이 재석출되는 현상으로 이들 성분의 고용도로 설명된다.The precipitation temperature depends on the manufacturing conditions and other additives, and the precipitation behavior is mainly explained by the solid solution of these components as the re-precipitated elements are dissolved at the stocking temperature for hot rolling.

니오븀은 0.005% 미만 첨가시 목표 강도를 얻을 수 없으며, 0.1% 초과 첨가시 저온 인성을 저하시키므로, 0.005~0.1wt%의 범위가 바람직하다.Niobium cannot achieve the target strength when added below 0.005%, and lowers the low temperature toughness when added above 0.1%, and therefore, the range of 0.005 to 0.1 wt% is preferable.

티타늄[Ti]:0.02~0.05wt%Titanium [Ti]: 0.02 ~ 0.05wt%

티타늄은, 강중에 TiN을 형성하여 담금질성을 감소시키는 AlN석출을 방지하는 원소이다. N : 0.008~0.012% 를 가지는 조성에 대해서는 Ti : 0.03~0.05% 함유하는 것이 바람직하고, VD-OB 과정을 거쳐 N : 0.004~0.008%를 가지는 조성에 대해서는 Ti : 0.02~0.03% 함유하는 것이 바람직하다. Titanium is an element which prevents AlN precipitation which forms TiN in steel and reduces hardenability. It is preferable to contain Ti: 0.03 to 0.05% for the composition having N: 0.008 to 0.012%, and to contain Ti: 0.02 to 0.03% for the composition having N: 0.004 to 0.008% through the VD-OB process. Do.

본 발명에서는 슬라브 크랙 발생을 억제할 목적으로 니오븀 첨가강에 티타늄을 첨가하여 고온 연성의 향상을 도모한다. 이는 티타늄 첨가에 의해 니오븀 석출상이 조대화 되면서 석출상간의 간격이 커져 공공의 형성이 감소하기 때문이다.In the present invention, titanium is added to niobium-added steel for the purpose of suppressing the occurrence of slab cracks, thereby improving the high temperature ductility. This is because the niobium precipitated phase is coarsened by the addition of titanium, and the gap between the precipitated phases increases, thereby reducing the formation of voids.

보론[B]:0.0010~0.0040wt%Boron [B]: 0.0010-0.0040 wt%

보론은 강중에서 오스테나이트-페라이트 변태를 지연하는 원소로서 페라이트의 특성에 크게 영향을 주는 원소이다. 이러한 특성으로 인해 강 중에 소량만 첨가되어도 오스테나이트 입계나 입내에 조대한 보론 카바이드(Fe23(B,C)6) 석출상을 형성함으로써 오스테나이트-페라이트 변태시 핵 생성 자리가 되어 입내에도 생성 됨에 따라 연신율이 증가하여 연속 주조시 슬라브의 크랙 발생을 저감시킨다.Boron is an element that retards austenite-ferrite transformation in steel and has a great influence on the properties of ferrite. Due to this property, even when only a small amount is added to the steel, coarse boron carbide (Fe 23 (B, C) 6 ) precipitates are formed in the austenite grain boundary or in the mouth, which becomes a nucleation site during the austenite-ferrite transformation. As the elongation increases, the slag cracks are reduced during continuous casting.

그외의 원소들중, Among other elements,

P:0.02wt% 이하, S:0.01wt% 이하P: 0.01 wt% or less, S: 0.01 wt% or less

본 발명의 강종 소재에 있어서, 인(P)은 불순물로서 0.020 중량% 이하로 관리하는 것이 좋다. 황(S)은 소재의 조직 내에서 취성을 나타내어 소재의 결함을 유발시키므로 0.01 중량% 이하로 엄격히 제한하는 것이 바람직하다. 그리고, 상기 성분들 외에 기타 불가피한 불순물과 함께 나머지 성분은 철(Fe)로 이루어진다. In the steel grade material of the present invention, phosphorus (P) is preferably managed at 0.020% by weight or less as an impurity. Sulfur (S) exhibits brittleness in the structure of the material, causing defects in the material, so it is desirable to strictly limit to 0.01% by weight or less. In addition to the above components, the other components together with other unavoidable impurities are made of iron (Fe).

Al: 0.02~0.04wt%Al: 0.02 ~ 0.04wt%

알루미늄(Al)은 탈산제의 기능을 수행하는 원소로서, 0.02wt% 미만 첨가시 탈산 효과를 기대하기 어렵고, 0.04wt% 초과 첨가시 연주성을 저하시켜 생산성을 저하시킴과 아울러 AlN 석출물로 인해 크랙을 발생시킬 우려가 있으므로 0.02~0.04wt% 범위로 규제하는 것이 바람직하다.Aluminum (Al) is an element that functions as a deoxidizer, and when it is added below 0.02 wt%, it is difficult to expect a deoxidation effect, and when it is added above 0.04 wt%, deterioration of workability decreases productivity and cracks due to AlN precipitates. In order to generate | occur | produce, it is preferable to regulate in 0.02-0.04 wt%.

또한, Cu:0.2wt% 이하, Ni:0.2wt% 이하의 1종 또는 2종이 포함된다.Moreover, 1 type or 2 types of Cu: 0.2 wt% or less and Ni: 0.2 wt% or less are included.

본 발명의 강종 소재에 있어서, Cu, Ni은 불순물로서 0.02% 이하로 관리하는 것이 좋다In the steel material of the present invention, Cu and Ni are preferably managed at 0.02% or less as impurities.

상기한 조성을 갖는 강종 소재를 연속 주조하여 제조된 반제품인 슬라브는 아래와 같은 시험을 통해 단면 감소율로써 크랙 민감성을 평가할 수 있다.The slab, which is a semi-finished product manufactured by continuously casting a steel material having the above composition, can be evaluated for crack sensitivity as a cross-sectional reduction rate through the following test.

고온 인장 시험편에 대한 응고와 응고 변형이 동시에 발생하는 연속주조공정 의 열-응력 이력을 정확히 모사하기 위하여 온도와 변형량이 동시에 제어가능한 글리블 시험기를 사용하였다.In order to accurately simulate the thermal-stress history of the continuous casting process in which solidification and solidification deformation simultaneously occur for high temperature tensile test specimens, a gleeble tester that can simultaneously control temperature and deformation is used.

시험조건은 액상선 부근의 온도까지 가열/유지하고, 냉각과 동시에 인장하여 단면 감소율을 평가한 것이며, 보다 자세하게는 인장 시험은 1350℃에서 5분간 유지한 후 시험온도에서 5분간 유지하고 인장하였으며, 인장 후 압축 공기로 급냉한다. 단면 감소율은 시험 전과 후의 파단면 단부의 직경을 측정하였다.The test conditions were the heating / maintenance up to the temperature near the liquid line, and the tensile reduction was evaluated at the same time as cooling, and in detail, the tensile test was held at 1350 ° C. for 5 minutes, and then maintained at the test temperature for 5 minutes and tensioned. After tensioning, quench with compressed air. The section reduction rate measured the diameter of the fracture surface end before and after the test.

아래의 표 1은 본 발명의 실시 예와 비교 예들에 함유되는 합금 원소의 주요 조성을 나타낸 것이다.Table 1 below shows the main composition of the alloying elements contained in Examples and Comparative Examples of the present invention.

(단위는 wt%)(Unit is wt%) 구분division CC MnMn NbNb TiTi BB N(ppm)N (ppm) 비고Remarks 기존existing 0.180.18 1.51.5 0.50.5 -- -- 6060 비교예 1Comparative Example 1 0.180.18 1.51.5 0.50.5 -- 0.0020.002 6060 비교예 2Comparative Example 2 0.180.18 1.51.5 0.50.5 0.030.03 -- 6060 실시예 Example 0.180.18 1.51.5 0.50.5 0.030.03 0.0020.002 6060

이러한 조성을 갖는 종래 기술과 비교 예 및 본 발명의 실시 예들을 시험해 본 결과, 도 1에서와 같이, 종래 기술은 앞서 설명한 바와 같이 직선화되는 온도 구간에서 단면 감소율이 저하되어 크랙이 발생하였으며, 비교 예1에서는 보론이 단독으로 첨가되어 직선화 온도 구간외의 구간에서는 단면 감소율이 양호하나 직선화 온도 구간에서 마찬가지로 단면 감소율이 저하되어 크랙 민감성이 여전히 높음을 알 수 있었다.As a result of testing the prior art, the comparative example, and the embodiments of the present invention having such a composition, as shown in FIG. 1, in the prior art, as described above, the rate of cross-sectional reduction decreases in a straightened temperature range, resulting in cracking. In addition, boron is added alone, so the section reduction rate is good in sections other than the linearization temperature section, but the section reduction rate is lowered in the straightening temperature section.

반면에, 티타늄이 첨가된 비교 예 2에서는 앞서 설명한 비교 예 1보다는 단면 감소율이 향상되었지만, 직선화 온도 구간에서 크랙 민감성이 만족스럽지 못하였다.On the other hand, in Comparative Example 2 in which titanium was added, the reduction rate of the cross section was improved compared to Comparative Example 1 described above, but crack sensitivity was not satisfactory in the straightening temperature range.

이에 반해 티타늄과 보론이 첨가된 본 발명의 실시 예는 직선화 온도 구간의 단면 감소율이 증가되고 크랙 민감성이 줄어들어 연속 주조 가능한 단면 감소율인 50%을 상회하여 70% 이상의 단면 감소율을 보이고 있다.On the contrary, the embodiment of the present invention in which titanium and boron are added has a cross-sectional reduction rate of more than 70% by increasing the cross-sectional reduction rate of the straightening temperature range and decreasing the crack sensitivity, exceeding 50% of the cross-section reduction rate that can be continuously cast.

도 2 내지 도 5는 앞서 설명한 기존 기술과 비교 예 1,2 및 본 발명의 실시 예에 대한 각각의 시험편의 시험 결과를 나타낸 사진이다.2 to 5 are photographs showing the test results of the respective test pieces for the conventional technology described above and Comparative Examples 1, 2 and Examples of the present invention.

앞서 설명한 바와 같이, 본 발명의 실시 예는 시험 온도에 관계없이 크랙 발생이 나타나지 않는 양호한 결과를 얻을 수 있다.As described above, the embodiment of the present invention can obtain good results in which no crack is generated regardless of the test temperature.

도 1은 본 발명의 실시예와 비교 예들의 온도별 단면 감소율을 나타낸 그래프.1 is a graph showing the cross-sectional reduction rate for each temperature of the Examples and Comparative Examples of the present invention.

도 2는 기존 기술로 제조된 시험편의 시험결과를 온도별로 나타낸 사진이고,Figure 2 is a photograph showing the test results of the test piece prepared by the existing technology for each temperature,

도 3 및 도 4는 비교 예 1,2에 해당하는 시험편의 온도별 시험결과를 나타낸 사진이며,3 and 4 are photographs showing the test results for each temperature of the test piece corresponding to Comparative Examples 1 and 2,

도 5는 본 발명 실시 예에 해당하는 시험편의 온도별 시험결과를 나타낸 사진이다.Figure 5 is a photograph showing the test results for each temperature of the test piece corresponding to the embodiment of the present invention.

Claims (2)

중량 %로, C : 0.15~0.20%, Mn : 0.5~2.0%, Si : 0.01~0.5%, Nb : 0.005~0.1%, Ti : 0.02~0.05%, P : 0.02%이하, S : 0.01%이하, Al : 0.02~0.04%, B : 0.0010~0.0040% 이고, By weight%, C: 0.15 ~ 0.20%, Mn: 0.5 ~ 2.0%, Si: 0.01 ~ 0.5%, Nb: 0.005 ~ 0.1%, Ti: 0.02 ~ 0.05%, P: 0.02% or less, S: 0.01% or less , Al: 0.02 ~ 0.04%, B: 0.0010 ~ 0.0040%, Cu : 0.02%이하, Ni : 0.2% 이하 중 1종 또는 2종을 포함하며,Cu: 0.02% or less, Ni: 0.2% or less of one or two, 나머지 잔부가 Fe와 기타 불가피한 불순물로 조성된 강종을 연속 주조공정을통해 슬라브로 제조하는 것을 포함하는 크랙 저감을 위한 열연 강판용 슬라브의 연속 주조법.A continuous casting method of slabs for hot rolled steel sheets for crack reduction, which includes manufacturing steel grades having a balance of Fe and other unavoidable impurities into slabs through a continuous casting process. 청구항 1에 있어서,The method according to claim 1, 상기 슬라브의 단면 감소율이 연속 주조가 가능한 50% 이상인 것을 특징으로 하는 크랙 저감을 위한 열연 강판용 슬라브의 연속 주조법.Continuous casting method of the slab for hot-rolled steel sheet for crack reduction, characterized in that the cross-sectional reduction rate of the slab is 50% or more capable of continuous casting.
KR1020090103204A 2009-10-29 2009-10-29 Continuous casting method for rolled steel products KR101175413B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090103204A KR101175413B1 (en) 2009-10-29 2009-10-29 Continuous casting method for rolled steel products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090103204A KR101175413B1 (en) 2009-10-29 2009-10-29 Continuous casting method for rolled steel products

Publications (2)

Publication Number Publication Date
KR20110046682A KR20110046682A (en) 2011-05-06
KR101175413B1 true KR101175413B1 (en) 2012-08-20

Family

ID=44238074

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090103204A KR101175413B1 (en) 2009-10-29 2009-10-29 Continuous casting method for rolled steel products

Country Status (1)

Country Link
KR (1) KR101175413B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115627409A (en) * 2022-10-24 2023-01-20 石钢京诚装备技术有限公司 Production method for reducing surface crack rate of medium-carbon boron-containing round steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283131A (en) 2005-03-31 2006-10-19 Kobe Steel Ltd High strength cold rolled steel sheet having excellent coating film adhesion, workability and hydrogen embrittlement resistance, and automobile steel component
KR100957937B1 (en) 2002-12-27 2010-05-13 주식회사 포스코 Method for manufacturing thick hot-rolled steel sheets with tensile strength of 780MPa grade

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100957937B1 (en) 2002-12-27 2010-05-13 주식회사 포스코 Method for manufacturing thick hot-rolled steel sheets with tensile strength of 780MPa grade
JP2006283131A (en) 2005-03-31 2006-10-19 Kobe Steel Ltd High strength cold rolled steel sheet having excellent coating film adhesion, workability and hydrogen embrittlement resistance, and automobile steel component

Also Published As

Publication number Publication date
KR20110046682A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
US10351926B2 (en) High toughness and high tensile strength thick steel plate with excellent material homogeneity and production method for same
KR100957970B1 (en) High-strength and high-toughness thick steel plate and method for producing the same
EP3246426B1 (en) Method for manufacturing a thick high-toughness high-strength steel sheet
JP7221475B2 (en) High-strength steel material with excellent ductility and low-temperature toughness, and method for producing the same
KR101553607B1 (en) Ferritic stainless steel having excellent ductility and method for manufacturing the same
KR101999022B1 (en) High strength steel for structure having excellent fatigue crack arrestability and manufacturing method thereof
JP6589503B2 (en) H-section steel and its manufacturing method
KR101175413B1 (en) Continuous casting method for rolled steel products
KR20110046681A (en) Continuous casting method for rolled steel products
JP7063401B2 (en) Manufacturing method of high manganese steel slab and manufacturing method of high manganese steel slab or steel plate
KR101505299B1 (en) Steel and method of manufacturing the same
KR101435320B1 (en) Method of manufacturing steel
JP2007277697A (en) High tensile strength thick steel plate having excellent fatigue crack propagation resistance and brittle crack propagation arrest property and its production method
KR101443445B1 (en) Non-heated type high strength hot-rolled steel sheet and method of manufacturing the same
KR101435319B1 (en) Method of manufacturing steel sheet
KR101443446B1 (en) Non-heated type hot-rolled steel sheet and method of manufacturing the same
KR101568514B1 (en) High strength structural steel having low yield ratio and preparing method for the same
JP5821792B2 (en) Method for producing continuous cast slab of steel containing B and method for continuous casting
KR101505290B1 (en) Steel sheet for line pipe and method of manufacturing the same
KR101467048B1 (en) Thick steel sheet and method of manufacturing the same
JP2022167288A (en) Thick steel plate for square steel pipe
KR101400516B1 (en) Steel sheet for line pipe and method of manufacturing the same
KR20140141842A (en) High strength steel and manufacturing method of the same
KR101299276B1 (en) Hot-rolled steel sheet and method of manufacturing the hot-rolled steel sheet
KR20140003008A (en) High strength steel plate and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee