KR101175157B1 - 조골세포의 활성 및 증식을 위한 식품조성물 - Google Patents

조골세포의 활성 및 증식을 위한 식품조성물 Download PDF

Info

Publication number
KR101175157B1
KR101175157B1 KR1020080058102A KR20080058102A KR101175157B1 KR 101175157 B1 KR101175157 B1 KR 101175157B1 KR 1020080058102 A KR1020080058102 A KR 1020080058102A KR 20080058102 A KR20080058102 A KR 20080058102A KR 101175157 B1 KR101175157 B1 KR 101175157B1
Authority
KR
South Korea
Prior art keywords
activity
rosemary
osteoblasts
fraction
osteoblast
Prior art date
Application number
KR1020080058102A
Other languages
English (en)
Other versions
KR20090132038A (ko
Inventor
이인선
전상경
이지원
황보미향
지영주
Original Assignee
계명대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 계명대학교 산학협력단 filed Critical 계명대학교 산학협력단
Priority to KR1020080058102A priority Critical patent/KR101175157B1/ko
Publication of KR20090132038A publication Critical patent/KR20090132038A/ko
Application granted granted Critical
Publication of KR101175157B1 publication Critical patent/KR101175157B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F3/00Tea; Tea substitutes; Preparations thereof
    • A23F3/40Tea flavour; Tea oil; Flavouring of tea or tea extract
    • A23F3/405Flavouring with flavours other than natural tea flavour or tea oil
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/38Other non-alcoholic beverages
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/68Acidifying substances
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/21Plant extracts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/14Extraction

Abstract

본 발명은 조골세포의 활성 및 증식을 위한 식품 조성물에 관한 것으로, 로즈마리로부터 추출된 로즈마리 추출물을 유효성분으로 포함하는 조골세포의 활성 및 증식을 위한 식품조성물을 제공한다.
로즈마리, 추출물, 골다공증, 조골세포.

Description

조골세포의 활성 및 증식을 위한 식품조성물{The food composition for activity and differentiation of Osteoblast cell}
본 발명은 조골세포의 활성 및 증식을 위한 식품 조성물에 관한 것이다.
골(bone)은 세포와 콜라겐성 기질 그리고 무기질 성분으로 구성되어진 매우 복잡한 조직으로서, 이들은 기계적인 지지 및 중요 장기의 보호, 조혈화에 필요한 미세환경의 제공, 칼슘과 다른 미네랄의 저장 장소와 같은 다양한 기능을 한다. 골의 성장과 발달, 유지는 매우 조절이 잘된 과정으로서, 골량(bone mass)의 정도는 세포 수준에서 골 형성과 골 흡수에 관여하는 조골세포(osteoblast)와 파골세포(osteoclast)의 균형에 의해 조절된다(1. Hwang, K. K.; Huh, N. K.; Lee, J. H. Studies on the signaling molecules in RANK, an osteoclast differentiation receptor. Oral Biology Research 2000, 24, 245-255.).
조골세포는 골조직의 세포외 기질을 합성하고, 기질의 침착과 석회화를 조절하는 골격계의 주된 세포로서, 미분화간엽세포 및 간질세포로부터 유래하고, 조골 세포의 전구세포로부터 전조골세포 및 조골세포, 골내막 세포 또는 골세포로 분화되는 순차적인 과정에 속하는 세포이다. 활발한 대사 작용으로 석회화 과정에 중요한 역할을 하는 조골세포는 골표면에 근접한 세포질 내에 과립형질내세망이 발달해 있고, 핵 주위로 골지체가 위치하고, 골지체 바깥 세포질에 사립체가 존재하고, 세포막에 당단백 효소인 염기성 인산분해효소(alkaline phosphatase ; 이하, 'ALP'라고 함.)를 갖고 있다(Nijweide, P. J.; Burger, E. H.; Feyen, J. H. M. Cells of bone : Proliferation, differentiation, and hormonal regulation. Physiol. Rev. 1986, 66, 855-886. / Weinger, J. M.; Holtrop, M. F. An ultrastructural syudy of bone cells : the occurrence of microtubules, microfilaments and tight junctions. Tissue Res. 1974, 14, 15-29.).
한편 파골세포는 골수에서 기원하는 단핵세포/대식세포(monocyte/macrophage) 계통의 조혈세포(hematopoietic cell)이며 파골세포 전구체는 골수에서 생성되는 성장인자와 싸이토카인에 의해 파골세포로 분화 및 발달되며 뼈를 파괴 또는 흡수하는 역할을 한다(4. Kinoshita, T.; Shirouzu, M.; Kamiya, A.; Hashimoto, K.; Yokoyama, S.; Miyajima, A. Raf/MAPK and rapamycin-sensitive pathways mediate the anti-apoptotic function of p21Ras in IL-3-dependent hematapoietic cells. Oncogene 1997, 15, 619-627.).
골다공증(osteoporosis)은 이러한 조골세포의 골 형성과 파골세포의 골 흡수 의 균형이 파괴되면서 생기는 질병을 말한다. 즉, 골다공증은 뼈의 화학적 조성에는 변화가 없는 채, 골량(bone mass)이 병적으로 감소된 상태로 뼈의 무기질과 단백질이 줄어들어 골조직이 엉성해지는 증상으로서, 뼈가 물러짐에 따라 요배통, 골절 등을 나타내는 대사성 골질환 중의 하나이다(Canalis, E. Effect of growth factors on bone cell replication and differentiation. Clin. Orthop. Rel. Res. 1985, 193, 246-263.).
골다공증을 치료하기 위하여 사용되고 있는 약제에는 크게 동화작용적 제제 (anabolic agent)와 항흡수성 제제(antiresorptive agent)로 나눌수 있다. 이중 동화작용적 제제는 골형성을 자극하는 조골세포에 주로 작용하고, 항흡수성 제제는 골흡수(bone resorption)를 억제하는 파골세포에 작용하는 것으로 알려져 있다. 동화작용적 제제에는 불소염(fluoride salts) 및 부갑상선 호르몬(parathyroid hormone), 동화작용성 스테로이드(anabolic steroids) 등이 있다. 항흡수성 제제로는 호르몬 치료제로서 에스트로겐(estrogen) 및 노르에신드론(norethindrone), 리비알(tibolone) 등이 있고, 칼시토닌, 비타민 D제제, 칼슘 제제 그리고 비스포스포네이트(bisphosphonate) 제제 등이 있다(Francis, R. M. Bisphosphonates in the treatment of osteoporosis in 1997 : a review. Cur. Therapeutic Res. 1997, 58, 656-78. / Price, P. A.; Parthermore, J. G.; Doftos, L. J. New biochemical marker for bone metabolism. J. Clin. Invest. 1980, 66, 878-883. / Morris, N. Osteoporosis : screening, prevention, and management. Fertility and Sterility. 1993, 59, 707-725.).
현재까지 골다공증 치료에 주로 사용되고 있는 약제는 대부분 골흡수를 억제하는 작용을 하는 항흡수성 제제이기 때문에 이미 진행된 골소실을 다시 완전히 회복할 수 없어 궁극적인 목표인 골다공증의 발생을 완전히 예방할 수 없는 것이 현실이다(Cho, S. H.; Kim, K. G.; Kim, S. R.; Lee, J. A.; Moon, H.; Hwang, Y. Y. The effects of 17-β etradiol, medroxyprogesterone acetate and parathyroid hormone on the differentiation of osteoblast cell. 대한산부회지, 1996, 39, 1497-1506. / Boonen, A.; Broos P.; Deqeker, J. The prevention of treatment of age-related osteoporosis in the elderly by systemic recombinant growth factor therapy(rhIGF-Ⅰ or rhRGF-β) : a perspective. J. internal medicine 1997, 242, 285-290.).
그러므로, 최근에는 골다공증의 예방과 치료는 골형성 증가에 초점을 맞추어 많은 연구가 집중되고 있으며 두충의 골다공증 효과(Lee, D. S.; Byun, S. Y. Effects of the dietary mixture of Eucommia ulmoides oliver on osteoporosis. Korean J. Biotechnol. 2001, 16, 614-619.), 홍화씨를 이용한 조골세포 활성 검색(Jang, H. O. Effect of extracts from safflower seeds on osteoblast differentiation and intra cellular calcium ion concentration in MCT3-E1 cells. Nat. Prod. Res. 2007, 9, 787-97.), 아스크로브산(ascorbic acid)이 조골세포에 미치는 영향(13. Franceschi, R. T. Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J Bone Miner. Res. 1994, 6, 843-54.) 등 항산화 효과가 뛰어나며 부작용이 적고 쉽게 접할 수 있는 천연소재를 이용한 물질 검색에 대한 과학적인 접근이 시도되고 있는 실정이다.
현재까지 로즈마리의 주요 성분인 카르노스산(carnosic acid) 및 카르노솔(carnosol) , 로즈마리산(rosmarinic acid) 등은 항산화성 물질로 알려져 있으며, 식품의 산패방지 또는 미생물의 활동을 억제하는 등 천연 항산화물로 이용되고 있다(Ho, C. T. Phenolic compounds in food. Maple Press. 1992, 2-7 / Serafini, M.; Ghiselli, A.; Ferro-Luzz, A. In vivo antioxidant effect of green and black tea in man. Eur. J. Clin. Nutr. 1996, 50, 28-32. / Sadzuka, Y.; Sugiyama, T.; Miyagishima, A.; Nozawa, Y.; Hirota, S. The effects of theanine, as a novel biochemical modulator, on the antitumor activity of adriamycin. Cancer Lett. 1996, 105, 203-209.).
특히, 로즈마리산(rosmarinic acid)은 하고초(Prunella vulgaris), 소염(Perilla frutescens), 바질(Ocimum basilicum), 곽학(Teucrium veronicoides), 형개(Schizonepeta tenuifolia var. japonica), 향유(Elsholtzia ciliata), 박하(Mentha arvensis var. piperascens) 등에 함유되어 있으며, 현재 항산화 제(Aruoma, O. I.; Spencer, J. P.; Rossi, R.; Aeschbach, R.; Khan, A.; Mahmood, N.; Munoz, A.; Murcia, A.; Butler, J.; Halliwell, B. An evaluation of the antioxidant and antiviral action of extracts of rosemary and provencal herbs. Food Chem. Toxicol. 1994, 34, 449-456.)로서 뿐만 아니라 항히스타민(antihistamine) 효과(Lourdes, R. S.; Otsuka, H.; Ohtani, K.; Kasai, R.; Yamasaki, K. Nitrile glucosides and rosmarinic acid : The histamine inhibitor from Ehretia philippinensis. Phytochmistry 1994, 36, 91-95.), 항바이러스(Peake, P. W.; Pussell, B. A.; Martyn, P.; Timmermans, V.; Charlesworth, J. A. The inhibitory effect of rosmarinic acid on complement involves the C5 convertase. Int. J. Immunopharmacol. 1991, 13, 853-857.), 항미생물 작용(Sahu, A.; Rawal, N.; Pangburn, M. K. Inhibition of complement by covalent attachment of rosmarinic acid to activated C3b. Biochem. Pharmacol. 1999, 57, 1439-1446.) 등의 효과가 있는 것으로 알려져 있다.
그러나, 로즈마리의 주요 성분, 특히 항산화 작용 등을 가지는 것으로 알려진 카르노스산(carnosic acid), 카르노솔(carnosol) 및 로즈마리산(rosmarinic acid) 등의 조골 세포 분화에 관한 연구는 거의 없는 실정이다.
본 발명은 조골 세포의 활성 및 분화를 통하여 골 형성을 도와 골다공증 등 골 대사 질환을 예방 할 수 있고, 이미 소실된 골을 다시 회복시켜 골 대사 질환을 치료할 수 있는 천연 식물 소재로부터의 추출물로서 조혈세포 활성화 및 분화를 위한 식품 조성물을 제공한다.
본 발명의 일 구현예에 의한 조골세포의 활성 및 증식을 위한 식품조성물은 로즈마리로부터 추출된 로즈마리 추출물을 유효성분으로 포함하고, 특히, 로즈마리 추출물은 카르노스산(carnosic acid) 및 로즈마리산(rosmarinic acid) 중에서 선택되는 1종 또는 이들의 혼합물을 포함한다.
또, 본 발명의 바람직한 일 구현예에 따른 로즈마리 추출물은 페놀성 화합물을 포함하고, 특히 102[mg/g] 이상의 페놀성 화합물을 포함한다.
또, 본 발명의 바람직한 일 구현예에 따른 로즈마리 추출물은 플라보노이드(flavonoid)류 화합물을 포함하고, 9.8[mg/g] 이상을 포함한다.
또, 본 발명의 바람직한 일 구현예에 따른 로즈마리 추출물은 로즈마리를 유기용매 또는 증류수로 추출한 것일 수 있으며, 유기용매는 메탄올, 에탄올 및 아세톤 중에서 선택되는 1종 이상의 것일 수 있다.
또, 본 발명의 바람직한 일 구현예에 따른 로즈마리 추출물은 로즈마리를 유기용매 또는 증류수로 1차 추출하고, 1차 추출물을 2종 이상의 유기용매로 분획추출하여 얻어지는 분획추출물 중 선택되는 1종이상의 것일 수 있고, 이때, 1차 추출을 위한 유기용매는 메탄올, 에탄올 및 아세톤 중에서 선택되는 1종 이상의 것일 수 있고, 분획추출을 위한 유기용매는 헥산(hexane), 클로로포름(chloroform), 에 틸아세테이트(ethylacetate) 및 부탄올(butanol) 중에서 선택되는 것일 수 있다.
로즈마리(Rosmarinus officinalis L.)는 Labiatae (Lamiaceae)속 식물로써 보라색 꽃을 피우며 지중해 연안에서 자생하는 잡목의 일종으로 소나무 잎처럼 뾰족한 잎에 장뇌와 비슷한 강한 향을 갖는 허브이다. 잎을 그대로 쓰거나 말려서, 또는 말린 것을 갈아서 사용하며 말린 것은 대부분 육류요리에서 향을 내기 위해 사용하기도 한다. 로즈마리는 예로부터 향수나 약으로 사용되어 왔으며 역한 냄새를 제거하는 소취제의 역할, 상큼한 향을 내는 부향제 역할, 살균작용과 항균작용 및 항산화 기능 등이 있어 식품의 보존성을 높이는 것으로 알려져 있다(Elena, I.; Alejandro, C.; Antonio, L. C.; Francisco, J. S.; Sofia, C.; Guillermo, R. Combined use of supercritical fluid extraction, micellar electrokinetic chromatography, and reverse phase high performance liquid chromatography, for the analysis of antioxidants from rosemary (Rosmarinus officinalis). J. Agric. Food Chem. 2000, 48, 4060-4065.).
로즈마리 추출물의 주요 성분인 카르노스산(carnosic acid)은 11,12-dihydroxy- 8,11,13-abietatrien-20-oic acid의 구조를 가지고 있고 분자량이 332.4 Da의 페놀성 디테르핀(phenolic diterpenes)이며, 로즈마리산(rosmarinic acid)은 a-[[3-(3,4- dihydroxyphenyl)-1-oxo-2-propenyl]-oxy] -3,4-dihydro -xy-[R-(E)]-benzene -propanoic acid의 구조를 지니고 분자량이 360.31 Da의 페놀성 화합물(phenyl compound)인 것으로 알려져 있다.
본 발명의 일 구현예에 의하면 이러한 로즈마리 추출물의 주요 성분인 카르노스산(carnosic acid) 및/또는 로즈마리산(rosmarinic acid)이 조골세포를 성장시키고, ALP 활성을 높히는 대사활동을 한다는 것을 밝혀내게 되었으며, 그 결과는 아래의 실험예와 같다.
즉, 본 발명의 일 구현예에 따른 로즈마리 추출물은 카르노스산 또는 로즈마리산 또는 이들의 혼합물을 포함함으로서, 조골세포의 활성 및 분화를 촉진시킬 수 있는 것이다.
또한, 본 발명의 일 구현예에 따른 로즈마리 추출물은 페놀성 화합물을 포함하고, 플라보노이드(flavonoid)류 화합물을 포함하는 것이 바람직하다.
페놀성 화합물은 여러 가지 식물류에 널리 분포되어 있는 2차 대사산물의 하나로 알려져 있으며 일반적으로 수용성이고 flavonoid류가 주를 이루며 단순한 페놀(phenol)류, 페놀산(phenolic acid)류, 페닐프로판노이드(phenyl propanoid)류, 페놀성성 퀴논(quinone)류 등을 포함한다(Gomes, A.; Vedasiromoni, J. R.; Das, M.; Sharma, R. M.; Ganguly, D. K. Anti-hyperglycemic effect of black tea (Camellia sinensis) in rat. J. Ethnopharmacol. 1995, 45, 223-226.). 최근에 이 런 페놀성 화합물 등이 항산화(Lee, S. O.; Lee, H. J.; Yu, M. H.; Im, H. G.; Lee I. S. Total Polyphenol Contents and Antioxidant Activities of Methanol Extracts from Vegetables produced in Ullung Island. Kor. J. Food sci. Technol. 2005. 37, 233-240.), 항암(Frankel, E. N.; Huang, S.; Aeschbach, R.; Prior, E. Antioxidant activity of a rosemary extract and its constituents, carnosic acid, carnosol and rosmarinic acid in bulk oil and oil in water emulsion. J. Agric. Food Chem. 1996. 44, 131-135.), 당뇨병(Luis, A.; Sanchen-Munoz, B.; Jose, A.; Fernandez, L.; Maria, J. Liquid chromatograpic-mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. J. Chromatogr. A. 2006, 1120, 221-229.) 예방 등에 효과가 있는 것으로 보고되고 있다.
본 발명에 따른 로즈마리 추출물은 페놀성 화합물을 포함함으로서, 조골세포를 활성화 하고, 조골세포의 분화를 촉진시킬 수 있다. 특히, 102[mg/g] 이상을 포함함으로서, 조골세포를 더욱 활성화하고, 분화를 더욱 촉진시킬 수 있는 것이다. 페놀성 화합물의 함량은 아래의 방법과 같이 측정할 수 있다.
<페놀성 화합물의 함량 측정 방법>
총 페놀성 화합물의 함량은 Folin Denis법(20. A.O.A.C. Official methods of analysis of the association of official agricultural chemists 1990, 15th ed.)을 응용하여 측정한다.
먼저 시료 1mg을 증류수 1mL에 녹이고, 10배 희석한 희석액 2mL에 2배로 희석한 폴린(Folin)시약 2mL을 첨가하고 잘 혼합한 후, 3분간 방치하여, 2mL의 10% Na2CO3를 서서히 가한다. 이 혼합액을 1시간동안 방치한 후, UV/visible spectrophotometer를 사용하여 700nm에서 흡광도를 측정한다. 이때 페놀성 화합물은 탄닌산(tannic acid)을 이용하여 작성한 표준곡선으로부터 함량을 구하였다. 탄닌산(Tannic acid)를 이용한 표준곡선은 탄닌산(tannic acid)의 최종농도를 5, 25, 50 μg/mL가 되도록 하여 위와 같은 방법으로 측정하여 작성한다.
또, 본 발명에 따른 로즈마리 추출물은 페놀성 화합물의 주를 이루는 플라보노이드(flavonoid)류 화합물을 포함하고, 9.8[mg/g] 이상을 포함함으로서, 조골세포를 더욱 활성화하고, 분화를 더욱 촉진시킬 수 있는 것이다. 플라보노이드(flavonoid)류 화합물의 함량은 아래의 방법과 같이 측정할 수 있다.
<플라보노이드류 화합물의 함량 측정 방법>
총 플라보노이드류 화합물의 함량은 Nieva Moreno 등의 방법(Nieva, Moreno, M. I.; Sampietro, A. R.; Vattuone, M. A.; Comparision of the free radical-scavenging activity of propolis from several region of Arentina. J. Ethnopharmacol. 2000, 71, 109-114.)에 의해 측정한다. 각 시료 100μL를 80% 에 탄올(ethanol) 900μL에 희석한 후 100μL를 취하여 10% 질산암모늄(aluminum nitrate)과 1μM 초산칼륨(potassium acetate)를 함유하는 80% 에탄올(ethanol) 4.3 mL에 혼합하여 실온에서 40분 방치한 뒤 415nm에서 흡광도를 측정한다. 이때 총 플라보노이드 함량은 케르세틴(quercetin)을 이용하여 작성한 표준곡선으로부터 함량을 구하였다.
또, 본 발명의 일 구현예에 따른 로즈마리 추출물은 로즈마리를 유기용매 또는 증류수로 추출한 것일 수 있으며, 이때, 유기용매는 메탄올, 에탄올 및 아세톤 중에서 선택되는 1종 이상의 것일 수 있다.
즉, 로즈마리의 추출 방법은 로즈마리 무게의 약 10배량(w/v)의 80% 유기용매(특히, 메탄올)이나 증류수(w/v)를 가하여 약 24시간 동안 정치하여 수 회 반복 추출할 수 있다. 추출액은 여과지로 여과하여 얻을 수 있으며, 특히, 회전식농축기(rotary evaporator)로 농축한 후 동결 건조하여 얻을 수 있다.
또, 본 발명의 일 구현예에 따른 로즈마리 추출물은 로즈마리를 유기용매 또는 증류수로 1차 추출하고, 상기 1차 추출물을 2종 이상의 유기용매로 분획추출한 것으로서, 상기 분획추출물 중 선택된 1종 이상의 것일 수 있다.
추출은 상기의 추출 방법에 의할 수 있으며, 분획 추출은 헥산(hexane), 클로로포름(chloroform), 에틸아세테이트(ethylacetate) 및 부탄올(butanol) 중에서 선택되는 2종 이상의 유기용매를 사용하여 수행될 수 있다.
특히, 본 발명에 따른 로즈마리 추출물은 에틸아세테이트 분획물을 포함함으로서, 조골세포의 활성 및 분화의 효과가 탁월할 수 있다.
추출 및 분획 방법은 일반적인 천연재료로부터의 추출 및 분획 방법에 의할 수 있으며, 본 발명에서 설명하는 특정의 추출 및 분획 방법에 의하여 본 발명의 청구범위가 제한되는 것은 아니다.
본 발명의 일 구현예에 의하면 로즈마리 추출물을 유효성분으로 하여, 조골세포의 골 형성을 도와 골다공증 등 골 대사 질환을 예방 수 있고, 이미 소실된 골을 다시 회복시켜 골 대사 질환을 치료할 수 있는 천연 식물 소재로부터의 추출물인 조골 세포의 활성 및 분화를 위한 식품 조성물을 제공할 수 있다.
본 발명에 따른 실시예를 위한 조골세포 활성 검색을 위한 세포 배양 및 각종 시험방법은 아래와 같다.
본 발명의 실시예에 사용된 시약 및 기기의 종류는 다음과 같다.
<시약>
시료 추출 및 분획에 사용된 용매인 methanol, n-hexane, chloroform, ethylacetate 그리고 n-butanol은 J.T.Baker사 (Mallinckrodt Baker Inc., Philipsburg, USA)의 특급시약을 사용하였고, 세포배양에 사용된 alpha-minimum essential medium (a-MEM), fetal bovine serum (FBS), antibiotics, trypsin-EDTA는 Gibco BRL (Gibco BRL, Grand island, N.Y., USA)로부터 구입하였다. 세포 증식측정에 사용된 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) 시약은 Amresco사 (Amresco, Solon Ind., Ohio, USA)의 제품을 사용하였다. Rosmarinic acid와 Carnosic acid 그리고 ALP 효소 측정과 염색에 사용된 시약은 모두 Sigma사 (Sigma Chem. Co., St. Louis. Mo., USA)로부터 특급 시약을 사용하였고, Osteocalcin sandwich ELISA kit은 Biomedical Technologies (Biomedical Technologies Inc., MA, USA)로부터 구입하였다. PCR실험에 사용된 Primer는 Bioneer사 (Bioneer. Co., Upland, CA, USA)로부터 합성을 하였고, RNA측정은 Takara kit (Takara Bio Inc., Shiga, Japan), DNA polymerase는 Neurotics Inc., DNA ladder는 Promega사 (Promega Co., Wisconsin Medicine, WI, USA)의 제품을 구입하여 사용하였다. 그리고 Immuno-blotting 분석에 사용된 trizma base (Tris-Cl), ethylenedinitrilo -tetraacetic acid disodium salt (EDTA), triton X-100, N,N,N',N' -tetra-methylethylenediamine (TEMED), acrylamide, sodium dodecyl -sulfate (SDS), ammonium persulfate (APS), tween-20, bicinchoninic acid kit (BCA kit) 등은 모두 Sigma사 (Sigma Chem. Co., St. Louis. Mo., USA)로부터 구입하였고, ECL Detection kit는 Amersham사 (Amersham Bioscience., Buckinghamshire, England)로부터 구입하였다. 그리고 immobilon-P transfer membrane은 Millipore사 (Millipore, Billerica., Billerica Massachucetts, USA)로부터 구입하였고, BSP antibody는 Abcam사 (Abcam plc 332 Cambridge Science Park., UK), ALP antibody는 Santa Cruz Biotechnology사 (Santa Cruz, CA, USA)로부터 구입하였다. anti-mouse IgG와 anti-rabbit IgG는 Cell Signaling사 (Cell Signaling., MA, USA)로부터 구입하였다.
<기기>
본 실시예에 사용한 주요 기기는 Rotary vacuum evaporator (Buchi, R-3000, Germany), UV/visible spectrophotometer (Uvikon 922, Kontron, Italy), Incubator (Model 3154, Forma Scientific, USA), PCR machine (Mygenie96, Bioneer, USA), Mini-Protein electrophoresis system (Bio-Rad Co., USA), Power supply (Bio-Rad Co., USA), Microplate spectrophotometer (SPECTRA max 340PC, Molecular Devices, USA), Microplate shaker (Finemixer SH2000, FINEPCR, Korea), Ultracentrifuge (Model 695-7, Hitachi, Japan) 이다.
<조골세포 활성 검색을 위한 세포 배양>
조골세포 활성 검색을 위한 세포 배양은 생쥐의 머리뼈 조골세포(Mouse calvaria osteoblast cell)인 MC3T3-E1 cell을 ATCC(American Type Culture Collection)로부터 분양받아 사용하였으며, a-MEM(alpha-minimum essential medium)배지에 10%의 송아지의 혈청(FBS)과 1% 항생물질(antibiotics)를 첨가하여, 37℃의 5% CO2 인큐베이터(incubator)에서 2-3일 마다 계대 배양하면서 실험에 사용하였다. 또한 분화 유도를 위해 5mM의 β-글리세롤 인산염(β-glycerol phosphate)과 50mg/mL의 비타민 C(vitamin C)를 D-MEM(Dulbecco's Modified Eagle's Medium) 배지에 첨가하여 분화 유도 배지로 사용하였으며, 3일마다 배지를 교환하였다(참고, Cho, S. H. The electrom microscopic observation of the effects of estrogen on the osteoblast-like cell(Ros-17/2.8-5) differentiation. Korean Soc. Menopause 1995, 1, 28-34. / Kinto, N.; Iwamoto, M.; Enomoto-Iwamoto, M.; Noji, S.; Ohuchi, H.; Yoshioka, H. Fibroblasts expressing sonic hedgehog induce osteoblast differentiation and ectopic bone formation. FEBS Letters 1997, 404, 319-323.).
<조골 세포 증식 유도를 위한 시료 검색 방법>
조골 세포의 성장 정도는 Green 등의 방법(Green, L. M.; Reade, J. L.; Ware, C. F. Rapid colometric assay for cell viability : Application to the quantitation of cytotoxic and growth inhibitory lympokines. J. Immuno. Methods 1984, 70, 257-268.)에 따라 단기간에 대량 검색이 가능한 MTT 비색분석법 (MTT(3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide) colorimetric assay)을 사용하였다. 먼저 배양한 세포를 0.4% trypan blue 염색법으로 확인한 후, 1×104 cell/well로 조정하여 실험에 사용하였다. 시료는 준비된 농도로 배지에 희석시킨 후 0.22 μm 멤브레인 필터(membrane filter)로 여과한 후 사용하였다. 96 well plate에 준비된 세포를 180μL씩 첨가하고 각 농도의 시료를 20μL씩 첨가한 후 37℃의 5% 이산화탄소 인큐베이터(CO2 incubator)에서 48시간 배양하였다. 이때 대조군은 시료 대신 배지를 20μL 첨가하여 동일하게 배양하였다. 배양 후 MTT (5 mg/mL) 시약 10μL를 각 well에 첨가한 후 4시간 배양하였다. 배양 종료 시, 배지를 제거하고 DMSO를 100μL씩 첨가하여 생성된 불용성의 포르마존(formazon) 결정을 용해시켜 ELISA reader (ELISA; enzyme-linked immunosorbent assay reader)로 550nm에서 흡광도를 측정하였고, 세포의 증식률은 시료의 흡광도를 대조군의 흡광도에 대한 백분율로 나타내었다.
<조골세포의 활성 검색 - ALP(Alkaline phosphatase) 활성 측정법>
조골세포의 활성 검색은 ALP(Alkaline phosphatase) 활성 측정법으로 하였다. 즉, 상술한 방법으로 배양된 MC3T3-E1 세포를 1x104cell/well로 조정하여 96 well plate에 분주하였고, 24시간 후 분화 유도 배지로 교환하고, 다시 24시간 배양하여 시료를 처리하였다. 배양 2일 뒤 PBS(Phosphate Buffered Saline)로 세척한 다음 0.1% Triton X-100을 20 μL씩 첨가하여 37℃에서 30분간 용해(lysis)하였다. 용해(Lysis)된 세포의 상등액 5μL는 단백질 정량에 사용하였고, 나머지 상등액에 20 μL의 0.1N 글리신(glycine)과 10 μL의 100 mM p-NPP(p-nitrophenyl- phosphate)를 첨가한 후 다시 37℃에서 30분간 반응시켰다. 반응 후, 200 μL의 0.1N NaOH로 반응을 중지하고, p-NPP로부터 생성된 p-NP(p-nitrophenol)를 405nm에서 흡광도를 측정하였다. ALP 활성도(activity)는 p-NPP로부터 생성된 p-NP를 측정하여 p-NP에 대한 표준그래프를 작성한 후 활성도를 대조군과의 상대비교를 통해 도출하였다(참고, Chio, H. H.; Kim, J. K.; Kim, S. B.; Chung, C. H. Effects of Platelet -derived Growth Factor on the Activity of Osteoblastic Cells. J. Periodont. Res. 1999, 29, 785-804. / Kim, J. W.; Lee, H. J.; Kang, J. H.; Ohk, S. H.; Choi, B. K.; Yoo, Y. J.; Cho, K. S.; Choi, S. H. The Effect of Cyclosporin A on Osteoblast in vitro. J. Periodont. Res. 2000, 30, 747-757.).
세계 수준의 연구에 많이 이용되고 있는 MTT 분석법(MTT assay)은 세포 증식(cell proliferation)과 생육력(viability)의 관내(in vitro) 분석에 매우 유용하게 사용되고 있으며(참고, Carmichael, J.; Degraff, W. G.; Gadzar, A. F. Evaluation of a tetrazolium based semiautomated colorimetric assay : Assessment of chemosensitivity testing. Cancer Res. 1987, 477, 936-942.), 조골세포 배양 시, 비타민 C(vitamin C)와 β-글리세롤 인산염(β-glycerol phosphate)의 첨가는 ALP와 세포외 기질의 석회화에 영향을 미친다고 알려져 있다. 비타민 C(Vitamin C)는 MC3T3-E1 세포에서 콜라겐(collagen) 침착에는 반드시 필요하며, 성숙세포에서 ALP의 활성을 유도한다. 그리고 β-글리세롤 인산염(β-glycerol phosphate)은 비타민 C(vitamin C)에 대해 상승효과를 보이며, 분화된 조 골세포에서 콜라겐(collagen) 축적이나 ALP 활성도를 더욱 증가시킨다고 보고되고 있다(Choi, S. Y. Effects of irradiation on the mRNA expression of the type Ι collagen and alkaline phosphatase in MC3T3-E1 osteoblastic cell line. PhD thesis., Chonbuk National University. 2002.). 따라서 조골세포에 비타민 C(vitamin C)와 β-글리세롤 인산염(β-glycerol phosphate)을 첨가하여 분화를 유도하여 증식능과 ALP 활성을 측정하였다.
또, ALP는 plasma-membrane bound enzyme으로서 여러 세포에서 생성되나 골아세포, 전골아세포(preosteoblast)에서 가장 그 농도가 높아 골아세포의 분화도를 잘 반영하고 골 형성도와 일치하기 때문에 골아 세포의 활성도를 판단하는 하나의 생화학적 지표로 널리 이용되고 있으므로(25. Andrew, R. E.; Kemp, J. W.; Jee, W. S.; Woodbury, D. M. Ion-transporting APTase and matrix mineralization in cultured osteoblastlike cells. In vitro 1984, 20, 837-846.), 본 발명에 따른 실시예의 조골세포 활성화 검색 방법으로 사용하였다.
<조골세포의 활성도 검사를 위한 ALP 염색법>
ALP 효소의 염색 정도를 측정하기 위해 24well plate에 MC3T3-E1 세포를 1x105 cells/mL로 분주하고 시료 농도(1, 10, 25 μg/mL)에 따른 효소활성을 측정하였다. 염색은 AP 키트(alkaline phosphatase kit)를 사용하여 측정하였다. 제조사 의 지침에 따라 먼저, 배지를 제거하고 고정액(citrate-acetone-formaldehyde)을 첨가하여 약 30초간 실온에 보관하였다가 45초간 증류수로 세척하였다. 준비된 디아조듐 용액(diazonium solution ; sodium nitrite : FRV-alakline : naphthol AS-BI alkaline solution = 1 : 1 : 1)을 첨가하여 약 15분간 실온에서 방치한 뒤 2분간 증류수로 세척하고 헤마톡실린 용액(hematoxylin solution)으로 2분간 다시 염색한 뒤 흐르는 물로 염색액을 제거한 다음 현미경으로 적색 부위를 관찰하였다.
기질인 naphthol AS-BI phosphate는 알카리성 인산요소에 의해 가수분해되어 phosphate와 arynaphthol -amide를 형성하고 arynaphtholamide는 diazonium salt인 fast red violet salt와 결합하여 alkaline phosphatase의 활성도에 따라 적색의 효소 활성 부위를 나타내게 된다(Maeda, T.; Matsunuma, A.; Kawane, T.; Horiuchi, N. Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Biochem. Biophys. Res. Commun. 2001, 280, 874-877.).
<RT-PCR법에 의한 조골세포 분화 관련 골기질 유전자 발현 조사>
총 RNA(Total RNA)는 조골세포를 100φ dish에 1x106 cells/well로 2일간 배양한 뒤 TRI 시약을 사용하여 제조사의 지침에 따라 분리하였다. 배양된 세포에서 배지를 제거하고 pH 7.4의 PBS(phosphate buffered saline) 10mL로 두 번 세척한 후 TRI 시약을 처리하였다. 이것을 1.5mL 튜브에 1mL씩 담고 1-브로모-3-클로로프로판(1-bromo-3-chloro propane)을 200μL 첨가하여 30초간 와동(vortex)하여 원심분리(13,000 rpm, 15분, 4℃)하여 상등액을 취해 새로운 튜브에 옮겼다. 여기에 동량의 이소프로판올(isopropanol)을 첨가하여 -20℃에서 2시간 이상 방치하고 나서 원심분리(13,000 rpm, 15분, 4℃)한 후 상등액을 제거하였다. 침전물에 75% 에탄올을 첨가하여 제거한 후 디에틸 파이로카보네이트(diethyl pyrocarbonate, DEPC) 처리된 증류수를 첨가하여 65℃ 수조에서 10분간 반응시켜 침전물을 녹였다. 분리된 RNA는 spectrophotometer와 1% 포름알데히드 아가로스 겔(formaldehyde agarose gel) 전기영동을 이용하여 정량하고 확인하였다. 분리된 총 RNA(Total RNA) 2μg에 RNA PCR 키트(Kit)를 혼합하여 42℃에서 90분간 반응시킨 후 70℃에서 10분간 반응을 종결시켜 cDNA를 제조하였다. cDNA는 표 1의 프라이머(primer)들을 이용한 PCR 방법으로 증폭되었다. PCR의 반응에는 cDNA, 프라이머(primer) 20 pmol과 1mM의 dNTP를 첨가하여 각각의 primer에 맞는 조건으로 실시하였다. 이하 표 1에서 각각의 타겟 세포(target gene)의 발현에 사용되는 올리고뉴클레오티드 프라이머를 나타냈다.
Figure 112008044099615-pat00001
활성화된 조골세포는 골기질을 생성하는데 콜라겐(collagen (Col-Ⅰ)), 오스테오칼신(osteocalcin (OCN)), 오스테오폰틴(osteopontin (OPN)), 본 시알로프로데인(bone sialoprotein (BSP))과 같은 물질을 합성하며, 석회화 과정 (mineralization)에 중요한 역할을 한다고 알려져 왔다(Eero, V.; Benoit, D. C. The family of collagen genes. Annu Rev Biochem. 1990, 59, 837.). 또한 ALP의 발현은 조골세포 분화과정 중 중요한 역할을 하며 그 활성정도는 종종 조골세포의 분화단계를 상대적으로 평가하는 수단으로 사용되어왔다. 조골세포에 의한 석회화과정에서 이 효소의 정확한 기능은 분명하지는 않지만, 유기인산염(organic phosphate)을 가수분해하고 국소적으로 인산염(PO4) 농도를 증가시킴으로써 석회화의 촉발제 역할을 하는 것으로 보고되었다(28. Harrison, G.; Shapiro, I. M.; Golub, E. E. The phosphatidylino sitol-glycolipid anchor on alkaline phosphatase facilitates mineralization initiation in vitro. J. Bone Miner. Res. 1995, 10, 568-573.).
<Immuno-blotting법에 의한 조골세포 분화 관련 골기질 유전자 발현 조사>
조골세포를 12well plate에 1x105 cells/well로 2일간 배양한 뒤 cell에 용해 버퍼(lysis buffer (50 mM Tris-HCl, 1 mM EDTA, 1% Triton X-100, 0.16 μM PMSF))를 첨가하여 용해(lysis) 시킨 후, BCA 키트(Bicinconinic acid kit)로 단백질을 정량하였다. 단백질 농도를 15μg으로 조정하여, 10% SDS-폴리아크릴아마이드 겔(SDS-polyacryl -amide gel)에 로딩(loading)하여, 125V로 전기영동 하였다. 전기영동하여 분리한 단백질은 immobilon-P transfer membrane을 사용하여 transfer buffer (20% methanol, 25 mM Tris-Hcl, 192 mM glycine)를 사용하여 350mA로 transfer시키고 5% non-fat skim milk solution으로 블로킹(blocking) 한 후, 일차 항체와 이차 항체를 붙였다. 항체 반응이 끝난 멤브레인(membrane)에 ECL검출 키트(ECL detection kit)로 처리하고 X-ray 필름(film)에 노출하여 현상한 후 밴드(band)를 확인하였다.
골조직에 많이 존재하는 ALP는 조골세포의 분화 초기에 나타나는 표지인자로써 기질 성숙기에 나타나기 시작하여 기질 성숙기 후반에 최대로 발현되며, 조골세포를 석회화 할 수 있는 조건을 만드는데 관여한다고 알려져 있다(Owen, T. A.; Aronow, M. A.; Shalhoub, V. Progressive development of the rat osteoblast phenotype in vitro : Reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation of the bone extracellular matrix. J. Cell. Physiol. 1990, 143, 420-430.). 또한 BSP는 인결합 당단백질로서 다글루타민산 아미노산서열 에 의해 수산화인회석에 결합할 수 있으며, Arg-Gly-Asp (RGD) 아미노산서열에 의해 세포부착을 중재할 수 있는 단백질로서, 이 유전자의 발현은 기본적으로 석회화 결합조직에 제한적으로 발현한다. BSP 유전자는 골, 상아질, 백악질의 초기 석회화에 중요한 역할을 하며, BSP 유전자의 발현은 골, 치아 및 백악질 형성의 초기에 높게 나타나고 수산화인회석 결정의 형성을 유핵화하는 것으로 알려져 있다(Shimizu-Sasaki, E.; Yamazaki, M.; Furuyama, S.; Sugiya, H.; Sodek, J.; Ogata, Y. Identification of a novel response element in the rat bone sialoprotein (BSP) gene promoter that mediates constitutive and fibroblast growth factor 2-induced expression of BSP. J. Biol. Chem. 2001, 276, 5459-66.).
<오스테오칼신(osteocalcin)의 함량 측정>
샌드위치 ELISA 분석 키트(sandwich ELISA assay kit)를 이용하여 제조사의 지침에 따라 시험하였다. MC3T3-E1 세포를 1x104 cell/well로 조정하여 96 well plate에 분주하였고, 24시간 후 분화 유도 배지로 교환하고 다시 24시간 배양하여 시료를 농도별(1, 10, 25 ㎍/mL)로 처리하였다. 오스테오칼신(Osteocalcin)이 피복된 well에 12일간 배양한 배지 25μL와 osteocalcin antiserum 100μL를 넣어 24시간 반응시킨 후 0.3mL/well phosphate-saline wash buffer로 세척하였다. 세척된 well에 100μL의 streptavidin-horseradish peroxidase reagent를 넣어 30분간 반응시키고 세척한 후 TMB용액(TMB solution)과 과산화수소용액(hydrogen peroxide solution)을 1:1 비율로 섞어 100μL첨가하여, 15분 반응 시키고 100μL의 중지용액(stop solution)을 넣어 반응을 중지 시킨 후 405nm에서 흡광도를 측정하였다.
오스테오칼신(osteocalcin)은 bone gla protein(BGP)이라고도 하며 칼슘(calcium)과 결합하는 비타민 K(vitamin K) 의존성 α-카르복시 글루타믹 산(α-carboxy glutamic acid) 단백질이다. 오스테오칼신(Osteocalcin)은 뼈의 대표적인 무기질인 수산화인회석(hydroyapatite)과도 결합하며 뼈와 상아질(dentin)에 매우 특이한 단백질로서 골아세포에서 생산되어 뼈의 세포외 기질에서 축적되는데, 새로 합성된 오스테오칼신(osteocalcin)의 일부(약 30%)는 혈중으로 방출되므로 혈중농도를 측정하여 골형성 정도를 확인할 수 있다(31. Alkel,; Germain, A.; Peterson, C. T.; Hanson, H. B.; Stewart, J. W.; Toda, T. Isoflavon-rich soy protein attenuates bone loss in the lumbar spine of perimenopausal women. Am. J. Clin. Nutr. 2002, 72, 844-852 / Delmas, P. D. Biochemical markers of bone turnover : Methodology and Clinical Use in Osteoporosis. Am. J. Med. 1991, 91, 59-63. / Akesson, K.; Vergnaud, P. H.; Delmas, P. D. Serum osteocalcin I creases during Fracture healing in elderly women with hip fractures. Bone 1995, 16, 427-430.).
<실시예 1>
본 발명에 따른 로즈마리 추출물의 주요 성분인 카르노스산(carnosic acid) 및 로즈마리산(rosmarinic acid)의 조골세포 성장에 미치는 영향과 ALP 활성 정도는 다음과 같이 실시하였으며, 그 결과는 도 1 내지 와 같다.
Sigma (St. Louis. Mo., USA)로부터 구입한 카르노스산과 로즈마리산을 각각 1, 10, 25, 50 ㎍/mL의 농도로 시료를 준비하고, 상술한 <조골세포 활성 검색을 위한 세포 배양>으로 배양된 배양세포를 대상으로 <세포 증식 유도를 위한 시료 검색 방법> 및 <조골세포의 활성 검색 - ALP(Alkaline phosphatase) 활성 측정법>으로 시험하였다.
상기 시험 결과, 도 1 내지 4의 그래프와 같이 카르노스산(carnosic acid)은 농도별로 모든 농도에서 약 100% 정도의 조골 세포 성장률을 나타내었으며, ALP 활성에서도 역시 대조군과 유사한 활성을 나타내었다. 로즈마리산(rosemarinic acid)은 대조군과 유사한 조골 세포 성장률을 나타내었으며, ALP 활성은 농도 의존적으로 현저하게 증가하는 경향을 나타내었으며, 특히 25μg/mL의 농도에서 약 240%정도까지 ALP의 활성을 높였음을 알 수 있다.
<실시예 2>
본 발명자는 조골세포를 활성화 할 수 있는 천연 식물 소재를 찾기 위하여, 다음 표 2의 약 24종의 천연물들을 이용하여 in vitro screening system에서 조골세포 활성 및 분화를 촉진할 수 있는 시료를 검색하였으며 그 종류는 표 2와 같다.
No. Korean Scientific name
1. 가자 Terminaliae fructus
2. 감초 Glycyrrhiza uralensis Fisch.
3. 교이 Sacciarum Granorum
4. 길경 Platycodon grandiflorum
5. 녹두 Phaseolus radiatus Linne
6. 달래 Allium monanthum MAXIM
7. 두릎피 Aralia elata(Miq.) Seem.
8. 로즈마리 Rosmarinus officinalis L.
9. 목향 Saussurea Radix
10. 무순 Raphanus sativus
11. 물엉겅퀴씨 Cirsium nipponicum Makine
12. 브로커리 Brassica oleracea italica
13. 산초나물 Zanthoxyli Pericarpium
14. 세신 Asiasarum heterotropoides var.
15. 솔잎 Pinus densiflora Sieb.
16. 연근 Nelumbo nucifera Gaertn
17. 오미자 Schizandra chinensis Baillon.
18. 자몽 Citrus paradisi Macf.
19. 정공등 Sorbaria sorbiiifolia Braum
20. 청귤 Citrus unshiu
21. 토사자 Cuscuta japonica Choisy
22. 합환피 Albizzia coreana NAKAI
23. 현초 Geranium nepalense Hara
24. 황연 Chinese pistachio.
본 실시예2에 사용한 상기 표 2의 천연물 24종은 대구시의 약령시장 또는 대형마트에서 건조 상태의 것을 구입하였고, 각각의 시료는 불순물 제거를 위하여 가볍게 수세한 후 건조한 후, 무게의 10배량(w/v)의 80% 메탄올이나 증류수(w/v)를 가하여 24시간 동안 정치하여 총 3회 반복 추출하였다. 추출액은 여과지(Whatman No. 3, England)로 여과한 다음 회전식농축기(rotary evaporator)로 55℃에서 농축한 후 동결 건조하여 메탄올 추출물로 시험하였다.
상술한 방법으로 In vitro system을 이용한 <조골 세포 증식 유도를 위한 시료 검색 방법> 및 <조골세포의 활성 검색 - ALP(Alkaline phosphatase) 활성 측정법> 결과는 다음과 같았다.
상기 표 2의 천연물 24종의 각각의 메탄올 추출물 시료를 1, 10, 50 μg/mL의 농도로 처리하였을 때, 조골 세포 증식 유도를 위한 시료 검색 방법인 MTT 분석법(MTT assay)에 의해 상기 24종의 천연물들이 조골세포 성장에 미치는 영향은 표 3과 같이 나타났다.
Effects of various natural plants on the cell growth activity of MC3T3-E1 cells (Unit: ㎍/mL)
No. Scientific name 50 10 1
1. Terminaliae fructus 0 0 0
2. Glycyrrhiza uralensis Fisch. 0 -1 0
3. Sacciarum Granorum 0 0 0
4. Platycodon grandiflorum 0 0 0
5. Phaseolus radiatus Linne 0 0 0
6. Allium monanthum MAXIM -1 -1 0
7. Aralia elata(Miq.) Seem. 1 -1 +1
8. Rosmarinus officinalis L. -3 0 0
9. Saussurea Radix 0 0 0
10. Raphanus sativus 0 -1 0
11. Cirsium nipponicum Makine -1 0 0
12. Brassica oleracea italica 0 0 0
13. Zanthoxyli Pericarpium -1 0 0
14. Asiasarum heterotropoides var. 0 0 0
15. Pinus densiflora Sieb. +2 0 0
16. Nelumbo nucifera Gaertn 0 0 0
17. Schizandra chinensis Baillon. 0 -1 -1
18. Citrus paradisi Macf. 0 0 0
19. Sorbaria sorbiiifolia Braum 0 0 0
20. Citrus unshiu -1 0 0
21. Cuscuta japonica Choisy 0 0 +1
22. Albizzia coreana NAKAI 0 0 0
23. Geranium nepalense Hara 0 0 0
24. Chinese pistachio. -2 -1 -1
When control group is considered as 100% relative percentage(%) data of was expressed as follows: relative activity over 120% described +2, over 110% described +1, over 100% described 0, below 90% described -1, below 80% described -2, below 70% described -3
즉, Pinus densiflora Sieb. 추출물의 50 μg/mL 농도에서 120%이상으로 가장 높은 성장률을 나타내었으며, 다른 시료들의 성장률은 거의 나타나지 않는 것을 확인하였다. Rosmarinus officinalis L. 추출물은 50 μg/mL의 농도에서 70%정도의 낮은 성장률을 보였으며, Allium monanthum MAXIM, Schizandra chinensis Baillon. 그리고 Chinese pistachio. 추출물에서는 10 μg/mL의 농도에서도 성장을 저해시키는 것을 확인 할 수 있었다.
상기 표 2의 천연물 24종의 각각의 메탄올 추출물 시료를 1, 10, 50 μg/mL의 농도로 처리하였을 때, 조골 세포의 ALP 활성 정도를 확인한 결과는 표 4와 같다.
Effects of various natural plants on alkaline phosphatase activity of MC3T3-E1 cells (Unit: ㎍/mL)
No. Scientific name 50 10 1
1. Terminaliae fructus -1 0 0
2. Glycyrrhiza uralensis Fisch. 0 0 0
3. Sacciarum Granorum -2 0 0
4. Platycodon grandiflorum 0 0 0
5. Phaseolus radiatus Linne 0 0 0
6. Allium monanthum MAXIM +2 +1 +1
7. Aralia elata(Miq.) Seem. +2 0 0
8. Rosmarinus officinalis L. -2 +2 +1
9. Saussurea Radix 0 0 0
10. Raphanus sativus 0 0 0
11. Cirsium nipponicum Makine -3 -2 0
12. Brassica oleracea italica -3 -2 0
13. Zanthoxyli Pericarpium -2 0 0
14. Asiasarum heterotropoides var. -3 +1 0
15. Pinus densiflora Sieb. 0 0 0
16. Nelumbo nucifera Gaertn 0 0 0
17. Schizandra chinensis Baillon. +1 -1 0
18. Citrus paradisi Macf. 0 0 0
19. Sorbaria sorbiiifolia Braum +1 0 0
20. Citrus unshiu +2 0 +1
21. Cuscuta japonica Choisy +1 -1 0
22. Albizzia coreana NAKAI 0 0 0
23. Geranium nepalense Hara 0 0 +1
24. Chinese pistachio. -3 -3 0
When control group is considered as 100% relative percentage(%) data of was expressed as follows: relative activity over 120% described +2, over 110% described +1, over 100% described 0, below 90% described -1, below 80% described -2, below 70% described -3
Allium monanthum MAXIM, Rosmarinus officinalis L., Asiasarum heterotropoides var. 그리고 Citrus unshiu 추출물은 ALP의 활성을 120%정도까지 유도하는 것을 확인 할 수 있었다. 특히 세포의 증식 정도를 확인한 결과를 바탕으로 하여 증식을 억제 시키지 않는 농도에서의 ALP 활성 정도를 비교해 보았을 때, Rosmarinus officinalis L. 추출물에서 활성이 가장 높게 나타나는 것을 확인 할 수 있었다.
다음으로 본 발명의 실시예2에 따른 로즈마리 메탄올 추출물을 이용하여 in vitro system내에서 <조골세포 활성 정도를 조골세포의 활성도 검사를 위한 ALP 염색법 - azo 색소법(Burstone)> 및 <RT-PCR법에 의한 조골세포 분화 관련 골기질 유전자 발현 조사>, <Immuno-blotting법에 의한 조골세포 분화 관련 골기질 유전자 발현 조사> 등을 통하여 확인하였으며 그 결과는 아래와 같다.
본 발명의 실시예2에 따른 로즈마리 메탄올 추출물의 조골세포 활성 정도를 조골세포의 활성도 검사를 위한 ALP 염색법 - azo 색소법(Burstone)에 의한 결과는 도 5와 같다. 로즈마리 메탄올 추출물을 1, 10, 25 μg/mL의 농도로 처리하여 배양한 다음 세포내 ALP 효소의 염색정도를 살펴본 결과 시료를 처리하지 않은 대조군은 붉은 색의 효소가 많이 형성되지 않은 반면, 농도별로 시료를 처리한 군에서는 효소의 붉은 반점이 많이 형성된 것을 확인 할 수 있었으며 또한 농도별로 붉은 색의 효소가 증가하는 경향을 보였다. 따라서 로즈마리 메탄올 추출물이 조골세포내 ALP 효소 활성을 유도한다는 것을 본 염색법을 통해 다시 한번 확인하였다.
본 발명의 실시예2에 따른 로즈마리 메탄올 추출물의 RT-PCR법에 의한 조골세포 분화 관련 골기질 유전자 발현 조사에 의한 결과는 도 6과 같다. 즉, 하우스키핑젠(house keeping gene)인 GAPDH(glyceraldehyde-3-phosphste dehydro-genase)를 internal control로 하였다. mRNA 발현양을 확인해 본 결과 대조군인 GAPDH는 일정하게 발현되는 것에 반해 로즈마리 메탄올 추출물을 농도별로 처리하였을때 ALP, OCN, OPN, 그리고 Col-Ⅰ에서는 발현양이 증가하는 경향을 확인 할 수 있었다.
본 발명의 실시예2에 따른 로즈마리 메탄올 추출물의 Immuno-blotting법에 의한 조골세포 분화 관련 골기질 유전자 발현 조사에 의한 결과는 도 6과 같다. 즉, 로즈마리 메탄올 추출물에 농도의존적으로 발현양이 증가하는 것을 확인할 수 있었다. 따라서 로즈마리 메탄올 추출물은 ALP 활성을 증진시키며 골기질 유전자들의 발현을 유도하는 것으로 보아 조골세포 분화에 우수한 시료라고 평가할 수 있다.
다음으로, 본 발명의 실시예2에 따른 로즈마리 추출물의 조골세포의 활성에 미치는 영향을 보다 자세히 알아보기 위하여, 동결 건조한 로즈마리 메탄올 추출물을 도 8와 같이 20배(w/v)의 증류수에 녹인 후 헥산(hexane), 클로로포름(chloroform ; CHCl3), 에틸아세테이트(ethylacetate ; EtOAc) 및 부탄올(butanol ; BuOH)을 순차적으로 3회 반복 추출하여 각 용매별로 계통적 분획을 하였고, 남은 수용성 층은 물(water) 분획으로 감압 농축하여 동결건조기로 남은 유기용매를 휘발시킨 뒤 -20℃에 보관하면서 시험에 사용하였으며, 그 수율은 표 5와 같다.
Yields of hexane, chloroform, ethylacetate, butanol and water fraction of Rosmarinus officinalis L. methanol extract
Fractions Yields (%) *
Methanol extract 27.3
Hexane fraction 2.5
Chloroform fraction 0.9
Ethylacetate fraction 10.26
Butanol fraction 17.1
Water fraction 33.5
Total 64.26
* Percentage of each fractions to methanol extract content (100 g).
본 발명의 실시예2에 따른 로즈마리 메탄올 추출물 및 각각의 분획물에 대한 조골세포의 증식능 및 ALP 활성에 미치는 영향은 <조골 세포 증식 유도를 위한 시료 검색 방법> 및 <조골세포의 활성 검색 - ALP(Alkaline phosphatase) 활성 측정법>과 동일한 방법으로 실시하였으며, 그 결과는 도 9 및 도 10과 같다.
즉, 도 9와 같이, 조골세포의 증식능은 chloroform 분획물 25 μg/mL의 농도에서는 약 85% 정도로 낮은 성장률을 나타내었지만, 헥산(hexane), 클로로포름(chloroform ; CHCl3), 에틸아세테이트(ethylacetate ; EtOAc), 부탄올(butanol ; BuOH) 및 물(water) 분획물에서 약 100%대의 성장률을 나타내었다.
또, 도 10과 같이, ALP 활성은 헥산(hexane)을 제외한 분획물 1, 10, 25μg/mL의 모든 농도에서 100%이상의 활성을 나타내었고, 농도 의존적으로 ALP 활성이 증가하는 경향을 나타내었으나, 헥산(hexane) 분획물 25μg/mL 농도에서는 오히려 ALP 활성이 감소하는 것으로 나타났다. 한편 다른 분획물들에 비해 로즈마리 에틸아세테이트(ethylacetate) 분획물에서 ALP 활성이 가장 높게 나타났으며, 25μg/mL의 농도로 2일간 처리하였을 때, 150%정도 활성을 증가시키는 것을 확인할 수 있었다.
다음으로 본 실시예2에 따른 로즈마리 에틸아세테이트(ethylacetate) 분획물을 이용하여 in vitro상에서 <조골세포 활성 정도를 조골세포의 활성도 검사를 위한 ALP 염색법 - azo 색소법(Burstone)> 및 <RT-PCR법에 의한 조골세포 분화 관련 골기질 유전자 발현 조사>, <Immuno-blotting법에 의한 조골세포 분화 관련 골기질 유전자 발현 조사>, <오스테오칼신(osteocalcin)의 생성 측정> 등을 통하여 확인하였으며 그 결과는 아래와 같다.
본 실시예2에 따른 로즈마리 에틸아세테이트(ethylacetate) 분획물의 조골세포 활성 정도를 조골세포의 활성도 검사를 위한 ALP 염색법 - azo 색소법(Burstone)에 의한 결과는 도 11과 같다. 즉, 시료를 처리하지 않은 대조군은 붉은 색의 효소가 많이 형성되지 않았고, 붉은 색도 선명하지 않았으나, 로즈마리 에틸아세테이트(ethylacetate) 분획물을 처리한 군에서는 효소의 붉은 반점이 많이 생긴 것을 확인할 수 있었으며, 붉은 색도 선명해지는 것을 확인할 수 있었다. 또한 농도 의존적으로 붉은 색의 효소가 증가하는 경향을 보였다. 따라서 로즈마리 아세테이트(ethylacetate) 분획물이 조골세포 내의 ALP 효소 활성을 유도한다는 것을 본 ALP염색법을 통해 확인하였다.
본 실시예2에 따른 로즈마리 에틸아세테이트(ethylacetate) 분획물의 RT-PCR법에 의한 조골세포 분화 관련 골기질 유전자 발현 조사, Immuno-blotting법에 의한 조골세포 분화 관련 골기질 유전자 발현 조사에 의한 결과는 도 12 및 도 13과 같다. 즉, 로즈마리 ethylacetate 분획물을 1, 10, 25 μg/mL의 농도로 처리하여 배양한 후 ALP, OPN, OCN, Col-Ⅰ과 같은 유전자들의 발현정도를 RT-PCR법을 이용하여 mRNA의 발현양을 확인한 결과는 도 12에 나타내었고, Immuno-blotting법을 이용하여 ALP와 BSP의 단백질 발현정도는 도 13에 나타내었다. 이때 internal control은 하우스키핑젠(house keeping gene)인 GAPDH와 β-악틴(β-actin)을 각각 이용하였다. mRNA 발현양을 확인해 본 결과 로즈마리 에틸아세테이트(ethylacetate) 분획물을 농도별로 처리하였을 때, 시료를 처리하지 않은 대조군에 비해 ALP, OPN, OCN 그리고 Col-Ⅰ의 발현양이 현저하게 증가하는 경향으로 나타났다. 단백질 발현정도를 측정한 결과 역시 로즈마리 에틸아세테이트(ethylacetate) 분획물을 처리한 군에서 발현의 증가를 보였으며, ALP와 BSP의 발현양은 농도의존적으로 증가하는 경향을 나타내었다. 따라서, 본 실시예에 따라, 로즈마리 메탄올 추출물을 순차분획하여 얻은 분획물들 중 가장 증식능에 효과가 있었던 로즈마리 에틸아세테이트(ethylacetate) 분획물은 ALP 활성 증진과 OCN의 함량을 증가시켰으며 또한 골기질 유전자들의 발현도 유도시켰다.
본 실시예2에 따른 로즈마리 에틸아세테이트(ethylacetate) 분획물의 오스테오칼신(osteocalcin)의 함량 측정에 의한 결과는 도 14와 같다. 즉, 시료를 처리하지 않은 대조군의 100%에 비해 로즈마리 에틸아세테이트(ethylacetate) 분획물을 처리하였을때 오스테오칼신(osteocalcin)의 함량은 증가하는 경향으로 나타났고, 1 μg/mL의 농도에서는 대조군에 비해 오스테오칼신(osteocalcin)의 함량이 10%정도 감소하였지만 농도의존적으로 증가하는 경향을 나타내었다. 특히 25 μg/mL의 농도로 시료를 처리하였을때 약 180%까지의 함량증가를 확인하였다.
다음으로, 본 실시예의 로즈마리 메탄올 추출물 및 각 분획물의 폐놀성 화합물 및 플라보노이드의 함량을 측정하고, DPPH free radical의 소거활성을 시험하였다.
<페놀성 화합물의 함량 측정>
총 페놀성 화합물의 함량은 Folin Denis법(A.O.A.C. Official methods of analysis of the association of official agricultural chemists 1990, 15th ed.)을 응용하여 측정하였다. 먼저 로즈마리 메탄올 추출물 및 각 분획물 시료 1mg을 증류수 1mL에 녹이고 10배 희석한 희석액 2mL에 2배로 희석한 폴린(Folin) 시약 2mL를 첨가하고 잘 혼합한 후 3분간 방치하여 2mL의 10% Na2CO3를 서서히 가하였다. 이 혼합액을 1시간동안 방치한 후 UV/visible spectrophotometer를 사용하여 700nm에서 흡광도를 측정하였다. 이때 총 페놀성 화합물은 탄닉산(tannic acid)을 이용하여 작성한 표준곡선으로부터 함량을 구하였다. 탄닉산(Tannic acid)를 이용한 표준곡선은 탄닉산(tannic acid)의 최종농도가 5, 25, 50ug/mL이 되도록 하여 위와 같은 방법으로 700 nm에서 흡광도를 측정하여 작성하였다.
<플라보노이드 함량 측정>
총 플라보노이드 함량은 Nieva Moreno 등의 방법(21)에 의해 측정하였다. 각 시료 100 μL를 80% ethanol 900 μL에 희석한 후 100 μL를 취하여 10% aluminum nitrate와 1 μM potassium acetate를 함유하는 80% ethanol 4.3 mL에 혼합하여 실온에서 40분 방치한 뒤 415 nm에서 흡광도를 측정하였다. 이때 총 플라보노이드 함량은 케르세틴(quercetin)을 이용하여 작성한 표준곡선으로부터 함량을 구하였다.
본 실시예에 따른, 로즈마리 메탄올 추출물과 각 분획물을 탄닉산(tannic acid)을 기준 물질로 하여 페놀성 화합물의 함량을 측정한 결과는 표 6에 나타내었고, 케르세틴(quercetin)을 기준물질로 하여 측정한 플라보노이드 함량은 표 7에 나타내었다. 페놀성 화합물의 함량을 측정한 결과, 메탄올 추출물은 163.0 mg/g으로 나타났고, 각 분획물들은 에틸아세테이트(ethylacetate), 부탄올(butanol), 클로로포름(chloroform), 물(water) 그리고 헥산(hexane) 순으로 각각 865.2 mg/g, 252.7 mg/g, 171.2 mg/g, 111.3 mg/g, 103.0 mg/g으로 나타났다. 플라보노이드의 함량을 측정한 결과, 메탄올 추출물은 45.2 mg/g으로 나타났으며, 에틸아세테이트(ethylacetate) 분획물에서 200.8 mg/g으로 가장 높은 함량을 나타내었다. 따라서 로즈마리 에틸아세테이트(ethylacetate) 분획물은 높은 폴리페놀 및 플라보노이드 화합물을 다량 함유하고 있다는 것을 확인할 수 있었다.
Contents of total polyphenol in fractions from methanol extract of Rosmarinus officinalis L. (Unit: mg/g)
Rosmarinus officinalis L. Total polyphenols1)
Methanol extract 163.0 ± 18.52)
Hexane fraction 103.0 ± 12.6
Chloroform fraction 171.2 ± 15.5
Ethylacetate fraction 865.2 ± 54.7
Butanol fraction 252.7 ± 9.8
Water fraction 111.3 ± 8.4
1)Milligrams of total polyphenol content/g of plants based on tannic acid as standard.
2)Each value is mean ± S.D. (n≥3).
Contents of total flavonoid in fractions from methanol extract of Rosmarinus officinalis L. (Unit: mg/g)
Rosmarinus officinalis L. Total flavonoids1)
Methanol extract 45.2 ± 5.12)
Hexane fraction 17.0 ± 1.8
Chloroform fraction 25.9 ± 0.9
Ethylacetate fraction 200.8 ± 4.5
Butanol fraction 66.7 ± 2.1
Water fraction 11.4 ± 1.6
1)Milligrams of total flavonoid content/g of plants based on quercetin as standard.
2)Each value is mean ± S.D. (n≥3).
본 실시예에 따른, 로즈마리 메탄올 추출물과 각 분획물의 DPPH(α,α-diphenly-β-picrylhydrazylradicals) 자유 라디칼에 대한 소거 활성을 아래와 같이 측정하였다.
<DPPH 자유 라디칸에 대한 소거활성 측정>
각 시료의 DPPH 자유 라디칼에 대한 소거활성은 Blois의 방법(Blois, M. S. Antioxidant determinations by the use of stable free radical. J. Agic. Food Chem. 1977, 25, 103-107.)에 따라 측정하였다. 각 시료를 99% 메탄올(methanol)에 녹인 후, 800μL를 취하여 메탄올(methanol)에 녹인 0.15mM의 DPPH용액 200μL와 혼합하여 37℃에서 30분간 반응시킨 후 517nm에서 흡광도를 측정하였다. 각 시료의 유리 라디칼 소거활성은 시료를 첨가하지 않은 대조구의 흡광도를 1/2로 환원시키는데 필요한 시료의 농도인 RC50값으로 나타내었다.
DPPH는 화학적으로 안정화된 자유 라디칼을 가지고 있는 수용성 물질로 항산화활성이 있는 물질과 만나면 전자를 내어주면서 라디칼이 소멸되고 색깔이 변한다. 이것은 다양한 천연 소재로부터 항산화 물질을 검색하는데 많이 이용되고 있다(Al-sereiti, M. R.; Abu-Amer, K. M. Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. J. Exp. Biol. 1999, 37, 124-130.).
본 실시예에 따른, 로즈마리 메탄올 추출물 및 분획물들의 DPPH 자유 라디칼 소거활성을 알아본 결과는 표 8에 나타내었다.
Scavenging effects of butylated hydroxy anisole (BHA) and Rosmarinus officinalis L. methanol extract and fractions on α,α-diphenly-β-picrylhydrazylradicals (DPPHㅇ)
Rosmarinus officinalis L. Concentration
(μg/mL)
Scavenging effect
(%)
RC50 1)
(μg/mL)
Methanol extract 1
10
14.70 ± 2.342)
83.84 ± 3.06
5.58 ± 0.06
Hexane fraction 1
10
22.20 ± 5.33
79.45 ± 2.17
5.36 ± 0.21
Chloroform fraction 1
10
12.38 ± 2.68
55.76 ± 0.27
8.78 ± 0.42
Ethylacetate fraction 1
10
44.63 ± 2.65
90.31 ± 1.03
2.07 ± 0.15
Butanol fraction 1
10
14.00 ± 1.63
35.12 ± 3.24
16.24 ± 0.49
Water fraction 1
10
6.12 ± 1.48
31.29 ± 0.74
16.83 ± 0.06
BHA 1
10
9.23 ± 0.72
90.75 ± 0.70
3.00 ± 0.03
1)Concentration required for 50% reduction of DPPHㅇ at 30 min after starting the reaction. 2)Each value is mean ± S.D. (n≥3)
즉, 메탄올 추출물에서는 RC50값이 5.58μg/mg으로 나타났고, ethylacetate 분획물은 RC50값이 2.07μg/mg으로 분획물 중 가장 소거능이 우수하였으며 합성항산화제로 널리 알려진 BHA(Butylated Hydroxy Anisole)보다도 더 좋은 소거능을 나타내었다. 총 페놀성 화합물의 함량 및 플라보노이드의 함량을 측정한 결과와 DPPH 자유 라디칼의 소거활성을 측정한 결과를 종합해 볼 때 로즈마리 ethylacetate 분획물에서 항산화 효과가 가장 우수함을 확인할 수 있었다.
도1은 본 발명의 실시예 1에 따른 카르노스산(carnosic acid)의 세포증식유도를 위한 시료 검색 결과이다.
도2는 본 발명의 실시예 1에 따른 카르노스산(carnosic acid)의 조골세 활성 검색으로서의 ALP활성 측정법 결과이다.
도3은 본 발명의 실시예 1에 따른 로즈마리산(rosmarinic acid)의 세포증식유도를 위한 시료 검색 결과이다.
도4는 본 발명의 실시예 1에 따른 로즈마리산(rosmarinic acid)의 조골세 활성 검색으로서의 ALP활성 측정법 결과이다.
도5는 본 발명의 실시예 2에 따른 로즈마리 메탄올 추출물의 조골세포의 활성도 검사를 위한 ALP 염색법-azo 색소법에 의한 결과이다.
도6은 본 발명의 실시예 2에 따른 로즈마리 메탄올 추출물의 RT-PCR법에 의한 조골세포 분화 관련 골지질 유전자 발현조사 결과이다.
도7은 본 발명의 실시예 2에 따른 로즈마리 메탄올 추출물의 Immuno-blotting법에 의한 조골세포 분화 관련 골지질 유전자 발현조사 결과이다.
도8은 본 발명의 실시예 2에 따른 로즈마리 메탄올 추출물의 분획 추출 계통도이다.
도9는 본 발명의 실시예 2에 따른 로즈마리 메탄올 추출물의 각 분획추출물의 조골세포 증식 유도를 위한 시료 검색 결과이다.
도10은 본 발명의 실시예 2에 따른 로즈마리 메탄올 추출물의 각 분획추출물 의 조골세포 활성검색-ALP 활성 측정법 결과이다.
도11은 본 발명의 실시예 2에 따른 로즈마리 메탄올 추출물 중 에틸아세테이트 분획물의 조골세포 활성 정도를 조골세포의 활성도 검사를 위한 ALP 염색법-azo 색소법에 의한 결과이다.
도12는 본 발명의 실시예 2에 따른 로즈마리 메탄올 추출물 중 에틸아세테이트 분획물의 RT-PCR법에 의한 조골세포 분화 관련 골지질 유전자 발현조사 결과이다.
도13은 본 발명의 실시예 2에 따른 로즈마리 메탄올 추출물 중 에틸아세테이트 분획물의 Immuno-blotting법에 의한 조골세포 분화 관련 골지질 유전자 발현조사 결과이다.
도14는 본 발명의 실시예 2에 따른 로즈마리 메탄올 추출물 중 에틸아세테이트 분획물의 오스테오칼신의 함량측정 결과이다.

Claims (11)

  1. ALP(알카라인 포스파타제), OCN(오스테오칼신), OPN(오스테오폰틴), Col-I(콜라겐) 및 BSP(본 시알로프로테인) 발현 유도능을 가지며, 카르노스산(carnosic acid), 로즈마리산(rosmarinic acid) 및 이들의 혼합물로 구성된 군에서 선택된 로즈마리 유래 페놀성 화합물을 포함하는 것을 특징으로 하는 조골세포의 활성 및 증식을 위한 식품조성물.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 제 1항에 있어서, 상기 로즈마리 유래 페놀성 화합물은 로즈마리를 유기용매 또는 증류수로 1차 추출하고, 1차 추출물을 2종 이상의 유기용매로 순차적으로 분획추출하여 얻어지는 분획추출물 중 선택되는 1종 이상인 것이 특징인 조골세포의 활성 및 증식을 위한 식품조성물.
  10. 제 9항에 있어서, 1차 추출을 위한 유기용매는 메탄올, 에탄올 및 아세톤 중에서 선택되는 1종 이상의 것이고, 분획추출을 위한 유기용매는 헥산(hexane), 클로로포름(chloroform), 에틸아세테이트(ethylacetate) 및 부탄올(butanol) 중에서 선택되는 것이 특징인 조골세포의 활성 및 증식을 위한 식품조성물.
  11. 제 9항 또는 10항에 있어서, 상기 분획 추출물은 에틸아세테이트 분획 추출물인 것을 특징으로 하는 조골세포의 활성 및 증식을 위한 식품조성물.
KR1020080058102A 2008-06-20 2008-06-20 조골세포의 활성 및 증식을 위한 식품조성물 KR101175157B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080058102A KR101175157B1 (ko) 2008-06-20 2008-06-20 조골세포의 활성 및 증식을 위한 식품조성물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080058102A KR101175157B1 (ko) 2008-06-20 2008-06-20 조골세포의 활성 및 증식을 위한 식품조성물

Publications (2)

Publication Number Publication Date
KR20090132038A KR20090132038A (ko) 2009-12-30
KR101175157B1 true KR101175157B1 (ko) 2012-08-20

Family

ID=41691144

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080058102A KR101175157B1 (ko) 2008-06-20 2008-06-20 조골세포의 활성 및 증식을 위한 식품조성물

Country Status (1)

Country Link
KR (1) KR101175157B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210071663A (ko) * 2019-12-06 2021-06-16 영산대학교산학협력단 로즈마리 추출물을 포함하는 임플란트의 골유착 개선용 조성물
KR20210071662A (ko) * 2019-12-06 2021-06-16 영산대학교산학협력단 로즈마리 추출물을 포함하는 임플란트 표면 코팅용 조성물

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102255000B1 (ko) * 2020-04-29 2021-05-24 한국 한의학 연구원 박하 추출물을 유효성분으로 함유하는 골질환의 예방, 개선 또는 치료용 조성물
CN115400267B (zh) * 2022-10-10 2023-03-03 吉林大学 一种负载迷迭香酸的聚醚醚酮复合材料的制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242012B1 (en) 1999-10-19 2001-06-05 Thomas Newmark Herbal composition for promoting hormonal balance in women and methods of using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242012B1 (en) 1999-10-19 2001-06-05 Thomas Newmark Herbal composition for promoting hormonal balance in women and methods of using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210071663A (ko) * 2019-12-06 2021-06-16 영산대학교산학협력단 로즈마리 추출물을 포함하는 임플란트의 골유착 개선용 조성물
KR20210071662A (ko) * 2019-12-06 2021-06-16 영산대학교산학협력단 로즈마리 추출물을 포함하는 임플란트 표면 코팅용 조성물
KR102321658B1 (ko) * 2019-12-06 2021-11-03 영산대학교산학협력단 로즈마리 추출물을 포함하는 임플란트 표면 코팅용 조성물
KR102344959B1 (ko) * 2019-12-06 2021-12-28 영산대학교산학협력단 로즈마리 추출물을 포함하는 임플란트의 골유착 개선용 조성물

Also Published As

Publication number Publication date
KR20090132038A (ko) 2009-12-30

Similar Documents

Publication Publication Date Title
Iio et al. Ethanolic extracts of Brazilian red propolis promote adipocyte differentiation through PPARγ activation
Kim et al. Piperine induces osteoblast differentiation through AMPK-dependent Runx2 expression
Chung et al. Anti-osteoporotic activity of harpagide by regulation of bone formation in osteoblast cell culture and ovariectomy-induced bone loss mouse models
dos Santos Neves et al. Evaluation of the osteogenic potential of Hancornia speciosa latex in rat calvaria and its phytochemical profile
KR101175157B1 (ko) 조골세포의 활성 및 증식을 위한 식품조성물
Karadeniz et al. Phlorotannins suppress adipogenesis in pre-adipocytes while enhancing osteoblastogenesis in pre-osteoblasts
Yassine et al. Phytochemical screening, anti-inflammatory activity and acute toxicity of hydro-ethanolic, flavonoid, tannin and mucilage extracts of Lavandula stoechas L. from Morocco
Roeslan et al. Anti-biofilm, nitric oxide inhibition and wound healing potential of purpurin-18 phytyl ester isolated from Clinacanthus nutans leaves
Chang et al. Piceatannol stimulates osteoblast differentiation that may be mediated by increased bone morphogenetic protein-2 production
Yayıntaş et al. Determination of antioxidant, antimicrobial and antitumor activity of bryophytes from Mount Ida (Canakkale, Turkey)
Abdul Rahim et al. Phytochemical analysis, antioxidant and bone anabolic effects of Blainvillea acmella (L.) Philipson
Han et al. Rubrofusarin-6-β-gentiobioside inhibits lipid accumulation and weight gain by regulating AMPK/mTOR signaling
Shahana et al. A brief review on Bauhinia variegata: phytochemistry, antidiabetic and antioxidant potential
Xiao et al. Bergapten promotes bone marrow stromal cell differentiation into osteoblasts in vitro and in vivo
Li et al. Mulberry (Morus atropurpurea Roxb.) leaf polyphenols inhibits adipogenesis and lipogenesis‐related gene expression in 3T3‐L1 adipocytes
Jang et al. Aqueous extract of Chrysanthemum morifolium Ramat. inhibits RANKL-induced osteoclast differentiation by suppressing the c-fos/NFATc1 pathway
Kim et al. Biofunctional soyasaponin Bb in peanut (Arachis hypogaea L.) sprouts enhances bone morphogenetic protein‐2‐dependent osteogenic differentiation via activation of runt‐related transcription factor 2 in C2C12 cells
Lee et al. Tectorigenin promotes osteoblast differentiation and in vivo bone healing, but suppresses osteoclast differentiation and in vivo bone resorption
Vu et al. Triterpenoids from Celastrus orbiculatus Thunb. inhibit RANKL-induced osteoclast formation and bone resorption via c-Fos signaling
Lee et al. Anti-osteoporosis effects of triterpenoids from the fruit of sea buckthorn (Hippophae rhamnoides) through the promotion of osteoblast differentiation in mesenchymal stem cells, C3H10T1/2
KR20130070901A (ko) 소리쟁이 추출물을 유효성분으로 포함하는 골 질환 치료 또는 예방용 조성물
Al-Massarani et al. Composition & biological activity of Cyperus rotundus L. tuber volatiles from Saudi Arabia
Tabboon et al. Hypocholesterolemic mechanism of phenolics-enriched extract from Moringa oleifera leaves in HepG2 cell lines.
Phonghanpot et al. Antiproliferative, antibacterial, and antioxidant activities of Bauhinia strychnifolia Craib aqueous extracts in gut and liver perspective
Kim et al. The suppressive effect of Gelidium amansi-EtOH extracts on the adipogenesis with MAPK signals in adipocytes with or without macrophages

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150813

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160728

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170725

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee