KR101173989B1 - Method of manufacturing for a polymer membrane containing nano sized metal particles - Google Patents

Method of manufacturing for a polymer membrane containing nano sized metal particles Download PDF

Info

Publication number
KR101173989B1
KR101173989B1 KR1020050072310A KR20050072310A KR101173989B1 KR 101173989 B1 KR101173989 B1 KR 101173989B1 KR 1020050072310 A KR1020050072310 A KR 1020050072310A KR 20050072310 A KR20050072310 A KR 20050072310A KR 101173989 B1 KR101173989 B1 KR 101173989B1
Authority
KR
South Korea
Prior art keywords
polymer solution
metal
high concentration
metal nanoparticles
nanoparticles
Prior art date
Application number
KR1020050072310A
Other languages
Korean (ko)
Other versions
KR20070017741A (en
Inventor
재 희 류
성 학 최
영 태 우
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to KR1020050072310A priority Critical patent/KR101173989B1/en
Publication of KR20070017741A publication Critical patent/KR20070017741A/en
Application granted granted Critical
Publication of KR101173989B1 publication Critical patent/KR101173989B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2331/00Characterised by the use of copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, or carbonic acid, or of a haloformic acid
    • C08J2331/02Characterised by the use of omopolymers or copolymers of esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 금속 나노 입자를 함유하는 분리막의 제조방법에 관한 것으로서, (ⅰ)금속염을 저농도의 폴리머 용액에 용해시킨 후 상기 금속염을 환원시켜 저농도의 폴리머 용액내에 나노 크기의 금속 입자(금속 나노 입자)를 형성하는 공정, (ⅱ)금속 나노 입자가 형성되어 있는 상기의 저농도의 폴리머 용액을 고농도의 폴리머 용액에 첨가하여 금속 나노 입자를 고농도의 폴리머 용액에 고르게 분산하는 공정 및 (ⅲ)금속 나노 입자가 고르게 분산된 상기 고농도의 폴리머 용액으로 분리막을 제조하는 공정을 포함하는 것을 특징으로 한다.The present invention relates to a method for manufacturing a separator containing metal nanoparticles, (i) dissolving a metal salt in a low concentration polymer solution and then reducing the metal salt to reduce the metal salt in nano size metal particles (metal nanoparticles) in a low concentration polymer solution. (Ii) adding the low concentration polymer solution in which the metal nanoparticles are formed to the high concentration polymer solution to uniformly disperse the metal nanoparticles in the high concentration polymer solution, and (iii) the metal nanoparticles It characterized in that it comprises a step of producing a separator from the polymer solution of high concentration dispersed evenly.

본 발명은 금속 나노 입자를 폴리머 용액내에서 형성시킴으로서 금속 나노 입자의 크기를 용이하게 제어할 수 있고, 금속 나노 입자의 분산효과를 극대화 시킬 수 있다.The present invention can easily control the size of the metal nanoparticles by forming the metal nanoparticles in the polymer solution, it is possible to maximize the dispersion effect of the metal nanoparticles.

그로인해 본 발명으로 제조된 분리막은 내오염성이 매우 우수하고, 사용수명도 길어진다.As a result, the separator prepared according to the present invention has excellent stain resistance and a long service life.

금속 입자, 나노입자, 분리막, 금속염, 환원, 내오염성, 사용수명. Metal particles, nano particles, membranes, metal salts, reduction, pollution resistance, service life.

Description

금속 나노 입자를 함유하는 분리막의 제조방법 {Method of manufacturing for a polymer membrane containing nano sized metal particles}Method for manufacturing a membrane containing metal nanoparticles {Method of manufacturing for a polymer membrane containing nano sized metal particles}

본 발명은 크기가 10~1,000㎚인 금속 입자(이하 "금속 나노 입자"라고 한다)를 함유하는 분리막의 제조방법에 관한 것으로서, 보다 구체적으로는 본 발명은 상기의 금속 나노 입자를 분리막 제조용 폴리머 용액내에서 형성함으로서 금속 나노 입자의 분산성과 분리막의 내오염성을 더욱 향상시켜 주는 금속 나노 입자를 함유하는 분리막의 제조방법에 관한 것이다.The present invention relates to a method for producing a separator containing metal particles having a size of 10 ~ 1,000nm (hereinafter referred to as "metal nanoparticles"), more specifically the present invention is a polymer solution for producing a membrane membrane The present invention relates to a method for producing a separator containing metal nanoparticles which further improves dispersibility of metal nanoparticles and fouling resistance of the separator.

유기 및 무기 나노 입자는 그 독특한 기계적, 광학적, 자기적, 촉매적 특성으로 다양한 분야로의 적용이 가능하다. 특히, 전자 혹은 광학 분야에서 다양한 나노 입자의 구성과 크기의 제어는 제품의 품질과 가격을 결정하는 중요한 인자로서 이에 대한 연구개발이 활발히 진행되고 있다. 반응 촉매로서의 나노 입자는 일반적인 다른 촉매에 비해 표면적이 매우 넓기 때문에 극소량의 사용으로도 그 이상의 효과를 볼 수 있으며 그 활성 또한 매우 우수하다고 알려졌다.Organic and inorganic nanoparticles can be applied to various fields due to their unique mechanical, optical, magnetic and catalytic properties. In particular, the control of the composition and size of various nanoparticles in the electronic or optical field is an important factor in determining the quality and price of products, and research and development on these are being actively conducted. Nanoparticles as a reaction catalyst have a much larger surface area than other catalysts, and even a small amount of use can be used for further effects and the activity is also known to be excellent.

다양한 금속 나노 입자중에서 제균력과 살균력이 우수한 은 및 금 나노 입자 들은 범용적으로 실생활에 응용되어 사용되어지고 있다.Among various metal nanoparticles, silver and gold nanoparticles having excellent bactericidal and bactericidal properties have been widely used in real life.

이러한 우수한 활성을 보이는 나노 입자는 일반적으로 자외선 혹은 플라즈마 조사를 통해 화합물을 환원시킴으로써 얻을 수 있다. 한국 등록특허 제 10-0379250에서는 고분자 용액에 은염 혹은 금염을 첨가하여 단일상의 용액을 만들고, 이 용액으로 고분자 필름을 형성시킨 후 자외선를 조사하여 필름내에 나노 입자를 형성시키는 방법을 제시하였다. 이 방법은 자외선 조사에 의해 고분자 내의 관능기의 전자적 여기가 발생하고 이것에 의해서 금속염의 환원이 이뤄어지기 때문이다.Nanoparticles exhibiting such excellent activity can generally be obtained by reducing the compound through ultraviolet or plasma irradiation. Korean Patent No. 10-0379250 proposes a method of forming a single-phase solution by adding a silver salt or a gold salt to a polymer solution, forming a polymer film with the solution, and then irradiating ultraviolet rays to form nanoparticles in the film. This is because electronic excitation of the functional group in the polymer is generated by ultraviolet irradiation, and the metal salt is thereby reduced.

이와 같이 나노 입자를 포함한 고분자 막은 나노 입자의 특성이 발현되는 고분자 막으로 그 활용 분야는 다양하며 특히 수처리 분야에서 분리막의 특성을 향상시킬 수 있는 한 방법이 될 수 있다.As such, the polymer membrane including the nanoparticles is a polymer membrane in which the characteristics of the nanoparticles are expressed, and its application fields are various, and in particular, it may be a method of improving the characteristics of the separator in the water treatment field.

항균 효과를 갖는 분리막의 제조로 한국 등록특허 제 10-0444126에서는 광촉매 특성을 갖는 티탄화합물을 나노 입자 크기로 분리막내에 분산시킴으로써 수처리시 막의 성능을 저하시키는 파울링 작용을 억제할 수 있다고 보고하고 있다. 수처리 공정에서 분리막의 투과특성을 저하시키는 요인은 장시간 운전으로 미생물에 의해서 분리막 표면에 바이오 필름이 형성되기 때문이다. 따라서 상기 방법은 티탄화합물을 사용하여 분리막 표면에서의 미생물의 반응을 억제함으로써 분리막의 성능을 장시간 유지할 수 있지만 사용한 촉매가 광촉매이기 때문에 자외선이나 태양광이 존재해야만 내오염성을 오랫동안 지속시킬 수 있는 단점이 있다.Korean Patent No. 10-0444126 reports that a titanium compound having a photocatalytic property can be dispersed in a separator having a nanoparticle size in a separator to suppress a fouling effect that degrades the membrane during water treatment. . The deterioration of the permeation characteristics of the membrane in the water treatment process is because the biofilm is formed on the membrane surface by the microorganisms for a long time operation. Therefore, the method can maintain the performance of the membrane for a long time by inhibiting the reaction of microorganisms on the surface of the membrane using a titanium compound, but since the used catalyst is a photocatalyst, it is disadvantageous that long-term contamination resistance can be maintained only when UV or sunlight is present. have.

본 발명은 금속 나노 입자를 분리막 제조용 폴리머 용액 내에서 형성시킴으로써 그 크기를 쉽게 제어하고 나노 입자의 뭉침 현상을 억제하여 분산 효과를 극대화시킴으로서 내오염성이 우수한 분리막을 제조하고자 한다. The present invention is to prepare a membrane having excellent fouling resistance by forming the metal nanoparticles in the polymer solution for preparing the membrane to easily control the size and to maximize the dispersion effect by inhibiting the aggregation of the nanoparticles.

이와같은 과제를 달성하기 위한 본 발명의 금속 나노 입자를 함유하는 분리막의 제조방법은 (ⅰ)금속염을 저농도의 폴리머 용액에 용해시킨 후 상기 금속염을 환원시켜 저농도의 폴리머 용액내에 나노 크기의 금속 입자(금속 나노 입자)를 형성하는 공정, (ⅱ)금속 나노 입자가 형성되어 있는 상기의 저농도의 폴리머 용액을 고농도의 폴리머 용액에 첨가하여 금속 나노 입자를 고농도의 폴리머 용액에 고르게 분산하는 공정 및 (ⅲ)금속 나노 입자가 고르게 분산된 상기 고농도의 폴리머 용액으로 분리막을 제조하는 공정을 포함하는 것을 특징으로 한다.In order to achieve the above object, a method of preparing a separator containing the metal nanoparticles of the present invention includes (i) dissolving a metal salt in a low concentration polymer solution and then reducing the metal salt to reduce the size of the nanoparticle metal particles in the low concentration polymer solution ( Metal nanoparticles), (ii) adding the low concentration polymer solution in which the metal nanoparticles are formed to a high concentration polymer solution to evenly disperse the metal nanoparticles in the high concentration polymer solution, and (iii) It characterized in that it comprises a step of producing a separator from the polymer solution of the high concentration in which metal nanoparticles are evenly dispersed.

이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 저농도의 폴리머 용액내에서 금속 나노 입자를 형성하는 단계와 형성된 금속 나노 입자를 고농도의 폴리머 용액에 첨가하여 분산시키는 단계 그리고 나노 입자를 포함한 고농도의 폴리머 용액을 분리막으로 형성시키는 3단계로 구성된다.The present invention comprises three steps of forming metal nanoparticles in a low concentration polymer solution, adding and dispersing the formed metal nanoparticles to a high concentration polymer solution, and forming a high concentration polymer solution including nanoparticles as a separator. do.

본 발명은 먼저 금속염을 저농도의 폴리머 용액에 용해시킨 후 상기 금속염을 환원시켜 저농도의 폴리머 용액내에 금속 나노 입자를 형성시킨다.The present invention first dissolves a metal salt in a low concentration polymer solution and then reduces the metal salt to form metal nanoparticles in the low concentration polymer solution.

상기 금속염으로는 Sc, Ti, Zr, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au 및 Zn 중에서 선택된 1종 또는 2종 이상의 원소를 함유하는 금속화합물을 사용하는 것이 바람직하다.The metal salt may be selected from Sc, Ti, Zr, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, and Zn. Preference is given to using metal compounds containing species or two or more elements.

상기 금속염을 금속 나노 입자 입자로 환원시키는 반응물로는 금속염의 종류에 따라 달라지지만 주로 Na2CO3, Na2S2O4등과 같은 환원제를 사용하며, 상기의 환원제와 함께 계면활성제를 동시에 사용 할 수도 있다.As a reactant for reducing the metal salt to metal nanoparticle particles, depending on the type of metal salt, a reducing agent such as Na 2 CO 3 , Na 2 S 2 O 4, etc. is mainly used, and a surfactant may be used simultaneously with the reducing agent. It may be.

저농도의 폴리머 용액내 금속염의 농도는 0.001~1몰%, 보다 바람직하기로는 0.01~0.5몰%인 것이 바람직하다.The concentration of the metal salt in the low concentration polymer solution is preferably 0.001 to 1 mol%, more preferably 0.01 to 0.5 mol%.

상기 농도가 0.001몰% 미만일 경우에는 내오염성 향상 효과가 거의 나타나지 않으며, 1몰%를 초과할 경우에는 금속 나노 입자의 뭉침현상으로 분산성이 저하될 수도 있다.When the concentration is less than 0.001 mol%, the effect of improving the stain resistance is hardly observed. When the concentration is more than 1 mol%, dispersibility may be reduced due to agglomeration of metal nanoparticles.

한편, 저농도의 폴리머 용액을 구성하는 폴리머로는 후술하는 고농도의 폴리머 용액을 구성하는 폴리머와 동일하거나, 고농도의 폴리머 용액에용해될 수 있는 폴리머를 사용하는 것이 좋다.On the other hand, as the polymer constituting the low concentration polymer solution, it is preferable to use a polymer that is the same as the polymer constituting the high concentration polymer solution described later or that can be dissolved in a high concentration polymer solution.

다음으로, 상기와 같이 금속 나노 입자가 형성되어 있는 저농도의 폴리머 용액을 고농도의 폴리머 용액에 첨가하여 금속 나노 입자를 고농도의 폴리머 용액내에 고르게 분산시킨다.Next, the low concentration polymer solution in which the metal nanoparticles are formed as described above is added to the high concentration polymer solution to uniformly disperse the metal nanoparticles in the high concentration polymer solution.

상기의 고농도의 폴리머 용액은 이를 구성하는 폴리머 또는 폴리머와 첨가물로 이루어진다. 다시말해, 상기 첨가물은 선택적으로 사용된다.The high concentration of the polymer solution is composed of the polymer or polymer and additives constituting it. In other words, the additive is optionally used.

고농도의 폴리머 용액을 구성하는 폴리머로는 폴리아세테이트, 폴리아크릴로니트릴, 폴리설폰, 폴리에테르설폰, 폴리비닐리덴프탈레이트, 폴리아마이드, 폴리이민 및 이들의 유도체 중에서 선택된 1종의 수지 또는 2종 이상의 수지 혼합물등이 사용될 수 있다.The polymer constituting the high concentration of the polymer solution is one resin or two or more resins selected from polyacetate, polyacrylonitrile, polysulfone, polyethersulfone, polyvinylidenephthalate, polyamide, polyimine and derivatives thereof Mixtures and the like can be used.

고농도의 폴리머 용액내 상기 폴리머의 함량은 5~50중량%, 보다 바람직하기로는 10~30중량%인 것이 바람직하다.The content of the polymer in the high concentration polymer solution is 5 to 50% by weight, more preferably 10 to 30% by weight.

한편, 고농도의 폴리머 용액을 구성하는 첨가물로는 글리콜류화합물, 친수성 폴리머, 글리세린, 물 및 유기용매 중에서 선택된 1종 이거나 이들의 혼합물 등이 사용될 수 있다.On the other hand, as an additive constituting a high concentration of the polymer solution, one or a mixture of glycol compounds, hydrophilic polymers, glycerin, water, and an organic solvent may be used.

글리콜류 화합물로는 폴리에틸렌글리콜, 폴리프로필렌글리콜등이 사용될 수 있고, 친수성 폴리머는 폴리비닐피롤리돈등이 사용될 수 있다.Polyethylene glycol, polypropylene glycol, etc. may be used as a glycol compound, and polyvinylpyrrolidone etc. may be used for a hydrophilic polymer.

고농도의 폴리머 용액내 첨가물의 함량은 5~20중량%인 것이 바람직하다.The content of the additive in the high concentration polymer solution is preferably 5 to 20% by weight.

저농도의 폴리머 용액 및 고농도의 폴리머 용액의 용매로는 메틸포름아미드, N-메틸-2-피롤리돈, 디메틸아세트아미드 등이 사용될 수 있고, 서로 동일한 용매를 사용하는 것이 바람직하나, 특성에 따라서 서로 용해될 수 있는 상이한 용매들을 함께 사용할 수도 있다.As a solvent of the low concentration polymer solution and the high concentration polymer solution, methyl formamide, N-methyl-2-pyrrolidone, dimethylacetamide, etc. may be used, and it is preferable to use the same solvent, but depending on the characteristics Different solvents that can be dissolved may also be used together.

다음으로는, 상기와 같은 공정들에 의해서 금속 나노 입자가 고르게 분산되어 있는 고농도의 폴리머 용액을 상분리법과 같은 방법으로 분리막을 제조한다.Next, a separation membrane is manufactured by a method similar to a phase separation method of a polymer solution having a high concentration in which metal nanoparticles are uniformly dispersed by the above processes.

분리막의 형태는 중공사형, 관형, 디스크형 및 평막 중 어느것 이라도 무방하다.The shape of the separator may be any of hollow fiber, tubular, disk and flat membrane.

이하, 실시예 및 비교실시예를 통하여 본 발명을 보다 구체적으로 살펴본다. 그러나 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. However, the present invention is not limited by the following examples.

실시예Example 1 One

폴리설폰 1중량%가 용해된 디메틸아세트아마이드에 은염(AgBF4)을 용해시킨 후 환원제로 Na2CO3를 첨가하고 상온에서 70℃로 가열하면서 교반하여 은 나노 입자가 형성(포함)된 용액을 제조하였다. 상기 용액 내 은 나노 입자의 형성은 UV-비스(Vis) 스펙트로미터로 확인하였다.After dissolving silver salt (AgBF 4 ) in dimethylacetamide in which 1% by weight of polysulfone was dissolved, Na 2 CO 3 was added as a reducing agent and stirred while heating to 70 ° C. at room temperature to form a solution containing silver nanoparticles (inclusive). Prepared. Formation of silver nanoparticles in the solution was confirmed by UV-Vis spectrometer.

한편, 폴리설폰수지 17중량%, 폴리비닐피롤리돈 11중량%, 폴리에틸렌글리콜 4중량%를 디메틸아세트아마이드 68중량%에 투입한 후 교반, 용해시켜 투명한 고분자 용액을 제조하였다.Meanwhile, 17% by weight of polysulfone resin, 11% by weight of polyvinylpyrrolidone, and 4% by weight of polyethylene glycol were added to 68% by weight of dimethylacetamide, followed by stirring and dissolving to prepare a transparent polymer solution.

앞서 제조한 은 나노 입자를 포함하는 용액을 상기의 투명한 고분자 용액에 시간 간격을 두고 첨가, 분산시켜 은 나노 입자가 포함된 고분자 용액을 제조하였다.The polymer solution containing silver nanoparticles was prepared by adding and dispersing the solution containing silver nanoparticles prepared above at a time interval to the transparent polymer solution.

다음으로 상분리법을 이용하여 은 나노 입자가 포함된 고분자 용액으로 평막형태의 분리막을 제조 한후, 이들을 번들링하여 모듈을 제조하였다.Next, using a phase separation method to prepare a separator in the form of a flat membrane with a polymer solution containing silver nanoparticles, and then bundling them to prepare a module.

제조한 분리막 및 모듈의 각종 물성들을 평가한 결과는 표 1과 같다.The results of evaluating various properties of the prepared membrane and module are shown in Table 1.

실시예Example 2 2

은염으로 AgBF4 대신에 AgSO3CF3를 사용한 것을 제외하고는 실시예 1과 동일하게 분리막 및 모듈을 제조하였다.Separators and modules were prepared in the same manner as in Example 1, except that AgSO 3 CF 3 was used instead of AgBF 4 as the silver salt.

제조한 분리막 및 모듈의 각종물성들을 평가한 결과는 표 1과 같다.The results of evaluating various properties of the prepared membrane and module are shown in Table 1.

실시예Example 3 3

폴리설폰 1중량%가 용해된 디메틸아세트아마이드에 은염(AgBF4)을 용해시킨 후 환원제로 Na2CO3를 첨가하고 상온에서 70℃로 가열하면서 교반하여 은 나노 입자가 형성(포함)된 용액을 제조하였다. 상기 용액 내 은 나노 입자의 형성은 UV-비스(Vis) 스펙트로미터로 확인하였다.After dissolving silver salt (AgBF 4 ) in dimethylacetamide in which 1% by weight of polysulfone was dissolved, Na 2 CO 3 was added as a reducing agent and stirred while heating to 70 ° C. at room temperature to form a solution containing silver nanoparticles (inclusive). Prepared. Formation of silver nanoparticles in the solution was confirmed by UV-Vis spectrometer.

한편, 폴리에테르설폰수지 20중량%, 폴리비닐피롤리돈 7중량%, 폴리프로필렌글리콜 5중량%를 디메틸아세트아마이드 68중량%에 투입한 후 교반, 용해시켜 투명한 고분자 용액을 제조하였다.Meanwhile, 20% by weight of polyether sulfone resin, 7% by weight of polyvinylpyrrolidone, and 5% by weight of polypropylene glycol were added to 68% by weight of dimethylacetamide, followed by stirring and dissolving to prepare a transparent polymer solution.

앞서 제조한 은 나노 입자를 포함하는 용액을 상기의 투명한 고분자 용액에 시간 간격을 두고 첨가, 분산시켜 은 나노 입자가 포함된 고분자 용액을 제조하였다.The polymer solution containing silver nanoparticles was prepared by adding and dispersing the solution containing silver nanoparticles prepared above at a time interval to the transparent polymer solution.

다음으로 상분리법을 이용하여 은 나노 입자가 포함된 고분자 용액으로 평막형태의 분리막을 제조 한후, 이들을 번들링하여 모듈을 제조하였다.Next, using a phase separation method to prepare a separator in the form of a flat membrane with a polymer solution containing silver nanoparticles, and then bundling them to prepare a module.

제조한 분리막 및 모듈의 각종 물성들을 평가한 결과는 표 1과 같다.The results of evaluating various properties of the prepared membrane and module are shown in Table 1.

실시예Example 4 4

N-메틸-2-피롤리돈에 금염(HAuCl4)을 분산시킨 후 환원제로 Na2S2O3를 첨가하고 상온에서 70℃로 가열하면서 교반하여 금 나노 입자가 형성(포함) 용액을 제조하였다. 상기 용액내 금 나노 입자의 형성은 UV-비스(Vis) 스펙트로미터로 확인하였다.After dispersing gold salt (HAuCl 4 ) in N-methyl-2-pyrrolidone, Na 2 S 2 O 3 was added as a reducing agent and stirred while heating to 70 ° C. at room temperature to prepare a solution of gold nanoparticle formation (inclusive). It was. Formation of gold nanoparticles in the solution was confirmed by UV-Vis spectrometer.

한편, 폴리설폰수지 17중량%, 폴리비닐피롤리돈 11중량%, 폴리에틸렌글리콜 4중량%를 디메틸아세트아마이드 68중량%에 투입한 후 교반, 용해시켜 투명한 고분자 용액을 제조하였다.Meanwhile, 17% by weight of polysulfone resin, 11% by weight of polyvinylpyrrolidone, and 4% by weight of polyethylene glycol were added to 68% by weight of dimethylacetamide, followed by stirring and dissolving to prepare a transparent polymer solution.

앞서 제조한 금 나노 입자를 포함하는 용액을 상기의 투명한 고분자 용액에 시간 간격을 두고 첨가, 분산시켜 금 나노 입자가 포함된 고분자 용액을 제조하였다.The polymer solution containing gold nanoparticles was prepared by adding and dispersing the solution containing the gold nanoparticles prepared above at a time interval to the transparent polymer solution.

다음으로 상분리법을 이용하여 금 나노 입자가 포함된 고분자 용액으로 평막형태의 분리막을 제조 한후, 이들을 번들링하여 모듈을 제조하였다.Next, using a phase separation method to prepare a membrane in the form of a flat membrane with a polymer solution containing gold nanoparticles, and then bundle them to prepare a module.

제조한 분리막 및 모듈의 각종 물성들을 평가한 결과는 표 1과 같다.The results of evaluating various properties of the prepared membrane and module are shown in Table 1.

비교실시예Comparative Example 1 One

폴리설폰수지 17중량%, 폴리비닐피롤리돈 11중량%, 폴리에틸렌글리콜 4중량%를 디메틸아세트아마이드 68중량%에 투입한 후 교반, 용해시켜 투명한 고분자 용액을 제조하였다.17% by weight of polysulfone resin, 11% by weight of polyvinylpyrrolidone and 4% by weight of polyethylene glycol were added to 68% by weight of dimethylacetamide, followed by stirring and dissolving to prepare a transparent polymer solution.

다음으로 상분리법을 이용하여 상기 고분자 용액으로 평막형태의 분리막을 제조 한후, 이들을 번들링하여 모듈을 제조하였다.Next, using a phase separation method to prepare a membrane in the form of a membrane with the polymer solution, and then bundling them to prepare a module.

제조한 분리막 및 모듈의 각종 물성들을 평가한 결과는 표 1과 같다.The results of evaluating various properties of the prepared membrane and module are shown in Table 1.

물성평가 결과Property evaluation result 구분division 분리막의
일반세균
농도(CFU/㎖)
Separator
General bacteria
Concentration (CFU / mL)
모듈의 누적유량별 순간유량(L/분)Instantaneous flow rate (L / min) by accumulated flow rate of module
1,000ℓ
(누적유량)
1,000ℓ
(Cumulative flow rate)
5,000ℓ
(누적유량)
5,000ℓ
(Cumulative flow rate)
10,000ℓ
(누적유량)
10,000ℓ
(Cumulative flow rate)
실시예 1Example 1 3030 2.662.66 2.532.53 2.422.42 실시예 2Example 2 4545 2.562.56 2.362.36 2.312.31 실시예 3Example 3 4444 2.552.55 2.342.34 2.212.21 실시예 4Example 4 2222 2.682.68 2.642.64 2.532.53 비교실시예 1Comparative Example 1 12,60012,600 1.951.95 0.540.54 0.430.43

상기 표에서, 금속 나노 입자를 함유하는 실시예 1 내지 실시예 4는 분리막의 일반세균농도가 감소하였으나 금속 나노 입자를 함유하지 않은 비교실시예 1은 분리막의 일반 세균 농도가 오히려 증가 하였다.In the above table, Examples 1 to 4 containing the metal nanoparticles decreased the general bacterial concentration of the separator, but Comparative Example 1 containing no metal nanoparticles increased the general bacterial concentration of the separator.

또한, 실시예 1 내지 실시예 4는 누적 유량이 증가하여도 순간유량이 일정하게 유지되나, 비교실시예 1은 누적 유량의 증가에 따라 순간유량이 급격하게 감소함을 알 수 있다.In addition, in Examples 1 to 4, the instantaneous flow rate is kept constant even when the cumulative flow rate is increased, but in Comparative Example 1, it can be seen that the instantaneous flow rate decreases rapidly as the cumulative flow rate is increased.

본 발명에 있어서 분리막의 내오염성과 분리막 모듈의 수투과 성능은 아래와 같은 방법으로 평가하였다.In the present invention, the fouling resistance of the membrane and the water permeation performance of the membrane module were evaluated by the following method.

ㆍ분리막의 내오염성(일반세균 농도)ㆍ Pollution resistance of the membrane (general bacterial concentration)

모듈에 원수(1,500 CFU/㎖)를 충진하고, 37℃ 항온배양기에서 24시간 동안 세균을 배양한 후 모듈에 충진된 충진수(水)내 일반세균 농도를 측정하였다.Raw water (1,500 CFU / mL) was charged to the module, the bacteria were incubated in a 37 ° C. incubator for 24 hours, and the general bacterial concentration in the packed water was measured in the module.

ㆍ분리막 모듈의 ㆍ membrane module 수투과성능Water transmission performance (모듈의 누적유량별 순간 유량)(Momentary flow rate by accumulated flow rate of module)

각각의 모듈에 1㎏/㎠의 압력으로 누적유량이 1,000ℓ, 5,000ℓ 및 10,000ℓ일때의 순간유량을 비교하였다.The instantaneous flow rates at 1,000 L, 5,000 L and 10,000 L at the pressure of 1 kg / cm 2 in each module were compared.

본 발명은 금속 나노 입자를 분리막 제조용 폴리머 용액내에서 형성하기 때문에 상기 금속 나노 입자의 크기 조절이 용이하고, 이들을 균일하게 분리막에 분산 시킬 수 있다.In the present invention, since the metal nanoparticles are formed in a polymer solution for preparing a separator, the size of the metal nanoparticles can be easily adjusted, and they can be uniformly dispersed in the separator.

본 발명의 방법으로 제조된 분리막은 내오염성이 뛰어나 가정용이나 의료용 수처리 분리막으로 사용이 가능하며, 산업분야의 수처리 분리막으로 사용할 경우에는 파울링 현상을 최소화 할 수 있어서 사용 수명이 연장되는 효과가 있다.The membrane prepared by the method of the present invention is excellent in fouling resistance and can be used as a water treatment membrane for home or medical treatment, and when used as an industrial water treatment membrane, fouling phenomenon can be minimized, thereby extending the service life.

Claims (12)

(ⅰ)금속염을 저농도의 폴리머 용액에 용해시킨 후 환원제를 사용하여 상기 금속염을 환원시켜 저농도의 폴리머 용액내에 나노 크기의 금속 입자(금속 나노 입자)를 형성하는 공정, (ⅱ)금속 나노 입자가 형성되어 있는 상기의 저농도의 폴리머 용액을 고농도의 폴리머 용액에 첨가하여 금속 나노 입자를 고농도의 폴리머 용액에 고르게 분산하는 공정 및 (ⅲ)금속 나노 입자가 고르게 분산된 상기 고농도의 폴리머 용액으로 분리막을 제조하는 공정을 포함하는 것을 특징으로 하는 금속 나노 입자를 함유하는 분리막의 제조방법.(Iii) dissolving a metal salt in a low concentration polymer solution and then reducing the metal salt using a reducing agent to form nano-sized metal particles (metal nanoparticles) in a low concentration polymer solution, (ii) forming metal nanoparticles. Adding a low concentration polymer solution to a high concentration polymer solution to uniformly disperse the metal nanoparticles in a high concentration polymer solution, and (i) preparing a membrane from the high concentration polymer solution in which the metal nanoparticles are evenly dispersed. A method for producing a separator containing metal nanoparticles, comprising the step. 1항에 있어서, 금속염은 Sc, Ti, Zr, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au 및 Zn 중에서 선택된 1종 또는 2종 이상의 원소를 함유하는 금속화합물인 것을 특징으로 하는 금속 나노 입자를 함유하는 분리막의 제조방법.The metal salt of claim 1, wherein the metal salt is Sc, Ti, Zr, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au and Zn Method of producing a separator containing metal nanoparticles, characterized in that the metal compound containing one or two or more selected elements. 삭제delete 1항에 있어서, 환원제와 함께 계면활성제를 사용하여 금속염을 금속 나노 입자로 환원시키는 것을 특징으로 하는 금속 나노 입자를 함유하는 분리막의 제조방 법.The method according to claim 1, wherein the metal salt is reduced to the metal nanoparticles by using a surfactant together with a reducing agent. 1항에 있어서, 저농도의 폴리머 용액내 금속염의 농도는 0.001~1몰%인 것을 특징으로 하는 금속 나노 입자를 함유하는 분리막의 제조방법.The method according to claim 1, wherein the concentration of the metal salt in the low concentration polymer solution is 0.001 to 1 mol%. 1항에 있어서, 저농도의 폴리머 용액을 구성하는 폴리머는 고농도의 폴리머 용액을 구성하는 폴리머와 동일하거나 고농도의 폴리머 용액에 용해될수 있는 폴리머인 것을 특징으로 하는 금속 나노 입자를 함유하는 분리막의 제조방법.The method of claim 1, wherein the polymer constituting the low concentration polymer solution is the same polymer as the polymer constituting the high concentration polymer solution, or a polymer that can be dissolved in a high concentration polymer solution. 1항에 있어서, 고농도의 폴리머 용액은 폴리머와 첨가물로 구성되는 것을 특징으로 하는 금속 나노 입자를 함유하는 분리막의 제조방법.The method of claim 1, wherein the polymer solution of high concentration is composed of a polymer and an additive. 1항 또는 7항에 있어서, 고농도의 폴리머 용액을 구성하는 폴리머는 폴리아세테이트, 폴리아크릴로니트릴, 폴리설폰, 폴리에테르설폰, 폴리비닐리덴프탈레이트, 폴리아마이드, 폴리이민 및 이들의 유도체 중에서 선택된 1종 또는 2종 이상의 혼합물인 것을 특징으로 하는 금속 나노 입자를 함유하는 분리막의 제조방법.The polymer constituting the high concentration polymer solution according to claim 1 or 7 is selected from polyacetate, polyacrylonitrile, polysulfone, polyethersulfone, polyvinylidenephthalate, polyamide, polyimine and derivatives thereof. Or a mixture of two or more kinds thereof. 7항에 있어서, 고농도의 폴리머 용액을 구성하는 첨가물이 글리콜류 화합물, 폴리프로필렌글리콜, 폴리비닐피롤리돈, 글리세린 및 물중에서 선택된 1종 이거나 이들의 혼합물인 것을 특징으로 하는 금속 나노 입자를 함유하는 분리막의 제조방 법.8. The metal nanoparticle according to claim 7, wherein the additive constituting the high concentration polymer solution is one or a mixture of glycol compounds, polypropylene glycol, polyvinylpyrrolidone, glycerin, and water. Method of Preparation of Membrane. 7항에 있어서, 고농도의 폴리머 용액내 폴리머의 함량이 5~50중량%인 것을 특징으로 하는 금속 나노 입자를 함유하는 분리막의 제조방법.The method of claim 7, wherein the content of the polymer in the high concentration polymer solution is 5 to 50% by weight. 7항에 있어서, 고농도의 폴리머 용액내 첨가물의 함량이 5~20중량%인 것을 특징으로 하는 금속 나노 입자를 함유하는 분리막의 제조방법.The method of claim 7, wherein the content of the additive in the high concentration polymer solution is 5 to 20% by weight. 1항에 있어서, 분리막의 형태가 중공사형, 관형, 디스크형 및 평막형 중에서 선택된 하나인 것을 특징으로 하는 금속 나노 입자를 함유하는 분리막의 제조방법.The method of claim 1, wherein the separation membrane is one selected from the group consisting of hollow fiber, tubular, disk and flat membrane.
KR1020050072310A 2005-08-08 2005-08-08 Method of manufacturing for a polymer membrane containing nano sized metal particles KR101173989B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050072310A KR101173989B1 (en) 2005-08-08 2005-08-08 Method of manufacturing for a polymer membrane containing nano sized metal particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050072310A KR101173989B1 (en) 2005-08-08 2005-08-08 Method of manufacturing for a polymer membrane containing nano sized metal particles

Publications (2)

Publication Number Publication Date
KR20070017741A KR20070017741A (en) 2007-02-13
KR101173989B1 true KR101173989B1 (en) 2012-08-16

Family

ID=43651415

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050072310A KR101173989B1 (en) 2005-08-08 2005-08-08 Method of manufacturing for a polymer membrane containing nano sized metal particles

Country Status (1)

Country Link
KR (1) KR101173989B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190888A1 (en) * 2014-06-13 2015-12-17 주식회사 엘지화학 Method for manufacturing hollow metal nanoparticles, and hollow metal nanoparticles manufactured thereby

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448551B1 (en) * 2013-02-20 2014-10-13 서울대학교산학협력단 Anti-biofouling water treatment membrane and method of preparing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021473A (en) 2005-07-12 2007-02-01 Korea Inst Of Science & Technology Nanocomposite separation membrane for olefin/paraffin separation using silver nanoparticle/polymer nanocomposite and its production method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021473A (en) 2005-07-12 2007-02-01 Korea Inst Of Science & Technology Nanocomposite separation membrane for olefin/paraffin separation using silver nanoparticle/polymer nanocomposite and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190888A1 (en) * 2014-06-13 2015-12-17 주식회사 엘지화학 Method for manufacturing hollow metal nanoparticles, and hollow metal nanoparticles manufactured thereby

Also Published As

Publication number Publication date
KR20070017741A (en) 2007-02-13

Similar Documents

Publication Publication Date Title
Li et al. High-flux, antibacterial composite membranes via polydopamine-assisted PEI-TiO2/Ag modification for dye removal
CN102489168B (en) A kind of preparation method of inorganic/organic hybridization antibacterial film
US8951543B2 (en) Nano silver—zinc oxide composition
Zhang et al. Ag modified gC 3 N 4 composite entrapped PES UF membrane with visible-light-driven photocatalytic antifouling performance
Gopalakrishnan et al. Antibacterial activity of Cu2O nanoparticles on E. coli synthesized from Tridax procumbens leaf extract and surface coating with polyaniline
CN103418250B (en) A kind of method at separation membrane surface in-situ preparation nano particle
EP3471864B1 (en) Periodic mesoporous organosilica-doped nanocomposite membranes and systems including same
KR20100085970A (en) Antimicrobial membranes
KR20100107960A (en) Nanoporous films and method of manufacturing nanoporous films
Shan et al. Flexible, mesoporous, and monodispersed metallic cobalt-embedded inorganic nanofibrous membranes enable ultra-fast and high-efficiency killing of bacteria
Peng et al. Antibacterial photocatalytic self‐cleaning poly (vinylidene fluoride) membrane for dye wastewater treatment
CN106215724A (en) A kind of antibacterial composite nanometer filtering film of loading nano silvery and preparation method thereof
JP6989930B2 (en) Polyaniline Conductive polymer is doped with organic acids and metal ions in a certain order, a method for producing an antibacterial and heavy metal removing polyaniline composite, and a polyaniline composite produced by the method.
CN112225893B (en) Porphyrin and hydantoin-based porous organic polymer and preparation method and application thereof
CN104014256A (en) Preparation method of anti-biological-pollution PVDF (polyvinylidene fluoride) film
Vatanpour et al. Defected Ag/Cu-MOF as a modifier of polyethersulfone membranes for enhancing permeability, antifouling properties and heavy metal and dye pollutant removal
KR101173989B1 (en) Method of manufacturing for a polymer membrane containing nano sized metal particles
CN106364124B (en) A kind of antibacterial removes the preparation method of aldehyde composite cellulosic membrane
Jabbarvand Behrouz et al. Surface Bioengineering of Mo2Ga2C MAX Phase to Develop Blended Loose Nanofiltration Membranes for Textile Wastewater Treatment
Mahdavi et al. Fabrication of PVDF mixed matrix nanofiltration membranes incorporated with TiO2 nanoparticles and an amphiphilic PVDF‐g‐PMMA copolymer
CN110694493B (en) Preparation method of porous nano antibacterial particles and composite nanofiltration membrane
KR101448551B1 (en) Anti-biofouling water treatment membrane and method of preparing the same
Melvin Ng et al. Photocatalysts in polysulfone membrane for the removal of humic acid: The effects of PVP and PVa on membrane morphology, separation performance and catalytic hindrance
Bibi et al. Nanomaterials in water purification/desalination
Sri et al. Synthesis and characterization of silver decorated polysulfone/cellulose acetate hybrid ultrafiltration membranes using functionalized TiO2 nanoparticles

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150728

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160801

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170801

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180801

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190801

Year of fee payment: 8