KR101167155B1 - Method for improving the corrosion resistance of magnesium melting crucible - Google Patents

Method for improving the corrosion resistance of magnesium melting crucible Download PDF

Info

Publication number
KR101167155B1
KR101167155B1 KR1020040112564A KR20040112564A KR101167155B1 KR 101167155 B1 KR101167155 B1 KR 101167155B1 KR 1020040112564 A KR1020040112564 A KR 1020040112564A KR 20040112564 A KR20040112564 A KR 20040112564A KR 101167155 B1 KR101167155 B1 KR 101167155B1
Authority
KR
South Korea
Prior art keywords
crucible
magnesium
alloy
corrosion resistance
manganese
Prior art date
Application number
KR1020040112564A
Other languages
Korean (ko)
Other versions
KR20060073360A (en
Inventor
정인호
박우진
안상호
Original Assignee
재단법인 포항산업과학연구원
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원, 주식회사 포스코 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020040112564A priority Critical patent/KR101167155B1/en
Publication of KR20060073360A publication Critical patent/KR20060073360A/en
Application granted granted Critical
Publication of KR101167155B1 publication Critical patent/KR101167155B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/10Crucibles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C22/00Alloys based on manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0036Crucibles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 고온에서 용융된 마그네슘에 의한 도가니의 부식을 방지함과 아울러 이로 인해 발생되는 불순물을 최소화하여 생산되는 마그네슘의 품질을 향상시키기 위한 마그네슘 용해용 도가니의 내식성 향상방법을 제공함을 목적으로 한다.It is an object of the present invention to provide a method for improving corrosion resistance of a crucible for melting magnesium to prevent corrosion of the crucible by molten magnesium at high temperature and to minimize the impurities generated thereby to improve the quality of magnesium produced.

이를 위한 본 발명에 따른 마그네슘 용해용 도가니의 내식성 향상방법은, 마그네슘의 용해에 사용되는 도가니의 내벽에 알루미늄(Al)-망간(Mn) 합금층을 형성시키도록 한 것을 특징으로 한다.Corrosion resistance improvement method of the crucible for melting magnesium according to the present invention for this purpose is characterized in that to form an aluminum (Al) -manganese (Mn) alloy layer on the inner wall of the crucible used for dissolving magnesium.

이러한 알루미늄(Al)-망간(Mn) 합금층은, 아래와 같이 용융시키고자 하는 마그네슘 합금의 종류에 따라 각각 그 조성이 선택될 수 있다.The composition of the aluminum (Al) -manganese (Mn) alloy layer may be selected according to the type of magnesium alloy to be melted as follows.

Mg-3Al-1Zn-0.5Mn(AZ31): 23wt%Al+77wt%Mn~17wt%Al+83wt%Mn (CUB_A13)Mg-3Al-1Zn-0.5Mn (AZ31): 23wt% Al + 77wt% Mn∼17wt% Al + 83wt% Mn (CUB_A13)

Mg-9Al-1Zn-0.5Mn(AZ91): 37wt%Al+63wt%Mn~31wt%Al+69wt%Mn (A18Mn5_D810)Mg-9Al-1Zn-0.5Mn (AZ91): 37wt% Al + 63wt% Mn ~ 31wt% Al + 69wt% Mn (A1 8 Mn 5 _D810)

Mg-5~6Al-1Zn-0.5Mn(AZ50,AM60):6wt%Al+74wt%Mn~20wt%Al+80wt%Mn (CUB_A13)Mg-5-6Al-1Zn-0.5Mn (AZ50, AM60): 6wt% Al + 74wt% Mn-20wt% Al + 80wt% Mn (CUB_A13)

마그네슘 도가니, 금속화합물, 망간, 알루미늄Magnesium crucible, metal compound, manganese, aluminum

Description

마그네슘 용해용 도가니의 내식성 향상방법{Method for improving the corrosion resistance of magnesium melting crucible}Method for improving the corrosion resistance of magnesium melting crucible}

도 1은 종래의 저탄소강 도가니가 내벽에 마그네슘 용탕과의 반응에 의해 생성된 금속간 화합물의 광학사진이다.FIG. 1 is an optical photograph of an intermetallic compound produced by a reaction with a magnesium molten metal on an inner wall of a conventional low carbon steel crucible.

도 2는 본 발명에 따른 알루미늄-망간 합금층의 상의 조성 및 상을 나타내기 위한 알루미늄-망간의 이원계 상태도이다.2 is a binary state diagram of aluminum-manganese for showing the phase composition and phase of the aluminum-manganese alloy layer according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1: 도가니 2: 마그네슘 매트릭스1: crucible 2: magnesium matrix

3: 침전화합물3: precipitated compound

본 발명은 마그네슘 용해용 도가니의 내식성 향상방법에 관한 것으로, 보다 상세하게는 고온에서 용융된 마그네슘에 의한 도가니의 부식을 방지함과 아울러 이로 인해 발생되는 불순물을 최소화하여 생산되는 마그네슘의 품질을 향상시키기 위한 마그네슘 용해용 도가니의 내식성 향상방법에 관한 것이다.The present invention relates to a method for improving the corrosion resistance of a magnesium melting crucible, and more particularly, to prevent corrosion of the crucible by the molten magnesium at high temperature and to minimize the impurities generated thereby to improve the quality of magnesium produced. It relates to a method of improving the corrosion resistance of the crucible for melting magnesium for.

현재 마그네슘 제품은 크게 다이캐스팅(Die-casting), 잉곳캐스팅(Ingot casting), 칠캐스팅(Chill casting) 및 스트립캐스팅(Strip casting) 등에 의하여 생산되는데, 이러한 주조공정을 위하여 마그네슘의 용해에 일반적으로 사용되는 도가니는 저합금(저탄소) 철(Fe)도가니이다. 스테인레스강의 경우에는 스테인레스강에 포함되어 있는 니켈(Ni)이나 크롬(Cr) 등이 마그네슘 용탕 속으로 녹아져 나와 최종제품의 내식성에 치명적인 영향을 끼치므로 마그네슘용 도가니로는 사용되지 않는다.Magnesium products are largely produced by die-casting, ingot casting, chill casting and strip casting, which are commonly used for dissolving magnesium for such casting processes. Crucibles are low alloy (low carbon) iron (Fe) crucibles. In the case of stainless steel, nickel (Ni) or chromium (Cr) contained in stainless steel melts into the magnesium molten metal and has a fatal effect on the corrosion resistance of the final product, so it is not used as a crucible for magnesium.

그러나 이러한 저탄소강의 경우에도 마그네슘 용탕과 반응하여 사용시간이 지나면서 도가니의 두께가 점차 얇아지게 되는 문제가 있다. 이는 도가니의 철성분이 마그네슘 함금에 포함되어 있는 알루미늄(Al)과 망간(Mn)과 반응하기 때문으로서 다음과 같은 반응식으로 표현될 수 있다.However, even in the case of such low carbon steel, there is a problem that the thickness of the crucible gradually becomes thinner as the use time reacts with the magnesium molten metal. This is because the iron component of the crucible reacts with aluminum (Al) and manganese (Mn) contained in the magnesium alloy, and can be expressed by the following reaction formula.

반응1 : xAl + yFe -> AlxFey Reaction 1: xAl + yFe-> Al x Fe y

반응2 : xAl + yMn + zFe -> AlxMnyFez Reaction 2: xAl + yMn + zFe-> Al x Mn y Fe z

이렇게 생성되는 금속간 화합물은 용융 마그네슘의 저부에 가라 앉거나 혹은 마그네슘 제품의 제조시 용탕에 섞여서 제품 표면이나 내부로 들어가게 되며, 시간에 따라서 더 많은 금속간 화합물이 생성되어 마그네슘 제품의 품질을 저하시킨다. 특히 마그네슘 제품에 들어간 Fe를 포함한 금속간 화합물은 마그네슘의 심각한 내식성 저하를 유발한다.The intermetallic compounds thus formed sink to the bottom of the molten magnesium or are mixed in the molten metal during the manufacture of the magnesium product and enter the surface or inside of the product. Over time, more intermetallic compounds are produced to degrade the quality of the magnesium product. . In particular, intermetallic compounds, including Fe in magnesium products, cause severe corrosion resistance of magnesium.

도 1 에서는 도가니(1)의 저부에 침전되어 마그네슘 매트릭스(2)에 섞여 있는 AlxMnyFez의 침전화합물(3)의 형태가 나타나 있는데, 이와 같이 도가니의 저부에 침전된 금속간 화합물을 제거하기 위해서는 상당한 노력이 필요하다. 도가니 내의 금속간 화합물을 제거하기 위한 작업시 용융마그네슘의 산화를 방지하게 위하여 사용하는 보호가스 분위기를 조절하기가 쉽지 않기 때문에 산화물 생성을 유발할 수도 있다.FIG. 1 shows the form of precipitated compound (3) of Al x Mn y Fe z precipitated at the bottom of the crucible (1) and mixed in the magnesium matrix (2). Significant effort is required to remove it. The operation of removing the intermetallic compound in the crucible may cause oxide formation because it is not easy to control the protective gas atmosphere used to prevent oxidation of the molten magnesium.

또한, 용융 마그네슘 합금을 비상시 혹은 의도적으로 도가니 내에서 굳히는 경우에도 도가니에 심각한 손상이 일어날 수 있다. 즉, 마그네슘 합금의 경우 응고가 일어나면서 온도저하에 따라서 HCP구조의 마그네슘 1차 상이 생기고 이때 용융 마그네슘에는 Al과 Mn이 높은 수준으로 고용화 되는데, 이러한 고농도의 마그네슘에서는 위의 반응 1과 반응 2가 더욱 심각하게 일어나므로 도가니의 부식이 더욱 급격히 일어날 수 있다.In addition, serious damage to the crucible can occur even if the molten magnesium alloy is hardened in the crucible in an emergency or intentional manner. That is, in the case of magnesium alloy, as the solidification occurs, a magnesium primary phase of HCP structure is formed according to the temperature drop. At this time, molten magnesium has high solubility of Al and Mn. In such a high concentration of magnesium, the reaction 1 and the reaction 2 are The more severe it is, the more likely the corrosion of the crucible can occur.

본 발명은 이러한 문제점을 해결하기 위하여 제안된 것으로, 고온에서 용융된 마그네슘에 의한 도가니의 부식을 방지하여 기존 도가니에 비하여 긴 수명을 가질 수 있도록 함과 아울러 도가니 내에서 발생되는 불순물을 최소화하여 생산되는 마그네슘의 품질을 향상시키기도록 한 마그네슘 용해용 도가니의 내식성 향상방법을 제공한다.The present invention has been proposed to solve this problem, to prevent corrosion of the crucible by the molten magnesium at high temperature to have a long life compared to the existing crucible and to minimize the impurities generated in the crucible Provided is a method for improving the corrosion resistance of a crucible for melting magnesium to improve the quality of magnesium.

상기의 목적을 달성하기 위한 본 발명에 따른 마그네슘 용해용 도가니의 내식성 향상방법은, 마그네슘의 용해에 사용되는 도가니의 내벽에 알루미늄(Al)-망간(Mn) 합금층을 형성시키도록 한 것을 특징으로 한다. Corrosion resistance improvement method of the crucible for melting magnesium according to the present invention for achieving the above object, characterized in that to form an aluminum (Al) -manganese (Mn) alloy layer on the inner wall of the crucible used for dissolving magnesium. do.                     

이러한 알루미늄(Al)-망간(Mn) 합금층은, 아래와 같이 용융시키고자 하는 마그네슘 합금의 종류에 따라 각각 그 조성이 선택될 수 있다.The composition of the aluminum (Al) -manganese (Mn) alloy layer may be selected according to the type of magnesium alloy to be melted as follows.

Mg-3Al-1Zn-0.5Mn(AZ31): 23wt%Al+77wt%Mn~17wt%Al+83wt%Mn (CUB_A13)Mg-3Al-1Zn-0.5Mn (AZ31): 23wt% Al + 77wt% Mn∼17wt% Al + 83wt% Mn (CUB_A13)

Mg-9Al-1Zn-0.5Mn(AZ91): 37wt%Al+63wt%Mn~31wt%Al+69wt%Mn (A18Mn5_D810)Mg-9Al-1Zn-0.5Mn (AZ91): 37wt% Al + 63wt% Mn ~ 31wt% Al + 69wt% Mn (A1 8 Mn 5 _D810)

Mg-5~6Al-1Zn-0.5Mn(AZ50,AM60):6wt%Al+74wt%Mn~20wt%Al+80wt%Mn (CUB_A13)Mg-5-6Al-1Zn-0.5Mn (AZ50, AM60): 6wt% Al + 74wt% Mn-20wt% Al + 80wt% Mn (CUB_A13)

또한, 알루미늄(Al)-망간(Mn) 합금층의 형성방법은, 용융된 소정조성의 알루미늄-망간합금을 도가니 내벽에 도포한 후 열처리하는 직접코팅방법과 알루미늄-망간 파우더를 도가니의 내벽에 용사코팅하는 방법 중 적어도 어느 하나의 방법을 포함한다.In addition, a method of forming an aluminum (Al) -manganese (Mn) alloy layer is a direct coating method of applying a molten predetermined composition of aluminum-manganese alloy to the crucible inner wall and thermally spraying the aluminum-manganese powder on the inner wall of the crucible At least one method of coating.

이하에서는 상기한 바와 같은 본 발명에 따른 마그네슘 용해용 도가니의 내식성 향상방법에 대하여 구체적으로 살펴본다.Hereinafter, a method for improving corrosion resistance of the crucible for melting magnesium according to the present invention as described above will be described in detail.

종래의 기술에서 언급한 바와 같이, 마그네슘 함금은 일반적으로 Al과 Mn을 포함한다. Mn은 주로 마그네슘의 내식성을 격감 시키는 Fe를 제거하기 위하여 약 0.5wt% 정도 넣게 된다. 이러한 마그네슘 용탕 내의 Al과 Mn은 다음과 같은 반응을 통하여 AlxMny 화합물을 생성하게 된다.As mentioned in the prior art, magnesium alloys generally include Al and Mn. Mn is usually added in an amount of about 0.5wt% to remove Fe, which reduces the corrosion resistance of magnesium. Al and Mn in the magnesium molten metal produces an Al x Mn y compound through the following reaction.

반응 3 : xAl + yMn -> AlxMny Reaction 3: xAl + yMn-> Al x Mn y

여기서 x, y는 마그네슘 합금의 종류에 따라 변화하며, 용융 마그네슘에 들어있는 Al과 Mn의 상대적인 양에 따라서 다른 종류의 화합물을 만들 수 있다. 이와 같이 반응 3을 통하여 생성되는 Al-Mn 합금계 화합물은 열역학적으로 상당히 안정한 화합물로서 열역학적으로 더 이상 용융 마그네슘 합금과 반응하지 않는다. Here, x and y vary depending on the type of magnesium alloy, and different kinds of compounds can be made according to the relative amounts of Al and Mn in the molten magnesium. As described above, the Al-Mn alloy compound produced through Reaction 3 is a thermodynamically stable compound and thermodynamically no longer reacts with the molten magnesium alloy.

따라서, 이러한 Al-Mn 화합물을 미리 도가니의 내벽에 도포 시키게 되면, 용융 마그네슘은 도가니와 더 이상 직접적으로 반응하지 않게 되어 도가니를 보호할 수 있게 된다. 또한, 이러한 Al-Mn 화합물은 열적으로 안정하여, 장시간 용융 마그네슘을 도가니에 넣어두어도 도가니 벽에 도포된 Al-Mn 층과 반응이 일어나지 않기 때문에 반응 1이나 반응 2와 같이 용융 마그네슘 내부에 생성되는 불순물을 방지할 수 있다.Therefore, when the Al-Mn compound is previously applied to the inner wall of the crucible, the molten magnesium is no longer directly reacted with the crucible, thereby protecting the crucible. In addition, since the Al-Mn compound is thermally stable and does not react with the Al-Mn layer applied to the crucible wall even if the molten magnesium is placed in the crucible for a long time, impurities generated inside the molten magnesium, such as the reaction 1 or the reaction 2 Can be prevented.

아래의 표 1에는 AZ31, AM50, AZ91 합금에 대하여 도가니 내벽에 도포되는 Al-Mn 합금의 조성 및 이들의 합금상의 종류가 나타나 있는데, 도 2의 Al-Mn 이원계 상태도에 각 화합물의 종류를 확인할 수 있다.Table 1 below shows the composition of Al-Mn alloys and their alloy phases applied to the inner walls of the crucible for the AZ31, AM50, and AZ91 alloys. The Al-Mn binary system diagram of FIG. 2 shows the type of each compound. have.

[표 1]
[Table 1]

마그네슘 합금Magnesium alloy 도가니 내벽에 도포되는 Al-Mn합금의 조성Composition of Al-Mn Alloy on Crucible Inner Wall 도가니 내벽에 생성되는 Al-Mn합금층의 상Phase of Al-Mn alloy layer formed on the inner wall of crucible Mg-3Al-1Zn-0.5Mn
(AZ31)
Mg-3Al-1Zn-0.5Mn
(AZ31)
23wt%Al+77wt%Mn~
17wt%Al+83wt%Mn
23wt% Al + 77wt% Mn ~
17wt% Al + 83wt% Mn
Cubic_A13Cubic_a13
Mg-9Al-1Zn-0.5Mn
(AZ91)
Mg-9Al-1Zn-0.5Mn
(AZ91)
37wt%Al+63wt%Mn~
31wt%Al+69wt%Mn
37wt% Al + 63wt% Mn ~
31wt% Al + 69wt% Mn
A18Mn5_D810A1 8 Mn 5 _D810
Mg-5~6Al-1Zn-0.5Mn
(AM50,AM60)
Mg-5 ~ 6Al-1Zn-0.5Mn
(AM50, AM60)
26wt%Al+74wt%Mn~
20wt%Al+80wt%Mn
26wt% Al + 74wt% Mn ~
20wt% Al + 80wt% Mn
Cubic_A13Cubic_a13

실험결과에 의하면, AZ31합금의 경우에는 약 20wt%Al+80wt%Mn의 Cubic_A13 Al-Mn 합금을 도가니에 내부에 도포할 경우 750℃ 이하의 온도에서는 용융 마그네슘이 도가니와 반응하여 도가니의 부식을 방지할 수 있다. AM50 합금의 경우에는 약 23wt%Al+77wt%Mn의 Cubic_A13 Al-Mn 합금을 도포할 경우, AZ91 합금의 경우에는 약 34wt%Al+66wt%Mn의 Al8Mn5_D810 합금으로 도포하게 되면 도가니의 내식성을 높일 수 있다.According to the experimental results, in case of AZ31 alloy, about 20wt% Al + 80wt% Mn Cubic_A13 Al-Mn alloy was applied inside the crucible to prevent melting of crucible by melting molten magnesium at the temperature below 750 ℃. can do. In case of AM50 alloy, about 23wt% Al + 77wt% Mn Cubic_A13 Al-Mn alloy is applied.In case of AZ91 alloy, about 34wt% Al + 66wt% Mn Al8Mn5_D810 alloy can improve the crucible corrosion resistance. have.

이러한 Al-Mn 합금을 도가니 벽에 도포하기 위해서는 다음과 같은 방법을 이용할 수 있다. In order to apply this Al-Mn alloy to the crucible wall, the following method can be used.

즉, 저탄소강의 도가니 속에, 적절한 함량을 가진 Al-Mn합금을 녹인 후 도가니 내벽에 골고루 발라주고 500~1000℃ 사이에서 적절한 열처리를 통해서 표 1에 나와 있는 안정된 Al-Mn 합금상을 만들 수 있으며, Al-Mn 파우더를 만들어서 이를 용사코팅 방법으로 골고루 도가니의 내벽에 코팅할 수 있다.That is, in the crucible of low carbon steel, the Al-Mn alloy with appropriate content is melted and evenly applied on the inner wall of the crucible, and the stable Al-Mn alloy phase shown in Table 1 can be made through proper heat treatment between 500 ~ 1000 ℃. Al-Mn powder can be made and coated on the inner wall of the crucible evenly by spray coating method.

이러한 Al-Mn 합금층의 도포는 용해용 도가니의 사용정도에 따라 주기적으로 시행할 수 있으므로 저탄소강 도가니 자체는 반영구적으로 사용할 수 있게 된다. 또한 Al-Mn의로 도포하게 되면 저탄소강 도가니 뿐만 아니라 보다 내열에 강한 합금강을 도가니 본체로 사용하여 그 내벽에 Al-Mn 합금층만 도포하여 사용할 수 있으므로 도가니 본체의 재질을 다양화 할 수 있다. The coating of the Al-Mn alloy layer can be carried out periodically depending on the degree of use of the melting crucible so that the low carbon steel crucible itself can be used semi-permanently. In addition, when the Al-Mn is applied as a low-carbon steel crucible as well as a more heat-resistant alloy steel as the crucible body can be used to apply only the Al-Mn alloy layer on the inner wall, it is possible to diversify the material of the crucible body.

상술한 바와 같은 구조로 이루어진 마그네슘 용해용 도가니의 내식성 향상방법에 따르면, 고온에서 용융된 마그네슘에 의한 도가니의 부식을 방지되어 기존 도가니에 비하여 긴 수명을 가지며 또한 도가니 내에서 발생되는 불순물로 인한 마그네슘 제품의 품질저하가 방지된다.According to the method for improving the corrosion resistance of the magnesium melting crucible having the structure as described above, magnesium products due to impurities generated in the crucible have a longer lifetime than the existing crucible by preventing corrosion of the crucible by the molten magnesium at high temperature Quality deterioration is prevented.

또한, 이러한 마그네슘 용해용 도가니의 내식성 향상방법에 따르면 도가니 본체의 재질을 다양하게 선택할 수 있게 된다.In addition, according to the method of improving the corrosion resistance of the magnesium melting crucible, it is possible to select a variety of materials of the crucible body.

Claims (3)

마그네슘의 용해에 사용되는 도가니의 내벽에 알루미늄(Al)-망간(Mn) 합금층을 형성시키도록 한 마그네슘 용해용 도가니의 내식성 향상방법..A method of improving the corrosion resistance of a crucible for melting magnesium to form an aluminum (Al) -manganese (Mn) alloy layer on the inner wall of the crucible used for melting magnesium. 제 1 항에 있어서,The method of claim 1, 상기 알루미늄(Al)-망간(Mn) 합금층은, 용융시키고자 하는 마그네슘 합금의 종류에 따라 아래의 조성으로 선택된 것을 특징으로 하는 마그네슘 용해용 도가니의 내식성 향상방법.The aluminum (Al) -manganese (Mn) alloy layer is selected from the following composition according to the type of magnesium alloy to be melted, characterized in that the corrosion resistance of the magnesium melting crucible. Mg-3Al-1Zn-0.5Mn(AZ31): 23wt%Al+77wt%Mn~17wt%Al+83wt%Mn Mg-3Al-1Zn-0.5Mn (AZ31): 23wt% Al + 77wt% Mn∼17wt% Al + 83wt% Mn (합금상: CUB_A13)                        (Alloy: CUB_A13) Mg-9Al-1Zn-0.5Mn(AZ91): 37wt%Al+63wt%Mn~31wt%Al+69wt%Mn Mg-9Al-1Zn-0.5Mn (AZ91): 37wt% Al + 63wt% Mn ~ 31wt% Al + 69wt% Mn (합금상: A18Mn5_D810)(Alloy: A1 8 Mn 5 _D810) Mg-5~6Al-1Zn-0.5Mn(AM50,AM60):26wt%Al+74wt%Mn~20wt%Al+80wt%Mn Mg-5 ~ 6Al-1Zn-0.5Mn (AM50, AM60): 26wt% Al + 74wt% Mn ~ 20wt% Al + 80wt% Mn (합금상: CUB_A13)                              (Alloy: CUB_A13) 제 1 항 또는 제 2 항에 있어서,3. The method according to claim 1 or 2, 상기 알루미늄(Al)-망간(Mn) 합금층의 형성방법은, 용융된 알루미늄-망간합금을 도가니 내벽에 도포한 후 열처리하는 직접코팅방법과 알루미늄-망간 파우더를 도가니의 내벽에 용사코팅하는 방법 중 적어도 어느 하나의 방법을 포함하는 것을 특징으로 하는 마그네슘 용해용 도가니의 내식성 향상방법.The method of forming the aluminum (Al) -manganese (Mn) alloy layer is a direct coating method of applying a molten aluminum-manganese alloy to the inner wall of the crucible and heat treatment, and a method of spray coating the aluminum-manganese powder on the inner wall of the crucible A method for improving corrosion resistance of a crucible for melting magnesium, comprising at least one method.
KR1020040112564A 2004-12-24 2004-12-24 Method for improving the corrosion resistance of magnesium melting crucible KR101167155B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040112564A KR101167155B1 (en) 2004-12-24 2004-12-24 Method for improving the corrosion resistance of magnesium melting crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040112564A KR101167155B1 (en) 2004-12-24 2004-12-24 Method for improving the corrosion resistance of magnesium melting crucible

Publications (2)

Publication Number Publication Date
KR20060073360A KR20060073360A (en) 2006-06-28
KR101167155B1 true KR101167155B1 (en) 2012-07-24

Family

ID=37166468

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040112564A KR101167155B1 (en) 2004-12-24 2004-12-24 Method for improving the corrosion resistance of magnesium melting crucible

Country Status (1)

Country Link
KR (1) KR101167155B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216777B (en) * 2022-06-09 2023-11-17 长江师范学院 Surface iron removal process of carbon steel crucible for magnesium alloy smelting

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250498A (en) 1987-04-08 1988-10-18 Honda Motor Co Ltd Magnesium alloy member having corrosion resistant structure
JP2001181773A (en) 1999-12-24 2001-07-03 Tetsuji Yamanishi Mg ALLOY-COATED Mg ALLOY PRODUCT
JP2003286582A (en) 2002-03-29 2003-10-10 Kurimoto Ltd Method for forming chemical conversion-treated film of magnesium alloy
JP2005281717A (en) 2004-03-26 2005-10-13 Kurimoto Ltd Method for forming chemical conversion-treated film of magnesium alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250498A (en) 1987-04-08 1988-10-18 Honda Motor Co Ltd Magnesium alloy member having corrosion resistant structure
JP2001181773A (en) 1999-12-24 2001-07-03 Tetsuji Yamanishi Mg ALLOY-COATED Mg ALLOY PRODUCT
JP2003286582A (en) 2002-03-29 2003-10-10 Kurimoto Ltd Method for forming chemical conversion-treated film of magnesium alloy
JP2005281717A (en) 2004-03-26 2005-10-13 Kurimoto Ltd Method for forming chemical conversion-treated film of magnesium alloy

Also Published As

Publication number Publication date
KR20060073360A (en) 2006-06-28

Similar Documents

Publication Publication Date Title
KR101367892B1 (en) Magnesium alloy for high temperature and manufacturing method thereof
JP5405392B2 (en) Recycled magnesium alloy, method for producing the same, and magnesium alloy
CN102712969B (en) Flame retardant magnesium alloy with excellent mechanical properties, and preparation method thereof
KR101367894B1 (en) Magnesium alloy for normal temperature
KR101045218B1 (en) Magnesium alloy and manufacturing method thereof
JP2017528595A5 (en)
EP2712941B1 (en) Alloy manufacturing method and alloy manufactured by means of same
CN110777230B (en) Steel continuous casting billet solidification structure refining method based on target isometric crystal size and ratio
EP3075875A1 (en) Aluminium alloy for aerosol cans manufactured by the impact extrusion and the process for preparation thereof
JP5595891B2 (en) Method for producing heat-resistant magnesium alloy, heat-resistant magnesium alloy casting and method for producing the same
KR101167155B1 (en) Method for improving the corrosion resistance of magnesium melting crucible
US6818075B1 (en) Non-combustible magnesium alloy
EP1281780B1 (en) Method of grain refining cast magnesium alloy
KR101281550B1 (en) A method of environment-friendly manufacturing ingot for hot dipped zinc-aluminium-magnesium alloy coating using magnesium scrap
US20050158204A1 (en) Method of production of broadside plates for continuous casting molds
JP5276133B2 (en) Aluminum alloy ingot manufacturing method
JP5637081B2 (en) Mold flux for continuous casting of high Mn steel and continuous casting method
EP2374905B1 (en) Manufacturing method of magnesium based alloy for high temperature
KR101145124B1 (en) Melting method for magnesium alloy and manufacturing method thereof
CN111455244B (en) Magnesium alloy
KR101147671B1 (en) Magnesium alloy and manufacturing method thereof
KR101147648B1 (en) Magnesium alloy and manufacturing method thereof
KR20110108768A (en) Magnesium alloy for high temperature and manufacturing method thereof
JP4801343B2 (en) Aluminum alloy ingot manufacturing method, aluminum alloy ingot and aluminum alloy material
KR101400991B1 (en) Magnesium alloy and manufacturing method thereof for superior fuidity and hot-tearing resistance

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150714

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160713

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170713

Year of fee payment: 6