KR101149984B1 - Method for preparing high purity copper sulfate pentahydrate containing a trace amount of impurity from waste copper etchant - Google Patents
Method for preparing high purity copper sulfate pentahydrate containing a trace amount of impurity from waste copper etchant Download PDFInfo
- Publication number
- KR101149984B1 KR101149984B1 KR1020090077441A KR20090077441A KR101149984B1 KR 101149984 B1 KR101149984 B1 KR 101149984B1 KR 1020090077441 A KR1020090077441 A KR 1020090077441A KR 20090077441 A KR20090077441 A KR 20090077441A KR 101149984 B1 KR101149984 B1 KR 101149984B1
- Authority
- KR
- South Korea
- Prior art keywords
- copper sulfate
- copper
- solution
- waste
- etching solution
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G3/00—Compounds of copper
- C01G3/10—Sulfates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J47/00—Ion-exchange processes in general; Apparatus therefor
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G3/00—Compounds of copper
- C01G3/003—Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Removal Of Specific Substances (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Treatment Of Water By Ion Exchange (AREA)
Abstract
본 발명은 PCB 패턴형성을 위한 에칭공정에서 발생되는 폐동에칭용액으로부터 얻어진 불순물이 낮은 불용성 중간체를 통하여 고순도 및 저염소의 황산동5수화물을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing high purity and low chlorine copper sulfate pentahydrate through an insoluble intermediate having low impurities obtained from a waste copper etching solution generated in an etching process for forming a PCB pattern.
본 발명은 폐동에칭용액을 여과기를 이용하여 불순물을 제거한 다음 음이온교환수지를 통과시켜 중금속을 분리 제거하는 이물질제거단계와; 정제된 폐동에칭용액을 알칼리약품에 반응시켜 고순도의 중간체를 얻는 중간체생성단계와; 상기 중간체를 탈수시키고 순수로 세척하는 탈수세척단계와; 탈수시에 발생되는 폐수를 폐동에칭용액으로 중화하여 수산화동을 회수한 다음 이를 폐동에칭용액에 재용해하여 폐동에칭용액의 염소성분을 감소시키는 염소성분감소단계와; 중간체를 황산용액과 반응시켜 과포화상태의 황산동5수화물 용액을 생성시키는 황산동생성단계와; 황산동5수화물 용액을 여과기로 정밀여과하여 불순물을 제거하는 황산동여과단계와; 여과된 황산동5수화물 용액을 냉각시켜 황산동5수화물 결정을 석출시키는 황산동결정석출단계와; 황산동5수화물 결정이 포함된 용액을 탈수기 내에 투입하여 수분을 제거시키고 동시에 탈수기 내에 열풍을 주입하여 건조시키는 탈수건조단계;를 포함하여 이루어지는 것이 특징이다.The present invention includes a foreign material removal step of separating impurities by removing an impurity from a waste copper etching solution using a filter and then passing an anion exchange resin; An intermediate generation step of reacting the purified waste copper etching solution with an alkali chemicals to obtain an intermediate of high purity; A dehydration washing step of dehydrating the intermediate and washing with pure water; A chlorine component reducing step of neutralizing the wastewater generated during dehydration with a waste copper etching solution to recover copper hydroxide and then re-dissolving it in the waste copper etching solution to reduce the chlorine content of the waste copper etching solution; A copper sulfate generation step of reacting the intermediate with a sulfuric acid solution to produce a copper sulfate pentahydrate solution in a supersaturated state; A copper sulfate filtration step of removing impurities by precisely filtration of the copper sulfate pentahydrate solution with a filter; A copper sulfate crystal precipitation step of cooling the filtered copper sulfate pentahydrate solution to precipitate copper sulfate pentahydrate crystals; It is characterized in that it comprises a; a dehydration drying step of removing water by injecting a solution containing copper sulfate pentahydrate crystals into the dehydrator and at the same time by injecting hot air into the dehydrator.
에칭, 폐액, 폐동에칭용액, 황산동, 황산동5수화물, 중간체, 중금속, 여과 Etching, Waste Solution, Waste Copper Etching Solution, Copper Sulfate, Copper Sulfate Pentahydrate, Intermediates, Heavy Metals, Filtration
Description
본 발명은 폐동에칭용액으로부터 고순도 및 저염소의 황산동5수화물을 제조하는 방법에 관한 것으로, PCB 패턴형성을 위한 에칭공정에서 발생되는 폐동에칭용액으로부터 얻어진 불순물이 낮은 불용성 중간체를 통하여 고순도 및 저염소의 황산동5수화물을 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing copper sulfate hydrate of high purity and low chlorine from waste copper etching solution. The present invention relates to a method for producing high purity and low chlorine through an insoluble intermediate having low impurities obtained from waste copper etching solution generated in an etching process for forming a PCB pattern. A method for producing copper sulfate pentahydrate.
일반적으로, 인쇄회로기판(PCB)은 패턴 형성을 위하여 동판을 에칭(Etching)하는 공정을 거치는데, 이러한 에칭 공정에서는 유해성분들을 포함하고 있는 폐염화동에칭용액이나 폐알칼리에칭용액과 같은 페동에칭용액이 발생된다.In general, a printed circuit board (PCB) undergoes a process of etching a copper plate to form a pattern. In such an etching process, a copper copper etching solution such as waste copper etching solution or waste alkali etching solution containing harmful components is used. Is generated.
상기 폐동에칭용액은 수질오염 방지를 위하여 반응, 추출, 정제 등의 방법으로 유해성분을 제거한 후 배출시키고 있으며, 다양한 산업분야에서 사용가능한 동화합물로 재생되기도 한다.In order to prevent water pollution, the waste copper etching solution is discharged after removing harmful components by a reaction, extraction, or purification method, and may be regenerated as copper compounds usable in various industrial fields.
상기 폐염화동에칭용액은 10% 내외의 동이 함유된 염화제이동(CuCl2)과, 8% 내외의ghhh호 염산(HCl)과, 71% 내외의 수분(H2O) 및 수십 내지 수백 ppm의 중금속이 함유되어 있는 동화합물이며, 폐알칼리에칭용액은 10% 내외의 동이 함유된 알파인(Cu(NH3)4Cl2)과, 1 내지 2%의 염화암모늄(NH4Cl)과, 1 내지 2%의 암모니아수(NH4OH)와, 70 내지 75%의 수분(H20) 및 수십 내지 수백 ppm의 중금속이 포함된 동화합물이다.The waste copper etching solution is about 10% copper containing copper chloride (CuCl 2 ), about 8% ghhh hydrochloric acid (HCl), about 71% water (H 2 O) and dozens to hundreds of ppm It is a copper compound containing heavy metals, and the waste alkaline etching solution contains alpine (Cu (NH 3 ) 4 Cl 2 ) containing about 10% copper, 1 to 2% ammonium chloride (NH 4 Cl), and 1 to A copper compound containing 2% aqueous ammonia (NH 4 OH), 70 to 75% water (H 2 0) and tens to hundreds of ppm heavy metals.
본 발명에서는 폐동에칭용액으로부터 고품질의 도금용이나 동물약품 등의 원료로 사용되는 고순도 및 저염소의 황산동을 제조하는 방법을 개시하고자 한다.In the present invention, a method for producing high purity and low chlorine copper sulfate used as a raw material for high quality plating or animal medicine from waste copper etching solution.
폐동에칭용액으로부터 황산동을 제조하기 위한 방법으로써 대한민국 특허 제796818호, 제745355호, 제620112호 등이 제안된 바 있는데, 제안된 방법들은 폐염화동에칭용액을 용매 추출이나 증발농축법에 의해 분리하거나 순동 또는 제품을 정제하는 방법으로써, 에너지 비용이 많거나 2차오염물질이 발생하고, 조작이 어려우며, 품질이 안정하지 않고, 원료중의 동 회수율이 떨어지고, 고가의 원료를 사용하여 원가가 높으며, 특히 염소함량이 높아 고부가가치산업에서 요구하는 고품질의 도금용 원료나 동물약품의 원료로는 사용을 못하는 단점이 있다.As a method for producing copper sulfate from waste copper etching solution, Korean Patent Nos. 796818, 745355, and 620112 have been proposed. The proposed methods separate waste copper chloride etching solution by solvent extraction or evaporative concentration. It is a method of refining pure copper or product, which has high energy cost or secondary pollutants, difficult to operate, unstable quality, low copper recovery rate of raw materials, high cost of using expensive raw materials, In particular, the high chlorine content has a disadvantage in that it can not be used as a high-quality plating raw material or animal drug raw material required in the high value-added industry.
본 발명은 전술한 바와 같은 종래의 폐동에칭용액으로부터 황산동을 제조하는 방법에 제반되었던 문제점을 일소하기 위하여 창출된 것으로써, 폐동에칭용액으로부터 염소 및 중금속함량이 낮은 중간체를 만든 다음 중간체로부터 수득율이 높은 고순도 및 저염소 황산동5수화물 제조방법을 제공하여 저렴한 비용으로 동회수율은 뛰어날 수 있도록 함에 그 기술적 과제의 주안점을 두고 완성한 것이다.The present invention was created in order to solve the problems associated with the conventional method for producing copper sulfate from the conventional copper copper etching solution as described above, to produce an intermediate with a low content of chlorine and heavy metals from the copper copper etching solution and then obtain a high yield from the intermediate. By providing a high-purity and low-chlorine copper sulphate pentahydrate manufacturing method, the recovery rate can be excellent at a low cost, and completed with the focus of the technical problem.
상기한 기술적 과제를 실현하기 위한 본 발명은 폐동에칭용액을 여과기를 이용하여 불순물을 제거한 다음 음이온교환수지를 통과시켜 중금속을 분리 제거하는 이물질제거단계와; 상기 이물질 및 중금속 제거단계에서 정제된 폐동에칭용액을 알칼리약품에 반응시켜 고순도의 중간체를 얻는 중간체생성단계와; 상기 중간체를 탈수시키고 순수로 세척하는 탈수세척단계와; 상기 탈수세척단계에서 탈수시에 발생되는 폐수를 폐동에칭용액으로 중화하여 수산화동을 회수한 다음 회수한 수산화동을 폐동에칭용액에 재용해하여 폐동에칭용액의 염소성분을 감소시키는 염소성분감소단계와; 상기 탈수세척단계를 거친 중간체를 황산용액과 반응시켜 고온에서 과포화상태의 황산동5수화물 용액을 생성시키는 황산동생성단계와; 상기 황산동생성단계에서 생성된 황산동5수화물 용액을 여과기로 정밀여과하여 불순물을 제거하는 황산동여과단계와; 상기 황산동여과단계를 거쳐 여과된 과포화 상태의 황산동5수화물 용액을 냉각시켜 황산동5수화물 결정을 석출시키는 황산동결정석출단계와; 상기 황산동결정석출단계에서 생성된 황산동5수화물 결정이 포함된 용액을 탈수기 내에 투입하여 수분을 제거시키고, 동시에 탈수기 내에 열풍을 주입하여 건조시키는 탈수건조단계;를 포함하여 이루어지는 것이 특징이다.The present invention for realizing the above technical problem is to remove impurities using a waste copper etching solution using a filter and then to remove the foreign matter by removing the heavy metals through an anion exchange resin; An intermediate generation step of obtaining a high purity intermediate by reacting the waste copper etching solution purified in the step of removing foreign substances and heavy metals with alkali chemicals; A dehydration washing step of dehydrating the intermediate and washing with pure water; A chlorine component reduction step of neutralizing the wastewater generated during dehydration in the dehydration washing step with waste copper etching solution to recover copper hydroxide, and then dissolving the recovered copper hydroxide in the waste copper etching solution to reduce the chlorine content of the waste copper etching solution; ; A copper sulfate generation step of reacting the intermediate that has undergone the dehydration step with a sulfuric acid solution to produce a copper sulfate pentahydrate solution in a supersaturated state at a high temperature; A copper sulfate filtration step of removing impurities by precisely filtration of the copper sulfate pentahydrate solution produced in the copper sulfate generation step with a filter; A copper sulfate crystal precipitation step of precipitating copper sulfate pentahydrate crystals by cooling the copper sulfate pentahydrate solution in a supersaturated state filtered through the copper sulfate filtering step; And a dehydration drying step of removing water by injecting the solution containing the copper sulfate pentahydrate crystals generated in the copper sulfate crystal precipitation step into a dehydrator and simultaneously injecting hot air into the dehydrator.
본 발명은 폐동에칭용액을 정제하고 폐수를 재활용하여 얻어진 동화합물을 폐동에칭용액에 재용해하여 염소 농도가 낮은 중간체를 만들 수 있고 아울러 폐동에칭용액에 함유된 중금속 이물질과 염소성분을 최소화시켜 순도가 높고 염소가 낮은 중간체를 만들어 황산동5수화물 원료로 사용함으로써, 저렴한 비용으로 중금속함량이 극히 낮은 고순도 및 저염소의 황산동5수화물을 제조할 수 있으며, 95%이상의 높은 수득율로 신속하게 황산동5수화물을 제조할 수 있는 효과가 있다.The present invention is capable of producing intermediates with low chlorine concentration by re-dissolving copper compounds obtained by purifying waste copper etching solution and recycling waste water in waste copper etching solution, and minimizing foreign substances and chlorine in heavy metals contained in waste copper etching solution. By making high and low chlorine intermediates and using them as raw materials for copper sulfate pentahydrate, high purity and low chlorine copper sulfate pentahydrate can be produced at low cost, and copper sulfate pentahydrate is rapidly produced with high yield of more than 95%. It can work.
본 발명은 인쇄회로기판에 패턴을 형성하기 위한 에칭공정에서 발생되는 폐액인 폐동에칭용액으로부터 고순도/저염소의 황산동5수화물을 제조하기 위한 것으로,The present invention is to produce a high purity / low chlorine copper sulfate pentahydrate from waste copper etching solution which is a waste solution generated in the etching process for forming a pattern on a printed circuit board,
폐동에칭용액을 여과기를 이용하여 불순물을 제거한 다음 음이온교환수지를 통과시켜 중금속을 분리 제거하여 정제하는 이물질제거단계와; 상기 이물질 및 중금속 제거단계에서 정제된 폐동에칭용액을 알칼리약품에 반응시켜 고순도의 중간체 를 얻는 중간체생성단계와; 상기 중간체를 탈수시키고 순수로 세척하는 탈수세척단계와; 상기 탈수세척단계에서 탈수시에 발생되는 폐수를 폐동에칭용액으로 중화하여 수산화동을 회수한 다음 회수한 수산화동을 폐동에칭용액에 재용해하여 폐동에칭용액의 염소성분을 감소시키는 염소성분감소단계와; 상기 탈수세척단계를 거친 중간체를 황산용액과 반응시켜 고온에서 과포화상태의 황산동5수화물 용액을 생성시키는 황산동생성단계와; 상기 황산동생성단계에서 생성된 황산동5수화물 용액을 여과기로 정밀여과하여 불순물을 제거하는 황산동여과단계와; 상기 황산동여과단계를 거쳐 여과된 과포화 상태의 황산동5수화물 용액을 냉각시켜 황산동5수화물 결정을 석출시키는 황산동결정석출단계와; 상기 황산동결정석출단계에서 생성된 황산동5수화물 결정이 포함된 용액을 탈수기 내에 투입하여 수분을 제거시키고, 동시에 탈수기 내에 열풍을 주입하여 건조시키는 탈수건조단계;를 포함하여 이루어지는 것이 특징이다.Removing foreign substances by using a filter to filter out the waste copper etching solution, and then removing the foreign metals by passing through an anion exchange resin to remove and purify heavy metals; An intermediate generation step of obtaining a high purity intermediate by reacting the waste copper etching solution purified in the step of removing foreign substances and heavy metals with alkali chemicals; A dehydration washing step of dehydrating the intermediate and washing with pure water; A chlorine component reduction step of neutralizing the wastewater generated during dehydration in the dehydration washing step with waste copper etching solution to recover copper hydroxide, and then dissolving the recovered copper hydroxide in the waste copper etching solution to reduce the chlorine content of the waste copper etching solution; ; A copper sulfate generation step of reacting the intermediate that has undergone the dehydration step with a sulfuric acid solution to produce a copper sulfate pentahydrate solution in a supersaturated state at a high temperature; A copper sulfate filtration step of removing impurities by precisely filtration of the copper sulfate pentahydrate solution produced in the copper sulfate generation step with a filter; A copper sulfate crystal precipitation step of precipitating copper sulfate pentahydrate crystals by cooling the copper sulfate pentahydrate solution in a supersaturated state filtered through the copper sulfate filtering step; And a dehydration drying step of removing water by injecting the solution containing the copper sulfate pentahydrate crystals generated in the copper sulfate crystal precipitation step into a dehydrator and simultaneously injecting hot air into the dehydrator.
상기 이물질제거단계에서는 폐동에칭용액을 10㎛이하 정밀여과기로 여과하여 입자성 이물질을 제거한 다음, 강염기성 음이온교환수지에 통과시켜 용해성 불순물인 중금속을 분리 제거시키는 단계로써, 시간당 5B/V정도의 유속으로 음이온교환수지에 통과시킴이 바람직하며, 95%이상의 중금속이 제거될 수 있다.In the foreign matter removal step, the waste copper etching solution is filtered with a precision filter of 10 μm or less to remove particulate foreign matter, and then passed through a strong base anion exchange resin to separate and remove heavy metals, which are soluble impurities, and flow rate of about 5B / V per hour. It is preferable to pass through the anion exchange resin, and more than 95% of the heavy metal can be removed.
상기 중간체생성단계는 이물질제거단계에서 정제된 폐동에칭용액을 가성소다와 탄산나트륨이 혼합된 알칼리약품에 주입한 다음 고온에서 반응시켜 순도가 높은 중간체를 생성하는 단계로써, 폐동에칭용액을 알칼리약품에 주입시에는 80 ~ 90℃조건에서 60분 정도에 걸쳐 서서히 주입함이 이상적이며, 아울러 폐동에칭용액과 알칼리약품을 고온에서 반응시킨 후에는 90 ~ 100℃에서 30분 정도 숙성시킴이 바람직하다. 이때, 고순도의 중간체가 생성될 수 있으며, 생성된 중간체를 포함하는 중간체 용액은 탈수 및 세척이 용이한 구조로 이루어진다.The intermediate generation step is a step of injecting the waste copper etching solution purified in the foreign material removal step into the alkaline chemicals mixed with caustic soda and sodium carbonate and then reacting at high temperature to produce a high purity intermediate, injecting the waste copper etching solution into the alkaline chemicals It is ideal to inject slowly over 60 minutes at 80 ~ 90 ℃ condition, and after the reaction of the waste copper etching solution and alkali chemicals at a high temperature is preferably aged for 30 minutes at 90 ~ 100 ℃. At this time, a high purity intermediate may be produced, and the intermediate solution including the produced intermediate has a structure that is easy to dehydrate and wash.
반응식은 다음과 같다.The scheme is as follows.
폐염화동액 반응식Waste Chloride Reaction Formula
3CuCl2 + 2Na2CO3 + 2NaOH + H2O -> CuCO3?Cu(OH)2 + CuO + 6NaCl +CO2↑3CuCl2 + 2Na2CO3 + 2NaOH + H2O-> CuCO3-Cu (OH) 2 + CuO + 6NaCl + CO2 ↑
폐알칼리용액 반응식Waste Alkaline Solution Scheme
2Cu(NH3)4Cl2 + 2NaOH + Na2CO3 -> 2CuO + 4NaCl + H2O + CO2↑ + 8NH3↑2Cu (NH3) 4Cl2 + 2NaOH + Na2CO3-> 2CuO + 4NaCl + H2O + CO2 ↑ + 8NH3 ↑
상기 탈수세척단계는 상기 중간체생성단계에서 생성된 중간체 용액을 탈수하고 순수로 세척하는 공정이며, 폐동에칭용액이 이물질제거단계, 중간체생성단계 및 탈수세척단계까지 완료되면 염소농도 99%이상, 중금속 98%이상 제거된 고품질의 중간체를 얻을 수 있다.The dehydration washing step is a process of dehydrating the intermediate solution produced in the intermediate generation step and washing with pure water.When the waste copper etching solution is completed until the foreign substance removal step, intermediate generation step and dehydration washing step, the chlorine concentration is 99% or more, heavy metal 98 High quality intermediates with more than% removal can be obtained.
상기 염소성분감소단계는 상기 탈수세척단계에서 발생되는 탈수폐수를 재이용하는 단계로써, 폐수에 남아있는 다량의 알칼리 약품을 회수하기 위하여 폐동에칭용액으로 폐수를 중화 탈수하여 수산화동으로 회수하고 회수한 수산화동을 폐동에칭용액에 재용해하여 폐동에칭용액의 염소성분을 감소시키는 단계이다.The chlorine component reduction step is a step of reusing the dehydrated wastewater generated in the dehydration washing step, in order to recover a large amount of alkali chemicals remaining in the wastewater, the wastewater is neutralized and dehydrated with waste copper etching solution and recovered and recovered with copper hydroxide. Re-dissolving copper in the waste copper etching solution reduces the chlorine content of the waste copper etching solution.
기존의 탈수폐수처리방법은 탈수폐수를 폐수처리장에 유입시켜 산성약품을 다량 사용하여 중화처리하고 중금속 등을 제거하여 방류시키는 방법으로써 중금속에 의한 2차 오염을 일으키고 폐수처리비가 상당히 높아 매우 비경제적인 처리방법이었는데 반해, 본 발명에 따른 탈수폐수처리방법은 폐수로 유출되는 고가의 알칼리 성분을 회수함으로써 매우 경제적이며 또한 폐동에칭용액의 염소농도를 30%이상 감소시키는 효과도 있는 매우 경제적이고 효율적인 처리방법이다.Existing dewatering wastewater treatment method is to inflow dewatering wastewater into the wastewater treatment plant to neutralize it using a large amount of acidic chemicals and discharge it by removing heavy metals. On the contrary, the dewatering wastewater treatment method according to the present invention is very economical and efficient by recovering the expensive alkaline components flowing into the wastewater and also reducing the chlorine concentration of the waste copper etching solution by 30% or more. .
반응식은 하기와 같다.The reaction scheme is as follows.
2Na2CO3 + 2NaOH + 3CuCl2 + H20 -> CuCO3?Cu(HO)2 + Cu(OH)2 + 6NaCl +CO22Na2CO3 + 2NaOH + 3CuCl2 + H20-> CuCO3-Cu (HO) 2 + Cu (OH) 2 + 6NaCl + CO2
CuCO3?Cu(OH)2 + Cu(OH)2 + CuCl2 + 6HCl -> 4CuCl2 + 5H2O + CO2CuCO3 ~ Cu (OH) 2 + Cu (OH) 2 + CuCl2 + 6HCl-> 4CuCl2 + 5H2O + CO2
상기 황산동생성단계는 상기 탈수세척단계를 거친 중간체로부터 황산동5수화물을 생성하는 단계로써, 교반장치를 포함하는 반응기에 순수와 진한 황산을 약 5대1 비율로 교반하면서 희석시킨 황산용액 및 1비율의 중간체를 주입하여 황산동5수화물을 생성시킴이 이상적이며, 이때 상기 반응기 내의 온도는 순수와 진한 황산을 희석할 때 발생되는 희석열을 이용하여 60 ~ 80℃ 정도로 유지함이 바람직하다.The copper sulfate generation step is to produce copper sulfate pentahydrate from the intermediate that passed through the dehydration step, the sulfuric acid solution and 1 ratio of diluted sulfuric acid and a mixture of pure sulfuric acid and a concentrated ratio of about 5 to 1 in a reactor including a stirring device Ideally, the intermediate is injected to produce copper sulfate pentahydrate, and the temperature in the reactor is preferably maintained at about 60 to 80 ° C. using the heat of dilution generated when diluting pure water and concentrated sulfuric acid.
반응식은 다음과 같다.The scheme is as follows.
CuCO3?Cu(OH)2 + 2H2SO4 + 7H2O -> 2CuSO4?5H2O + CO2CuCO3? Cu (OH) 2 + 2H2SO4 + 7H2O-> 2CuSO4? 5H2O + CO2
CuO + H2SO4 + 4H2O -> CuSO4?5H2OCuO + H2SO4 + 4H2O-> CuSO4? 5H2O
상기 반응에서 염소와 중금속이 높은 중간체를 사용할 경우에는 탁한 하늘색 또는 초록색을 띠는데 반해, 본 발명에 따른 고순도/저염소의 중간체를 사용할 경 우 맑고 투명한 청색을 띠게 된다.In the reaction, when the intermediate is high in chlorine and heavy metal, it has a turbid blue or green color, whereas the intermediate of high purity / low chlorine according to the present invention has a clear and transparent blue color.
상기 황산동여과단계에서는 상기 황산동생성단계에서 얻어진 황산동5수화물을 포함하는 용액을 고온상태에서 10㎛필터로 정밀 여과하여 황산동5수화물 용액 중에 남아있는 미반응물이나 불순물을 제거하는 공정으로써, 온도 저하에 따른 결정 석출을 방지하기 위하여 보온성과 내식성이 높은 FRP(Fibre Reinfored Polymer)로 제작한 여과장치를 사용함이 바람직하다.In the copper sulfate filtration step, the solution containing the copper sulfate pentahydrate obtained in the copper sulfate generation step is precisely filtered with a 10 μm filter at a high temperature to remove unreacted substances or impurities remaining in the copper sulfate pentahydrate solution. In order to prevent crystal precipitation, it is preferable to use a filtration device made of FRP (Fibre Reinfored Polymer) having high heat retention and corrosion resistance.
상기 황산동결정석출단계는 상기 황산동여과단계에서 정밀여과된 황산동5수화물 용액을 교반장치 및 냉각장치가 설치된 결정반응조로 이송하여 결정을 석출시키는 공정으로써, 30 ~ 60rpm의 교반속도로 10 ~ 15시간에 결쳐 10 ~ 20℃로 서서히 냉각하여 과포화상태의 황산동5수화물을 석출시켜 결정화할 수 있다.The copper sulfate crystal precipitation step is a step of transferring the copper sulfate pentahydrate solution finely filtered in the copper sulfate filtration step to a crystal reaction tank equipped with a stirring device and a cooling device to precipitate crystals, at a stirring speed of 30 to 60 rpm in 10 to 15 hours. By cooling slowly to 10-20 degreeC, copper sulfate pentahydrate of supersaturation state can be precipitated and it can crystallize.
상기 결정화 과정에서 용도에 따라 결정입자크기를 조절할 수 있도록 함이 바람직한데, 교반속도를 30rpm 내지 60rpm으로 조정가능하도록하는 인버터 콘트롤 장치를 설치하여 결정 입자상태를 조절할 수 있도록 한다.It is desirable to be able to control the crystal grain size in accordance with the use in the crystallization process, it is possible to adjust the crystal grain state by installing an inverter control device to adjust the stirring speed to 30rpm to 60rpm.
상기 탈수건조단계는 상기 황산동결정석출단계에서 결정화된 황산동5수화물 용액을 원심탈수기에서 고액을 분리하고 수분을 제거하고 건조시키는 공정으로써, 탈수후 60 ~ 80℃로 가열한 공기 열풍을 탈수기 내에 직접 주입하여 수분 내에 신속하게 건조 행함으로써 수분을 효율적으로 제거시킨다.The dehydration drying step is a process of separating the solid solution from the copper sulfate pentahydrate solution crystallized in the copper sulfate crystal precipitation step in a centrifugal dehydrator, removing water, and drying the water, and directly injecting air hot air heated to 60 to 80 ° C. after dehydration. By drying quickly in a few minutes, water is efficiently removed.
통상적인 건조방법은 탈수된 결정을 별도의 건조장치에서 건조함으로써 비용과 시간이 많이 소요되어 비경제적이고 생산성이 떨어졌으나, 본 발명에 따른 건조방법은 수분 내에 신속하게 건조가 이루어질 수 있고 비용면에서도 매우 경제적이다.Conventional drying method is costly and time-consuming by drying the dehydrated crystals in a separate drying device is uneconomical and low productivity, but the drying method according to the present invention can be quickly dried in a few minutes and very cost-effective It is economical.
이하 실시예 및 비교예를 통하여 본 발명을 상세하게 설명하고자 한다. 그러나, 본 발명의 권리범위가 이들 실시예에만 한정되지 아니함은 자명한 일이다.Through the following examples and comparative examples will be described in detail the present invention. However, it is obvious that the scope of the present invention is not limited only to these examples.
<실시예 1>≪ Example 1 >
PCB제조공정에서 발생하는 폐액인 폐동에칭용액을 재활용하여 황산동5수화물을 제조할 경우, 폐동에칭용액을 정제하여 얻은 중간체를 사용하면 순도가 매우 높고 염소가 낮은 고품질의 황산동5수화물을 얻을 수 있고 수율이 높아 매우 경제적이며, 또한 중금속은 폐동에칭용액에 용해되어 있어 원료를 정제하지 않고 사용할 경우 최종 제품의 순도를 떨어뜨리고 회수율이 낮아 다량의 모액이 발생하여 비경제적이다.In the case of manufacturing copper sulfate pentahydrate by recycling waste copper etching solution, which is a waste solution generated in PCB manufacturing process, the intermediate obtained by purifying waste copper etching solution can be used to obtain high quality copper sulfate pentahydrate with high purity and low chlorine yield. It is very economical because it is high, and heavy metals are dissolved in waste copper etching solution, and when used without refining raw materials, the purity of the final product is lowered and the recovery rate is low.
이에 전처리공정에서 강염기성 음이온 교환수지를 이용하여 선택적으로 용해성 중금속 물질을 제거하였다.In the pretreatment process, the soluble heavy metal material was selectively removed using a strong basic anion exchange resin.
우선, 폐동에칭용액을 10㎛ 정밀여과기로 여과하여 이물질을 제거하였으며 여과된 폐동에칭용액을 강염기성 음이온교환수지(MP1800)가 충전된 이온교환탑에 시간당 5 B/V 유속으로 통과하여 원료중의 중금속을 95%이상 제거시켜 정제하였다.First, the waste copper etching solution was filtered with a 10㎛ precision filter to remove foreign substances, and the filtered waste copper etching solution was passed through an ion exchange tower filled with a strong basic anion exchange resin (MP1800) at a flow rate of 5 B / V per hour. The heavy metals were purified by removing more than 95%.
상기 정제된 폐동에칭용액은 다음 조건하에서 순도가 높고 염소함량이 낮은 중간체를 만들어 황산동5수화물 반응에 사용하였다.The purified copper copper etching solution was used in the copper sulfate pentahydrate reaction to make an intermediate of high purity and low chlorine content under the following conditions.
탄산나트륨 100g을 물 1000g에 녹여 10㎛ GFC 여과지로 여과한 다음 온도조절이 가능한 2L 반응기에 넣고, 함량이 25 내지 50%인 가성소다 20g을 혼합하고, 폐동에칭용액(동10.5%) 500g을 80℃ 내지 90℃를 유지하면서 60분간에 걸쳐 주입하여 불용성 중간체를 만들고, 90℃ 내지 100℃를 유지하면서 30분간 숙성시켰다.Dissolve 100g of sodium carbonate in 1000g of water, filter it with 10㎛ GFC filter paper, put into a 2L reactor with temperature control, mix 20g of caustic soda with 25-50% content, and 500g waste copper etching solution (10.5% copper) at 80 ℃ Insoluble intermediates were prepared over 60 minutes while maintaining to 90 ° C., and aged for 30 minutes while maintaining 90 ° C. to 100 ° C.
상기 불용성 중간체를 포함하는 용액을 NO.2 여과지(ADVANTEC)로 여과하고 순수 500ml로 3회로 나누어 세척하여 중간체 결정을 얻었다.The solution containing the insoluble intermediate was filtered with NO.2 filter paper (ADVANTEC) and washed three times with 500 ml of pure water to obtain an intermediate crystal.
상기 여과된 결정을 분석한 결과 염소함량은 30ppm, 중금속함량은 10ppm 이내로 나타났다.Analysis of the filtered crystals showed that the chlorine content is 30ppm, heavy metal content is within 10ppm.
상기 반응에서 얻어진 중간체를 황산동5수화물 원료로 사용하였으며 상세한 설명은 다음과 같다.The intermediate obtained in the reaction was used as a raw material of copper sulfate pentahydrate. Details are as follows.
순수 1L를 2L 반응기에 주입하고 교반하면서 황산(98%) 250g을 투입하여 17% 황산용액을 만든다.1L of pure water is injected into a 2L reactor, and 250g of sulfuric acid (98%) is added while stirring to prepare a 17% sulfuric acid solution.
상기 황산용액에 위에서 제조한 세척된 중간체 300g을 투입하여 황산동5수화물 반응을 한다. 이때, 희석열에 의해 반응온도가 60℃ 내지 80℃로 상승되고, 그에 따른 용해도 상승으로 인하여 황산동5수화물은 과포화상태로 용해되었으며 황산동5수화물을 포함하는 용액은 맑은 청색을 띠었다.300 g of the washed intermediate prepared above was added to the sulfuric acid solution to conduct a copper sulfate pentahydrate reaction. At this time, the reaction temperature was raised to 60 ~ 80 ℃ by the heat of dilution, and due to the increase in solubility, copper sulfate pentahydrate was dissolved in a supersaturated state, the solution containing copper sulfate pentahydrate was clear blue.
상기 맑은 청색의 용액을 No.2 여과지지(ADVANTEC)로 여과하여 미반응물이나 이물질을 제거하고 워터배스에서 30rpm 내지 60rpm 속도로 교반하면서 10℃ 내지 20℃로 10 ~ 15시간에 걸쳐 서서히 냉각시켰다.The clear blue solution was filtered through No. 2 filter support (ADVANTEC) to remove unreacted material or foreign matter and slowly cooled to 10 ° C. to 20 ° C. over 10 to 15 hours while stirring at a speed of 30 rpm to 60 rpm in a water bath.
냉각이 진행됨에 따라 용해도 차이에 의해 결정이 석출되었으며, 결정이 석출된 반응액을 No.2 여과지로 진공상태에서 여과하였다. 잔류수분을 제거하기 위해 여과기를 밀폐시키고 60℃ 내지 80℃의 열풍을 불어넣어 황산동 5수화물의 잔류 수분을 제거시켰다.As cooling progressed, crystals precipitated due to the difference in solubility, and the reaction solution in which the crystals were precipitated was filtered in a vacuum using No. 2 filter paper. In order to remove residual moisture, the filter was sealed and hot air of 60 ° C. to 80 ° C. was blown to remove residual moisture of the copper sulfate pentahydrate.
최종적으로 수득한 황산동5수화물은 밝은 하늘색을 띠었으며, 성분을 타이트래이터(TITRATOR; 적정기)로 분석한 결과 순도 99.99%이고, 염소 3ppm인 것으로 확인되었다. 또한, 중금속 불순물을 원자흡광광도계로 분석한 결과 대부분 1ppm이하 또는 불검출로 나타났다.Finally, the obtained copper sulfate pentahydrate was light blue in color, and the component was analyzed by TITRATOR (titrator) to confirm that the purity was 99.99% and chlorine was 3 ppm. In addition, the analysis of heavy metal impurities with atomic absorption spectrophotometer showed that most of them were less than 1 ppm or not detected.
따라서, 본 발명은 저렴한 비용으로 중금속함량이 극히 낮은 고순도 및 저염소의 황산동5수화물을 신속하게 제조할 수 있는 것이며, 95%이상의 높은 수득율을 실현할 수 있는 것이다.Therefore, the present invention can produce a high purity and low chlorine copper sulfate pentahydrate of extremely low heavy metal content at low cost, and can realize a high yield of more than 95%.
<비교예 1>Comparative Example 1
실시예 1에서 폐동에칭용액을 정제하지 않고 가성소다용액에 폐동에칭용액을 투입하여 중간체를 제조하였으며, 적정기로 성분을 분석한 결과, 중간 수득된 중간체의 중금속 농도는 300ppm이상이었고, 최종 수득된 황산동5수화물의 중금속 함량은 30ppm이상이었다.In Example 1, a waste copper etching solution was added to a caustic soda solution without purification of the waste copper etching solution to prepare an intermediate. As a result of analyzing the components with a titrator, the intermediate metal concentration of the intermediate obtained was 300 ppm or more, and the final copper sulfate obtained The heavy metal content of the pentahydrate was 30 ppm or more.
<비고예 2><Remarks Example 2>
실시예 1의 제조 과정에서 폐동에칭용액을 정제하고 가성소다 50%에 폐동에칭용액을 투입시키고 반응하여 얻어진 중간체를 적정기로 성분을 분석한 결과 염소 함량은 10000ppm 이상, 중금속은 50ppm이상이었으며, 최종 수득된 황산동 5수화물의 염소 함량은 500ppm이상이었으며 중금속 불순물의 농도는 5ppm이상이었다.Purifying the waste copper etching solution in Example 1, adding the waste copper etching solution to 50% caustic soda and reacting the components with a titrator, the chlorine content was more than 10000ppm and the heavy metal was more than 50ppm. The chlorine content of copper sulfate pentahydrate was higher than 500 ppm and the concentration of heavy metal impurities was higher than 5 ppm.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090077441A KR101149984B1 (en) | 2009-08-21 | 2009-08-21 | Method for preparing high purity copper sulfate pentahydrate containing a trace amount of impurity from waste copper etchant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090077441A KR101149984B1 (en) | 2009-08-21 | 2009-08-21 | Method for preparing high purity copper sulfate pentahydrate containing a trace amount of impurity from waste copper etchant |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110019852A KR20110019852A (en) | 2011-03-02 |
KR101149984B1 true KR101149984B1 (en) | 2012-05-31 |
Family
ID=43929289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090077441A KR101149984B1 (en) | 2009-08-21 | 2009-08-21 | Method for preparing high purity copper sulfate pentahydrate containing a trace amount of impurity from waste copper etchant |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101149984B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230166979A1 (en) * | 2021-11-30 | 2023-06-01 | Central South University | Method for treating copper-containing waste etching solution |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102786076B (en) * | 2012-08-30 | 2014-05-28 | 廖勇志 | Method for preparing high-purity copper sulfate by means of waste liquid of copper-contained circuit boards |
CN113336260B (en) * | 2021-08-06 | 2022-01-11 | 清大国华环境集团股份有限公司 | Method for recovering copper sulfate in acidic copper sulfate waste liquid |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010089951A (en) * | 2000-03-17 | 2001-10-17 | 김수태 | Process for simultaneously preparing cupric sulfate and calcium chloride from cupric chloride waste |
KR20060105530A (en) * | 2005-03-31 | 2006-10-11 | 쯔루미소다 가부시끼가이샤 | Refining method of copper chloride etching waste fluid and refined copper chloride solution |
KR100882896B1 (en) * | 2008-10-31 | 2009-02-10 | 박성종 | Method for preparing high purity copper oxide containing a trace amount of chlorine from waste copper tetramine chloride solution |
KR100939534B1 (en) | 2007-12-26 | 2010-02-03 | (주)화백엔지니어링 | In-line Recovery System of Etching Waste Solution |
-
2009
- 2009-08-21 KR KR1020090077441A patent/KR101149984B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010089951A (en) * | 2000-03-17 | 2001-10-17 | 김수태 | Process for simultaneously preparing cupric sulfate and calcium chloride from cupric chloride waste |
KR20060105530A (en) * | 2005-03-31 | 2006-10-11 | 쯔루미소다 가부시끼가이샤 | Refining method of copper chloride etching waste fluid and refined copper chloride solution |
KR100939534B1 (en) | 2007-12-26 | 2010-02-03 | (주)화백엔지니어링 | In-line Recovery System of Etching Waste Solution |
KR100882896B1 (en) * | 2008-10-31 | 2009-02-10 | 박성종 | Method for preparing high purity copper oxide containing a trace amount of chlorine from waste copper tetramine chloride solution |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230166979A1 (en) * | 2021-11-30 | 2023-06-01 | Central South University | Method for treating copper-containing waste etching solution |
US11939229B2 (en) * | 2021-11-30 | 2024-03-26 | Central South University | Method for treating copper-containing waste etching solution |
Also Published As
Publication number | Publication date |
---|---|
KR20110019852A (en) | 2011-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11292725B2 (en) | Method for recovering lithium hydroxide | |
CN106565956B (en) | By-product slurry comprehensive reutilization method in a kind of polyphenylene sulfide production process | |
JP7041728B2 (en) | Method and manufacturing system for total recovery of taurine final mother liquor | |
CN110002490A (en) | The method for producing copper sulphate as raw material using acid, alkaline etching liquid | |
CN103318923B (en) | Method for recovering sodium sulfate from white carbon black mother solution | |
JP6926010B2 (en) | Method for producing lithium hydroxide | |
KR101149984B1 (en) | Method for preparing high purity copper sulfate pentahydrate containing a trace amount of impurity from waste copper etchant | |
RU2356963C2 (en) | Extraction method of beryllium from beryllium-bearing spodumene concentrate | |
CN210736624U (en) | Production system for recycling taurine mother liquor completely | |
KR101562263B1 (en) | Method for preparing sodium nitrate using a waste solution containing nitric acid | |
CN114988435A (en) | Harmless treatment method for saline water in polyphenylene sulfide resin production | |
JP7115123B2 (en) | Lithium purification method | |
RU2708204C1 (en) | Method of producing potassium sulphate from potassium chloride and sulfuric acid | |
KR102190217B1 (en) | Method for producing high purity cupric oxide for copper plating from electro-copper | |
CN1194237A (en) | Wet process for preparing industrial pure antimony sulfide by removing load, arsenic, selenium, tin and mercury impurities in antimonic ore | |
RU2347829C2 (en) | Method of producing lithium hydroxide out of spodumene concentrate | |
KR102705814B1 (en) | Processing method of waste liquid from manufacturing a polarizing plate | |
JP4588045B2 (en) | Waste liquid treatment method | |
KR100430333B1 (en) | Method for Preparing Sodium Nitrate Using Waste Nitric Acid | |
CN111689511A (en) | Full recovery process and system for simultaneously treating acidic etching waste liquid and ammonium chloride open circuit mother liquid | |
KR101196478B1 (en) | Method for producing copper sulfate | |
CN107902701A (en) | The method of purification of byproduct ferrous sulfate of titanium dioxide | |
JPH04209718A (en) | Manufacture of copper sulfate from spent liquid containing copper | |
KR100645598B1 (en) | Method for Preparing Sodium Cyanide Having High Purity | |
RO121812B1 (en) | Process for preparing precipitated barium sulphate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20180703 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20190327 Year of fee payment: 8 |