KR101148569B1 - Method for manufacturing carbon fiber - Google Patents

Method for manufacturing carbon fiber Download PDF

Info

Publication number
KR101148569B1
KR101148569B1 KR1020090136247A KR20090136247A KR101148569B1 KR 101148569 B1 KR101148569 B1 KR 101148569B1 KR 1020090136247 A KR1020090136247 A KR 1020090136247A KR 20090136247 A KR20090136247 A KR 20090136247A KR 101148569 B1 KR101148569 B1 KR 101148569B1
Authority
KR
South Korea
Prior art keywords
precursor
carbon fiber
spun
draw ratio
spinning
Prior art date
Application number
KR1020090136247A
Other languages
Korean (ko)
Other versions
KR20110079244A (en
Inventor
김성룡
방윤혁
조철호
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020090136247A priority Critical patent/KR101148569B1/en
Publication of KR20110079244A publication Critical patent/KR20110079244A/en
Application granted granted Critical
Publication of KR101148569B1 publication Critical patent/KR101148569B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Fibers (AREA)

Abstract

본 발명은 탄소섬유 제조방법에 관한 것으로, 폴리아크릴로니트릴(PAN)계 탄소섬유의 전구체인 PAN계 중합체를 포함하는 방사용액을 습식 방사, 건식 방사 또는 건습식 방사하여 프리커서를 얻은 후, 이것을 200~400℃의 산화로에서 가열하여 내염화 섬유로 전환시키고, 적어도 1000℃의 온도의 불활성 분위기하에서 탄소화하여 제조되는 탄소섬유 제조방법에 있어서; 상기 프리커서는, 방사시 30~50m/min의 낮은 토출 선속도로 토출되어 낮은 연신배율을 갖도록 제조되고; 이렇게 제조된 프리커서를 산화로에서 내염화처리할 때 내염화 초기단계에서 열연신하는 것을 특징으로 하는 탄소섬유 제조방법을 제공한다.The present invention relates to a method for producing carbon fibers, wherein a spinning solution containing a PAN polymer, which is a precursor of polyacrylonitrile (PAN) carbon fiber, is wet-spun, dry-spun or dry-wet-spun to obtain a precursor. A carbon fiber production method produced by heating in an oxidation furnace at 200-400 ° C. to convert it into flame resistant fiber and carbonizing in an inert atmosphere at a temperature of at least 1000 ° C .; The precursor is manufactured to have a low draw ratio by being discharged at a low discharge linear velocity of 30-50 m / min during spinning; The precursor prepared in this way provides a carbon fiber manufacturing method characterized in that the thermal stretching in the initial stage of the flame resistance when subjected to the flame resistance treatment in the oxidation furnace.

본 발명에 따르면, 프리커서의 생산성과 연신배율의 향상을 통한 고물성 탄소섬유 제조가 가능하여 탄소섬유의 제조원가를 낮출 수 있고, 나아가 방사에 따른 조업성을 향상시키는 효과를 얻을 수 있다.According to the present invention, it is possible to manufacture a high-performance carbon fiber through the improvement of the productivity and the draw ratio of the precursor to reduce the manufacturing cost of the carbon fiber, it is possible to obtain the effect of improving the operability according to the spinning.

탄소섬유, 전구체 섬유, 프리커서, 연신배율, 고물성 Carbon fiber, precursor fiber, precursor, draw ratio, high physical properties

Description

탄소섬유 제조방법{METHOD FOR MANUFACTURING CARBON FIBER}Carbon fiber manufacturing method {METHOD FOR MANUFACTURING CARBON FIBER}

본 발명은 탄소섬유 제조방법에 관한 것으로, 보다 상세하게는 프리커서의 생산성과 연신배율 향상을 통한 고물성의 탄소섬유를 생산할 수 있도록 한 탄소섬유 제조방법에 관한 것이다.The present invention relates to a carbon fiber manufacturing method, and more particularly to a carbon fiber manufacturing method that can produce a high-quality carbon fiber by improving the productivity and stretch ratio of the precursor.

주지된 바와 같이, 탄소섬유를 제조하는 방법으로 원료 섬유에 폴리 아크릴로니트릴(poly acrylonitrile)(PAN) 등의 전구체 섬유(프리커서)을 사용하고, 내염화 처리 및 탄소화 처리를 거쳐 탄소섬유를 얻는 방법이 보편화되어 있다.As is well known, a precursor fiber (precursor) such as poly acrylonitrile (PAN) is used as a raw material fiber as a method for producing carbon fiber, and carbon fiber is subjected to a flameproofing treatment and a carbonization treatment. The method of obtaining is common.

이렇게 제조된 소섬유는 보통 강도와 비탄성률 등 여러가지 양호한 특성을 가진다.The small fibers thus prepared usually have various good properties such as strength and inelasticity.

근래, 탄소섬유를 이용한 복합 재료 예컨대, 카본화이버(CFRP) 등의 공업적인 용도가 넓어지면서 스포츠(sports)/레저(leisure) 분야, 항공 우주 분야, 자동차 분야 등에서 고성능화(고강도화,고탄성화), 경량화(섬유 경량화 및 섬유 함유량 감소), 합성물의 물성 향상(탄소섬유 표면/계면 특성의 향상)에 대한 요구가 강해지고 있다.Recently, as the industrial use of carbon fiber composite materials such as carbon fiber (CFRP) has become wider, high performance (high strength, high elasticity) and light weight in sports / leisure, aerospace, and automobile fields (Fiber weight reduction and fiber content reduction) There is a strong demand for improving the physical properties of composites (improving carbon fiber surface / interface properties).

또한, 탄소섬유와 수지 등의 매트릭스(matrix) 재료와의 복합화에 있어서 고성능화를 추구하기 위해 매트릭스 재료가 가지는 특성도 중요하지만, 탄소섬유 그 자체의 표면 특성, 강도 및 탄성률을 향상시킬 필요가 있다.In addition, although the characteristics of the matrix material are important in order to achieve high performance in the composite of carbon fibers and matrix materials such as resins, it is necessary to improve the surface properties, strength and elastic modulus of the carbon fibers themselves.

뿐만 아니라, 생산성 측면에서도 상당한 연구가 요구되는 바, 특히 아크릴로 니트릴을 주성분으로 하는 PAN 계 중합물을 이용한 탄소섬유를 제조하는 공정에 있어 생산성을 향상은 전구체 섬유의 방사, 내염화, 탄화 등 모든 공정에서 진행되고 있다.In addition, in terms of productivity, considerable research is required. In particular, in the process of producing carbon fibers using PAN-based polymers containing acrylonitrile as the main component, all processes such as spinning, flameproofing, and carbonization of precursor fibers are improved. In progress.

이 경우, 방사에 있어 생산성 향상은 PAN계 중합물의 특성상 방사 드레프트율과 그의 응고 구조에 따른 한계 연신배율로 인하여 생산성이 제한되어 있고, 생산성을 향상하기 위해 방사속도를 높이면 연신성 저하가 발생하여 탄소섬유 물성이 저하하고, 방사속도를 내리면 생산성은 안정되고 고 연신배율의 프리커서 및 탄소섬유 제조가 가능하나 생산성은 저하된다.In this case, productivity improvement in spinning is limited due to the characteristics of the PAN-based polymer due to the radial draft ratio and the limiting draw ratio due to its solidification structure. When the carbon fiber properties are lowered and the spinning speed is lowered, the productivity is stabilized, and the precursor and the carbon fiber can be manufactured with high draw ratio, but the productivity is lowered.

따라서, 전구체 섬유(프리커서)의 생산성과 연신배율의 향상을 통한 고물성의 탄소섬유 생산은 양립이 어렵다는 한계를 가지며, 궁극적으로 이 문제가 해결되어야 향후 기술진보를 기대할 수 있는 실정이다.Therefore, the production of high-performance carbon fiber through the improvement of the productivity and the draw ratio of the precursor fiber (precursor) has a limit that is difficult to be compatible, ultimately, the situation can be expected to progress in the future if this problem is solved.

본 발명은 상술한 바와 같은 종래 기술상의 제반 문제점들을 감안하여 이를 해결하고자 창출된 것으로, 전구체 섬유(프리커서)를 생산함에 있어 토출 선속도를 일정한 수준으로 유지한 채 연신배율을 낮추고, 이를 내염화 초기단계에서 특정조건으로 열연신하여 프리커서의 생산성 향상과 연신배율 향상을 통한 고물성 탄소섬유를 생산할 수 있도록 한 탄소섬유 제조방법을 제공함에 그 주된 해결 과제가 있다.The present invention was created in view of the above-mentioned problems in the prior art as described above. In producing the precursor fiber (precursor), the draw ratio is lowered while maintaining the discharge linear velocity at a constant level, which is flameproofed. The main problem is to provide a method for producing a carbon fiber that can be hot-drawn to a specific condition in the initial stage to produce a high-performance carbon fiber by improving the productivity and draw ratio of the precursor.

본 발명은 상기한 해결 과제를 달성하기 위한 수단으로, 폴리아크릴로니트릴(PAN)계 탄소섬유의 전구체인 PAN계 중합체를 포함하는 방사용액을 습식 방사, 건식 방사 또는 건습식 방사하여 프리커서를 얻은 후, 이것을 200~400℃의 산화로에서 가열하여 내염화 섬유로 전환시키고, 적어도 1000℃의 온도의 불활성 분위기하에서 탄소화하여 제조되는 탄소섬유 제조방법에 있어서; 상기 프리커서는, 방사시 30~50m/min의 낮은 토출 선속도로 토출되어 낮은 연신배율을 갖도록 제조되고; 이렇게 제조된 프리커서를 산화로에서 내염화처리할 때 내염화 초기단계에서 열연신하는 것을 특징으로 하는 탄소섬유 제조방법을 제공한다.The present invention provides a precursor by wet spinning, dry spinning or dry wet spinning a spinning solution containing a PAN polymer which is a precursor of polyacrylonitrile (PAN) carbon fiber as a means for achieving the above-described problems. After that, it is heated in an oxidation furnace at 200-400 ° C. to convert it into flame resistant fiber, and the carbon fiber production method produced by carbonization in an inert atmosphere at a temperature of at least 1000 ° C .; The precursor is manufactured to have a low draw ratio by being discharged at a low discharge linear velocity of 30-50 m / min during spinning; The precursor prepared in this way provides a carbon fiber manufacturing method characterized in that the thermal stretching in the initial stage of the flame resistance when subjected to the flame resistance treatment in the oxidation furnace.

이때, 상기 프리커서의 낮은 연신배율은 배향도 80~85, 단섬도 1.8tex이고; 상기 내염화 초기 단계에서의 열연신은 배향도 90~95, 단섬도 1.5tex인 것에도 그 특징이 있다.At this time, the low draw ratio of the precursor is the orientation degree 80 ~ 85, the single fineness 1.8tex; The hot drawing in the initial stage of flameproofing is also characterized by having an orientation of 90 to 95 and a single fineness of 1.5 tex.

또한, 상기 내염화 초기단계는, 산화로의 첫번째 패스 또는 첫번째와 두번째 패스인 것에도 그 특징이 있다.In addition, the initial stage of flameproofing is characterized in that the first pass or the first and second pass of the oxidation furnace.

본 발명에 따르면, 프리커서의 생산성과 연신배율의 향상을 통한 고물성 탄소섬유 제조가 가능하여 탄소섬유의 제조원가를 낮출 수 있고, 나아가 방사에 따른 조업성을 향상시키는 효과를 얻을 수 있다.According to the present invention, it is possible to manufacture a high-performance carbon fiber through the improvement of the productivity and the draw ratio of the precursor to reduce the manufacturing cost of the carbon fiber, it is possible to obtain the effect of improving the operability according to the spinning.

이하에서는, 첨부도면을 참고하여 본 발명에 따른 바람직한 실시예를 더욱 상세하게 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment according to the present invention.

도 1은 본 발명에 따른 탄소섬유 제조방법을 설명하기 위한 탄소섬유 주행방향과 연신위치를 보여 주는 개략적인 공정도이다.1 is a schematic process chart showing a carbon fiber running direction and a stretching position for explaining the carbon fiber manufacturing method according to the present invention.

먼저, 탄소섬유 중에서 가장 널리 이용되어 있는 폴리아크릴로니트릴(PAN)계 탄소섬유는 그의 전구체가 되는 PAN계 중합체를 포함하는 방사 용액을 습식 방사, 건식 방사 또는 건습식 방사하여 탄소섬유 전구체 섬유를 얻은 후, 이것을 200 내지 400℃의 온도의 산화성 분위기하에서 가열하여 내염화 섬유로 전환시키고, 적어도 1000℃의 온도의 불활성 분위기하에서 가열하여 탄소화함으로써 공업적으로 제조된다.First, polyacrylonitrile (PAN) -based carbon fiber, which is most widely used among carbon fibers, is obtained by wet spinning, dry spinning or wet-wetting spinning a spinning solution containing a PAN polymer which is a precursor thereof. Thereafter, this is industrially produced by heating in an oxidizing atmosphere at a temperature of 200 to 400 ° C. to convert it into a flame resistant fiber, and carbonizing by heating in an inert atmosphere at a temperature of at least 1000 ° C.

이러한 PAN계 탄소섬유의 생산성 향상은 탄소섬유 전구체 섬유의 방사, 내염화 또는 탄소화의 어느 측면에서든 행해지고 있다.The productivity improvement of such PAN system carbon fiber is performed in any aspect of spinning, flameproofing, or carbonization of a carbon fiber precursor fiber.

하지만, 앞서 설명하였듯이, PAN계 탄소섬유 전구체 섬유를 얻을 때의 방사에 있어 PAN계 중합체 용액의 특성에 수반되는 한계 방사 드래프트율과 그의 응고 구조에 따른 한계 연신 배율에 의해 생산성이 제한되어 있고, 생산성을 향상시키기 위해 방사 속도를 높이면 연신성 저하가 발생하여 생산이 불안정화되기 쉽고, 방사 속도를 내리면 생산은 안정화되지만 생산성은 저하되기 때문에 생산성 향상과 안정화의 양립이 곤란하다는 것이 현실이었다.However, as described above, the productivity is limited by the limiting spin rate in accordance with the properties of the PAN polymer solution and the limit draw ratio according to its solidification structure in spinning when obtaining a PAN-based carbon fiber precursor fiber, Increasing the spinning speed to reduce the elongation occurs to reduce the elongation, which makes the production unstable, and lowering the spinning speed, the production is stabilized, but the productivity is lowered, so it is difficult to achieve both productivity and stabilization.

이에, 본 발명에서는 연신율이 낮은 프리커서를 제조하고, 이를 내염화 초기단계에서 일정 배향도를 갖도록 열연신함으로써 프리커서의 생산성 향상과 함께 고물성 특성도 갖는 탄소섬유를 생산할 수 있도록 구현하였다.Thus, in the present invention, a precursor having a low elongation is manufactured and heat-stretched to have a certain degree of orientation at the initial stage of flameproofing, thereby improving carbon productivity having high physical properties as well as productivity of the precursor.

보다 구체적으로, 도 1에서와 같이, 본 발명은 탄소섬유가 산화로(100)로 진입된 후 다수의 패스(Path)를 거쳐 탄소섬유 주행방향(100)으로 진행할 때 상기 탄소섬유 주행방향(100)의 특정 지점, 즉 상기 산화로(100)의 첫번째 또는 첫번째와 두번째 패스에서 연신하도록 연신 위치(200)가 설정된다.More specifically, as shown in FIG. 1, the present invention provides the carbon fiber running direction 100 when the carbon fiber enters the oxidation furnace 100 and proceeds to the carbon fiber running direction 100 through a plurality of paths. The stretching position 200 is set to draw at a specific point of), i.e. the first or first and second pass of the oxidation furnace 100.

그리고, 상기 연신 위치(200)에서 배향도가 90~95 수준에 이르도록 이 수준까지만 연신하게 되는데, 그 이유는 이 이상 과도하게 연신하게 되면 단사절, 모우 발생 등 내염화사의 품위를 저하시키고, 이로 인해 탄소섬유 전체의 품위를 떨어뜨리므로 상기 범위로 연신하여야 한다.And, the stretching position (200) is stretched only up to this level so that the degree of orientation reaches 90 ~ 95 level, the reason is that if excessively stretched more than this lowers the dignity of flame-resistant yarn, such as single thread, moor occurrence, Due to the deterioration of the overall quality of the carbon fiber should be drawn in the above range.

상술한 바는 내염화 초기 단계에서 이루어지는 열연신(배향도 90~95, 단섬도 1.5tex)이다.What has been described above is the thermal stretching (orientation degree 90 to 95, single fineness 1.5 tex) made in the initial stage of flameproofing.

그전에, 프리커서, 즉 전구체 섬유를 토출할 때 토출 선속도를 30~50m/min으로 유지하여야 한다.Before that, the discharge linear velocity should be maintained at 30-50 m / min when discharging the precursor, that is, the precursor fiber.

이는 연신배율이 낮은 프리커서를 제조하기 위함이며, 이때 프리커서의 배향도는 80~85, 단섬도는 1.8tex를 만족해야 한다.This is to prepare a precursor having a low draw ratio, wherein the orientation of the precursor should be 80 to 85, and the single fineness should satisfy 1.8 tex.

이또한 후속공정인 산화로(100)에서의 연신시 모두에서 설명한 범주까지 열연신을 용이하고 정확하며 균일하게 하기 위한 것으로, 이를 벗어나게 되면 산화로(100)의 연신 위치(200)에서 열연신할 때 단사절, 모우 등의 주된 발생요인이 되기 때문이다.This is also for easy, accurate and uniform thermal stretching up to the range described in the stretching process in the oxidation furnace 100, which is a subsequent process, when it is out of the heat stretching in the stretching position 200 of the oxidation furnace 100 This is because it is a major occurrence factor such as single trimester and moor.

이와 같이, 본 발명은 프리커서 생산시 토출 선속도를 30~50m/min으로 낮게 유지하여 연신배율이 낮은 프리커서를 만들고, 이 프리커서를 산화로(100)에서 내염화처리할 때 그 초기 단계인 첫번째 혹은 첫번째와 두번째 패스에서 열연신시킴으로써 프리커서의 생산성을 향상시킴과 동시에 내염화 처리시 연신배율을 높여 고물성을 갖는 탄소섬유를 제조할 수 있게 된다.As described above, the present invention maintains the discharge linear velocity at the time of precursor production at 30 to 50 m / min to make a precursor having a low draw ratio, and when the precursor is flameproofed in the oxidation furnace 100, its initial stage. Thermal stretching in the first or first and second passes of phosphorus improves the productivity of the precursor and at the same time increases the draw ratio during the flame-resistant treatment to produce carbon fibers having high physical properties.

도 1은 본 발명에 따른 탄소섬유 제조방법을 설명하기 위한 탄소섬유 주행방향과 연신위치를 보여 주는 개략적인 공정도이다.1 is a schematic process chart showing a carbon fiber running direction and a stretching position for explaining the carbon fiber manufacturing method according to the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

100 : 산화로 200 : 탄소섬유 주행방향100: oxidation furnace 200: carbon fiber traveling direction

300 : 연신 위치300: stretching position

Claims (3)

폴리아크릴로니트릴(PAN)계 탄소섬유의 전구체인 PAN계 중합체를 포함하는 방사용액을 습식 방사, 건식 방사 또는 건습식 방사하여 프리커서를 얻은 후, 이것을 200~400℃의 산화로에서 가열하여 내염화 섬유로 전환시키고, 적어도 1000℃의 온도의 불활성 분위기하에서 탄소화하여 제조되는 탄소섬유 제조방법에 있어서,The spinning solution containing the PAN polymer, which is a precursor of polyacrylonitrile (PAN) carbon fiber, was wet-spun, dry-spun or wet-spun to obtain a precursor, which was then heated in an oxidation furnace at 200 to 400 ° C. In the carbon fiber manufacturing method produced by converting into chlorinated fiber, and carbonized in an inert atmosphere at a temperature of at least 1000 ℃, 상기 프리커서는, 방사시 30~50m/min의 낮은 토출 선속도로 토출되어 배향도 80~85, 단섬도 1.8tex의 낮은 연신배율을 갖도록 제조되고; The precursor is discharged at a low discharge linear velocity of 30 to 50 m / min during spinning to produce a low draw ratio of 80 to 85 orientation and 1.8 tex of shortness; 상기 프리커서를 산화로에서 내염화처리할 때 내염화 초기단계에서 열연신하는 것을 특징으로 하는 탄소섬유 제조방법.When the precursor is flameproofed in an oxidation furnace, the carbon fiber manufacturing method characterized in that the hot stretching in the initial stage of flameproofing. 제 1항에 있어서,The method of claim 1, 상기 내염화 초기 단계에서의 열연신은 배향도 90~95, 단섬도 1.5tex인 것을 특징으로 하는 탄소섬유 제조방법.The thermal stretching in the initial stage of flameproofing is a carbon fiber manufacturing method, characterized in that the orientation degree 90 ~ 95, short fineness 1.5tex. 제 1항에 있어서,The method of claim 1, 상기 내염화 초기단계는, 산화로의 첫번째 패스 또는 첫번째와 두번째 패스 인 것을 특징으로 하는 탄소섬유 제조방법.The initial flameproofing step, the carbon fiber manufacturing method, characterized in that the first pass or the first and second pass of the oxidation furnace.
KR1020090136247A 2009-12-31 2009-12-31 Method for manufacturing carbon fiber KR101148569B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090136247A KR101148569B1 (en) 2009-12-31 2009-12-31 Method for manufacturing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090136247A KR101148569B1 (en) 2009-12-31 2009-12-31 Method for manufacturing carbon fiber

Publications (2)

Publication Number Publication Date
KR20110079244A KR20110079244A (en) 2011-07-07
KR101148569B1 true KR101148569B1 (en) 2012-05-23

Family

ID=44918630

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090136247A KR101148569B1 (en) 2009-12-31 2009-12-31 Method for manufacturing carbon fiber

Country Status (1)

Country Link
KR (1) KR101148569B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192937A (en) 2000-01-06 2001-07-17 Toray Ind Inc Method of producing carbon fiber
JP2003138435A (en) 2001-11-01 2003-05-14 Toho Tenax Co Ltd Method for producing flameproofed fiber
KR20080076937A (en) * 2005-12-13 2008-08-20 도레이 가부시끼가이샤 Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber
KR20090068370A (en) * 2006-10-18 2009-06-26 도레이 카부시키가이샤 Polyacrylonitrile polymer, process for production of the polymer, process for production of precursor fiber for carbon fiber, carbon fiber, and process for production of the carbon fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192937A (en) 2000-01-06 2001-07-17 Toray Ind Inc Method of producing carbon fiber
JP2003138435A (en) 2001-11-01 2003-05-14 Toho Tenax Co Ltd Method for producing flameproofed fiber
KR20080076937A (en) * 2005-12-13 2008-08-20 도레이 가부시끼가이샤 Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber
KR20090068370A (en) * 2006-10-18 2009-06-26 도레이 카부시키가이샤 Polyacrylonitrile polymer, process for production of the polymer, process for production of precursor fiber for carbon fiber, carbon fiber, and process for production of the carbon fiber

Also Published As

Publication number Publication date
KR20110079244A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5722991B2 (en) Carbon fiber manufacturing method and carbon fiber precursor fiber
KR101625739B1 (en) Polyacrylonitrile Precursor for Carbon Fiber and Method for Preparing the Same
JP5324472B2 (en) Flame-resistant fiber and carbon fiber manufacturing method
CN109881280B (en) Polyacrylonitrile fiber, preparation method and preparation method of carbon fiber
KR101372012B1 (en) Pitch-based isotropy carbon fibers of high strength and high elasticity and a fabrication process thereof
CN107287699B (en) Rapid preoxidation process for polyacrylonitrile-based carbon fiber precursor
US20150118142A1 (en) Formation of carbon nanotube-enhanced fibers and carbon nanotube-enahnced hybrid structures
KR101272525B1 (en) Preparation Method for Hollow Carbon Fiber
KR20130078788A (en) The method of producing complex precursor multi filament and carbon fiber
JP2010242249A (en) Flame-proof fiber for high strength carbon fiber, and method for producing the same
KR20120077050A (en) Method of preparing precursor and carbon fiber using the same
CN111088543B (en) Method for manufacturing high-performance wet-spun polyacrylonitrile carbon fiber precursor
KR102022914B1 (en) carbon fiber formed from chlorinated polyvinyl chloride and preparing method thereof
KR101148569B1 (en) Method for manufacturing carbon fiber
KR102309004B1 (en) Polyacrylronitrile type carbon fiber and method of manufacturing the same
US10975501B2 (en) Carbon material and production method for same
KR102266753B1 (en) Polyimide based carbon fiber with excellent flexibility and manufacturing method thereof
CN111088561B (en) Method for manufacturing polyacrylonitrile carbon fiber precursor
KR101909892B1 (en) The method of producing the polyacrylonitrile precursor for carbon fiber and the method of producing carbon fiber
CN111088532B (en) Method for manufacturing high-performance polyacrylonitrile carbon fiber precursor
KR102206860B1 (en) Hybrid activated carbon fiber and method of manufacturing the same
KR102531748B1 (en) Polyimide-based carbon fibers and graphite fibers and manufacturing methods thereof
KR101957061B1 (en) Process for preparing carbon fiber having high strength
CN112030270A (en) Process for preparing refractory carbon fibers
JP6004816B2 (en) Method for producing flame-resistant fiber bundle

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160414

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170413

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee