KR101146233B1 - Method for fabricating semiconductor device - Google Patents

Method for fabricating semiconductor device Download PDF

Info

Publication number
KR101146233B1
KR101146233B1 KR1020050058810A KR20050058810A KR101146233B1 KR 101146233 B1 KR101146233 B1 KR 101146233B1 KR 1020050058810 A KR1020050058810 A KR 1020050058810A KR 20050058810 A KR20050058810 A KR 20050058810A KR 101146233 B1 KR101146233 B1 KR 101146233B1
Authority
KR
South Korea
Prior art keywords
resistance
semiconductor device
single crystal
forming
gate
Prior art date
Application number
KR1020050058810A
Other languages
Korean (ko)
Other versions
KR20070003079A (en
Inventor
정이선
Original Assignee
매그나칩 반도체 유한회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매그나칩 반도체 유한회사 filed Critical 매그나칩 반도체 유한회사
Priority to KR1020050058810A priority Critical patent/KR101146233B1/en
Publication of KR20070003079A publication Critical patent/KR20070003079A/en
Application granted granted Critical
Publication of KR101146233B1 publication Critical patent/KR101146233B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • H01L27/0738Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors in combination with resistors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66628Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7834Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

본 발명은 저항소자의 선형성을 확보하여 정밀한 반도체 장치의 저항을 형성할 수 있는 방법을 제공하기 위한 것으로, 이를 위해 본 발명은 기판상에 게이트용 폴리실리콘 패턴을 형성하는 단계; 상기 게이트용 폴리실리콘 패턴의 양측면에 소스/드레인 영역을 형성하는 단게; 상기 소스/드레인 영역 및 상기 폴리실리콘 패턴을 포함하는 기판 전면에 ESD 성장을 진행하여 래트럴 단결정구조의 실리콘막을 성장시키는 단계; 상기 기판상에 형성된 상기 단결정구조의 실리콘막을 패터닝하는 단계; 및 상기 패터닝된 단결정구조의 실리콘막에 임플란트 공정을 진행하여 저항을 형성시키는 단계를 포함하는 반도체 장치의 제조방법을 제공한다.The present invention is to provide a method for forming a resistance of a precise semiconductor device by ensuring the linearity of the resistance element, the present invention comprises the steps of forming a polysilicon pattern for the gate on the substrate; Forming source / drain regions on both sides of the gate polysilicon pattern; Growing a silicon film having a lateral single crystal structure by performing ESD growth on an entire surface of the substrate including the source / drain region and the polysilicon pattern; Patterning the silicon film of the single crystal structure formed on the substrate; And forming a resistance by performing an implant process on the patterned silicon crystal of the single crystal structure.

반도체, 수동소자, 저항, 게이트. Semiconductors, passive devices, resistors, gates.

Description

반도체 장치의 제조방법{METHOD FOR FABRICATING SEMICONDUCTOR DEVICE}Manufacturing method of semiconductor device {METHOD FOR FABRICATING SEMICONDUCTOR DEVICE}

도1a 내지 도1c는 종래기술에 의해 반도체 장치의 저항을 제조하는 방법에 관한 공정단면도.1A to 1C are cross-sectional views of a process for manufacturing a resistance of a semiconductor device by the prior art.

도2는 종래기술에 의해 제조된 저항의 문제점을 나타내는 도면.2 is a diagram showing a problem of resistance manufactured by the prior art;

도3a 내지 도3j는 본 발명의 바람직한 실시예에 따른 반도체 장치의 저항을 제조하는 방법에 관한 공정단면도.3A to 3J are cross-sectional views of a method of manufacturing a resistance of a semiconductor device according to a preferred embodiment of the present invention.

도4는 본 발명의 바람직한 실시예에 따른 반도체 장치의 저항을 나타내는 도면.4 illustrates a resistance of a semiconductor device according to a preferred embodiment of the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

30 : 기판 31 : 소자분리막30 substrate 31 device isolation film

32 : 게이트용 절연막 33 : 게이트용 폴리실리콘막32: gate insulating film 33: gate polysilicon film

34 : 소스/드레인영역 35,36 : 게이트 패턴34: source / drain region 35,36: gate pattern

본 발명은 반도체 장치의 제조방법에 관한 것으로, 특히 반도체 장치의 정밀저항을 제조하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a precision resistance of a semiconductor device.

통상적으로 반도체 장치를 제조할 때에 저항을 제조하는 방법으로는 웰을 이용하는 방법과 게이트용 폴리실리콘을 이용하는 방법을 사용한다. 웰을 이용하는 저항은 저항값이 너무 높아 작은 저항값을 원할 때는 폴리실리콘을 이용하는 저항을 사용한다.Usually, when manufacturing a semiconductor device, the method of manufacturing a resistance uses the method of using a well and the method of using polysilicon for gates. The resistance using the well is too high, so when a small resistance is desired, the resistance using polysilicon is used.

게이트용 폴리실리콘을 원하는 크기만큼 형성시키고 양단에 배선과 접합시키면 저항이 되는 것이다.If the polysilicon for the gate is formed to the desired size and joined to the wiring at both ends, it becomes a resistance.

그러나, 이러한 폴리실리콘 저항은 그 형성면적의 길이와 넓이에 따라 성상되는 그레인이 차이가 나기 때문에,아주 정밀한 저항을 요구되는 상황에서는 폴리실리콘 저항의 저항값차이로 인해 반도체 장치의 동작상에러가 발생할 수 있다.However, since the grains formed vary depending on the length and width of the formation area of the polysilicon resistor, an operation error of the semiconductor device may occur due to the difference in resistance value of the polysilicon resistor in a situation where very precise resistance is required. have.

도1a 내지 도1c는 종래기술에 의해 반도체 장치의 저항을 제조하는 방법에 관한 공정단면도이다.1A to 1C are cross-sectional views of a process for manufacturing a resistance of a semiconductor device according to the prior art.

도1a에 도시된 바와 같이, 종래기술에 의한 반도체 장치의 저항을 제조하는 방법은 먼저 기판(10)에 패드산화막과 패드질화막을 형성하고, 감광막 패턴을 이용하여 패터닝한 다음, 패터닝된 패드산화막과 패드질화막을 이용하여 기판에 트랜치를 형성하고, 형성된 트랜치에 산화막을 매립시켜 소자분리막(11)을 형성한다.As shown in FIG. 1A, a method of manufacturing a resistor of a semiconductor device according to the related art is first formed with a pad oxide film and a pad nitride film on a substrate 10, patterned using a photoresist pattern, and then patterned with a patterned pad oxide film. A trench is formed in the substrate using the pad nitride film, and the device isolation film 11 is formed by embedding an oxide film in the formed trench.

이어서 도1b에 도시된 바와 같이, 게이트용 절연막(12)을 형성하고, 그 상부에 게이트용 폴리실리콘막(13)을 형성한다.Subsequently, as shown in FIG. 1B, a gate insulating film 12 is formed, and a gate polysilicon film 13 is formed thereon.

이어서 도1c에 도시된 바와 같이, 게이트용 폴리실리콘막(13)을 패터닝하고, 그 측벽에 게이트용 측벽절연막을 형성시켜 게이트 패턴(16)을 형성시킨다.Subsequently, as shown in FIG. 1C, the gate polysilicon film 13 is patterned, and the gate sidewall insulating film is formed on the sidewall thereof to form the gate pattern 16.

이때 피모스트랜지스터와 앤모스트랜지스터의 게이트 패턴에 각각 Phosphorus(또는 Asenic)와 boron(BF2)을 도핑하여 게이트 전극막의 저항값을 낮춘다.At this time, Phosphorus (or Asenic) and boron (BF2) are doped into the gate patterns of the PMOS transistor and the ANMOS transistor to decrease the resistance of the gate electrode film.

이어서 저항으로 될 폴리실리콘막(15)에는 붕소(Boron)를 30~50KeV, 5E13 atom/cm2 ~ 7E17 atoms/cm2 로 도핑하는 임플란트공정을 진행한다.Subsequently, an implant process of doping boron with 30 to 50 KeV and 5E13 atom / cm 2 to 7E17 atoms / cm 2 is performed on the polysilicon film 15 to be a resistor.

이렇게 형성된 저항은 저항을 위한 임플란트 공정을 하기 전에 다른 게이트 패턴을 하는 공정에서 완전히 노출되어 있고, 저항을 위한 폴리실리콘 패턴은 컬럼(column)구조를 가지기 때문에 채널링(channeling)이 발생하게 된다.The resistance thus formed is completely exposed in another gate pattern process before the implant process for the resistance, and the channeling occurs because the polysilicon pattern for the resistance has a column structure.

따라서 저항 균일도가 불량하며, 또한 채널링으로 인해 도펀트(dopant)가 균일하게 분포하지 못하게 되는 문제점이 생긴다.Therefore, there is a problem in that the resistance uniformity is poor, and that the dopant is not uniformly distributed due to channeling.

도2는 종래기술에 의해 제조된 저항의 문제점을 나타내는 도면이다.2 is a diagram showing a problem of resistance manufactured by the prior art.

도2에 도시된 바와 같이, 신호가 지나갈 때에 전반사가 일어나지 못하고 국부적인 반사가 발생하며 이때 신호의 왜곡이 발생할 수 있으며, 또한 노이즈가 증가하게 된다.As shown in FIG. 2, when the signal passes, total reflection does not occur, local reflection occurs, and distortion of the signal may occur, and noise may increase.

이는 저항의 선형성이 떨어지는 문제를 가져오는데, 아날로그 회로의 경우 소자의 선형성은 회로의 성능에 매우 큰 영향을 주기 때문에 이를 개선하는 게 매우 중요하다.This leads to a problem of poor linearity of the resistors. In the case of analog circuits, it is very important to improve the linearity of the device since it has a great effect on the performance of the circuit.

본 발명은 전술한 문제점을 해결하기 위해 제안된 것으로, 저항소자의 선형성을 확보하여 정밀한 반도체 장치의 저항을 형성할 수 있는 방법을 제공함을 목적으로 한다.The present invention has been proposed to solve the above-described problem, and an object of the present invention is to provide a method for forming a resistance of a precise semiconductor device by securing linearity of a resistance element.

본 발명은 기판상에 게이트용 폴리실리콘 패턴을 형성하는 단계; 상기 게이트용 폴리실리콘 패턴의 양측면에 소스/드레인 영역을 형성하는 단게; 상기 소스/드레인 영역 및 상기 폴리실리콘 패턴을 포함하는 기판 전면에 ESD 성장을 진행하여 래트럴 단결정구조의 실리콘막을 성장시키는 단계; 상기 기판상에 형성된 상기 단결정구조의 실리콘막을 패터닝하는 단계; 및 상기 패터닝된 단결정구조의 실리콘막에 임플란트 공정을 진행하여 저항을 형성시키는 단계를 포함하는 반도체 장치의 제조방법을 제공한다.The present invention comprises the steps of forming a polysilicon pattern for the gate on the substrate; Forming source / drain regions on both sides of the gate polysilicon pattern; Growing a silicon film having a lateral single crystal structure by performing ESD growth on an entire surface of the substrate including the source / drain region and the polysilicon pattern; Patterning the silicon film of the single crystal structure formed on the substrate; And forming a resistance by performing an implant process on the patterned silicon crystal of the single crystal structure.

본 발명은 실리콘 에피텍셜(epitaxial) 기술을 이용하여 엘리베이트된 소스드레인(elevated source drain)을 형성하는 기술에서 파생되는 래트럴 싱글 크리스탈 실리콘 성장(lateral single crystal Si growth)을 이용하여 정밀한 저항을 만드는 것에 관한 것이다.The present invention is directed to the creation of precise resistance using lateral single crystal Si growth, which is derived from a technique for forming an elevated source drain using silicon epitaxial technology. It is about.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명 의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다.Hereinafter, the most preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily implement the technical idea of the present invention. .

도3a 내지 도3j는 본 발명의 바람직한 실시예에 따른 반도체 장치의 저항을 제조하는 방법에 관한 공정단면도이다.3A to 3J are cross-sectional views of a method of manufacturing a resistance of a semiconductor device according to a preferred embodiment of the present invention.

도3a에 도시된 바와 같이, 본 실시예에 의한 반도체 장치의 저항을 제조하는 방법은 먼저 기판(30)에 패드산화막과 패드질화막을 형성하고, 감광막 패턴을 이용하여 패터닝한 다음, 패터닝된 패드산화막과 패드질화막을 이용하여 기판에 트랜치를 형성하고, 형성된 트랜치에 산화막을 매립시켜 소자분리막(31)을 형성한다.As shown in FIG. 3A, in the method of manufacturing the resistor of the semiconductor device according to the present embodiment, first, a pad oxide film and a pad nitride film are formed on a substrate 30, and then patterned using a photoresist pattern, followed by a patterned pad oxide film. And a pad nitride film to form a trench in the substrate, and an oxide film is buried in the formed trench to form the device isolation film 31.

이어서 도3b에 도시된 바와 같이, 게이트용 절연막(32)을 형성하고, 그 상부에 게이트용 폴리실리콘막(33)을 형성한다.Subsequently, as shown in FIG. 3B, a gate insulating film 32 is formed, and a gate polysilicon film 33 is formed thereon.

이어서 도3c에 도시된 바와 같이, 게이트용 폴리실리콘막(33)을 패터닝하고, 그 측벽에 게이트용 측벽절연막을 형성시켜 게이트 패턴(36)을 형성시킨다. 이때 피모스트랜지스터와 앤모스트랜지스터의 게이트 패턴에 각각 Phosphorus(또는 Asenic)와 boron(BF2)을 도핑하여 게이트 전극막의 저항값을 낮춘다.Subsequently, as shown in FIG. 3C, the gate polysilicon film 33 is patterned, and a gate sidewall insulating film is formed on the sidewall thereof to form a gate pattern 36. At this time, Phosphorus (or Asenic) and boron (BF2) are doped into the gate patterns of the PMOS transistor and the ANMOS transistor to decrease the resistance of the gate electrode film.

이때 P 또는 As는 10~70KeV, 3E13 atom/cm2 ~ 7E15 atoms/cm2로 공정을 진행하고, BF2 또는 B인경우에는 10~70KeV, 3E13 atom/cm2 ~ 7E15 atoms/cm2로 도핑하는 임플란트공정을 진행한다.At this time, P or As proceeds with 10 ~ 70KeV, 3E13 atom / cm2 ~ 7E15 atoms / cm2, and in case of BF2 or B, implant process doping with 10 ~ 70KeV, 3E13 atom / cm2 ~ 7E15 atoms / cm2 do.

이어서 모스트랜지스터의 소스/드레인 영역(34)을 불순물을 도핑하여 형성하고, 소스/드레인 영역(34)의 안정을 위한 급속열처리 공정을 진행한다.Subsequently, the source / drain region 34 of the MOS transistor is formed by doping impurities, and a rapid heat treatment process for stabilizing the source / drain region 34 is performed.

이어서 ESD(elevated source drain)성장 공정을 진행하는데, 즉, 에피텍셜 공정을 진행하는 것이다. 이때 실리콘 격자를 래터럴(lateral)하게 성장시키는데, 이 경우 게이트 전극과 소스/드레인간에 단락이 발생할 경우 추가적인 마스크를 적용하여 게이트 패턴의 측벽스페이서상에 형성된 싱글 크리스탈 실리콘을 제거한다. Next, an ESD (Elevated Source Drain) growth process is performed, that is, an epitaxial process is performed. At this time, the silicon lattice is laterally grown. In this case, when a short circuit occurs between the gate electrode and the source / drain, an additional mask is applied to remove the single crystal silicon formed on the sidewall spacer of the gate pattern.

이 공정에서 생긴 ESD 실리콘막이 37이다. ESD 막의 두께를 조절하게 되면 저항의 저항값이 매우 높게 될 수 있다. 이때 실시하는 에피텍셜 공정은 400 ~ 1000도 범위에서 UHV 방식으로 성장을 진행한다. The ESD silicon film produced in this process is 37. By adjusting the thickness of the ESD film, the resistance value of the resistor can be very high. At this time, the epitaxial process is carried out in the UHV method in the 400 ~ 1000 degree range.

이때 ESD 실리콘막 대신에 SiGe막을 적용하여 공정을 진행할 수 있다.In this case, the SiGe film may be applied instead of the ESD silicon film to proceed the process.

이어서 도3d에 도시된 바와 같이, 기판 전체에 실리콘산화막(38)을 형성한다.3D, a silicon oxide film 38 is formed over the entire substrate.

이어서 도3e에 도시된 바와 같이, 샐리사이드 공정을 위한 마스크(39)를 형성한다.Subsequently, as shown in FIG. 3E, a mask 39 for the salicide process is formed.

이어서 도3f에 도시된 바와 같이, 마스크(39)를 이용하여 실리콘산화막(38)을 제거한다.Subsequently, as shown in FIG. 3F, the silicon oxide film 38 is removed using the mask 39.

이어서 도3g에 도시된 바와 같이, 셀리사이드 공정을 진행하여 게이트 전극과 소스/드레인 영역상에 실리사이드막이 형성되도록 한다.Next, as shown in FIG. 3G, a cellicide process is performed to form a silicide film on the gate electrode and the source / drain region.

이어서 저항 형성을 위한 마스크(40)를 형성한다. 이어서 마스크(40)를 이용하여 저항이 형성될 영역에 저항을 위한 임플란트 공정을 진행한다.Subsequently, a mask 40 for forming resistance is formed. Subsequently, an implant process for resistance is performed on the region where the resistance is to be formed using the mask 40.

이때의 임플란트 공정은 붕소(Boron) 또는 BF2를 이용하여 30~50KeV, 3E13 atom/cm2 ~ 7E15 atoms/cm2로 도핑하는 임플란트공정을 진행한다.In this case, the implant process is performed using a boron (Bron) or BF2 doping 30 ~ 50KeV, 3E13 atom / cm2 ~ 7E15 atoms / cm2.

이어서 도3i에 도시된 바와 같이, 층간절연막(41)을 형성한다.Subsequently, as shown in FIG. 3I, an interlayer insulating film 41 is formed.

이어서 도3j에 도시된 바와 같이, 하단의 도전막과 접속된 콘택플러그(42)를 형성한 다음, 상부배선(43)을 형성한다.Subsequently, as shown in FIG. 3J, the contact plug 42 connected to the lower conductive film is formed, and then the upper wiring 43 is formed.

전술한 바와 같이, 종래기술로 형성된 저항은 폴리실리콘이 컬럼구조로 되어 있어 임플란트 공정시 채널링이 쉽게 발생하며, 이는 신호 전파시 전반사가 일어나는 것을 방해하게 된다. 이는 신호의 왜곡을 발생시키며, 또한 노이즈도 함께 발생하게 되는 문제가 있었다.As described above, the resistance formed in the prior art has a polysilicon columnar structure so that channeling occurs easily in the implant process, which prevents total reflection during signal propagation. This causes a distortion of the signal, and also has a problem that noise also occurs.

그러나 본 실시예에서는 저항을 실리콘 에피텍셜 기술을 이용하여 엘리베이트된 소스드레인(elevated source drain)을 형성하는 기술에서 파생되는 래트럴 싱글 크리스탈 실리콘 성장(lateral single crystal Si growth)을 이용하여 형성하기 때문에, 저항의 정확성을 보정할 수 있게 된다.However, in the present embodiment, since the resistance is formed using lateral single crystal Si growth derived from a technique of forming an elevated source drain using silicon epitaxial technology, The accuracy of the resistance can be corrected.

또한 균일한 저항체가 형성되어 신호전파시 노이즈 방지가 가능하고, 훨씬 향상된 선형성을 확보할 수 있어 저항 소자의 응용범위가 넓어질 수있다.In addition, since a uniform resistor is formed, noise can be prevented during signal propagation, and much improved linearity can be secured, thereby increasing the application range of the resistor.

따라서 정밀한 동작이 요구되는 아날로그회로에서 본 발명에 의한 저항을 사용하게 되면 보다 정확한 동작을 기대할 수 있다.Therefore, when the resistor according to the present invention is used in an analog circuit requiring precise operation, more accurate operation can be expected.

도4는 본 발명의 바람직한 실시예에 따른 반도체 장치의 저항을 나타내는 도면이다.4 is a diagram showing a resistance of a semiconductor device according to a preferred embodiment of the present invention.

도4에 도시된 바와 같이, 본 발명에 의해 제조된 저항은 신호가 전달될 때에 전반사가 일어나서 노이즈에 대한 문제가 제거될 수 있다.As shown in Fig. 4, the resistance produced by the present invention can cause total reflection when a signal is transmitted, thereby eliminating the problem of noise.

이상에서 설명한 바와 같이 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명이 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함이 본 발명이 속하는 기술분야에서 통상의 지식 을 가진 자에게 있어 명백할 것이다.As described above, the present invention is not limited to the above-described embodiments and the accompanying drawings, and the present invention may be variously substituted, modified, and changed without departing from the spirit of the present invention. It will be apparent to those of ordinary skill in the art.

본 발명에 의해서 정밀한 저항을 제조할 수 있게 되어 본 발명에 의한 저항을 사용하는 회로의 동작상 정확성을 기대할 수 있게 되었다.According to the present invention, it is possible to manufacture a precise resistor, and thus the operational accuracy of a circuit using the resistor according to the present invention can be expected.

Claims (4)

기판상에 게이트용 폴리실리콘 패턴을 형성하는 단계;Forming a polysilicon pattern for a gate on the substrate; 상기 게이트용 폴리실리콘 패턴의 양측면에 소스/드레인 영역을 형성하는 단계;Forming source / drain regions on both sides of the gate polysilicon pattern; 상기 소스/드레인 영역 및 상기 폴리실리콘 패턴을 포함하는 기판 전면에 ESD 성장을 진행하여 래트럴 단결정구조의 실리콘막을 성장시키는 단계;Growing a silicon film having a lateral single crystal structure by performing ESD growth on an entire surface of the substrate including the source / drain region and the polysilicon pattern; 상기 기판상에 형성된 상기 단결정구조의 실리콘막을 패터닝하는 단계; 및Patterning the silicon film of the single crystal structure formed on the substrate; And 상기 패터닝된 단결정구조의 실리콘막에 임플란트 공정을 진행하여 저항을 형성시키는 단계Forming a resistance by performing an implant process on the patterned single crystal silicon film 를 포함하는 반도체 장치의 제조방법.Method for manufacturing a semiconductor device comprising a. 제 1 항에 있어서,The method of claim 1, 상기 임플란트 공정은The implant process 붕소(Boron) 또는 BF2를 이용하여 진행하는 것을 특징으로 하는 반도체 장치의 제조방법.A method of manufacturing a semiconductor device, characterized in that it proceeds using boron or BF2. 제 2 항에 있어서,The method of claim 2, 상기 임플란트 공정은 The implant process 30~50KeV, 3E13 atom/cm2 ~ 7E15 atoms/cm2로 공정을 진행하는 것을 특징으로 하는 반도체 장치의 제조방법.A process for producing a semiconductor device, comprising the steps of 30 to 50 KeV and 3E13 atom / cm 2 to 7E15 atoms / cm 2. 제 1 항에 있어서,The method of claim 1, 상기 래트럴 단결정구조의 실리콘막을 성장시키는 단계는Growing the silicon film of the latticed single crystal structure 상기 성장을 위한 장비의 성장 분위기를 400 ~ 1000도 범위에서 극저압(UHV: Ultra High Vacuum) 방식으로 성장을 진행하는 것을 특징으로 하는 반도체 장치의 제조방법.Method of manufacturing a semiconductor device, characterized in that the growth of the growth atmosphere of the equipment for growth in the ultra-high pressure (UHV: Ultra High Vacuum) method in the range of 400 ~ 1000 degrees.
KR1020050058810A 2005-06-30 2005-06-30 Method for fabricating semiconductor device KR101146233B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050058810A KR101146233B1 (en) 2005-06-30 2005-06-30 Method for fabricating semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050058810A KR101146233B1 (en) 2005-06-30 2005-06-30 Method for fabricating semiconductor device

Publications (2)

Publication Number Publication Date
KR20070003079A KR20070003079A (en) 2007-01-05
KR101146233B1 true KR101146233B1 (en) 2012-05-17

Family

ID=37869981

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050058810A KR101146233B1 (en) 2005-06-30 2005-06-30 Method for fabricating semiconductor device

Country Status (1)

Country Link
KR (1) KR101146233B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040098302A (en) * 2003-05-14 2004-11-20 삼성전자주식회사 Method and Apparatus For Making MOS Transistors With Elevated Source/Drain

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040098302A (en) * 2003-05-14 2004-11-20 삼성전자주식회사 Method and Apparatus For Making MOS Transistors With Elevated Source/Drain

Also Published As

Publication number Publication date
KR20070003079A (en) 2007-01-05

Similar Documents

Publication Publication Date Title
US8574979B2 (en) Method for integrating silicon germanium and carbon doped silicon with source/drain regions in a strained CMOS process flow
US9263551B2 (en) Simultaneous formation of source/drain openings with different profiles
KR101126933B1 (en) Bipolar junction transistor of poly-emitter type, Bipolar CMOS DMOS device, manufacturing method of bipolar junction transistor of poly-emitter type and manufacturing method of Bipolar CMOS DMOS device
KR100905807B1 (en) Activated carbon selective epitaxial process
US7994010B2 (en) Process for fabricating a semiconductor device having embedded epitaxial regions
US9171927B2 (en) Spacer replacement for replacement metal gate semiconductor devices
US20080283926A1 (en) Method for integrating silicon germanium and carbon doped silicon within a strained cmos flow
CN101379601B (en) Nitrogen based implants for defect reduction in strained silicon
US7691714B2 (en) Semiconductor device having a dislocation loop located within a boundary created by source/drain regions and a method of manufacture therefor
TWI520266B (en) Wafer, method for forming a test structure and method for forming a semiconductor structure
US6924182B1 (en) Strained silicon MOSFET having reduced leakage and method of its formation
US8294243B2 (en) Lateral bipolar transistor with compensated well regions
KR101146233B1 (en) Method for fabricating semiconductor device
US20070249069A1 (en) Semiconductor devices and methods of manufacturing thereof
CN107039277B (en) Stress memorization techniques for transistor devices
KR100488099B1 (en) A mos transistor having short channel and a manufacturing method thereof
TWI781529B (en) Trap-rich layer in a high-resistivity semiconductor layer
US9224604B2 (en) Device and method for forming sharp extension region with controllable junction depth and lateral overlap
KR100620642B1 (en) Method for manufacturing semiconductor device
KR20140097569A (en) Mosfet having 3d-structure and manufacturing method for same
KR20030053962A (en) Method of manufacturing short-channel transistor in semiconductor device
KR100682198B1 (en) Method for manufacturing semiconductor device
WO2008116035A1 (en) Method of forming a recess in a semiconductor structure
KR101026315B1 (en) Methods for forming resistor of semiconductor devices
KR19980056177A (en) Manufacturing Method of Semiconductor Device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150416

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160418

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170418

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180418

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190417

Year of fee payment: 8