KR101143072B1 - 도금성 및 굽힘가공성이 우수한 초고강도 용융아연도금강판 및 그 제조방법 - Google Patents

도금성 및 굽힘가공성이 우수한 초고강도 용융아연도금강판 및 그 제조방법 Download PDF

Info

Publication number
KR101143072B1
KR101143072B1 KR1020090072767A KR20090072767A KR101143072B1 KR 101143072 B1 KR101143072 B1 KR 101143072B1 KR 1020090072767 A KR1020090072767 A KR 1020090072767A KR 20090072767 A KR20090072767 A KR 20090072767A KR 101143072 B1 KR101143072 B1 KR 101143072B1
Authority
KR
South Korea
Prior art keywords
steel sheet
plating
hot
bending
strength
Prior art date
Application number
KR1020090072767A
Other languages
English (en)
Other versions
KR20110015180A (ko
Inventor
김종상
김성우
손일령
서석종
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020090072767A priority Critical patent/KR101143072B1/ko
Publication of KR20110015180A publication Critical patent/KR20110015180A/ko
Application granted granted Critical
Publication of KR101143072B1 publication Critical patent/KR101143072B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Abstract

본 발명은 난도금 성분을 다량 함유한 초고강도 강판의 도금성 및 굽힘가공성을 향상시킨 용융아연도금강판 및 그 제조방법에 관한 것으로,
본 발명은 중량%로, C: 0.06~0.12%, Si: 0.1~1.0%, Mn: 2.3~3.0%, Cr: 0.5~1.0%, Sb: 0.01~0.1%, B: 10~20ppm, Ti 및 Nb 중 1종 또는 2종: 0.01~0.05%, 나머지는 Fe 및 불가피한 불순물을 포함하며, 상기 Mn, Cr 및 Si의 관계가 0.04≤Si/(Mn-Cr)≤0.4을 만족하고,
압연방향으로의 최소굽힘반경이 다음의 관계를 만족하는 도금성 및 굽힘가공성이 우수한 초고강도 용융아연도금강판 및 그 제조방법에 관한 것이다.
(최소굽힘반경(mm)/소재두께(mm))≤1.0
도금성(coatability), 굽힘가공성(bending-workability), 항복비(yield ratio), 인장강도(tensile strength)

Description

도금성 및 굽힘가공성이 우수한 초고강도 용융아연도금강판 및 그 제조방법{ULTRA-HIGH STRENGTH GALVINIZED STEEL SHEET HAVING EXCELLENT COATABILITY AND BENDING-WORKABILITY AND METHOD FOR MANUFACTURING THE SAME}
본 발명은 용융아연도금강판에 관한 것으로써, 보다 상세하게는 난도금 성분을 다량 함유한 초고강도 강판의 도금성 및 굽힘가공성을 향상시킨 용융아연도금강판 및 그 제조방법에 관한 것이다.
최근 지구환경보전을 위한 과제로서 연비규제가 강화되면서 자동차 차체의 경량화가 적극적으로 행해지고 있다. 그 대책의 하나로서 강판의 고강도화에 의한 자동차 소재의 무게 감소를 도모하고 있다. 이러한 고강도 자동차 소재로는 석출강화강, 소부경화강, 고용강화강, 변태강화강 등이 있다. 그러나 고강도강에서도 고용강화강, 특히 변태강화강은 도금특성이 좋지 않다.
상기 고용강화강은 Si, Mn, P, Cr 등의 고용원소가 침입 또는 치환되어 스트레인 필드(Strain Field)를 형성하는 강화기구에 의해 고강도를 달성하는 강이고, 상기 변태강화강에는 이상조직강(Dual Phase Steel, DP), 복합조직강(Complex Phase Steel, CP)이나 변태유기소성강(Transformation Induced Plasticity, TRIP) 등이 있다. 이들 변태강화강을 신고강도강 (Advance High Strength Steel: AHSS)이라고도 한다.
상기 DP강은 연질의 페라이트내에 경질의 마르텐사이트가 미세 균질하게 분산되어 고강도를 확보하는 강종이다. CP강은 페라이트, 마르텐사이트, 베이나이트의 2상 또는 3상을 포함하며, 강도향상을 위해 Ti, Nb등의 석출경화원소를 포함하는 강종이며, TRIP강은 미세 균질하게 분산된 잔류오스테나이트를 상온에서 가공하면 마르텐사이트 변태를 일으키며 고강도 고연성을 확보하는 강종이다.
한편, 상기 신고강도강은 자동차의 범퍼(bumper) 또는 실 사이드(sill side) 부품에 적용하기 위해서 항복강도 800Mpa 이상, 인장강도 1180MPa 이상을 갖는 초고강도를 요구할 뿐만 아니라, 우수한 도금성, 용접성 등이 요구되고 있으며, 이를 위한 용융아연도금강판의 개발이 국내 및 해외자동차에서 시급히 요구되고 있다.
상기 신고강도강에는 난도금 성분인 Si, Mn. B 등이 다량 첨가되는데, 이들 난도금 성분은 용융아연과의 젖음성이 좋지 않은 원소들이다. 상기 Si, Mn, B 등은 연속소둔 열처리공정 중 강판표면으로 확산되어 농도가 모재(bulk)보다 10~100배정도 높게 된다. 이와 같이 결정입계나 입내에 농화된 Si 등은 로내 분위기중의 극미 량 수분이나 불순물과 반응하여 SiO2 또는 보론 산화물 등의 피막을 형성하므로 용융아연 도금공정에서 용융아연과의 젖음성(wettability)을 크게 저하시킨다. 따라서 미도금 현상이 다발하게 되거나, 용융도금이 되더라도 도금부착성을 크게 열화시켜 가공시 도금박리가 발생하며 합금화 열처리시 합금화가 크게 지연되는 문제점이 있다.
이러한 난도금 성분에 의한 용융아연도금 밀착성을 개선하기 위한 방법으로는 (1)도금욕 성분관리, (2)산화환원법 (3)선도금 기술 등이 알려져 있다.
(1) 도금욕 성분관리
이 기술은 강판에 잔존하는 SiO2산화물 등을 도금욕에서 환원하여 산화피막으로 인한 용융도금 젖음성의 저하를 방지하는 것이다. 즉, 도금욕의 Al첨가량을 0.10~0.20중량%의 수준에서 0.21~0.25중량% 수준으로 높게 관리하는 것이다. 이것에 의해 소지철과 도금층 계면에 Zn-Fe-Al-Si계 및 Fe-Al-Si계 합금층의 생성량을 증가시켜 합금원소의 산화층을 환원시키는 효과에 의해 산화피막으로 인한 용융도금의 젖음성 저하를 방지하는 것이다.
그러나, 이러한 방법은 도금욕내 알루미늄 농도의 증가로 도금욕내 상부드로스 발생량을 증가시키고, 합금화 반응을 크게 지연시키는 문제점이 있다.
(2) 산화환원법
일반적으로 냉간압연 후 강판표면에는 약 0.001~0.1㎛ 얇은 산화피막이 잔존한다. 이러한 얇은 산화피막은 소둔공정중에서 완전히 환원되기 때문에 강중 Si, B, Mn이 표면으로 농화되는 것을 차단하지 못해 도금부착성이 현저히 떨어지게 된다. 상기 산화환원법은 소둔로를 산화대와 환원대로 구분하고, 산화대는 직화로 방식을 채택하여 직화로에서 과잉의 공기를 투입하여 산화피막을 의도적으로 형성하고 환원대에서는 환원분위기로 산화피막을 환원하여 Si, Mn, B등의 표면농화를 억제하고자 하는 것으로 이에 대한 연구가 활발히 진행되었다.
그러나 상기 산화환원법은 최적 두께의 산화피막을 용이하게 제조하기 어려운 문제가 있다. 즉, 산화피막 두께가 두꺼우면 환원로에서 충분히 환원되지 못해 산화성 박리가 발생하고, 너무 얇으면 환원과정중에 Si, Mn, B등의 표면농화가 발생하여 미도금이 발생하는 문제가 있어 상용화가 어려운 실정이다.
(3) 선도금 기술
상기 선도금 기술은 용융도금 전에 Fe, Ni, Cu 등의 다양한 합금원소계의 수용액분사 또는 전기도금에 의한 선도금(pre-coating)을 실시하여 용융아연층과의 젖음성(wettability)을 확보하는 방법이다. 이는 고온 소둔에 의해서 소지철계면에 합금원소가 농화되어도 예비도금층 하부에 농화됨으로써 소둔과정 또는 가열과정시 분위기중 수분과의 반응을 차단하는 것이다. 이로 인해 실리콘의 산화가 방지되므 로 도금부착성 및 합금화처리성이 크게 향상된다.
그러나 상기 강판표면에 선도금하는 방법을 통상적으로 전기도금방식으로 실시하게 되는데, 이때 소지철의 요철이 큰 열연산세강판을 도금소재로 하는 경우, 요철부는 평활한 도금층 표면보다 양극과의 간격차이가 있기 때문에 짧은 도금공정에 의해서 요철부에 도금부착량의 편차가 발생한다. 즉, 볼록부는 평활한 표면보다 도금부착량이 많게 되나, 오목부는 도금부착량이 적게 되거나 또는 전혀 도금이 되지 않는 문제점이 발생할 가능성이 있다.
다만, 이를 방지하기 위해서 전기도금공정을 길게 하거나, 감속작업을 행하는 방법이 있으나, 볼록부에서의 과도금이 발생하므로 바람직하지 않다. 특히 이와 같이 전기도금방식에 의해 선도금하는 원소는 경도가 크고 연성이 부족한 원소로서 도금부착량이 큰 경우, 가공시 도금박리가 발생하는 문제가 있다. 또한 전처리 공정에서 선도금을 전기도금방식으로 실시할 경우, 설비가 복잡하고 제조원가도 높기 때문에 경제적으로도 바람직하지 않다.
따라서, 초고강도를 확보하기 위해서 난도금 성분을 다량 함유한 강판의 도금성 및 굽힘가공성을 복잡한 공정을 거치지 않고, 보다 효과적으로 향상시킬 수 있는 기술이 절실히 요구되고 있는 실정이다.
본 발명의 일측면은 강성분, 소둔열처리 및 용융아연도금조건을 최적화하여 높은 인장강도와 항복비를 갖는 동시에, 도금성 및 굽힘가공성이 우수한 초고강도 용융아연도금강판 및 그 제조방법을 제공하고자 하는 것이다.
본 발명은 중량%로, C: 0.06~0.12%, Si: 0.1~1.0%, Mn: 2.3~3.0%, Cr: 0.5~1.0%, Sb: 0.01~0.1%, B: 10~20ppm, Ti 및 Nb 중 1종 또는 2종: 0.01~0.05%, 나머지는 Fe 및 불가피한 불순물을 포함하며, 상기 Mn, Cr 및 Si의 관계가 0.04≤Si/(Mn-Cr)≤0.4을 만족하고, 압연방향으로의 최소굽힘반경이 다음의 관계를 만족하는 도금성 및 굽힘가공성이 우수한 초고강도 용융아연도금강판을 제공한다.
(최소굽힘반경(mm)/소재두께(mm))≤1.0
또한, 본 발명은 상기 조성을 만족하는 강판을 770~850℃에서 소둔하는 단계;
상기 소둔된 강판을 수소농도가 10% 이상인 분위기하에서 400℃이상으로 냉각하는 단계; 및
상기 냉각된 강판을 480~520℃로 가열한 후 용융아연 도금욕에 입욕시켜 아연도금하는 단계를 포함하는 도금성 및 굽힘가공성이 우수한 초고강도 용융아연도금강판의 제조방법을 제공한다.
본 발명에 의하면 항복비 70~100%를 만족하고, 인장강도 1180MPa 이상의 초고강도를 가지는 동시에, 도금성 및 굽힘가공성이 우수한 용융아연도금강판을 제공할 수 있다.
이하, 본 발명에 대하여 상세히 설명한다.
먼저, 본 발명인 용융아연도금강판의 조성범위에 대하여 상세히 설명한다(이하, 중량%).
탄소(C)의 함량은 0.06~0.12%가 바람직하다. C는 주요 강화원소로서 0.06% 미만에서는 1180MPa 이상의 원하는 인장강도를 확보할 수 없고, 0.12%를 초과하게 되면 점용접성이 크게 저하되어 강판을 이용한 자동차 등에 사용되는 것이 곤란하게 된다.
실리콘(Si)의 함량은 0.1~1.0%가 바람직하다. Si는 연신율을 크게 감소시키지 않으면서 인장강도를 증가시키는 유용한 원소이다. 그 함량이 0.1% 미만에서는 강도증가 효과가 미약하고, 1.0%를 초과하면 미세한 미도금이 발생할 우려가 있다.
망간(Mn)의 함량은 2.3~3.0%가 바람직하다. Mn은 고용강화 원소로서, 그 함량이 2.3% 미만에서는 인장강도 1180MPa 이상을 확보할 수 없으며, 3.0%를 초과하 는 경우에는 항복강도와 인장강도는 증가되나, 연신율이 감소하고, 용융아연도금시 도금성을 저하시키며, 소둔 후에도 소지철 내부에 Mn 밴드가 잔존하여 굽힘가공성이 크게 저하되어 부품가공시 가공 크랙(crack)이 발생하는 문제가 있고, 소둔시 표면에 형성되는 산화물이 조대화되어 소둔로의 롤에 픽업(pick up)하여 강판에 덴트(dent)결함을 유발시키는 문제가 있다.
크롬(Cr)의 함량은 0.5~1.0%가 바람직하다. Cr은 강력한 페라이트 형성원소로서 강의 냉각시 과도한 마르텐사이트 변태를 억제하고, 베이나이트 변태를 촉진시켜서 강의 굽힘가공성을 개선한다. 그러나 그 함량이 0.5% 미만에서는 강의 마르텐사이트-베이나이트 조직 균형이 충분하지 못하여 굽힘가공성의 개선에 미흡하고, 그 함량이 1.0%를 초과하게 되면 Cr 탄화물이 과도하게 생성되어 강의 취성이 증가될 우려가 있다.
안티몬(Sb)의 함량은 0.01~0.1%가 바람직하다. Sb는 소둔 열처리시 강의 결정립계에 우선적으로 편석하여 Mn, B, Si의 결정립계를 통한 강표면으로의 확산을 억제하여 표면농화를 크게 감소시켜 도금성을 크게 개선시킨다. 또한 Sb 첨가에 의하여 소둔 산화물의 조대화가 억제되므로 산화물의 롤 픽업(Roll Pick up)에 의한 내덴트성 방지에도 효과적이다. 그러나 그 함량이 0.01% 미만에서는 덴트억제 및 도금성 개선 효과가 미약하고, 0.1%를 초과하면 덴트억제 및 도금성 개선효과는 포화상태에 도달되고, 연신율은 다소 감소하므로, 그 상한을 0.1%로 한정하는 것이 바람직하다.
보론(B)의 함량은 10~20ppm이 바람직하다. B는 미량의 첨가로도 강도를 크게 증가시킬 수 있는 원소이나, 냉각속도에 따라 소입성이 크게 변화되어 그 함량을 10~20ppm으로 한정한다. 그 함량이 10ppm 미만이면 B에 의한 페라이트 변태억제 효과가 크게 감소하여 연질 페라이트와 경질 마르텐사이트의 복합조직강을 형성하여 굽힘가공시 연질 페라이트에서 가공 크랙(crack)이 발생한다. 또한 그 함량이 20ppm을 초과하면 열연공정의 냉각과정시 소입성 증가가 커지게 되어 냉간압연 중에 에지크랙(edge crack)이 발생하여 생산성에 문제가 있다.
티탄(Ti) 및 니오븀(Nb) 중 1종 또는 2종의 함량은 0.01~0.05%가 바람직하다. Ti와 Nb는 석출경화원소로서 0.01% 미만에서는 강도증가의 효과가 미약하고, 그 함량이 0.05%를 초과하면 재결정 온도가 크게 증가하여 소둔온도 증가에 따른 Si, B, Mn의 표면농화가 다량 발생하여 미도금이 발생하는 문제가 있다.
나머지는 Fe 및 불가피한 불순물이 포함된다.
본 발명은 상기 Si, Mn, Cr의 함량이 0.04≤Si/(Mn-Cr)≤0.4 관계를 만족한다. 상기 관계는 본 발명의 도금성 및 굽힘가공성을 모두 고려할 수 있도록 도출된 것이며, 0.04 미만에서는 합금화 용용아연도금 실시의 경우 고망간에 기인한 비자 성 특성으로 통상적인 유도가열을 통한 합금화가 어렵고, 베이나이트 분율 감소로 굽힘가공성이 떨어지게 되며, 0.4을 초과하게 되면 난도금성 원소의 표면농화가 심화되어 도금성이 떨어지고 페라이트 분율증가로 인해 굽힘가공성이 나빠지게 된다.
이하, 용융아연도금강판을 열처리한 후의 최종조직에 대하여 설명한다.
상기와 같이 조성되는 강을 용융아연도금강판으로 적합한 열처리를 통해 그 미세조직을 관리하여 요구하는 물성을 부여할 수 있다. 본 발명에서 강판은 베이나이트를 주상으로 하며, 제 2 상으로 주된 페라이트 및 일부 마르텐사이트를 함유하고 있으며, 제 2 상의 분율은 30%이하가 되도록 한다. 제2상의 분율이 30%를 초과하면 굽힘가공성이 크게 저하될 수 있으므로, 30%이하로 제한하는 것이 바람직하다.
이하, 본 발명의 용융아연도금강판을 제조하는 방법에 대하여 상세히 설명한다.
상기 조성범위 및 관계를 만족하는 강판을 770~850℃의 온도범위에서 소둔한다. 상기 강판은 열연강판 또는 냉연강판 중 어느 것이어도 무방하지만, 냉연강판이 보다 바람직하다.
상기 소둔온도가 770℃ 미만에서는 페라이트 분율이 30%를 초과하여 굽힘가공시 가공 크랙(crack)이 발생하고, 850℃를 초과하는 경우에는 굽힘가공성은 개선되나 고온에서 열처리시 Si, Mn, B 등의 표면농화 원소에 의한 표면농화가 급증하 여 미도금이 다량 발생하는 문제가 있다.
상기 소둔을 행한 후 수소농도가 10%이상인 분위기하에서 마르텐사이트 변태개시 온도보다 높은 400℃까지 냉각한다. 수소농도가 10% 미만의 경우, 불충분한 환원성 분위기로 도금성이 저하되며, 400℃ 미만으로 냉각할 경우, 입욕전 재가열에 의해 템퍼링된 마르텐사이트의 분율이 증가하여 인장강도가 크게 낮아지게 되므로, 상기의 조건으로 냉각하는 것이 바람직하다. 보다 바람직하게는 수소농도 10~40%의 분위기하에서 냉각한다.
상기 냉각된 강판을 용융아연도금욕에 입욕시켜 도금함에 있어서, 입욕전 강판의 입욕온도를 480~520℃까지 재가열한 후 아연도금한다. 상기 입욕온도를 한정한 이유는 강판의 도금성을 향상시키고, 아연도금과정에서 Fe2Al5가 형성됨과 동시에 깨져서 합금화처리 효과를 증가시키기 위함이다. 다만, 입욕온도가 520℃를 초과하게 되면 도금욕온도가 증가하여 드로스 발생이 증가되는 문제가 있다.
본 발명의 용융아연도금강판은 압연방향으로의 최소굽힘반경이 (최소굽힘반경(mm)/소재두께(mm))≤1.0의 관계를 만족한다. 이는 고항복비를 가지는 고강도 강의 경우, 스프링백(spring back)현상이 심화되어 이를 해결하기 위해 (최소굽힘반경(mm)/소재두께(mm))≤1.0 의 굽힘가공성이 요구되기 때문이다. 또한 본 발명의 용융아연도금강판은 항복비가 70~100%를 만족하고, 인장강도가 1180MPa 이상인 특성을 가진다.
이하, 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 하기 실시예에 한정되는 것은 아니다.
(실시예)
중량%로 C: 0.08%, Si: 0.5%, Mn: 2.7%, Sb: 0.1%, Cr: 0.8%, Ti: 0.01%, Nb: 0.04%, B: 15ppm을 포함하고 나머지는 Fe 및 불가피한 불순물로 조성되며, Si/(Mn-Cr)의 값이 약 0.26을 만족하고, 두께 1.2㎜의 냉연강판에 대해 하기 표 1의 조건으로 소둔하고 수소농도 50%에서 냉각온도를 달리하여 냉각하였다. 상기 냉각이 끝난 강판을 Al: 0.2%, Fe: 0.02%, 나머지 Zn로 조성된 460℃의 아연도금욕에 3초간 침적하여 도금부착량을 단면기준으로 120g/㎡으로 하여 용융아연도금을 실시하였다.
이렇게 얻어진 용융아연도금강판의 기계적 성질(인장강도, 항복강도, 항복비, 굽힘가공성), 소지철 조직을 관찰하고, 그 결과를 표 1에 나타내었다. 이때 기계적 성질은 JIS 5호 시편을 사용하여 인장시험기로 인장강도 및 항복강도를 측정하였고, 굽힘가공성은 성형시험기를 이용하여 펀치의 곡률을 달리하여 90도 가공시 소지철의 파단이 발생하지 않는 최소 곡률반경으로 평가하였다.
또한, 점용접성을 평가할 수 있는 지표로써, 연성비는 십자인장시험과 전단인장시험을 통하여 측정된 CTS(Cross Tensile Strength), TSS(Tensile Shear Strength)의 비로 평가하였으며, 연성비 0.5 이상일 때, 용접성이 우수한 것으로 판단하였다.
구분 균열대
온도(℃)
급냉대
온도(℃)
인장강도
(Mpa)
항복강도
(Mpa)
항복비
(%)
연성비
(CTS/TSS)
최소곡률
반경(mm)
조직구성
B F M
발명예 1 830 570 1235 870 70 0.62 0 78 17 5
발명예 2 790 550 1255 900 73 0.55 0 73 23 4
비교예 1 790 390 980 950 97 0.35 0 55 22 23
비교예 2 760 560 1350 800 59 0.28 3 58 32 10
비교예 3 860 590 1150 730 63 0.55 0 70 27 3
B: 베이나이트, F: 페라이트, M: 마르텐사이트
상기 표 1에 나타난 바와 같이, 본 발명의 조건을 만족하는 발명예 1 및 2는 항복비가 70%이상, 인장강도 1180MPa 이상이면서, 용접부의 연성비가 크고, 최소곡률반경이 O으로 굽힘가공성이 매우 우수하게 나타났다.
이에 반해 급냉대의 온도가 390℃로 본 발명의 범위를 벗어난 비교예 1은 템퍼드 마르텐사이트를 다량 형성하여 인장강도가 낮고 용접성이 크게 열화되었다. 또한 균열대 강판온도가 760℃인 비교예 2는 소둔후에도 소지철 내부에 Mn 밴드가 잔존하여 굽힘가공성이 크게 저하되는 것을 확인할 수 있는 반면, 균열대의 온도가 860℃인 비교예 3은 굽힘가공성은 양호하나, 고온에서의 열처리시 Si, Mn, B 등의 표면농화량이 증가하여 미도금이 다량 발생하였고, 인장강도가 1180MPa 이하로 나타났다.

Claims (5)

  1. 중량%로, C: 0.06~0.12%, Si: 0.1~1.0%, Mn: 2.3~3.0%, Cr: 0.5~1.0%, Sb: 0.01~0.1%, B: 10~20ppm, Ti 및 Nb 중 1종 또는 2종: 0.01~0.05%, 나머지는 Fe 및 불가피한 불순물을 포함하며, 상기 Mn, Cr 및 Si의 관계가 0.04≤Si/(Mn-Cr)≤0.4을 만족하고,
    그 미세조직이 베이나이트와 제 2 상으로 이루어지고, 상기 제 2 상은 페라이트와 마르텐사이트를 포함하며, 제 2 상의 분율은 30면적%이하이며,
    압연방향으로의 최소굽힘반경이 다음의 관계를 만족하는 도금성 및 굽힘가공성이 우수한 초고강도 용융아연도금강판.
    (최소굽힘반경(mm)/소재두께(mm))≤1.0
  2. 삭제
  3. 청구항 1에 있어서,
    상기 용융아연도금강판은 인장강도 1180MPa 이상이고, 항복비가 70~100%인 도금성 및 굽힘가공성이 우수한 초고강도 용융아연도금강판.
  4. 중량%로, C: 0.06~0.12%, Si: 0.1~1.0%, Mn: 2.3~3.0%, Cr: 0.5~1.0%, Sb: 0.01~0.1%, B: 10~20ppm, Ti 및 Nb 중 1종 또는 2종: 0.01~0.05%, 나머지는 Fe 및 불가피한 불순물을 포함하며, 상기 Mn, Cr 및 Si의 관계가 0.04≤Si/(Mn-Cr)≤0.4을 만족하는 강판을 770~850℃에서 소둔하는 단계;
    상기 소둔된 강판을 수소농도가 10부피% 이상인 분위기하에서 400℃이상으로 냉각하는 단계; 및
    상기 냉각된 강판을 480~520℃로 가열한 후 용융아연 도금욕에 입욕시켜 아연도금하는 단계
    를 포함하는 도금성 및 굽힘가공성이 우수한 초고강도 용융아연도금강판의 제조방법.
  5. 청구항 4에 있어서,
    상기 수소농도가 10~40부피%인 분위기하에서 냉각하는 도금성 및 굽힘가공성이 우수한 초고강도 용융아연도금강판의 제조방법.
KR1020090072767A 2009-08-07 2009-08-07 도금성 및 굽힘가공성이 우수한 초고강도 용융아연도금강판 및 그 제조방법 KR101143072B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090072767A KR101143072B1 (ko) 2009-08-07 2009-08-07 도금성 및 굽힘가공성이 우수한 초고강도 용융아연도금강판 및 그 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090072767A KR101143072B1 (ko) 2009-08-07 2009-08-07 도금성 및 굽힘가공성이 우수한 초고강도 용융아연도금강판 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20110015180A KR20110015180A (ko) 2011-02-15
KR101143072B1 true KR101143072B1 (ko) 2012-05-08

Family

ID=43774047

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090072767A KR101143072B1 (ko) 2009-08-07 2009-08-07 도금성 및 굽힘가공성이 우수한 초고강도 용융아연도금강판 및 그 제조방법

Country Status (1)

Country Link
KR (1) KR101143072B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101726094B1 (ko) * 2015-12-24 2017-04-12 주식회사 포스코 미세크랙이 억제된 열간 프레스 성형품 및 그 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030063484A (ko) * 2000-12-29 2003-07-28 니폰 스틸 코포레이션 도금 밀착성 및 프레스 성형성이 뛰어난 고강도 용융아연계 도금강판 및 그 제조방법
KR100797364B1 (ko) 2006-12-28 2008-01-22 주식회사 포스코 굽힘가공성이 우수한 고항복비형 초고강도 강판 및 이를이용한 용융아연도금강판의 제조방법
KR100851163B1 (ko) * 2006-12-29 2008-08-08 주식회사 포스코 도금부착성 및 굽힘가공성이 우수한 초고강도 강판 및 이를이용한 합금화 용융아연도금강판의 제조방법
KR100851136B1 (ko) 2001-12-26 2008-08-08 주식회사 포스코 슬래그 두께 측정을 이용한 용강에서의 황 제거방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030063484A (ko) * 2000-12-29 2003-07-28 니폰 스틸 코포레이션 도금 밀착성 및 프레스 성형성이 뛰어난 고강도 용융아연계 도금강판 및 그 제조방법
KR100851136B1 (ko) 2001-12-26 2008-08-08 주식회사 포스코 슬래그 두께 측정을 이용한 용강에서의 황 제거방법
KR100797364B1 (ko) 2006-12-28 2008-01-22 주식회사 포스코 굽힘가공성이 우수한 고항복비형 초고강도 강판 및 이를이용한 용융아연도금강판의 제조방법
KR100851163B1 (ko) * 2006-12-29 2008-08-08 주식회사 포스코 도금부착성 및 굽힘가공성이 우수한 초고강도 강판 및 이를이용한 합금화 용융아연도금강판의 제조방법

Also Published As

Publication number Publication date
KR20110015180A (ko) 2011-02-15

Similar Documents

Publication Publication Date Title
CN111433380B (zh) 高强度镀锌钢板及其制造方法
US9255313B2 (en) Steel sheet for hot press forming having low-temperature heat treatment property, method of manufacturing the same, method of manufacturing parts using the same, and parts manufactured by the same
JP3527092B2 (ja) 加工性の良い高強度合金化溶融亜鉛めっき鋼板とその製造方法
EP2407568A1 (en) High-strength hot-dip galvanized steel sheet having excellent formability and method for producing same
KR101510505B1 (ko) 우수한 도금성과 초고강도를 갖는 고망간 용융아연도금강판의 제조방법 및 이에 의해 제조된 고망간 용융아연도금강판
JP2005528519A5 (ko)
KR101639843B1 (ko) 열간 프레스 성형용 도금강판 및 그 제조방법
KR20190076307A (ko) 가공성이 우수한 고강도 강판 및 이의 제조방법
JP2011508085A (ja) 溶接性に優れた高強度薄鋼板及びその製造方法
JP6475840B2 (ja) 表面品質、メッキ密着性、及び成形性に優れた高強度溶融亜鉛メッキ鋼板、並びにその製造方法
KR100711445B1 (ko) 도금밀착성 및 충격특성이 우수한 열간성형 가공용 합금화용융아연도금강판의 제조방법, 이 강판을 이용한열간성형부품의 제조방법
KR20200118445A (ko) 고강도 열간 압연 또는 냉간 압연 및 어닐링된 강 및 그 제조 방법
KR101528011B1 (ko) 열간프레스 성형용 도금강판 및 열간프레스 성형품, 그의 제조방법
JP5251207B2 (ja) 深絞り性に優れた高強度鋼板及びその製造方法
JP4687260B2 (ja) 表面性状に優れた深絞り用高張力冷延鋼板の製造方法
KR101736640B1 (ko) 도금성 및 점용접성이 우수한 아연계 도금강판 및 그 제조방법
KR101143072B1 (ko) 도금성 및 굽힘가공성이 우수한 초고강도 용융아연도금강판 및 그 제조방법
KR100797364B1 (ko) 굽힘가공성이 우수한 고항복비형 초고강도 강판 및 이를이용한 용융아연도금강판의 제조방법
KR101452052B1 (ko) 도금밀착성이 우수한 고강도 합금화 용융아연도금강판 및 그 제조방법
KR100851163B1 (ko) 도금부착성 및 굽힘가공성이 우수한 초고강도 강판 및 이를이용한 합금화 용융아연도금강판의 제조방법
KR101003254B1 (ko) 열간 프레스 가공성이 우수한 열처리 강화형 강판 및 그제조방법
JP3347152B2 (ja) 耐孔あき腐食性に優れた低降伏比冷延高張力溶融亜鉛めっき鋼板の製造方法
KR101560883B1 (ko) 가공성 및 용접성이 우수한 열간 프레스 성형용 강판 및 이의 제조방법
KR102484978B1 (ko) 내파우더링성이 우수한 고강도 합금화 용융아연도금강판 및 그 제조방법
KR102468043B1 (ko) 표면품질 및 크랙 저항성이 우수한 초고강도 아연도금강판 및 이의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150417

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160427

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170426

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180424

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190426

Year of fee payment: 8