KR101136014B1 - Photocatalytic coating composition having water repellent and air-cleaning activity, containing titanium dioxide coated by hydroxy-apatite - Google Patents

Photocatalytic coating composition having water repellent and air-cleaning activity, containing titanium dioxide coated by hydroxy-apatite Download PDF

Info

Publication number
KR101136014B1
KR101136014B1 KR1020090120553A KR20090120553A KR101136014B1 KR 101136014 B1 KR101136014 B1 KR 101136014B1 KR 1020090120553 A KR1020090120553 A KR 1020090120553A KR 20090120553 A KR20090120553 A KR 20090120553A KR 101136014 B1 KR101136014 B1 KR 101136014B1
Authority
KR
South Korea
Prior art keywords
weight
titanium dioxide
coating composition
hydroxyapatite
coated
Prior art date
Application number
KR1020090120553A
Other languages
Korean (ko)
Other versions
KR20100113971A (en
Inventor
이장목
최정진
박상균
김규호
Original Assignee
주식회사 해성기업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 해성기업 filed Critical 주식회사 해성기업
Publication of KR20100113971A publication Critical patent/KR20100113971A/en
Application granted granted Critical
Publication of KR101136014B1 publication Critical patent/KR101136014B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Abstract

본 발명은 하이드록시 아파타이트가 피복된 이산화티탄을 포함하는 광촉매 도료 조성물에 관한 것으로서, 광촉매 도료 조성물은 하이드록시 아파타이트가 피복된 이산화티탄 0.43~4.3중량%, 실리카 바인더 0.43~0.49중량%, 증점제 0.043~0.43중량%, 분산제 0.043~0.43중량%, 방부제 0.043~0.43중량% 및 물 93.92~99.011중량%로 첨가되어 구성되도록 하여 하이드록시 아파타이트의 강한 흡착력을 이용하여 빛이 존재하지 않는 환경에서도 유해가스 및 유해 유기물을 흡착하여 잡아두고 빛이 존재하는 환경에서 이산화티탄의 광촉매 작용에 의해 유해가스 및 유해 유기물을 완전히 분해할 수 있음은 물론, 이산화티탄과 혼화성이 강한 실리카 계열의 발수성 물질을 같이 적용하여 발수성을 부여하여 수분 침투에 따른 강도약화를 저감하고 백화현상의 발생이 어렵도록 하는 것을 특징으로 한다.The present invention relates to a photocatalyst coating composition comprising titanium dioxide coated with hydroxyapatite, wherein the photocatalyst coating composition is 0.43 to 4.3% by weight of hydroxyapatite coated silica, 0.43 to 0.49% by weight of silica binder, and 0.043 to thickener. It is composed of 0.43% by weight, dispersant 0.043 ~ 0.43% by weight, preservative 0.043 ~ 0.43% by weight and water 93.92 ~ 99.011% by weight so that it can be used even in the absence of light by using strong adsorption power of hydroxyapatite Titanium dioxide can be completely absorbed and trapped in the environment where light is absorbed, and it can completely decompose harmful gases and harmful organic substances by photocatalytic action of titanium dioxide. To reduce the strength weakening due to water infiltration and to prevent the occurrence of bleaching .

하이드록시 아파타이트, 이산화티탄, 폴리실록산, 휘발성 유기물 Hydroxyapatite, titanium dioxide, polysiloxane, volatile organics

Description

발수성과 대기정화성을 가지는 하이드록시 아파타이트가 피복된 이산화티탄을 포함하는 광촉매 도료 조성물{Photocatalytic coating composition having water repellent and air-cleaning activity, containing titanium dioxide coated by hydroxy-apatite}Photocatalytic coating composition having water repellent and air-cleaning activity, containing titanium dioxide coated by hydroxy-apatite

본 발명은 하이드록시 아파타이트가 피복된 이산화티탄을 포함하는 광촉매 도료 조성물에 관한 것으로서, 보다 상세하게는 본 발명은 하이드록시 아파타이트의 강한 흡착력을 이용하여 빛이 존재하지 않는 환경에서도 유해가스 및 유해 유기물을 흡착하여 잡아두고 빛이 존재하는 환경에서 이산화티탄의 광촉매 작용에 의해 유해가스 및 유해 유기물을 완전히 분해할 수 있음은 물론, 이산화티탄과 혼화성이 강한 실리카 계열의 발수성 물질을 같이 적용하여 발수성을 부여하여 수분 침투에 따른 강도약화를 저감하고 백화현상의 발생이 어렵도록 하는 것을 특징으로 하는 하이드록시 아파타이트가 피복된 이산화티탄을 포함하는 광촉매 도료 조성물에 관한 것이다.The present invention relates to a photocatalyst coating composition comprising titanium dioxide coated with hydroxy apatite. More particularly, the present invention uses a strong adsorption force of hydroxy apatite to prevent harmful gases and harmful organic substances even in an environment where no light is present. Titanium dioxide can be completely decomposed by the photocatalytic action of titanium dioxide in the presence of light by adsorption, and it also gives water repellency by applying silica-based water-repellent material that is highly compatible with titanium dioxide. The present invention relates to a photocatalyst coating composition comprising titanium dioxide coated with hydroxy apatite, which reduces the strength weakening due to water penetration and makes it difficult to generate whitening phenomenon.

콘크리트제품의 경우 각종 리싸이클 소재를 첨가제로 사용하므로 표면으로 용출되는 여러 가지의 유해 물질과 그 유해성에 대한 논쟁이 빈번하게 이슈화 되고 있으며, 인체에 대한 유해성 문제가 끊이지 않고 있다. 이러한 이유로 이전부터 콘크리트 제품에 광촉매를 적용 하고자 하는 많은 시도가 있어왔다.In the case of concrete products, various recycle materials are used as additives, and various harmful substances eluted to the surface and the debate about its harmfulness have been frequently issued, and the problem of harmfulness to the human body has been continuously raised. For this reason, many attempts have been made to apply photocatalysts to concrete products.

광촉매는 빛에 의해 하이드록시 라디컬(OH-)과 슈퍼 옥사이드 이온을 발생하여 각종 유기물, 미생물 등을 무차별적으로 완전하게 분해할 수 있는 물질로서 최근 기능성 친환경 보조 소재로 각광을 받고 있다. 일본 광촉매 콘크리트 공업협회에서는 광촉매를 코팅한 콘크리트 제품을 제조하여 대기 중의 질소산화물(NOx), 황산화물(SOx)을 15% 절감 할 수 있다는 연구 보고를 낸 바 있으며, 건물의 외장면에 적용하여 10년 경과 후에도 표면이 깨끗한 상태로 유지되고 있는 상태를 확인하였다. 그러나 유기 오염물질 분해에 뛰어난 성능을 가지고 있는 광촉매는 빛이 없는 조건에서는 특유의 오염물 분해성능을 발휘하지 못한다는 단점을 가지고 있어 실제 제품에 적용할 경우 기능성이 크게 감소한다는 단점을 가지고 있다.Photocatalyst is hydroxy radical (OH -) by the light is the spotlight in recent years as a functional auxiliary material as environmentally friendly materials that can be caused by the superoxide ion decomposition of various organic substances, microorganisms and so on completely indiscriminately. The Japan Photocatalytic Concrete Industry Association has published research reports that it can reduce nitrogen oxides (NO x ) and sulfur oxides (SO x ) by 15% by manufacturing photocatalyst-coated concrete products. After 10 years, the surface was kept in a clean state. However, the photocatalyst, which has excellent performance in decomposing organic pollutants, has a disadvantage in that it does not exhibit specific pollutant degrading performance in the absence of light, and thus has a disadvantage in that its functionality is greatly reduced when applied to actual products.

이에 본 발명은 상술한 바와 같이 종래 기술의 문제점을 해결하고자 안출된 것으로, 오염물 등의 흡착능력이 우수한 하이드록시 아파타이트(hydroxy apatite)를 이산화티탄(Titanium dioxide; TiO2)에 피복함으로서 빛 에너지를 광촉매에 제공할 수 없는 환경에서 오염물 등을 이산화티탄 주변으로 흡착시켰다가 빛의 공급이 시작되면 이산화티탄이 오염물 등을 효율적으로 분해하여 무해한 상태로 자연에 환원시킴과 동시에 콘크리트에 이산화티탄과 혼화성이 강한 실리카 계열의 발수성 물질을 같이 적용하여 발수성을 부여하여 수분 침투에 따른 강도약화를 저감하고 백화현상의 발생이 어렵도록 한 하이드록시 아파타이트가 피복된 이산화티탄을 포함하는 광촉매 도료 조성물을 제공하는 것을 목적으로 한다.Accordingly, the present invention has been made to solve the problems of the prior art as described above, by coating the hydroxy apatite (TiO 2 ) with hydroxy apatite excellent in adsorption capacity of contaminants, such as photocatalyst to light energy Adsorb contaminants around titanium dioxide in an environment that cannot be supplied to the environment.When light begins to be supplied, titanium dioxide decomposes the contaminants efficiently and reduces them to nature in a harmless state. The purpose of the present invention is to provide a photocatalyst coating composition comprising titanium dioxide coated with hydroxyapatite, which is applied with a strong silica-based water-repellent material to impart water repellency to reduce strength weakness due to moisture penetration and to prevent whitening phenomenon. It is done.

본 발명에 따른 광촉매 도료 조성물은 하이드록시 아파타이트가 피복된 이산화티탄 0.43~4.3중량%, 실리카 바인더, 증점제 0.043~0.43중량%, 분산제 0.043~0.43중량%, 방부제 0.043~0.43중량% 및 물 93.92~99.011중량%로 구성되는 광촉매 도료 조성물에 있어서,The photocatalyst coating composition according to the present invention is 0.43 to 4.3% by weight of hydroxyapatite-coated titanium dioxide, silica binder, 0.043 to 0.43% by weight of thickener, 0.043 to 0.43% by weight of dispersant, 0.043 to 0.43% by weight of preservative, and 93.92 to 99.011 of water. In the photocatalyst coating composition composed of weight%,

상기 실리카 바인더는 수산화규소(Si(OH)4) 또는 일반식 Si(OR)4(R: CnH2n+1, 1≤n≤10) 중 어느 하나이며, 상기 광촉매 도료 조성물 총량에 대하여 0.43~0.49중량% 범위로 포함되는 것을 특징으로 한다.The silica binder may be silicon hydroxide (Si (OH) 4 ) or general Si (OR) 4 (R: C n H 2n + 1 , 1 ≤ n ≤ 10), characterized in that included in the range 0.43 ~ 0.49% by weight relative to the total amount of the photocatalyst coating composition.

상기 하이드록시 아파타이트가 피복된 이산화티탄은 0.43중량% 미만으로 첨가되는 경우에는 광촉매가 가지고 있는 대기정화 및 셀프크리닝 등의 기능성을 발휘하는 것이 어려우며, 4.3중량% 초과로 첨가되는 경우에는 광촉매가 원래 지니고 있는 백 색에 의해 콘크리트의 표면의 색상을 변화시켜 제품의 심미성을 감소시킬 수 있으며, 콘크리트 제품의 표면에서 광촉매 입자들이 응집하여 백색의 덩어리들이 형성되어 미관상 좋지 못한 문제가 있어 하이드록시 아파타이트가 피복된 이산화티탄은 0.43~4.3중량% 범위로 첨가하는 것이 바람직하다.When the hydroxyapatite-coated titanium dioxide is added at less than 0.43% by weight, it is difficult to exhibit the functionalities such as atmospheric purification and self-cleaning of the photocatalyst, and when added at more than 4.3% by weight, the photocatalyst is originally possessed. By changing the color of the surface of the concrete by the white color present, the aesthetics of the product can be reduced, and the photocatalytic particles agglomerate on the surface of the concrete product to form white agglomerates. It is preferable to add titanium dioxide in the range of 0.43-4.3 weight%.

상기 실리카 바인더는 광촉매와의 혼화성이 우수하며, 하이드록시 아파타이트 입자간 응집을 막아 이산화티탄 입자를 수분산 시키기 위하여 0.43~0.49중량% 첨가하는 것이 바람직하고, 추가적으로 분산제가 0.043~0.43중량% 첨가되는 것이 바람직하다. 여기서 분산제로는 에탄올 또는 메탄올을 사용하는 것이 바람직하다.The silica binder is excellent in miscibility with the photocatalyst, and is preferably added in an amount of 0.43 to 0.49% by weight in order to prevent agglomeration between hydroxyapatite particles and to disperse the titanium dioxide particles, and additionally, 0.043 to 0.43% by weight of a dispersant. It is preferable. It is preferable to use ethanol or methanol here as a dispersing agent.

상기 증점제는 반응물에 점성을 부여하는 성분으로서 잔탄검(Xanthan Gum)을 사용하며, 그 함량이 0.043~0.43중량%의 범위를 벗어나면 점도가 너무 낮거나 너무 높아 유동성 및 작업성이 불량해지므로 좋지 않다.The thickener uses Xanthan Gum as a component to impart viscosity to the reactants, and if the content is outside the range of 0.043 to 0.43% by weight, the viscosity is too low or too high, which is poor because of poor fluidity and workability. not.

상기 방부제는 유통 및 보관 상에서의 부패하는 것을 막아주는 역할을 하기 위하여 첨가하는 성분으로서 소르빈산칼륨(potassium sorbate)을 사용하며, 그 함량이 0.043~0.43중량%의 범위를 벗어나면 쉽게 부패하거나 광촉매 성능을 저하시키는 문제가 있어 좋지 않다.The preservative uses potassium sorbate (potassium sorbate) as an ingredient added to prevent decay in distribution and storage, and if the content is outside the range of 0.043 ~ 0.43% by weight easily decay or photocatalyst performance It is not good because there is problem to degrade.

상기 물은 경제성과 이산화티탄 활성 및 공정의 원활성을 고려하였을 때 93.92~99.011중량% 첨가하는 것이 바람직하다.The water is preferably added 93.92 ~ 99.011% by weight in consideration of economical efficiency, titanium dioxide activity and process smoothness.

한편, 하이드록시 아파타이트의 이산화티탄 표면에 대한 피복율은 5~36%인 것이 바람직하다. 왜냐하면 하이드록시 아파타이트의 이산화티탄 표면에 대한 피복율이 5% 미만이면 하이드록시 아파타이트에 의한 오염물의 흡착성이 발휘되기 어려우며, 36% 초과의 경우에는 하이드록시 아파타이트가 이산화티탄 입자를 모두 감싸버리기 때문에 광촉매의 성능을 저해하게 되기 때문이다.On the other hand, it is preferable that the coverage of hydroxy apatite on the titanium dioxide surface is 5 to 36%. If the coverage of the hydroxyapatite on the titanium dioxide surface is less than 5%, the adsorptivity of the contaminants by the hydroxyapatite is difficult to be exhibited. If the hydroxyapatite is more than 36%, the hydroxyapatite covers all the titanium dioxide particles, so This is because performance will be impaired.

또한, 상기 이산화티탄은 평균입경이 1nm 미만일 경우에는 이산화티탄을 도료로서 적용하기 어려울 뿐만 아니라, 광촉매로서 빛을 흡수하는 수광능력이 감소하여 광촉매로서 사용하기 어렵고, 250nm 초과일 경우에는 물에 이산화티탄 입자를 분산시키는 것이 어려워 광촉매가 고르게 분산되어 있는 도료를 만들기 어렵기 때문에 이산화티탄은 평균입경이 1~250㎚인 것이 바람직하다.In addition, the titanium dioxide is not only difficult to apply titanium dioxide as a paint when the average particle diameter is less than 1nm, it is difficult to use as a photocatalyst due to the reduced light-receiving ability to absorb light as a photocatalyst, titanium dioxide in water Since it is difficult to disperse | distribute particle | grains and it is difficult to make the paint which the photocatalyst is disperse | distributed uniformly, it is preferable that titanium dioxide has an average particle diameter of 1-250 nm.

한편, 본 발명에 따른 광촉매 도료 조성물을 스프레이 코팅법, 딥 코팅법, 로울러 코팅법을 사용하여 콘크리트 표면에 코팅하는 것이 바람직하다.On the other hand, it is preferable to coat the photocatalyst coating composition according to the present invention on the concrete surface using a spray coating method, dip coating method, roller coating method.

또한, 상기의 코팅방법에 의하여 코팅된 콘크리트를 18~150℃ 온도범위에서 경화시키는 것이 바람직한데, 18℃ 미만의 경우에는 코팅된 도막의 경도가 약해지는 문제가 있고, 150℃ 초과의 경우에는 급작스런 경화로 인하여 코팅 도막이 갈라지는 현상이 생길 우려가 있기 때문이다.In addition, it is preferable to cure the concrete coated by the above coating method at a temperature range of 18 ~ 150 ℃, less than 18 ℃ has a problem that the hardness of the coated coating is weakened, in the case of more than 150 ℃ sudden This is because there is a risk of cracking of the coating film due to curing.

상기와 같은 방법으로 경화된 콘크리트는 보차도블록, 경계블록, 호안블록, 식생호안블록, 점자블록 등으로 콘크리트 제품화 할 수 있다.The concrete hardened by the above method can be concrete products such as block road block, boundary block, raft block, vegetation raft block, braille block and the like.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

먼저 유기물 및 세균을 흡착할 수 있는 능력을 가지고 있고, Cax(PO4)y?(0H)z[x=5z, y=3z, z=1~50]의 분자식을 가지며, 대표적인 분자식은 Ca10(PO4)6(0H)2인 하이드록시 아파타이트를 이산화티탄에 피복하기 위하여 유사체액의 조건을 형성하여 Ca10(PO4)6(0H)2을 조건으로 하는 물질을 혼합하여 만드는 방법을 사용하며, 구성물로는 증류수에 NaCl, NaHCO3, KCl, K2HPO4?3H2O, MgCl2?6H2O, 1mol/dm3 HCl, CaCl2, Na2SO4, H2NC(CH2OH)3를 녹여 유사체액을 제조한다. 상기 유사체액에 이산화티탄을 첨가하여 분산시켜 1시간 동안 교반 하면서 이산화티탄 표면에 일정하게 하이드록시 아파타이트가 자리를 잡을 수 있도록 한다. 이 후 교반을 멈춘 상태에서 24시간 동안 하이드록시 아파타이트를 성장시킨다. 그리하여 표면에 하이드록시 아파타이트의 분포가 고르게 피복된 이산화티탄을 얻을 수 있으며 이것을 1시간 동안 200~300℃의 열을 가하여 보다 안정된 제품을 얻을 수 있다. 이때 사용되는 이산화티탄은 아나타제(anatase)형, 루타일(rutile)형, 부룩카이트형 중에서 어떠한 것을 사용하여도 무방하며, 본 발명에서는 범용으로 사용되는 아나타제형의 P25타입(독일 데구사 제품)의 광촉매를 사용한다.First, it has the ability to adsorb organic substances and bacteria, and has a molecular formula of Ca x (PO 4 ) y ? (0H) z [x = 5z, y = 3z, z = 1 ~ 50]. In order to coat hydroxyapatite with 10 (PO 4 ) 6 (0H) 2 on titanium dioxide, a condition of analogous liquid is formed to mix a substance subject to Ca 10 (PO 4 ) 6 (0H) 2 . In the composition, NaCl, NaHCO 3 , KCl, K 2 HPO 4 ˜3H 2 O, MgCl 2 ˜6H 2 O, 1mol / dm 3 HCl, CaCl 2 , Na 2 SO 4 , H 2 NC (CH 2 OH) 3 is dissolved to prepare an analogous liquid. Titanium dioxide is added and dispersed in the analog liquid to allow hydroxy apatite to settle on the surface of titanium dioxide constantly while stirring for 1 hour. Thereafter, hydroxyapatite is grown for 24 hours while stirring is stopped. Thus, a titanium dioxide coated with hydroxy apatite evenly coated on the surface can be obtained, which can be heated at 200-300 ° C. for 1 hour to obtain a more stable product. The titanium dioxide used at this time may be any of anatase type, rutile type, and brookite type, and in the present invention, the anatase type P25 type (manufactured by Degusa, Germany) can be used. Use a photocatalyst.

상기의 방법으로 만들어진 하이드록시 아파타이트가 피복된 이산화티탄의 수용액상의 슬러리에 실리카 계열의 바인더를 혼합하여 저속으로 교반 하면서 분산제로서 메탄올(CH3OH) 또는 에탄올(CH3CH2OH)을 첨가하고, 증점제로서 잔탄검(Xanthan Gum), 방부제로 소르빈산칼륨을 첨가하여 고속으로 교반하여 본 발명의 하이드록시 아파타이트가 피복된 이산화티탄을 포함하는 광촉매 도료 조성물을 제조한다.Methanol (CH 3 OH) or ethanol (CH 3 CH 2 OH) is added as a dispersant by mixing a silica-based binder to a slurry of an aqueous solution of hydroxyapatite-coated titanium dioxide prepared by the above method and stirring at low speed. Xanthan Gum as a thickener and potassium sorbate as a preservative are added and stirred at high speed to prepare a photocatalyst coating composition comprising titanium dioxide coated with the hydroxyapatite of the present invention.

한편, 실리카 바인더는 수산화규소(Si(OH)4) 또는 일반식 Si(OR)4(R: CnH2n+1, 1≤n≤10)을 갖는 Si(OCH3)4, Si(OC2H5)4 등을 들 수 있으며, 실리카 바인더는 위의 물질에 국한되는 것이 아니고 아래의 분자식과 같이 -Si-O-Si-의 폴리실록산 결합구조를 형성할 수 있는 모든 물질을 포함한다.Meanwhile, the silica binder may be silicon hydroxide (Si (OH) 4 ) or general formula Si (OR) 4 (R: C n H 2n + 1 , Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4, etc. having 1 ≦ n ≦ 10), and the silica binder is not limited to the above materials, and is represented by -Si-O- as shown in the following molecular formula. All materials capable of forming a Si-polysiloxane bond structure are included.

상기 실리카 바인더는 물과 반응하여 폴리실록산 계열의 고분자를 이루어 아래와 같이 하이드록시 아파타이트가 피복된 이산화티탄 입자를 고정화 시킴과 동시에 -Si-O-Si-O-로 구성되는 폴리실록산의 결합구조를 형성하여 물의 침투를 막게 된다.The silica binder reacts with water to form a polysiloxane-based polymer to immobilize the titanium dioxide particles coated with hydroxyapatite and form a bonding structure of polysiloxane composed of -Si-O-Si-O- as shown below. It will prevent infiltration.

Figure 112009075429976-pat00001
Figure 112009075429976-pat00001

상기 실리카 바인더는 본 발명의 하이드록시 아파타이트가 피복된 이산화티탄을 포함한 광촉매 도료 조성물의 경화 이후 실리카와 이산화티탄이 고리화 됨으로써 수분은 차단하면서, 공기는 통과시키는 이상적인 상태를 유지하게 되어 백화현상의 발생을 막는 역할을 하게 된다.Since the silica binder is cyclized after the curing of the photocatalyst coating composition including the titanium dioxide coated with hydroxyapatite of the present invention, the silica and titanium dioxide are cyclized to block moisture and maintain an ideal state for passing air. It will act to prevent.

이하에서는 본 발명의 광촉매 도료 조성물로 보차도블록, 경계블록, 호안블록, 식생호안블록, 점자블록 등 콘크리트 제품을 스프레이 코팅(spray coating), 딥코팅(dip coating), 로울러 코팅법, 붓 코팅법의 방법을 이용하여 경제적으로 제조하 는 방법에 관하여 설명한다.Hereinafter, as the photocatalyst coating composition of the present invention, spray coating, dip coating, roller coating method, brush coating method of concrete products such as bochado block, boundary block, rake block, vegetation relief block, braille block, etc. The manufacturing method economically using the method is demonstrated.

이렇게 제조된 본 발명의 하이드록시 아파타이트가 피복된 이산화티탄을 포함하는 광촉매 도료 조성물을 보차도블록, 경계블록, 호안블록, 식생호안블록, 점자블록 등 콘크리트 제품에 스프레이 또는 함침에 의하여 표면에 코팅한 후 18~150℃ 온도범위에서 코팅된 광촉매 도료 조성물을 경화시켜 기능성 콘크리트 제품을 만든다.After coating the photocatalyst coating composition comprising the titanium dioxide coated with hydroxy apatite of the present invention prepared on the surface by spraying or impregnation on concrete products such as bochado block, boundary block, raft block, vegetation raft block, and braille block Curing the coated photocatalyst coating composition in the temperature range of 18 ~ 150 ℃ to make a functional concrete product.

본 발명의 하이드록시 아파타이트가 피복된 이산화티탄을 포함하는 광촉매 도료 조성물을 콘크리트의 표면에 코팅함으로서 콘크리트 자체가 대기정화 성능을 구현함과 동시에 장기간에 걸쳐 깨끗한 표면을 유지할 수 있으며, 콘크리트의 내부로 물의 흡수를 막아 수분에 의한 콘크리트의 균열, 강도약화 및 백화현상 등을 막을 수 있다.By coating the surface of the concrete with a photocatalyst coating composition comprising titanium dioxide coated with hydroxyapatite of the present invention, the concrete itself can maintain a clean surface for a long time and at the same time, By preventing the absorption, it is possible to prevent the cracking, strength reduction and whitening of concrete due to moisture.

이하 본 발명을 구체적인 실시예를 들어 더욱 상세히 설명하나, 이는 설명의 목적을 위한 것으로서 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the scope of the present invention is not limited thereto.

<실시예 1>&Lt; Example 1 >

하이드록시 아파타이트의 광촉매 피복에는 유사체액의 조건을 형성하여 Ca10(PO4)6(0H)2을 조건으로 하는 물질을 혼합하여 만드는 방법을 사용하였다.The photocatalyst coating of hydroxyapatite was used by forming a condition of the analogous liquid and mixing a substance subject to Ca 10 (PO 4 ) 6 (0H) 2 .

본 발명에 이용되는 유사체액은 NaCl, NaHCO3, KCl, K2HPO4?3H2O, MgCl2?6H2O, 1mol/dm3 HCl, CaCl2, Na2SO4, H2NC(CH2OH)3를 증류수에 녹여 조제하였다.Analog solution used in the present invention is NaCl, NaHCO 3 , KCl, K 2 HPO 4 ~ 3H 2 O, MgCl 2 ~ 6H 2 O, 1mol / dm 3 HCl, CaCl 2 , Na 2 SO 4 , H 2 NC (CH a 2 OH) 3 was prepared by dissolving in distilled water.

즉, 1000㎖ 비커에 증류수를 약 800㎖를 채운 후, 이 비커를 항온조 속에 넣어 온도를 약 36.5℃로 맞춘 후에 하기의 표 1에 나온 순서대로 시약을 magnetic stirrer로 교반시키고 있는 비커 속에 먼저 넣은 시약이 완전히 녹은 것을 확인해 가며 순서대로 넣었다. 마지막으로 비커 속에 용액의 36.5℃에서 pH가 7.25가 되도록 Tris-Buffer Solution{H2NC(CH2OH)3}과 1N-HNO3 용액을 사용하여 최종적으로 36.5℃에서의 pH를 조절한 후에 비커에서 volumetric glass flask로 옮겨 넣어 전체 용량이 1000㎖가 되게 증류수로 채운 후에 잘 흔들어 섞어 유사체액을 제조하였다.That is, after filling 800 ml of distilled water in a 1000 ml beaker, the beaker was placed in a thermostat and the temperature was adjusted to about 36.5 ° C., and then the reagent was first placed in a beaker in which the reagents were stirred with a magnetic stirrer in the order shown in Table 1 I put it in order, checking that it was completely melted. Finally, after adjusting the pH at 36.5 ° C with Tris-Buffer Solution {H 2 NC (CH 2 OH) 3 } and 1N-HNO 3 solution, the pH of the solution in the beaker is 7.25 at 36.5 ° C. The volumetric glass flask was transferred from to a distilled water filled with a total volume of 1000 ml, and then shaken well to prepare an analogous liquid.

Figure 112009075429976-pat00002
Figure 112009075429976-pat00002

상기 유사체액 1000㎖에 이산화티탄 2.3g을 첨가하여 분산시켜 1시간 동안 교반 하면서 이산화티탄 표면에 일정하게 하이드록시 아파타이트가 자리를 잡을 수 있도록 한 후, 교반을 멈춘 상태에서 24시간 동안 하이드록시 아파타이트를 성장시켰다. 그런 다음, 1시간 동안 200~300℃의 열을 가하여 보다 안정된 하이드록시 아파타이트가 피복된 이산화티탄 광촉매의 수용액상의 슬러리를 얻었다.After adding and dispersing 2.3 g of titanium dioxide to 1000 ml of the analogous solution, the hydroxyapatite was allowed to settle on the surface of titanium dioxide constantly while stirring for 1 hour, and then hydroxyapatite was stirred for 24 hours while the stirring was stopped. Grown. Then, heat was applied at 200-300 ° C. for 1 hour to obtain a slurry of an aqueous solution of titanium dioxide photocatalyst coated with more stable hydroxyapatite.

상기의 방법으로 만들어진 하이드록시 아파타이트가 피복된 이산화티탄 광촉매의 수용액상의 슬러리 99.441중량%에 수산화규소 0.43중량%를 혼합하여 저속으로 교반하면서 메탄올 0.043중량%, 잔탄검(Xanthan Gum) 0.043중량%, 소르빈산칼륨 0.043중량%를 첨가하여 고속으로 교반하여 본 발명의 하이드록시 아파타이트가 피복된 이산화티탄을 포함하는 광촉매 도료 조성물을 제조한 후, 콘크리트 인터록킹 블록에 25℃에서 스프레이 코팅한 뒤 25℃에서 24시간 건조하여 광촉매 도료 조성물이 코팅된 콘크리트 인터록킹 블록을 제조하였다.99.441% by weight of slurry of aqueous solution of hydroxyapatite-coated titanium dioxide photocatalyst prepared by the above method was mixed with 0.43% by weight of silicon hydroxide and 0.043% by weight of methanol, 0.043% by weight of Xanthan Gum, sorbic acid After adding 0.043% by weight of potassium to stir at high speed to prepare a photocatalyst coating composition comprising titanium dioxide coated with the hydroxyapatite of the present invention, the concrete interlocking block was spray-coated at 25 ° C., followed by 24 hours at 25 ° C. It was dried to prepare a concrete interlocking block coated with a photocatalyst coating composition.

<실시예 2><Example 2>

상기 실시예 1의 하이드록시 아파타이트가 피복된 이산화티탄 광촉매의 수용액상의 슬러리 99.421중량%에 수산화규소 0.45중량%를 혼합하여 저속으로 교반하면서 메탄올 0.043중량%, 잔탄검(Xanthan Gum) 0.043중량%, 소르빈산칼륨 0.043중량%를 첨가하여 고속으로 교반하여 본 발명의 하이드록시 아파타이트가 피복된 이산화티탄을 포함하는 광촉매 도료 조성물을 제조한 후, 콘크리트 인터록킹 블록에 25℃에서 스프레이 코팅한 뒤 25℃에서 24시간 건조하여 광촉매 도료 조성물이 코팅된 콘크리트 인터록킹 블록을 제조하였다.99.421 wt% of the slurry in the aqueous solution of the titanium dioxide photocatalyst coated with hydroxyapatite of Example 1 was mixed with 0.45 wt% of silicon hydroxide and 0.043 wt% of methanol, 0.043 wt% of Xanthan Gum, and sorbic acid while stirring at low speed. After adding 0.043% by weight of potassium to stir at high speed to prepare a photocatalyst coating composition comprising titanium dioxide coated with the hydroxyapatite of the present invention, the concrete interlocking block was spray-coated at 25 ° C., followed by 24 hours at 25 ° C. It was dried to prepare a concrete interlocking block coated with a photocatalyst coating composition.

<실시예 3><Example 3>

상기 실시예 1의 하이드록시 아파타이트가 피복된 이산화티탄 광촉매의 수용액상의 슬러리 99.401중량%에 수산화규소 0.47중량%를 혼합하여 저속으로 교반하면서 메탄올 0.043중량%, 잔탄검(Xanthan Gum) 0.043중량%, 소르빈산칼륨 0.043중량%를 첨가하여 고속으로 교반하여 본 발명의 하이드록시 아파타이트가 피복된 이산화티탄을 포함하는 광촉매 도료 조성물을 제조한 후, 콘크리트 인터록킹 블록에 25℃에서 스프레이 코팅한 뒤 25℃에서 24시간 건조하여 광촉매 도료 조성물이 코팅된 콘크리트 인터록킹 블록을 제조하였다.99.401% by weight of the slurry of the aqueous phase of the titanium dioxide photocatalyst coated with hydroxyapatite of Example 1 was mixed with 0.47% by weight of silicon hydroxide, while stirring at low speed, 0.043% by weight of methanol, 0.043% by weight of Xanthan Gum, sorbic acid After adding 0.043% by weight of potassium to stir at high speed to prepare a photocatalyst coating composition comprising titanium dioxide coated with the hydroxyapatite of the present invention, the concrete interlocking block was spray-coated at 25 ° C., followed by 24 hours at 25 ° C. It was dried to prepare a concrete interlocking block coated with a photocatalyst coating composition.

<실시예 4><Example 4>

상기 실시예 1의 하이드록시 아파타이트가 피복된 이산화티탄 광촉매의 수용액상의 슬러리 99.381중량%에 수산화규소 0.49중량%를 혼합하여 저속으로 교반하면서 메탄올 0.043중량%, 잔탄검(Xanthan Gum) 0.043중량%, 소르빈산칼륨 0.043중량%%를 첨가하여 고속으로 교반하여 본 발명의 하이드록시 아파타이트가 피복된 이산화티탄을 포함하는 광촉매 도료 조성물을 제조한 후, 콘크리트 인터록킹 블록에 25℃에서 스프레이 코팅한 뒤 25℃에서 24시간 건조하여 광촉매 도료 조성물이 코팅된 콘크리트 인터록킹 블록을 제조하였다.99.381% by weight of the slurry in the aqueous solution of the titanium dioxide photocatalyst coated with the hydroxyapatite of Example 1 was mixed with 0.49% by weight of silicon hydroxide, while stirring at low speed, 0.043% by weight of methanol, 0.043% by weight of Xanthan Gum, and sorbic acid. After adding 0.043% by weight of potassium to stir at high speed to prepare a photocatalyst coating composition comprising titanium dioxide coated with the hydroxyapatite of the present invention, the concrete interlocking block was spray-coated at 25 ° C. and then 25 ° C. at 24 ° C. Drying was performed to prepare a concrete interlocking block coated with a photocatalyst coating composition.

<비교예 1>Comparative Example 1

상기 실시예 1의 하이드록시 아파타이트가 피복된 이산화티탄 광촉매의 수용액상의 슬러리 99.935중량%에 수산화규소 0.05중량%를 혼합하여 저속으로 교반하면서 메탄올 0.005중량%, 잔탄검(Xanthan Gum) 0.005중량%, 소르빈산칼륨 0.005중량%를 첨가하여 고속으로 교반하여 본 발명의 하이드록시 아파타이트가 피복된 이산화티탄을 포함하는 광촉매 도료 조성물을 제조한 후, 콘크리트 인터록킹 블록에 25℃에서 스프레이 코팅한 뒤 25℃에서 24시간 건조하여 광촉매 도료 조성물이 코팅된 콘크리트 인터록킹 블록을 제조하였다.99.935% by weight of the slurry of the aqueous phase of the titanium dioxide photocatalyst coated with the hydroxyapatite of Example 1 was mixed with 0.05% by weight of silicon hydroxide, while stirring at low speed, 0.005% by weight of methanol, 0.005% by weight of Xanthan Gum, and sorbic acid. After adding 0.005% by weight of potassium to stir at high speed to prepare a photocatalyst coating composition comprising titanium dioxide coated with the hydroxyapatite of the present invention, the concrete interlocking block was spray-coated at 25 ° C., followed by 24 hours at 25 ° C. It was dried to prepare a concrete interlocking block coated with a photocatalyst coating composition.

<비교예 2>Comparative Example 2

상기 실시예 1의 하이드록시 아파타이트가 피복된 이산화티탄 광촉매의 수용액상의 슬러리 99.74중량%에 수산화규소 0.2중량%를 혼합하여 저속으로 교반하면서 메탄올 0.02중량%, 잔탄검(Xanthan Gum) 0.02중량%, 소르빈산칼륨 0.02중량%를 첨가하여 고속으로 교반하여 본 발명의 하이드록시 아파타이트가 피복된 이산화티탄을 포함하는 광촉매 도료 조성물을 제조한 후, 콘크리트 인터록킹 블록에 25℃에서 스프레이 코팅한 뒤 25℃에서 24시간 건조하여 광촉매 도료 조성물이 코팅된 콘크리트 인터록킹 블록을 제조하였다.99.74 wt% of the slurry of the aqueous solution of the titanium dioxide photocatalyst coated with the hydroxyapatite of Example 1 was mixed with 0.2 wt% of silicon hydroxide, stirred at low speed, 0.02 wt% of methanol, 0.02 wt% of Xanthan Gum, and sorbic acid. After adding 0.02% by weight of potassium to stir at high speed to prepare a photocatalyst coating composition comprising titanium dioxide coated with the hydroxyapatite of the present invention, the concrete interlocking block was spray-coated at 25 ° C. and then 24 hours at 25 ° C. It was dried to prepare a concrete interlocking block coated with a photocatalyst coating composition.

<비교예 3>&Lt; Comparative Example 3 &

상기 실시예 1의 하이드록시 아파타이트가 피복된 이산화티탄 광촉매의 수용액상의 슬러리 99.42중량%에 수산화규소 0.52중량%를 혼합하여 저속으로 교반하면서 메탄올 0.02중량%, 잔탄검(Xanthan Gum) 0.02중량%, 소르빈산칼륨 0.02중량%를 첨가하여 고속으로 교반하여 본 발명의 하이드록시 아파타이트가 피복된 이산화티탄을 포함하는 광촉매 도료 조성물을 제조한 후, 콘크리트 인터록킹 블록에 25℃에서 스프레이 코팅한 뒤 25℃에서 24시간 건조하여 광촉매 도료 조성물이 코팅된 콘크리트 인터록킹 블록을 제조하였다.99.42% by weight of the slurry of the aqueous solution of the titanium dioxide photocatalyst coated with the hydroxyapatite of Example 1 was mixed with 0.52% by weight of silicon hydroxide and stirred at a low speed of 0.02% by weight of methanol, 0.02% by weight of Xanthan Gum, and sorbic acid. After adding 0.02% by weight of potassium to stir at high speed to prepare a photocatalyst coating composition comprising titanium dioxide coated with the hydroxyapatite of the present invention, the concrete interlocking block was spray-coated at 25 ° C., followed by 24 hours at 25 ° C. It was dried to prepare a concrete interlocking block coated with a photocatalyst coating composition.

<비교예 4><Comparative Example 4>

상기 실시예 1의 하이드록시 아파타이트가 피복된 이산화티탄 광촉매의 수용액상의 슬러리 99.14중량%에 수산화규소 0.8중량%를 혼합하여 저속으로 교반하면서 메탄올 0.02중량%, 잔탄검(Xanthan Gum) 0.02중량%, 소르빈산칼륨 0.02중량%를 첨가하여 고속으로 교반하여 본 발명의 하이드록시 아파타이트가 피복된 이산화티탄을 포함하는 광촉매 도료 조성물을 제조한 후, 콘크리트 인터록킹 블록에 25℃에서 스프레이 코팅한 뒤 25℃에서 24시간 건조하여 광촉매 도료 조성물이 코팅된 콘크리트 인터록킹 블록을 제조하였다.99.14 wt% of the slurry in the aqueous solution of the titanium dioxide photocatalyst coated with hydroxyapatite of Example 1 was mixed with 0.8 wt% of silicon hydroxide, 0.02 wt% of methanol, 0.02 wt% of Xanthan Gum, and sorbic acid while stirring at low speed. After adding 0.02% by weight of potassium to stir at high speed to prepare a photocatalyst coating composition comprising titanium dioxide coated with the hydroxyapatite of the present invention, the concrete interlocking block was spray-coated at 25 ° C., followed by 24 hours at 25 ° C. It was dried to prepare a concrete interlocking block coated with a photocatalyst coating composition.

<시험예 1>&Lt; Test Example 1 >

광촉매 성능 평가Photocatalytic Performance Evaluation

상기 실시예 1 내지 4 및 비교예 1 내지 4의 콘크리트 인터록킹블록에 대해 광촉매 성능을 평가하기 위하여 한국광촉매협회에서 제시하는 광촉매성능평가 시험법-가스백B법을 이용하여 실시하였다.In order to evaluate the photocatalytic performance of the concrete interlocking blocks of Examples 1 to 4 and Comparative Examples 1 to 4, the photocatalytic performance evaluation test-gas bag B method proposed by the Korean Photocatalyst Association was performed.

그 결과를 표 2에 나타내었다The results are shown in Table 2.

Figure 112009075429976-pat00003
Figure 112009075429976-pat00003

상기 표 2에서 확인할 수 있는 바와 같이, 실리카 바인더의 함량이 0.43~0.49중량% 범위 내인 경우인 실시예 1(실리카 바인더 0.43량%), 실시예 2(실리카 바인더 0.45중량%), 실시예 3(실리카 바인더 0.47중량%), 실시예 4(실리카 바인더 0.49중량%)에서는 모두 아세트알데히드 분해효율이 60% 이상으로 우수함을 알 수 있었다.As can be seen in Table 2, Example 1 (0.43% by weight of silica binder), Example 2 (0.45% by weight of silica binder), Example 3 when the content of the silica binder is in the range 0.43-0.49% by weight Silica binder 0.47 wt%) and Example 4 (0.49 wt% silica binder) showed that acetaldehyde decomposition efficiency was superior to 60% or more.

또한, 실리카 바인더의 함량이 0.43중량% 미만의 경우인 비교예 1(실리카 바인더 0.05중량%) 및 비교예 2(실리카 바인더 0.2중량%)에서도 아세트알데히드 분해효율이 60% 이상으로 우수함을 알 수 있었다.In addition, it was also found that the acetaldehyde decomposition efficiency was superior to 60% or more in Comparative Example 1 (0.05 wt% silica binder) and Comparative Example 2 (0.2 wt% silica binder) when the content of silica binder was less than 0.43 wt%. .

그러나, 실리카 바인더의 함량이 0.49중량% 초과의 경우인 비교예 3(실리카 바인더 0.52중량%) 및 비교예 4(실리카 바인더 0.8중량%)에서는 표면에서 축합중합한 실리카가 이산화티탄 광촉매의 광기능성을 차단하여 기능성이 급격하게 감소하여 아세트알데히드 분해효율이 각각 30%, 10%로 낮음을 알 수 있었다.However, in Comparative Example 3 (0.52 wt% silica binder) and Comparative Example 4 (0.8 wt% silica binder), where the silica binder content was more than 0.49 wt%, the silica-condensed silica on the surface of the titanium dioxide photocatalyst As the functionalities were rapidly reduced by blocking, the acetaldehyde decomposition efficiency was low as 30% and 10%, respectively.

<시험예 2>&Lt; Test Example 2 &

발수성능 평가Water repellent performance evaluation

상기 실시예 1 내지 4 및 비교예 1 내지 4의 콘크리트 인터록킹블록의 발수성능을 평가하기 위해 KS F 2609 방법을 응용하여 실험하였다.In order to evaluate the water-repellent performance of the concrete interlocking blocks of Examples 1 to 4 and Comparative Examples 1 to 4 were tested by applying the KS F 2609 method.

즉, 실시예 1 내지 4 및 비교예 1 내지 4의 콘크리트 인터록킹블록의 상부의 표면적이 100cm2가 되도록 절단한 후 옆면을 실리콘 실링제를 이용하여 실링(sealing)하고 24시간 이상 건조하여 오직 상기 콘크리트 인터록킹 블록의 상면으로만 물이 흡수되도록 하고 1cm 정도 깊이의 물에 담가 시간에 따른 물의 흡수 정도를 측정하여 발수도를 평가하는 방법으로 실험하였다.That is, after cutting so that the surface area of the upper surface of the concrete interlocking blocks of Examples 1 to 4 and Comparative Examples 1 to 4 to 100cm 2 and sealing the side surface using a silicone sealing agent (sealing) and dried for more than 24 hours only Water was absorbed only to the upper surface of the concrete interlocking block, soaked in water of 1cm depth and the water repellency was measured by measuring the water repellency with time.

그 결과를 표 3에 나타내었다.The results are shown in Table 3.

Figure 112009075429976-pat00004
Figure 112009075429976-pat00004

상기 표 3에서 확인할 수 있는 바와 같이, 실리카의 바인더의 함량이 0.43~0.49중량% 범위 내인 경우인 실시예 1(실리카 바인더 0.43중량%), 실시예 2(실리카 바인더 0.45중량%), 실시예 3(실리카 바인더 0.47중량%) 및 실시예 4(실리카 바인더 0.49중량%)에서는 모두 물흡수 계수가 1000 미만으로 발수성이 우수함을 알 수 있었다.As can be seen in Table 3, Example 1 (0.43% by weight of silica binder), Example 2 (0.45% by weight of silica binder), Example 3 when the content of the silica binder is in the range 0.43-0.49% by weight. (0.47 wt% of silica binder) and Example 4 (0.49 wt% of silica binder) showed that the water absorption coefficient was less than 1000 and the water repellency was excellent.

또한, 실리카 바인더의 함량이 0.49중량% 초과의 경우인 비교예 3(실리카 바인더 0.52중량%) 및 비교예 4(실리카 바인더 0.8중량%)에서는 물흡수 계수는 실리카 바인더의 함량이 0.49중량%인 경우와 비교하여 큰 차이가 없음을 확인하여 더 이상의 실리카 바인더의 첨가는 의미가 없음을 알 수 있었다.In addition, in Comparative Example 3 (0.52 wt% silica binder) and Comparative Example 4 (0.8 wt% silica binder), wherein the silica binder content was more than 0.49 wt%, the water absorption coefficient was 0.49 wt%. It was confirmed that there is no significant difference compared with that of the addition of more silica binder was found to be meaningless.

그러나, 실리카 바인더의 함량이 0.43중량% 미만의 경우인 비교예 1(실리카 바인더 0.05중량%) 및 비교예 2(실리카 바인더 0.2중량%)에서는 물흡수 계수가 1000이상으로 크게 증가하여 발수성이 급격히 감소하는 것을 알 수 있었다.However, in Comparative Example 1 (0.05 wt% silica binder) and Comparative Example 2 (0.2 wt% silica binder), where the silica binder content was less than 0.43 wt%, the water absorption coefficient was greatly increased to 1000 or more, so that the water repellency rapidly decreased. I could see that.

이상의 시험예 1 및 2의 실험결과를 종합하여 보면, 첫째, 실리카의 바인더의 함량이 0.43~0.49중량% 범위내인 경우인 실시예 1(실리카 바인더 0.43중량%), 실시예 2(실리카 바인더 0.45중량%), 실시예 3(실리카 바인더 0.47중량%) 및 실시예 4(실리카 바인더 0.49중량%)에서는 모두 ①아세트알데히드 분해효율이 60% 이상으로 광촉매 성능이 우수함을 보였고, ②물흡수 계수가 1000 미만으로 발수성 또한 우수함을 보였다. 따라서, 실리카의 바인더의 함량의 0.43~0.49중량% 내에서 광촉매 성능과 발수성능이 우수함을 확인할 수 있었다.In summary, the results of the above Experimental Examples 1 and 2, First, Example 1 (silica binder 0.43% by weight), Example 2 (silica binder 0.45) when the content of silica binder is in the range of 0.43 ~ 0.49% by weight. % By weight), Example 3 (0.47% by weight of silica binder) and Example 4 (0.49% by weight of silica binder) showed that ① the acetaldehyde decomposition efficiency was more than 60% and the photocatalyst performance was excellent, and ② the water absorption coefficient was 1000. Water repellency was also excellent below. Therefore, it was confirmed that the photocatalytic performance and the water repellent performance were excellent within 0.43-0.49 wt% of the binder content of silica.

둘째, ⅰ)실리카 바인더의 함량이 0.43중량% 미만인 비교예 1(실리카 바인더 0.05중량%) 및 비교예 2(실리카 바인더 0.2중량%)에서는 ①아세트알데히드 분해효율이 60% 이상으로 광촉매 성능이 우수하였으나, ②물흡수 계수가 각각 1750g/m2h0.5, 1010g/m2h0.5을 보인 반면, 실시예 1(실리카 바인더 0.43중량%)에서는 물흡수 계수가 320g/m2h0.5, 실시예 2(실리카 바인더 0.45중량%)에서는 물흡수 계수가 140g/m2h0.5로 실리카 바인더 함량 0.43중량%를 전후하여 물흡수 계수가 1000이상 차이가 발생하여 발수성능에 있어서 현저한 효과상의 차이가 있음을 알 수 있었다.Secondly, in Comparative Example 1 (0.05 wt% silica binder) and Comparative Example 2 (0.2 wt% silica binder) having a silica binder content of less than 0.43% by weight, the photocatalytic performance was excellent, with the acetaldehyde decomposition efficiency of 60% or more. , ② The water absorption coefficient is 1750g / m 2 h 0.5 , 1010 g / m 2 h 0.5 was shown, while in Example 1 (0.43 wt% silica binder) the water absorption coefficient was 320 g / m 2 h 0.5 and in Example 2 (0.45 wt% silica binder) the water absorption coefficient was 140 g / m It was found that the water absorption coefficient was more than 1000 before and after the silica binder content of 0.43 wt% at 2 h 0.5 , indicating a significant difference in water repellency.

ⅱ)실리카 바인더의 함량이 0.49중량% 초과의 경우인 비교예 3(실리카 바인더 0.52중량%) 및 비교예 4(실리카 바인더 0.8중량%)에서는 ①아세트알데히드 제거율이 각각 30%, 10%을 보인 반면, 실시예 3(실리카 바인더 0.47중량%) 및 실시예 4(실리카 바인더 0.49중량%)에서는 모두 70%로 실리카 바인더의 함량 0.49중량%를 전후하여 광촉매 성능에 있어서 현저한 효과상의 차이를 보였으나, ②물흡수 계수는 실리카 바인더의 함량이 0.49중량%인 경우와 비교하여 큰 차이가 없음을 확인하여 더 이상의 실리카 바인더의 첨가는 의미가 없음을 알 수 있었다.Ii) In Comparative Example 3 (0.52 wt% silica binder) and Comparative Example 4 (0.8 wt% silica binder) where the content of silica binder was more than 0.49 wt%, the acetaldehyde removal rate was 30% and 10%, respectively. In Example 3 (0.47% by weight of silica binder) and Example 4 (0.49% by weight of silica binder), both showed a significant difference in photocatalytic performance, with the content of 0.49% by weight of silica binder being around 70%. The water absorption coefficient was confirmed that there is no significant difference compared to the case where the content of the silica binder is 0.49% by weight, it can be seen that the addition of more silica binder is not meaningful.

따라서, 실리카의 바인더의 함량 0.43~0.49중량% 범위내에서 실리카 바인더 0.43중량% 및 0.49중량%를 경계로 하여 각각 그 수치범위 내(內)와 외(外)에서 광촉매 성능과 발수성능에 있어서 각별한 효과상의 차이가 있음을 알 수 있었다.Accordingly, the photocatalytic performance and the water repellency performance of the silica binder in the range of 0.43% to 0.49% by weight based on 0.43% by weight and 0.49% by weight of the silica binder, respectively It can be seen that there is a difference in effectiveness.

Claims (3)

하이드록시 아파타이트가 피복된 이산화티탄 0.43~4.3중량%, 실리카 바인더, 증점제 0.043~0.43중량%, 분산제 0.043~0.43중량%, 방부제 0.043~0.43중량% 및 물 93.92~99.011중량%로 구성되는 광촉매 도료 조성물에 있어서,Photocatalyst coating composition consisting of 0.43 to 4.3% by weight of titanium dioxide coated with hydroxyapatite, silica binder, 0.043 to 0.43% by weight of thickener, 0.043 to 0.43% by weight of dispersant, 0.043 to 0.43% by weight of preservative, and 93.92 to 99.1% by weight of water. To 상기 실리카 바인더는 수산화규소(Si(OH)4) 또는 일반식 Si(OR)4(R: CnH2n+1, 1≤n≤10) 중 어느 하나이며, 상기 광촉매 도료 조성물 총량에 대하여 0.43~0.49중량% 범위로 포함되는 것을 특징으로 하는 광촉매 도료 조성물.The silica binder may be silicon hydroxide (Si (OH) 4 ) or general Si (OR) 4 (R: C n H 2n + 1 , 1≤n≤10), the photocatalyst coating composition, characterized in that included in the range 0.43 ~ 0.49% by weight based on the total amount of the photocatalyst coating composition. 제1항에 있어서,The method of claim 1, 상기 하이드록시 아파타이트의 이산화티탄 표면에 대한 피복율은 5~36%인 것을 특징으로 하는 광촉매 도료 조성물.The coverage of the hydroxy apatite on the titanium dioxide surface is 5 to 36%, the photocatalyst coating composition. 제1항에 있어서,The method of claim 1, 상기 하이드록시 아파타이트가 피복된 이산화티탄은 평균입경이 1~250㎚인 것을 특징으로 하는 광촉매 도료 조성물.The photocatalyst coating composition of claim 1, wherein the hydroxyapatite-coated titanium dioxide has an average particle diameter of 1 to 250 nm.
KR1020090120553A 2009-04-14 2009-12-07 Photocatalytic coating composition having water repellent and air-cleaning activity, containing titanium dioxide coated by hydroxy-apatite KR101136014B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090032253 2009-04-14
KR20090032253 2009-04-14

Publications (2)

Publication Number Publication Date
KR20100113971A KR20100113971A (en) 2010-10-22
KR101136014B1 true KR101136014B1 (en) 2012-04-18

Family

ID=43133343

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090120553A KR101136014B1 (en) 2009-04-14 2009-12-07 Photocatalytic coating composition having water repellent and air-cleaning activity, containing titanium dioxide coated by hydroxy-apatite

Country Status (1)

Country Link
KR (1) KR101136014B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102400A (en) * 2013-04-12 2015-11-25 瓦林格光催化股份有限公司 A method of applying NOx degrading composition on concrete element

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101028797B1 (en) * 2010-09-20 2011-04-12 주식회사 한우 The functional coating agent and manufacturing mtehod the same
KR101346631B1 (en) * 2011-08-03 2014-01-07 (주)세화피앤씨 Hydrophilic anti-fogging film
KR101157782B1 (en) * 2012-01-17 2012-06-25 이호재 Construction method of color coated film pattern flooring composition with air cleaning and light reflective function
KR101601759B1 (en) * 2013-12-30 2016-03-09 주식회사 한별 Photocatalyst liquid coating containing a silica binder and its application sidewalk
KR101519335B1 (en) * 2014-08-22 2015-05-14 (주) 휴코스 Manufacturing Method of Furniture Board Comprising Titanium dioxide covered with Apatite for Indoor Air Quality improvement
KR101487758B1 (en) * 2014-11-04 2015-01-30 김혁중 Composition of Photocatalitic Coating Solution and Method of Preparing the Same
DK3262012T3 (en) 2015-02-27 2020-06-29 Photocat As A PHOTOCATALYTIC CONCRETE PRODUCT AND A PROCEDURE FOR MANUFACTURING A PHOTOCATALYTIC CONCRETE PRODUCT
CN105964283B (en) * 2016-05-20 2019-04-16 绍兴斯普瑞微纳科技有限公司 A kind of micro-nano structure photocatalysis coating and preparation method thereof
KR101995305B1 (en) * 2019-01-11 2019-07-03 최성근 Composition of filling chip for artificial turf

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050016489A (en) * 2002-05-31 2005-02-21 코닌클리케 필립스 일렉트로닉스 엔.브이. Electroluminescent device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050016489A (en) * 2002-05-31 2005-02-21 코닌클리케 필립스 일렉트로닉스 엔.브이. Electroluminescent device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102400A (en) * 2013-04-12 2015-11-25 瓦林格光催化股份有限公司 A method of applying NOx degrading composition on concrete element

Also Published As

Publication number Publication date
KR20100113971A (en) 2010-10-22

Similar Documents

Publication Publication Date Title
KR101136014B1 (en) Photocatalytic coating composition having water repellent and air-cleaning activity, containing titanium dioxide coated by hydroxy-apatite
CN105368164B (en) Plant ecological interior wall coating and preparation method thereof
JP5973569B2 (en) Method for preparing an additive comprising supported and dispersed TiO2 particles
KR100935128B1 (en) Water repellent and air-cleaning photocatalytic coating agent contained with titanium dioxide coated by hydroxy-apatite
KR101022413B1 (en) The functionalconcrete block purficating the air and water
Wang et al. Palygorskite nanomaterials: structure, properties, and functional applications
CN109735158B (en) Coating construction process for indoor wall surface
CN104402347A (en) Formaldehyde purification diatom mud decoration material and preparation method thereof
CA2977222C (en) Particulates having high total solar reflectance
EP1475414A1 (en) A self-decontaminating or self-cleaning coating for protection against hazardous bio-pathogens and toxic chemical agents
CN1445312A (en) Aqueous functional coatings possessing effects of self-cleaning, anti mold, sterilization and purifying air
CN101479351A (en) Anti-fouling coating comprising nanoscale hydrophobic particles and method of producing it
CN102803413A (en) Near-infrared shielding coating agent curable at ordinary temperatures, near-infrared shielding film using same, and manufacturing method therefor
CN102989436A (en) Coating with antibacterial and air-purifying functions
KR100691068B1 (en) Paint composition
CN104673019A (en) Coating
KR100929610B1 (en) Air cleaning photocatalytic coating agent contained with titanium dioxide coated by hydroxy-apatite, coating method with the same coating agent, and concrete product by the same coating method
KR20190080189A (en) Ecofriendly natural paint using halloysite nano tube and the preparing process the same
CN103172321B (en) A kind of environment friendly silicon segasso sea bubble slime paint
KR102246108B1 (en) Block for sideealk roadway including photocatalytic composite made of titanium dioxide and manufacturing method
KR101467836B1 (en) Paint composition containing porous composite compound
KR20140138400A (en) Photoactive nano-composite material, manufacturing method thereof, and multi-functional coating agent using the same
CN106608719B (en) A kind of Multifunctional diatom ooze decorative material for wall surface compound by modified potato starch
KR101070854B1 (en) The exterior and interior materials and manufacture method thereof of clay using the titanium dioxide photocatalyst coated apatite on the surface
JP3978636B2 (en) Coating composition for photocatalyst film formation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160325

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170201

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190403

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200212

Year of fee payment: 9