KR101131223B1 - Antioxidant peptide isolated from Nile tilapia and antioxidant composition comprising of the same - Google Patents

Antioxidant peptide isolated from Nile tilapia and antioxidant composition comprising of the same Download PDF

Info

Publication number
KR101131223B1
KR101131223B1 KR1020100074373A KR20100074373A KR101131223B1 KR 101131223 B1 KR101131223 B1 KR 101131223B1 KR 1020100074373 A KR1020100074373 A KR 1020100074373A KR 20100074373 A KR20100074373 A KR 20100074373A KR 101131223 B1 KR101131223 B1 KR 101131223B1
Authority
KR
South Korea
Prior art keywords
antioxidant
gelatin
cells
peptides
dna
Prior art date
Application number
KR1020100074373A
Other languages
Korean (ko)
Other versions
KR20120021450A (en
Inventor
김세권
류보미
엔고 다이-훙
첸 중-지
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Priority to KR1020100074373A priority Critical patent/KR101131223B1/en
Publication of KR20120021450A publication Critical patent/KR20120021450A/en
Application granted granted Critical
Publication of KR101131223B1 publication Critical patent/KR101131223B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/461Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from fish
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1706Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from fish
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • A23K20/147Polymeric derivatives, e.g. peptides or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/195Antibiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 나일 틸라피아(Oreochromis niloticus)로부터 분리한 항산화 펩티드에 관한 것으로, 수산 산업의 부산물인 나일 틸라피아의 비늘의 젤라틴으로부터 분리, 정제한 우수한 항산화 활성을 나타내는 펩티드 및 이를 포함하는 항산화 조성물을 제공한다.The present invention relates to an antioxidant peptide isolated from Nile tilapia (Oreochromis niloticus), and provides a peptide showing an excellent antioxidant activity separated and purified from the gelatin of the scale of Nile tilapia, a by-product of the fishery industry, and an antioxidant composition comprising the same.

Description

나일 틸라피아로부터 분리된 항산화 펩티드 및 이를 포함하는 항산화 조성물{Antioxidant peptide isolated from Nile tilapia and antioxidant composition comprising of the same}Antioxidant peptide isolated from Nile tilapia and antioxidant composition comprising of the same}

본 발명은 나일 틸라피아(Oreochromis niloticus)로부터 분리한 항산화 펩티드에 관한 것으로 더욱 상세하게는 나일 틸라피아 비늘 젤라틴으로부터 분리된 항산화 펩티드 및 이를 포함하는 항산화 조성물에 관한 것이다.The present invention relates to an antioxidant peptide isolated from Nile tilapia (Oreochromis niloticus), and more particularly to an antioxidant peptide isolated from Nile tilapia scale gelatin and an antioxidant composition comprising the same.

산화 스트레스는 모든 주요 세포 성분의 손상에 원인이 되므로 조직에서 과도하게 발생하는 활성산소(reactive oxygen speices; ROS)는 세포사를 야기한다. 게다가, ROS는 세포성 생체물질의 산화와 직접적 및 간접적 관계를 가지며 신경퇴행성, 고혈압, 염증, 당뇨, 암 및 노화와 같은 많은 건강상 장애에 관련되어 있다(Calabrese, V., Lodi, R., Tonon, C., D'Agata, V., Sapienza, M., Scapagnini, G., Mangiameli, A., Pennisi, G., Giuffrida Stella, A.M., Butterfield, D.A. (2005). Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedrich's ataxia. Journal of the Neurological Sciences, 233, 145-162; Je, J. Y., Park, P. J., & Kim, S. K. (2004). Free radical scavenging properties of hetero-chitooligosaccharides using an ESR spectroscopy. Food and Chemical Toxicology, 42, 381-387). 따라서, 유해한 효과를 갖는 산화를 저해하기 위해 식물, 동물, 미생물 및 식품과 같은 자연원을 사용하여 신규한 항산화 화합물을 발견하고자 하는 많은 연구가 이뤄지고 있다.Since oxidative stress causes damage to all major cellular components, excessive oxygen in the tissue (reactive oxygen speices, ROS) causes cell death. In addition, ROS have a direct and indirect relationship with the oxidation of cellular biomaterials and are involved in many health disorders such as neurodegenerative, hypertension, inflammation, diabetes, cancer and aging (Calabrese, V., Lodi, R., Tonon, C., D'Agata, V., Sapienza, M., Scapagnini, G., Mangiameli, A., Pennisi, G., Giuffrida Stella, AM, Butterfield, DA (2005) .Oxative stress, mitochondrial dysfunction and cellular stress response in Friedrich's ataxia.Journal of the Neurological Sciences, 233, 145-162; Je, JY, Park, PJ, & Kim, SK (2004) .Free radical scavenging properties of hetero-chitooligosaccharides using an ESR spectroscopy.Food and Chemical Toxicology, 42, 381-387). Thus, many studies have been conducted to discover novel antioxidant compounds using natural sources such as plants, animals, microorganisms and foods to inhibit oxidation with deleterious effects.

몇몇 어류 젤라틴 가수분해물이 주목할만한 항산화, 항고혈압, 항암 및 항균 효과뿐만 아니라 염증-조절 및 콜레스테롤-저하 효과를 나타냄이 발견되었다. 최근에, 많은 연구에서 다양한 어류 젤라틴 가수분해물로부터 유래된 펩티드가 잠재적인 항산화제로서 작용함을 밝혀냈다. 이러한 연구들 중 럼피쉬(lumpfish)(Osborne, K., Voight, M. N., & Hall, D. E. (1990). Utilization of lumpfish (Cyclopterus lumpus) carcasses for production of gelatin. In M. N. Voight & J. K. Botta (Eds.), Advances in fisheries technology and biotechnology for increased profitability (pp. 145-150). Lancaster, PA, USA: Technomic Publishing Co.), 흰붕장어(conger eel)(Kim, J. S., & Cho, S. Y. (1996). Screening for raw material of modified gelatin in marine animal skins caught in coastal offshore water in Korea. Agricultural and Chemical Biotechnology, 39, 134-139), 대구(Gudmundsson, M., & Hafsteinsson, H. (1997). Gelatin from cod skins as affected by chemical treatments. Journal of Food Science, 62, 37-39), 상어(Yoshimura, K., Terashima, M., Hozan, D., Ebato, T., Nomura, Y., Ishii, Y., & Shirai, K. (2000). Physical properties of shark gelatin compared with pig gelatin. Journal of Agricultural Food Chemistry, 48, 2023-2027), 광어(megrim)(Sarabia, A. I., Gomez-Guillen, M. C., Solas, M. T., & Montero, P. (2001). Effect of microbial transglutaminase on the functional properties of megrim (Lepidorhombus boscii) skin gelatin. Journal of the Science of Food and Agriculture, 81, 665-673), 틸라피아(tilapia)(Jamilah, B., & Harvinder, K. G. (2002). Properties of gelatins from skins of fish-black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica). Food Chemistry, 77, 81-84), 대구류(Pollack)(Je, J. Y., Park, P. J., & Kim, S. K. (2005). Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Research International, 38, 45-50) 및 참치(Cho, S. M., Gu, Y. S., & Kim, S. B. (2005). Extracting optimization and physical properties of yellowfin tuna (Thunnus albacares) skin gelatin compared to mammalian gelatins. Food Hydrocolloids, 19, 221-229)로부터 추출한 어류 젤라틴이 널리 연구되고 있다.Several fish gelatin hydrolysates have been found to exhibit not only antioxidant, antihypertensive, anticancer and antibacterial effects but also inflammation-modulating and cholesterol-lowering effects. Recently, many studies have found that peptides derived from various fish gelatin hydrolysates act as potential antioxidants. Among these studies, lumpfish (Osborne, K., Voight, MN, & Hall, DE (1990) .Utilization of lumpfish (Cyclopterus lumpus) carcasses for production of gelatin.In MN Voight & JK Botta (Eds.) , Advances in fisheries technology and biotechnology for increased profitability (pp. 145-150) .Lancaster, PA, USA: Technomic Publishing Co.), conger eel (Kim, JS, & Cho, SY (1996). for raw material of modified gelatin in marine animal skins caught in coastal offshore water in Korea.Agricultural and Chemical Biotechnology, 39, 134-139, Gudmundsson, M., & Hafsteinsson, H. (1997) .Gelatin from cod skins as affected by chemical treatments.Journal of Food Science, 62, 37-39), Shark (Yoshimura, K., Terashima, M., Hozan, D., Ebato, T., Nomura, Y., Ishii, Y., & Shirai, K. (2000) .Physical properties of shark gelatin compared with pig gelatin.Journal of Agricultural Food Chemistry, 48, 2023-2027), megrim (Sarabia, AI, Gomez-Guillen, M.). C., Solas, M. T., & Montero, P. (2001) .Effect of microbial transglutaminase on the functional properties of megrim (Lepidorhombus boscii) skin gelatin. Journal of the Science of Food and Agriculture, 81, 665-673), tilapia (Jamilah, B., & Harvinder, KG (2002) .Properties of gelatins from skins of fish-black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica) .Food Chemistry, 77, 81-84), Pollack (Je, JY, Park, PJ, & Kim, SK (2005) .Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma ) frame protein hydrolysate.Food Research International, 38, 45-50) and tuna (Cho, SM, Gu, YS, & Kim, SB (2005) .Extracting optimization and physical properties of yellowfin tuna (Thunnus albacares) skin gelatin compared to Fish gelatin extracted from mammalian gelatins.Food Hydrocolloids (19, 221-229) has been widely studied.

틸라피아는 담수 수산양식에서 중요한 어종으로 잉어 및 연어류 다음으로 3번째로 가장 널리 양식되고 있다. 틸라피아 양식은 1990년에 383,654 메트릭톤에서 2002년에 1,505,804 메트릭톤으로 증가되었으며 양식 틸라피아의 가치 또한 1984년에 US$154,000,000달러에서 2002년에 US$1,800,000,000달러로 증가되었다. 이와 같이 수산 양식 규모가 성장함에 따라 수산 가공 공정에서 어육을 발라내는 펠렛 작업으로부터 남은 부산물인 어류의 피부 및 뼈가 대량 발행하고 있으므로 이의 폐기또는 처리가 새로운 문제로 대두되고 있다. 어류의 피부 및 뼈는 콜라겐을 많이 함유하고 있으며 이를 젤라틴 생산에 사용할 수 있는데, 이 젤라틴으로부터 항산화 물질과 같은 새로운 물질을 분리하고자 하는 연구가 더욱 요구되고 있다.
Tilapia is the third most important fish species in freshwater aquaculture, after carp and salmon. The tilapia culture increased from 383,654 metric tons in 1990 to 1,505,804 metric tons in 2002, and the value of farmed tilapia increased from US $ 154,000,000 in 1984 to US $ 1,800,000,000 in 2002. As the scale of aquaculture grows, the skin and bones of fish, which are by-products from the pelleting process of fish meat in the fish processing process, are issued in large quantities, and their disposal or disposal is emerging as a new problem. Fish skin and bones contain a lot of collagen, which can be used for gelatin production, and further research is needed to separate new substances such as antioxidants from gelatin.

본 발명은 상기와 같은 점들을 감안하여 안출한 것으로, 수산 산업의 부산물인 나일 틸라피아의 비늘의 젤라틴으로부터 분리, 정제한 우수한 항산화 활성을 나타내는 펩티드 및 이를 포함하는 항산화 조성물을 제공하는 것을 목적으로 한다.The present invention has been made in view of the above points, and an object of the present invention is to provide a peptide having an excellent antioxidant activity separated and purified from gelatin of scales of nile tilapia, which is a by-product of the fishery industry, and an antioxidant composition comprising the same.

본 발명의 상기 목적은 나일 틸라피아 비늘의 젤라틴을 효소적으로 가수분해하고 이들로부터 항산화 활성이 높은 펩티드를 이온교환 크로마토그래 및 HPLC로 정제하여 아미노산 배열을 결정함으로써 신규한 항산화 펩티드를 분리하였으며, 이의 자유 리디칼 소거능 및 라디칼-매개 DNA 손상 저해 효과를 측정하여 항산화 활성을 확인함으로써 달성하였다.The object of the present invention was to isolate a novel antioxidant peptide by enzymatically hydrolyzing gelatin of Nile tilapia scales and purifying peptides having high antioxidant activity from ion exchange chromatography and HPLC to determine amino acid sequence. Radical scavenging activity and radical-mediated DNA damage inhibition effect were measured to confirm antioxidant activity.

본 발명은 수산 가공 산업에서 부산물로 취급되는 나일 틸라피아 비늘의 젤라틴으로부터 우수한 항산화 활성을 갖는 펩티드를 분리하여 생산함으로써, 비용 및 효능 면에서 뛰어난 효과가 있다.The present invention separates and produces a peptide having excellent antioxidant activity from gelatin of Nile tilapia scales, which is treated as a by-product in the fish processing industry, thereby having an excellent effect on cost and efficacy.

도 1은 RAW 264.7 세포 (A) 및 MRC-5 세포 (B)의 생존도에 대한 젤라틴 가수분해물의 세포독성 효과를 나타낸 그래프이다.
도 2의 (A)는 발생된 H2O2를 검출하는 DCFH-DA에 의해 측정된 세포의 세포내 ROS 발생 수준을 나타낸 것이다. 결과는 3회의 독립적 실험의 평균 ± 평균오차로 나타냈다. (B)는 알칼라아제-유래 가수분해물에 의한 DNA 산화성 손상 보호를 나타낸 것이다.
도 3의 (A)는 HiPrep 16/10 DEAE FF 이온-교환 컬럼 상에 로딩된 가수분해물(2 ml)의 FPLC 크로마토그램(상위 패널) 및 ESR 분광법에 의해 측정된 자유 라디칼에 대한 이의 항산화 활성(하위 패널)을 나타낸 것이다. (B)는 항산화 펩티드의 정제 시의 RP-HPLC (Primesphere 10 C18 컬럼) 크로마토그램을 나타낸 것이다
도 4는 ESI 소스와 TOF-MS/MS를 사용한 정제된 펩티드의 분자량 및 아미노산 서열 확인을 나타낸 것이다. 활성 펩티드의 서열결정은 50-2500의 m/z 범위로 이루어졌으며 PepSeq denove sequencing algorithm을 사용하여 서열결정하였다.
도 5의 (A)는 RAW 264.7 세포 및 MRC-5 세포의 생존도에 대한 정제된 펩티드의 세포독성 효과를 나타낸 것이다. 결과는 3회의 독립적 실험의 평균 ± 평균오차로 나타냈다. (B)는 발생된 H2O2를 검출하는 DCFH-DA에 의해 측정된 세포의 세포내 ROS 발생 수준을 나타낸 것이다. 결과는 3회의 독립적 실험의 평균 ± 평균오차로 나타냈다. (C)는 정제된 펩티드에 의한 DNA 산화성 손상 보호를 나타낸 것이다.
1 is a graph showing the cytotoxic effects of gelatin hydrolysates on the viability of RAW 264.7 cells (A) and MRC-5 cells (B).
Figure 2 (A) shows the level of intracellular ROS generation of cells measured by DCFH-DA to detect the generated H 2 O 2 . The results are expressed as mean ± mean error of three independent experiments. (B) shows protection of DNA oxidative damage by alkalase-derived hydrolysates.
Figure 3 (A) shows the antioxidant activity of free radicals measured by FPLC chromatogram (top panel) and ESR spectroscopy of hydrolyzate (2 ml) loaded on a HiPrep 16/10 DEAE FF ion-exchange column ( Sub-panel). (B) shows the RP-HPLC (Primesphere 10 C 18 column) chromatogram for purification of the antioxidant peptide.
Figure 4 shows the molecular weight and amino acid sequence identification of purified peptides using ESI source and TOF-MS / MS. The active peptide was sequenced in the range of 50-2500 m / z and sequenced using the PepSeq denove sequencing algorithm.
5 (A) shows the cytotoxic effect of purified peptides on the viability of RAW 264.7 cells and MRC-5 cells. The results are expressed as mean ± mean error of three independent experiments. (B) shows the level of intracellular ROS generation of cells measured by DCFH-DA detecting the generated H 2 O 2 . The results are expressed as mean ± mean error of three independent experiments. (C) shows DNA oxidative damage protection by purified peptides.

젤라틴은 Geltech Co.(Busan, South Korea)에서 구입하였다. 형광 프로브 2',7'-디클로로플루오레신 디아세테이트(DCFH-DA)는 Molecular Probes Inc.(Eugene, OR, US)에서 구입하였으며 알카라아제는 Novozymes Co.(Bagsvaerd, Denmark)에서 구입하였다.Gelatin was purchased from Geltech Co. (Busan, South Korea). Fluorescent probe 2 ', 7'-dichlorofluorescein diacetate (DCFH-DA) was purchased from Molecular Probes Inc. (Eugene, OR, US) and alkalase was purchased from Novozymes Co. (Bagsvaerd, Denmark).

1,1-디페닐-2-피크릴히드라질(DPPH), 5,5-디메틸-1-피롤린 N-옥사이드 (DMPO), FeSO4, H2O2, 리보플라빈 및 EDTA와 같은 라디칼 시험용 화합물 및 MTT (3-(4,5-디메틸-2-일)-2,5-디페닐테트라졸리움 브로마이드), 아가로스, 우태아혈청 (FBS), 프로나아제 E, 펩신 및 트립신은 Sigma Chemical Co.(St. Louis, MO, USA)에서 구입하였다. Compounds for radical testing such as 1,1-diphenyl-2-picrylhydrazyl (DPPH), 5,5-dimethyl-1-pyrroline N-oxide (DMPO), FeSO 4 , H 2 O 2 , riboflavin and EDTA And MTT (3- (4,5-dimethyl-2-yl) -2,5-diphenyltetrazolium bromide), agarose, fetal bovine serum (FBS), pronase E, pepsin and trypsin are available from Sigma Chemical Co. (St. Louis, MO, USA).

마우스 대식세포(RAW 264.7) 인간 폐 섬유아세포 (MRC-5) 세포주는 ATCC(American Type Culture Collection)(Manassas, VA, USA)에서 입수하였다. DMEM(Dulbecco's Modified Eagle medium), 페니실린/스트렙토마이신 및 그외 세포배양에 필요한 물질은 Gibco BRL, Life Technologies(Grand Island, NY, USA)로부터 입수하였다. 그외 모든 시약들은 시판되는 가장 높은 등급의 것이다.
Mouse macrophage (RAW 264.7) human lung fibroblast (MRC-5) cell lines were obtained from the American Type Culture Collection (ATCC) (Manassas, VA, USA). Dulbecco's Modified Eagle medium (DMEM), penicillin / streptomycin and other materials required for cell culture were obtained from Gibco BRL, Life Technologies (Grand Island, NY, USA). All other reagents are of the highest grade available.

실시예Example 1.  One. 효소적Enzymatic 가수분해물의Hydrolyzate 제조 Produce

나일 틸라피아(O. niloticus) 비늘 젤라틴으로부터 생활성 펩티드를 추출하기 위해, 최적 조건 하에서 다양한 시판 효소(알칼라아제, 프로나아제 E, 펩신 및 트립신)를 사용하여 효소적 가수분해를 실시하였다. 1/100(w/w)의 비율로 1% 기질에 효소를 혼합하였다. 혼합물을 각 최적 온도 하에서 교반하면서 4시간 동안 배양한 후 끓는 물 수조에서 10분간 가열하여 효소를 불활성화시켰다. 동결건조된 가수분해물을 -80℃에서 사용 전까지 보관하였다.
To extract bioactive peptides from N. niloticus scale gelatin, enzymatic hydrolysis was performed using various commercial enzymes (alkalase, pronase E, pepsin and trypsin) under optimal conditions. The enzyme was mixed in 1% substrate at a rate of 1/100 (w / w). The mixture was incubated for 4 hours with stirring under each optimum temperature and then heated for 10 minutes in a boiling water bath to inactivate the enzyme. Lyophilized hydrolysates were stored at -80 ° C until use.

실시예Example 2. 항산화 펩티드의 정제 및 서열결정 2. Purification and Sequencing of Antioxidant Peptides

이온 교환 크로마토그래피Ion exchange chromatography

항산화 펩티드를 HiPrep 16/10 DEAE FF 이온-교환 컬럼 (1.6 x 10 cm, Amersham Biosciences, Piscataway, NJ, USA) 상에서 FPLC(fast protein liquid chromatography) (FPLC AKTA, Amersham Bioscience Co., Uppsala, Sweden)를 사용하여 효소적 가수분해물로부터 정제하였다. 가수분해물을 20 mM 아세트산나트륨 완충용액 (pH 4.0)으로 평형화시킨 HiPrep 16/10 DEAE FF 이온-교환 컬럼 상에 부하시키고, 62 ml/h 유속으로 동일 완충용액에서 NaCl (0-2 M)의 선형구배로 용출시켰다. 각 분획을 280 nm에서 확인하고, 4 ml 부피로 수집하고 회전 증발기를 사용하여 농축시켰다; 항산화 활성 또한 확인하였다. 강한 항산화 분획을 동결건조하고 이온 교환 크로마토그래피를 다음 단계로서 사용하였다.
Antioxidant peptides were run on a HiPrep 16/10 DEAE FF ion-exchange column (1.6 × 10 cm, Amersham Biosciences, Piscataway, NJ, USA) using fast protein liquid chromatography (FPLC) (FPLC AKTA, Amersham Bioscience Co., Uppsala, Sweden). Purified from enzymatic hydrolysate. The hydrolyzate was loaded on a HiPrep 16/10 DEAE FF ion-exchange column equilibrated with 20 mM sodium acetate buffer (pH 4.0) and linearized with NaCl (0-2 M) in the same buffer at 62 ml / h flow rate. Eluted with a gradient. Each fraction was identified at 280 nm, collected in 4 ml volumes and concentrated using a rotary evaporator; Antioxidant activity was also confirmed. Strong antioxidant fractions were lyophilized and ion exchange chromatography was used as the next step.

HPLC(HPLC ( HighHigh performanceperformance liquidliquid chromatographychromatography ))

항산화 활성을 나타내는 분획을 2 ml/분의 유속으로 0.1% 트리플루오로아세트산(TFA)을 함유하는 아세토니트릴의 선형 구배(0-40%, 40분)로 Primesphere 10 C18 (10mm? 250 mm, Phenomenex, Cheshire, England) 컬럼 상에서 역-상 고성능 액체 크로마토그래피 (RP-HPLC, Dionex Korea Ltd., Sunnyvale, CA, USA)를 사용하여 추가 정제하였다. 용출 피크를 215 nm에서 검출하고, 활성 피크를 회전 증발기를 사용하여 농축시켰다. 활성 피크 (표적 피크, 데이터는 나타내지 않음)를 풀링하여 즉시 동결건조시켰다. 분석 컬럼으로부터의 활성 분획을 1.2 ml/분의 유속으로 0.1% 트리플루오로아세트산(TFA)을 함유하는 아세토니트릴의 선형 구배(15%, v/v, 20분)로 SynChropak RPP-100 컬럼 (4.6mm? 250 mm, SynChrom, Inc., Lafayette, Indiana, USA) 상에 추가로 적용시켰다. 마지막으로, 나일 틸라피아 (O. niloticus) 비늘 젤라틴의 알카라아제-분해로부터 정제된 펩티드를 이의 아미노산 서열로 분석하였다.
Fractions showing antioxidant activity were subjected to Primesphere 10 C18 (10 mm 250 mm, Phenomenex) with a linear gradient (0-40%, 40 minutes) of acetonitrile containing 0.1% trifluoroacetic acid (TFA) at a flow rate of 2 ml / min. , Cheshire, England) and further purified using reverse-phase high performance liquid chromatography (RP-HPLC, Dionex Korea Ltd., Sunnyvale, CA, USA) on a column. Elution peaks were detected at 215 nm and active peaks were concentrated using a rotary evaporator. Activity peaks (target peaks, data not shown) were pooled and immediately lyophilized. The active fraction from the analytical column was converted to a SynChropak RPP-100 column (4.6) with a linear gradient of acetonitrile (15%, v / v, 20 minutes) containing 0.1% trifluoroacetic acid (TFA) at a flow rate of 1.2 ml / min. mm 250 mm, SynChrom, Inc., Lafayette, Indiana, USA). Finally, peptides purified from the alkalase-degradation of O. niloticus scale gelatin were analyzed by their amino acid sequence.

아미노산 서열 결정Amino acid sequencing

정제된 펩티드의 정확한 분자량 및 아미노산 서열을 전자분무 이온화(ESI; electrospray Ionization) 소스와 함께 Q-TOF 질량분석기(Micromass, Altrincham, UK)를 사용하여 확인하였다. 정제된 펩티드를 메탄올/물 (1:1, v/v)에 용해시킨 후에 전자분무 소스 내로 개별적으로 주입시키고 이의 분자량을 질량 스펙트럼에서 이중 전하 (M + 2H)+2 상태에 의해 결정하였다. 분자량 결정 후에, 펩티드는 단편화를 위해 자동적으로 선택되었으며, 서열 정보를 이중 MS 분석에 의해 입수하였다.
The exact molecular weight and amino acid sequence of the purified peptides were confirmed using a Q-TOF mass spectrometer (Micromass, Altrincham, UK) with an electrospray ionization (ESI) source. Purified peptides were dissolved in methanol / water (1: 1, v / v) and then injected separately into the electrospray source and their molecular weight was determined by the double charge (M + 2H) +2 state in the mass spectrum. After molecular weight determination, peptides were automatically selected for fragmentation and sequence information was obtained by dual MS analysis.

자유 라디칼 소거능을 고려하여, 알칼라아제-유래 가수분해물을 항산화 펩티드의 정제 및 확인에 사용하였다. 우선, 알칼라아제-유래 가수분해물을 아세트산나트륨 완충용액(20 mM, pH 4.0)에 20 mg/ml로 용해시키고 FPLC를 사용하여 NaCl의 선형구배(0-2M)로 HiPrep 16/10 DEAE FF 이온-교환 컬럼 상에 로딩시켰다. 용출 피크를 280 nm에서 확인하고 세 부분으로 분획화시킨 후 이들의 항산화 활성을 자유 라디칼을 소거능을 사용하여 측정하였다(도 3A). 분획 3은 각각 72.04%, 42.80% 및 18.03%으로 히드록시, DPPH 및 과산화 라디칼을 제지하였다. 강한 라디칼 소거능을 갖는 분획 3을 동결건조시키고 아세토니트릴의 선형 구배(0-40%)를 사용하여 Primesphere 10 C18 컬럼 상에서 RP-HPLC를 실행하였다. 각 분획을 풀링하고 동결건조한 후 항산화 활성을 측정하였다. 활성 분획을 분석적 HPLC 컬럼 상에 최종적으로 정제하고 Q-TOF ESI 질량분석법으로 Asp-Pro-Ala-Leu-Ala-Thr-Glu-Pro-Asp-Pro-Met-Pro-Phe(1382.57 Da)를 결정하였다(도 4). 아미노산 서열에서 프롤린, 알라닌 및 아스파르트산이 각각 4, 2 및 2회 발견되었다.
In view of the free radical scavenging ability, alkalase-derived hydrolysates were used for purification and identification of antioxidant peptides. First, the alkalase-derived hydrolyzate was dissolved in sodium acetate buffer (20 mM, pH 4.0) at 20 mg / ml and HiPrep 16/10 DEAE FF ion with a linear gradient of NaCl (0-2M) using FPLC. -Load on exchange column. After eluting peaks were identified at 280 nm and fractionated into three portions, their antioxidant activity was measured using free radical scavenging ability (FIG. 3A). Fraction 3 restrained hydroxy, DPPH and peroxide radicals at 72.04%, 42.80% and 18.03%, respectively. Fraction 3 with strong radical scavenging ability was lyophilized and RP-HPLC run on a Primesphere 10 C 18 column using a linear gradient of acetonitrile (0-40%). Each fraction was pooled, lyophilized and the antioxidant activity was measured. The active fractions were finally purified on an analytical HPLC column and determined Asp-Pro-Ala-Leu-Ala-Thr-Glu-Pro-Asp-Pro-Met-Pro-Phe (1382.57 Da) by Q-TOF ESI mass spectrometry. (FIG. 4). Proline, alanine and aspartic acid were found 4, 2 and 2 times in the amino acid sequence, respectively.

실시예Example 3. 전자스핀공명( 3. Electronic Spin Resonance ElectronElectron spinspin resonanceresonance ; ; ESRESR ) 분광법 검정Spectroscopy assay

DPPHDPPH 라디칼에서의At radicals 소거능Scatters

DPPH 라디칼 소거능을 Nanjo등의 문헌(Nanjo, F., Goto, K., Seto, R., Suzuki, M., Sakai, M., & Hara, Y. (1996). Scavenging effects of tea catechins and their derivatives on 1,1,-diphenyl-2-picrylhydrazyl radical. Free Radical Biology and Medicine, 21, 895-902)에 기재된 방법을 사용하여 측정하였다. 30㎕의 시료 용액(또는 대조군으로 증류수)를 메탄올 용액에 용해된 30㎕의 DPPH(60μM)에 첨가하였다. 10초간 강하게 혼합한 후, 용액을 50㎕ 석영 모세관으로 옮기고 DPPH 라디칼에서 가수분해물의 소거능을 JES-FA ESR 분광계(JEOL Ltd., Tokyo, Japan)를 사용하여 측정하였다. 스핀 부가물을 ESR 분광계로 정확히 2분 후에 측정하였다. 분광계를 다음과 같이 설정하였다: 자기장, 336.5±5 mT; 파워, 5 mW; 변조 주파수, 9.41 GHz; 진폭, 1 x 1000; 변조 폭, 0.8 mT; 스위프(sweep) 폭, 10 mT; 스위프 시간 30초. DPPH 라디칼 소거능을 하기 식에 따라 계산하였다. H 및 H0은 각각 시료 존재 및 시료 부재시의 라디칼 시그널의 상대적 피크 높이를 나타낸다.
DPPH radical scavenging ability is described by Nanjo et al. (Nanjo, F., Goto, K., Seto, R., Suzuki, M., Sakai, M., & Hara, Y. (1996). Scavenging effects of tea catechins and their derivatives on 1,1, -diphenyl-2-picrylhydrazyl radical.Free Radical Biology and Medicine, 21, 895-902). 30 μl of sample solution (or distilled water as a control) was added to 30 μl of DPPH (60 μM) dissolved in methanol solution. After vigorous mixing for 10 seconds, the solution was transferred to 50 μl quartz capillary and the scavenging ability of the hydrolyzate in the DPPH radical was measured using a JES-FA ESR spectrometer (JEOL Ltd., Tokyo, Japan). Spin adducts were measured after exactly 2 minutes with an ESR spectrometer. The spectrometer was set up as follows: magnetic field, 336.5 ± 5 mT; Power, 5 mW; Modulation frequency, 9.41 GHz; Amplitude, 1 x 1000; Modulation width, 0.8 mT; Sweep width, 10 mT; Sweep time 30 seconds. DPPH radical scavenging activity was calculated according to the following formula. H and H 0 represent the relative peak heights of the radical signals in the presence and absence of the sample, respectively.

라디칼 소거능 (%) = (H0-H)/H0 x 100%
Radical scavenging activity (%) = (H 0 -H) / H0 x 100%

히드록시 Hydroxy 라디칼Radical 소거능Scatters

히드록시 라디칼을 펜톤 반응(Fenton reaction)으로 생성하고 DMPO nitrone spin trap(Rosen & Rauckman, 1984)를 사용하여 수집하였다. 결과적으로 생산된 DMPO-OH 부가물을 ESR 분광계로 검출하였다. 시료 용액(15㎕)를 인산염 완충용액(pH 7.4)에서 DMPO(0.3M, 15㎕), FeSO4(10 mM, 15㎕) 및 H2O2(10 mM, 15㎕)와 혼합한 후 50㎕ 석영 모세관에 옮겼다. 2.5분 후에 ESR 스펙트럼을 ESR 분광계를 사용하여 측정하였다. 분광계를 다음과 같이 설정하였다: 자기장, 336.5±5 mT; 파워, 1 mW; 변조 주파수, 9.41 GHz; 진폭, 1 x 200; 변조 폭, 0.1 mT; 스위프(sweep) 폭, 10 mT; 스위프 시간 30초. 히드록시 라디칼 소거능을 하기 식에 따라 계산하였다. H 및 H0은 각각 시료 존재 및 시료 부재시의 라디칼 시그널의 상대적 피크 높이를 나타낸다.
Hydroxy radicals were generated by the Fenton reaction and collected using DMPO nitrone spin trap (Rosen & Rauckman, 1984). The resulting DMPO-OH adduct was detected by an ESR spectrometer. Sample solution (15 μl) was mixed with DMPO (0.3 M, 15 μl), FeSO 4 (10 mM, 15 μl) and H 2 O 2 (10 mM, 15 μl) in phosphate buffer (pH 7.4). Transfer to μl quartz capillary. After 2.5 minutes the ESR spectra were measured using an ESR spectrometer. The spectrometer was set up as follows: magnetic field, 336.5 ± 5 mT; Power, 1 mW; Modulation frequency, 9.41 GHz; Amplitude, 1 x 200; Modulation width, 0.1 mT; Sweep width, 10 mT; Sweep time 30 seconds. Hydroxy radical scavenging ability was calculated according to the following formula. H and H 0 represent the relative peak heights of the radical signals in the presence and absence of the sample, respectively.

라디칼 소거능 (%) = (H0-H)/H0 x 100%
Radical scavenging activity (%) = (H 0 -H) / H0 x 100%

과산화물 peroxide 라디칼Radical 음이온  Negative ion 소거능Scatters

과산화물 라디칼 음이온을 UV 방사능처리 리보플라빈/EDTA 시스템(Guo, Q., Zhao, B., Shen, S., Hou, J., Hu, J., & Xin, W. (1999). ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers. Biochimica et Biophysica Acta, 1427, 13-23)으로 생성하였다. 0.3 mM 리보플라빈, 1.6 mM EDTA, 800 mM DMPO 및 지정농도의 시료를 포함하는 반응 혼합물을 365 nm에서 UV 램프 하에서 1분 동안 방사능 처리하였다. 반응 혼합물을 측정을 위해 ESR 분광계의 50㎕ 석영 모세관으로 옮겼다. 분광계를 다음과 같이 설정하였다: 자기장, 336.5±5 mT; 파워, 10 mW; 변조 주파수, 9.41 GHz; 진폭, 1 x 1000; 변조 폭, 0.1 mT; 스위프(sweep) 폭, 10 mT; 스위프 시간 1분. 과산화물 라디칼 소거능을 하기 식에 따라 계산하였다. H 및 H0은 각각 시료 존재 및 시료 부재시의 라디칼 시그널의 상대적 피크 높이를 나타낸다.
UV radioactive riboflavin / EDTA systems for peroxide radical anions (Guo, Q., Zhao, B., Shen, S., Hou, J., Hu, J., & Xin, W. (1999) .ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers.Biochimica et Biophysica Acta, 1427, 13-23). The reaction mixture comprising 0.3 mM riboflavin, 1.6 mM EDTA, 800 mM DMPO, and the sample at the indicated concentration was radioactive for 1 minute under UV lamp at 365 nm. The reaction mixture was transferred to 50 μl quartz capillary on an ESR spectrometer for measurement. The spectrometer was set up as follows: magnetic field, 336.5 ± 5 mT; Power, 10 mW; Modulation frequency, 9.41 GHz; Amplitude, 1 x 1000; Modulation width, 0.1 mT; Sweep width, 10 mT; 1 minute sweep time. Peroxide radical scavenging ability was calculated according to the following formula. H and H 0 represent the relative peak heights of the radical signals in the presence and absence of the sample, respectively.

라디칼 소거능 (%) = (H0-H)/H0 x 100%
Radical scavenging activity (%) = (H 0 -H) / H0 x 100%

실시예Example 4. 젤라틴  4. Gelatin 가수분해물의Hydrolyzate 제조 및 이의 항산화 특성 Preparation and Antioxidant Properties thereof

젤라틴은 알카라아제, 프로나아제 E, 펩신 및 트립신과 같은 다양한 효소로 순차적으로 가수분해하였다. 물질의 항산화 활성을 산화 시스템에서 자유 라디칼의 소거능을 실험하여 정확하게 구분할 수 있다. 그 결과, 가수분해물을 실시예 3에서와 같이 전자스핀공명 기술을 사용하여 DPPH, 히드록시 및 과산화 라디칼의 자유 라디칼 소거능을 평가하였다. 표 1에 나타난 바와 같이, 히드록시 라디칼의 소거능이 DPPH 및 과산화 라디칼보다 더 효과적이었다. 가수분해물 중에서, 알칼라아제-유도 과산화물이 다른 효소 가수분해물에 비해 가장 높은 항산화 활성을 나타냈다. DPPH, 히드록시 및 과산화 라디칼 소거에서 알칼라아제 가수분해물의 IC50 (50% 라디칼 소거능에 대한 가수분해물 농도)수치는 각각 660 ± 0.40, 263 ± 0.31 및 720 ± 0.35 ㎍g/ml이었다. 가수분해 반응은 단백질 분자의 물리학적 구조 뿐만 아니라 효소 공격이 집중되는 민감성 펩티드 결합의 유효성에 기인한다 (Diniz and Martin, 1998). 알칼라아제는 Bacillus licheniformis로부터 제조된, 산업적으로 사용되는 알칼리 프로테아제로 활성 부위에서 아미노산 중 하나가 세린이다. 펩티드 결합에 대한 다소 광범위한 범위의 특이성을 갖고 있어 천연 단백질을 가수분해하는데 사용될 때 항산화 펩티드의 생산을 야기할 수 있어 생활성 펩티드를 생산할 수 있다. 알칼라아제에 의해 생성된 생활성 펩티드는 펩신, 트립신 및 프로나아제 E와 같은 분해 효소에 저항성을 가지고 있어 이러한 부류의 가수분해물이 존재할 때 흡수된다 . 게다가, 관련 연구에서 알칼라아제가 항산화 활성을 포함하는 다양한 생활성에 반응하는 말단 아미노산 서열 뿐만 아니라 좀 더 짧은 펩티드를 생산함을 명확하게 나타내고 있다.
Gelatin was sequentially hydrolyzed with various enzymes such as alkalase, pronase E, pepsin and trypsin. The antioxidant activity of a substance can be accurately identified by experimenting with the scavenging ability of free radicals in the oxidation system. As a result, the hydrolyzate was evaluated for free radical scavenging ability of DPPH, hydroxy and peroxide radicals using the electron spin resonance technique as in Example 3. As shown in Table 1, the scavenging ability of the hydroxy radicals was more effective than the DPPH and peroxide radicals. Of the hydrolysates, alkalase-induced peroxides showed the highest antioxidant activity compared to other enzymatic hydrolysates. The IC50 (hydrolyzate concentration for 50% radical scavenging capacity) values of the alkalase hydrolyzate in DPPH, hydroxy and peroxide radical scavenging were 660 ± 0.40, 263 ± 0.31 and 720 ± 0.35 μg / ml, respectively. The hydrolysis reaction is due not only to the physical structure of the protein molecule but also to the effectiveness of sensitive peptide bonds where enzyme attacks are concentrated (Diniz and Martin, 1998). Alcalase Bacillus An industrially used alkaline protease made from licheniformis , one of the amino acids at the active site is serine. It has a rather broad range of specificities for peptide binding that can lead to the production of antioxidant peptides when used to hydrolyze native proteins, thereby producing bioactive peptides. Bioactive peptides produced by alcalase are resistant to degradation enzymes such as pepsin, trypsin and pronase E and are absorbed in the presence of this class of hydrolysate. In addition, related studies have clearly indicated that alkalases produce shorter peptides as well as terminal amino acid sequences that respond to a variety of bioactivity including antioxidant activity.

DPPH, 히드록시 및 과산화물 라디칼을 소거하는 가수분해물의 IC50 수치IC 50 values of hydrolyzate scavenging DPPH, hydroxy and peroxide radicals
가수분해물

Hydrolyzate
IC50(㎍/㎖)a
IC50 (μg / mL) a
DPPHDPPH 히드록시Hydroxy 과산화물peroxide 알칼라아제Alcalase 660±0.40660 ± 0.40 263±0.31263 ± 0.31 720±0.350720 ± 0.350 프로나아제 EPronase E 1020±0.131020 ± 0.13 500±0.05500 ± 0.05 740±0.002740 ± 0.002 트립신Trypsin 860±0.42860 ± 0.42 320±0.30320 ± 0.30 720±0.440720 ± 0.440 펩신pepsin 920±0.24920 ± 0.24 420±0.12420 ± 0.12 1150±0.5001150 ± 0.500

a 각각의 라디칼 ESR 신호 강도의 50%를 저해하는데 필요한 가수분해물의 농도
a concentration of the hydrolyzate required to inhibit 50% of each radical ESR signal strength

실시예Example 5. 정제된 펩티드의 자유  5. Freedom of Purified Peptides 라디칼에To radicals 대한 직접 소거 효과 Direct elimination effect

실시예 3과 같은 ESR 기술을 사용하여 다른 자유 라디칼원에 대한 정제된 펩티드의 자유 라디칼 소거 효과를 실험하였다. DPPH는 정적인 자유 라디칼이며 전자 또는 수소 라디칼을 받아들여 정적인 반자성 분자가 된다. 따라서, DPPH는 항산화물의 효능을 평가하기 위해 기질로서 주로 사용된다. 히드록시 라디칼은 펜톤 작용에서 생성되며 ESR 분광계에 의해 시각화되었다. ESR 신호는 *OH에 대하여 DMPO와 경쟁하는 *OH 스캐빈저의 존재에 의해 저해되었다. 과산화물 라디칼은 리보플라빈/EDTA 용액의 UV 조사에 의해 발행하였다. 표 2에 나타낸 바와 같이, 펩티드는 각각 7.56, 8.82 및 17.83 μM의 IC50 수치로 히드록시, DPPH 및 과산화물 라디칼을 소거하였다. 항산화 펩티드는 다른 라디칼보다 히드록시 라디칼에 대해 좀더 역동적이었다. 히드록시 라디칼의 화학 반응성은 ROS 중에서 가장 강하였다. 이는 아미노산, 단백질 및 DNA와 같은 생체분자와 쉽게 반응한다. 결과적으로, 히드록시 라디칼의 제거는 다른 질병에 대항하는 생체의 가장 효과적인 방어책 중 하나일 것이다. 티로신, 메티오닌, 리신 및 트립토판과 같은 여러 아미노산이 몇몇 경우에서 친-산화 효과를 나타냄에도 불구하고 (Marcuse, R. (1962). The effect of some amino acids on the oxidation of linoleic acid and its methyl ester. Journal of the American Oil Chemists' Society, 39, 97-103; Yamaguchi, N. (1971). Studies on antioxidative activities of amino compounds on fats and oils. Part I. Oxidation of methionine during course of autoxidation of linoleic acid. Nippon Shokuhin Kogyo Gakkaishi, 18, 313-318) 일반적으로 항산화제로서 받아들여지고 있다. 많은 항산화 펩티드가 펩티드의 N-말단에 발린 또는 루이신과 같은 소수성 아미노산 잔기를 포함한다고 알려져 있다 (Chen, H. M., Muramoto, K., & Yamauchi, F. (1995). Structural analysis of antioxidative peptides from soybean b-conglycinin. Journal of Agricultural Food and Chemistry, 43, 574-578; Uchida, K., & Kawakishi, S. (1992). Sequence-dependent reactivity of histidine-containing peptides with copper(II)/ascorbate. Journal of Agricultural and Biological Chemistry, 40, 13-16). 나일 틸라피아 (O. niloticus) 비늘 젤라틴으로부터의 펩티드는 소수성 아미노산이 풍부하다 (>69%). 사실, 젤라틴 펩티드 서열에 방향족 아미노산이 소량 존재하며 글리신 및 프롤린이 풍부하다. 그러므로, 히드록시, DPPH 및 과산화물 라디칼에 대한 나일 틸라피아 (O. niloticus) 비늘 젤라틴 단백질의 관찰된 강력한 소거 활성이 알라닌, 프롤린, 발린 및 루이신과 같은 비-방향족 아미노산에 기인한 것일 수 있다 (Mendis, E., Rajapakse, N., Byun, H. G., & Kim, S. K. (2005a). Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sciences, 77, 2166-2178 ;Mendis, E., Rajapakse, N., & Kim, S. K. (2005b). Antioxidant properties of a radical scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. Journal of Agricultural and Food Chemistry, 53, 581-587).
The free radical scavenging effect of the purified peptides on other free radical sources was tested using the same ESR technique as in Example 3. DPPH is a static free radical and accepts an electron or hydrogen radical to become a static diamagnetic molecule. Thus, DPPH is used primarily as a substrate to assess the efficacy of antioxidants. Hydroxy radicals are produced in the Fenton action and visualized by ESR spectrometer. ESR signal was inhibited by the presence of * OH scavenger competing with DMPO for * OH. Peroxide radicals were issued by UV irradiation of the riboflavin / EDTA solution. As shown in Table 2, the peptides eliminated hydroxy, DPPH and peroxide radicals with IC50 values of 7.56, 8.82 and 17.83 μM, respectively. Antioxidant peptides were more dynamic on hydroxy radicals than on other radicals. The chemical reactivity of the hydroxy radicals was the strongest among the ROS. It reacts easily with biomolecules such as amino acids, proteins and DNA. As a result, the removal of hydroxy radicals will be one of the most effective defenses of living organisms against other diseases. Although several amino acids, such as tyrosine, methionine, lysine and tryptophan, exhibit pro-oxidative effects in some cases (Marcuse, R. (1962). The effect of some amino acids on the oxidation of linoleic acid and its methyl ester. Journal of the American Oil Chemists' Society, 39, 97-103; Yamaguchi, N. (1971) .Study on antioxidative activities of amino compounds on fats and oils.Part I. Oxidation of methionine during course of autoxidation of linoleic acid.Nippon Shokuhin Kogyo Gakkaishi, 18, 313-318) is generally accepted as an antioxidant. Many antioxidant peptides are known to contain hydrophobic amino acid residues such as valine or leucine at the N-terminus of the peptide (Chen, HM, Muramoto, K., & Yamauchi, F. (1995). Structural analysis of antioxidative peptides from soybean b -conglycinin.Journal of Agricultural Food and Chemistry, 43, 574-578; Uchida, K., & Kawakishi, S. (1992) .Sequence-dependent reactivity of histidine-containing peptides with copper (II) /ascorbate.Journal of Agricultural and Biological Chemistry, 40, 13-16). Peptides from N. tiloticus scale gelatin are rich in hydrophobic amino acids (> 69%). In fact, small amounts of aromatic amino acids are present in the gelatin peptide sequence and are rich in glycine and proline. Therefore, the observed potent scavenging activity of the N. tiloticus scale gelatin protein against hydroxy, DPPH and peroxide radicals may be due to non-aromatic amino acids such as alanine, proline, valine and leucine (Mendis, E., Rajapakse, N., Byun, HG, & Kim, SK (2005a) .Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects.Life Sciences, 77, 2166-2178; Mendis, E , Rajapakse, N., & Kim, SK (2005b) .Antioxidant properties of a radical scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate.Journal of Agricultural and Food Chemistry, 53, 581-587).

실시예Example 6. 세포 배양 및 생존도 확인 6. Confirmation of cell culture and viability

MRC-5 세포 및 RAW 264.7 세포를 37℃에서 5% (v/v) FBS, 100㎍/ml 페니실린-스트렙토마이신 및 5% CO2를 포함하는 DMEM 배지에 배양하였다. MRC-5 cells and RAW 264.7 cells were incubated in DMEM medium containing 5% (v / v) FBS, 100 μg / ml penicillin-streptomycin and 5% CO 2 at 37 ° C.

세포에서 시료의 세포독성 수준을 Hansen 등의 문헌(Hansen, M. B., Nielsen, S. E., & Berg, K. (1989). Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. Journal of Immunological Methods, 119, 203-210)에 기재된 바와 같은 MTT 방법을 사용하여 측정하였다. 세포를 5 x 103 세포/웰의 밀도로 96-웰 플레이트에 배양하였다. 24시간 후에 세포를 신선한 배지로 세척하고 다른 농도의 시료를 처리하였다. 48시간 배양 후에 세포를 재세척하고 50 ㎕ MTT (5 mg/ml)를 첨가하고 4시간 동안 배양하였다. 마지막으로 200㎕ DMSO를 첨가하여 형성된 포르마잔 염을 용해시키고 포르마잔 염의 양을 GENios 마이크로플레이트 리더(TECAN Austria GmbH, Grodig/Salzburg, Austria)를 사용하여 540 nm에서 흡광도(OD)를 측정하여 확인하였다.The level of cytotoxicity of the sample in cells was determined by Hansen et al. (Hansen, MB, Nielsen, SE, & Berg, K. (1989) .Re-examination and further development of a precise and rapid dye method for measuring cell growth / cell kill. Measurements were made using the MTT method as described in Journal of Immunological Methods, 119, 203-210. Cells were cultured in 96-well plates at a density of 5 × 10 3 cells / well. After 24 hours the cells were washed with fresh medium and treated with different concentrations of samples. After 48 hours of incubation the cells were rewashed and 50 μl MTT (5 mg / ml) was added and incubated for 4 hours. Finally, the formazan salt formed by dissolving 200 μl DMSO was dissolved and the amount of formazan salt was confirmed by measuring the absorbance (OD) at 540 nm using a GENios microplate reader (TECAN Austria GmbH, Grodig / Salzburg, Austria). .

MRC-5 및 RAW 264.7 세포를 다른 농도의 젤라틴 가수분해물로 처리하여 추가 실험을 위한 비-세포독성 농도를 상기 방법을 통해 결정하였다. 세포 생존도 데이터는 젤라틴 가수분해물이 RAW 264.7 세포 (도 1A) 및 MRC-5 세포 (도 1B) 둘 다에서 비-세포독성임을 확인할 수 있었다. 이에 따라, 이러한 젤라틴 가수분해물을 추가 실험에 사용할 수 있음을 확인하였다.MRC-5 and RAW 264.7 cells were treated with different concentrations of gelatin hydrolysate to determine non-cytotoxic concentrations for further experiments via this method. Cell viability data confirmed that the gelatin hydrolyzate was non-cytotoxic in both RAW 264.7 cells (FIG. 1A) and MRC-5 cells (FIG. 1B). Accordingly, it was confirmed that this gelatin hydrolyzate can be used for further experiments.

MRC-5 및 RAW 264.7 세포를 다른 농도의 정제된 펩티드로 처리하여 추가 실험을 위한 비-세포독성 농도를 상기 방법을 통해 결정하였다. 세포 생존도 데이터는 정제된 펩티드가 RAW 264.7 세포 및 MRC-5 세포 둘 다에서 비-세포독성임을 확인할 수 있었다(도 5A). 그러므로, 이러한 젤라틴 가수분해물을 추가 실험에 사용할 수 있음을 확인하였다.MRC-5 and RAW 264.7 cells were treated with different concentrations of purified peptide to determine non-cytotoxic concentrations for further experiments via this method. Cell viability data confirmed that the purified peptide was non-cytotoxic in both RAW 264.7 cells and MRC-5 cells (FIG. 5A). Therefore, it was confirmed that this gelatin hydrolyzate can be used for further experiments.

실시예Example 7.  7. DCFHDCFH -- DADA 표지를 사용한  With cover ROSROS of 세포내Intracellular 형성의 확인 Confirmation of formation

ROS의 세포내 형성을 기질로서 산화 민감성 염료 DCFH-DA를 사용하여 Engelmann 등의 문헌(Engelmann, J., Volk, J., Leyhausen, G., & Geurtsen, W. (2005). ROS formation and glutathione levels in human oral fibroblasts exposed to TEGDMA and camphorquinone. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 75B, 272-276)에 기재된 방법에 따라 평가하였다. RAW 264.7 세포를 블랙 미량역가(black microtiter) 96-웰 플레이트에 배양한 후 HBSS(hanks balanced salt solution)에 용해된 20μM DCFH-DA로 표지하고 암실에서 20분간 유지시켰다. 세포 내로 자유롭게 투과되는 비-형광 DCFH-DA 염료는 세포네 에스테라아제에 의해 2',7'-디클로로디하이드로플루오레세인(DCFH)로 가수분해되어 세포 내부에 포획된다. 그런 다음 세포에 다른 농도의 시료들을 처리하고 1시간 동안 배양하였다. 세포를 PBS로 3회 세척한 후에 500μM H2O2(HBSS에 용해)를 첨가하였다. 다양한 ROS의 존재시에 DCFH의 산화에 의한 형광 디클로로플루오레세인(DCF)의 형성을 485 nm의 여기 파장 및 528 nm의 방출파장에서 매 30분 마다 판독하였다(GENios microplate reader, Tecan Austria GmbH, Grodig/Salzburg, Austria). 처리의 투여량-의존 및 시간-의존 효과를 플롯팅한 후 처리되지 않은 시료의 대조군의 형광 밀도와 비교하였다.
Intracellular formation of ROS using the oxidation sensitive dye DCFH-DA as substrate, Engelmann et al. (Engelmann, J., Volk, J., Leyhausen, G., & Geurtsen, W. (2005). ROS formation and glutathione levels in human oral fibroblasts exposed to TEGDMA and camphorquinone.Journal of Biomedical Materials Research Part B: Applied Biomaterials, 75B, 272-276). RAW 264.7 cells were incubated in black microtiter 96-well plates, labeled with 20 μM DCFH-DA dissolved in hans balanced salt solution (HBSS) and maintained in the dark for 20 minutes. Non-fluorescent DCFH-DA dyes that are freely permeated into cells are hydrolyzed to 2 ', 7'-dichlorodihydrofluorescein (DCFH) and captured inside the cell by a cell esterase. The cells were then treated with different concentrations of samples and incubated for 1 hour. The cells were washed three times with PBS before 500 μM H 2 O 2 (soluble in HBSS) was added. The formation of fluorescent dichlorofluorescein (DCF) by oxidation of DCFH in the presence of various ROS was read every 30 minutes at excitation wavelength of 485 nm and emission wavelength of 528 nm (GENios microplate reader, Tecan Austria GmbH, Grodig). / Salzburg, Austria). The dose-dependent and time-dependent effects of the treatments were plotted and compared to the fluorescence density of the control of the untreated samples.

다른 효소로부터의 젤라틴 가수분해물 (알칼라아제, 프로테나아제 E, 트립신 및 펩신)은 도 2A에서 보여지는 바와 같이 대조(H2O2 처리 및 비-젤라틴 가수분해물)에 비해 단지 30분간의 배양 후에도 자유 라디칼 소거 효과를 나타낸다. 가수분해물 중에서, 알칼라아제-유래 가수분해물이 다른 효소 가수분해물 중에서 가장 높은 자유 라디칼 소거 효과를 나타낸다. 이러한 결과는 이들의 항산화능이 다양한 농도의 젤라틴 가수분해물 (100, 200, 1000 ㎍/ml) 및 그외 효소 가수분해물과는 상이함을 나타낸다. 알칼라아제로 처리된 젤라틴 가수분해물의 모든 실험 농도에서의 DNA 손상은 도 2B에서 나타난 바와 같이 DNA 크기에 기초하여 약 80% 저해되었다. 그러므로, 알칼라아제-유래 가수분해물이 RAW 264.7 세포에서 투여량-의존 및 시간-의존 방식으로 자유 라디칼을 소거시킴을 확인하였다.
Gelatin hydrolysates (alkalase, proteinase E, trypsin and pepsin) from other enzymes were cultured for only 30 minutes compared to the control (H 2 O 2 treated and non-gelatin hydrolysates) as shown in FIG. 2A. It also shows a free radical scavenging effect. Of the hydrolysates, alkalase-derived hydrolysates exhibit the highest free radical scavenging effect among other enzymatic hydrolysates. These results indicate that their antioxidant capacity is different from gelatin hydrolysates (100, 200, 1000 μg / ml) and other enzyme hydrolysates of varying concentrations. DNA damage at all experimental concentrations of the alkalase treated gelatin hydrolyzate was inhibited by about 80% based on DNA size as shown in FIG. 2B. Therefore, it was confirmed that the alkalase-derived hydrolyzate eliminates free radicals in RAW 264.7 cells in a dose-dependent and time-dependent manner.

세포성 라디칼에 대한 펩티드의 직접적 소거 효과를 세포 환경에서 자유 라디칼을 소거하는 능력을 통해 확인하였다. 이를 위해, RAW 264.7 세포를 상기 기재된 바와 같은 DCFH-DA 형광 프로브로 표지하였다. DCFH-DA는 ROS(reactive oxygen species)에 대한 특이 프로브이다. 이 검정의 원리는 DCFH-DA가 세포막을 통해 확산되어 에스테라아제에 의해 효소적으로 가수분해되어 DCFH가 되고 ROS와 반응하여 형광 물질인 DCF를 형성하는 것이다. 세포를 DCFH-DA로 표지하고 DCFH가 세포 내부로 포획되도록 한 후 H2O2와 함께 30분간 배양했을 때, DCF 형광 강도의 급격한 증가는 세포내 라디칼에 의한 DCFH의 산화를 나타낸다 (도 5B). 3시간 동안 30분 마다 DCF 형광 강도의 확인으로 배양 시간에 따라 라디칼 매개 산화가 증가함을 나타냈다. 그러나, 정제된 펩티드로 전처리했을 때는 시간 경과에 따라 DCF 형광이 감소하였다. 다양한 농도의 정제된 펩티드 (0.2, 2, 및 20 ㎍/ml)은 도 5B에 나타난 바와 같이 대조 (H2O2 처리 및 비-펩티드)에 비해 단지 30분간의 배양 후에도 자유 라디칼 소거 효과를 나타냈다. 이러한 결과는 정제된 펩티드의 농도에 따라 항산화 효과가 변화하며 20 ㎍/ml 농도의 정제된 펩티드의 자유 라디칼 소거 효과가 다른 실험 농도보다 더 높음을 나타낸다. 이에 따라, RAW 264.7 세포에서 펩티드가 투여량 및 시간 의존 방식으로 자유 라디칼을 소거함을 확인할 수 있었다.
The direct scavenging effect of peptides on cellular radicals was confirmed through the ability to scaveng free radicals in the cellular environment. To this end, RAW 264.7 cells were labeled with a DCFH-DA fluorescent probe as described above. DCFH-DA is a specific probe for reactive oxygen species (ROS). The principle of this assay is that DCFH-DA diffuses through the cell membrane and is enzymatically hydrolyzed by esterase to become DCFH and react with ROS to form the fluorescent substance DCF. When cells were labeled with DCFH-DA and allowed to be captured inside the cells and incubated with H 2 O 2 for 30 minutes, a sharp increase in DCF fluorescence intensity indicates oxidation of DCFH by intracellular radicals (FIG. 5B). . Confirmation of DCF fluorescence intensity every 30 minutes for 3 hours indicated that radical mediated oxidation increased with incubation time. However, when pretreated with purified peptides, DCF fluorescence decreased over time. Various concentrations of purified peptides (0.2, 2, and 20 μg / ml) showed free radical scavenging effect even after only 30 minutes of incubation compared to the control (H 2 O 2 treated and non-peptide) as shown in FIG. 5B. . These results indicate that the antioxidant effect changes with the concentration of the purified peptide and that the free radical scavenging effect of the purified peptide at 20 μg / ml concentration is higher than the other experimental concentrations. Accordingly, it was confirmed that peptides in RAW 264.7 cells eliminated free radicals in a dose and time dependent manner.

실시예Example 8. 게놈  8. Genome DNADNA 분리 detach

고분자량 게놈 DNA를 약간 변형시킨 표준 페놀/프로테나아제 K 방법(sambrook & Russell, 2001)을 사용하여 RAW 264.7 세포로부터 추출하였다. 10 cm 배양접시에서 배양한 세포를 PBS로 2회 세척하고 10 mM EDTA를 함유하는 1 ml PBS 내로 긁어냈다. 원심분리한 후에 세포를 RNase(0.03 mg/ml), NaOAC(0.175 M), 프로타나아제 K(0.25 mg/ml) 및 SDS(6%)에 용해시켰다. 혼합물을 37℃에서 30분간 그리고 55℃에서 1시간 동안 배양하였다. 배양 후에 페놀/클로로포름/이소아밀 알코올알 1:1(v/v) 비율로 첨가하고 혼합물을 4℃에서 5분 동안 6000g로 원심분리하였다. 상층액을 100% 냉 에탄올과 1:1.5(v/v) 비율로 혼합하고 -20℃에서 15분간 유지시켰다. 12,000g에서 5분간 원심분리한 후 펠렛을 10 mM TE 완충용액(pH 7.5)에 용해시키고 DNA 순도를 260/280 nm에서 분광광도법으로 확인하였다. 추가로, 분리된 DNA를 0.04 M 트리스-아세테이트, 0.001 M EDTA 완충용액(pH 7.5)에서 1% 아가로스 겔 전기영동을 사용하여 정성분석하였다.
High molecular weight genomic DNA was extracted from RAW 264.7 cells using a standard modified phenol / proteinase K method (sambrook & Russell, 2001). Cells cultured in a 10 cm petri dish were washed twice with PBS and scraped into 1 ml PBS containing 10 mM EDTA. After centrifugation the cells were lysed in RNase (0.03 mg / ml), NaOAC (0.175 M), Protanase K (0.25 mg / ml) and SDS (6%). The mixture was incubated at 37 ° C. for 30 minutes and at 55 ° C. for 1 hour. After incubation, phenol / chloroform / isoamyl alcoholal 1: 1 (v / v) was added and the mixture was centrifuged at 6000 g for 5 minutes at 4 ° C. The supernatant was mixed with 100% cold ethanol at a ratio of 1: 1.5 (v / v) and maintained at -20 ° C for 15 minutes. After centrifugation at 12,000 g for 5 minutes, the pellet was dissolved in 10 mM TE buffer (pH 7.5) and DNA purity was confirmed spectrophotometrically at 260/280 nm. In addition, the isolated DNA was qualitatively analyzed using 1% agarose gel electrophoresis in 0.04 M Tris-acetate, 0.001 M EDTA buffer (pH 7.5).

실시예Example 9.  9. 라디칼Radical -매개 -medium DNADNA 손상 확인 Check for damage

과산화수소 매개 DNA 산화를 Milne 등의 문헌(Milne, L., Nicotera, P., Orrenius, S., & Burkitt, M. J. (1993). Effects of glutathione and chelating agents on copper-mediated DNA oxidation: Pro-oxidant and antioxidant properties of glutathione. Archives of Biochemistry and Biophysics, 304, 102-109)에 따라 확인하였다. 40 ㎕ DNA 반응 혼합물을 동일한 순서로 미리 결정된 농도의 실험 시료 (또는 대조로서 동일 부피의 증류수), 100 μM 최종 농도의 FeSO4, 0.1 mM 최종 농도의 H2O2 및 5 ㎕의 분리된 게놈 DNA를 첨가하여 준비하였다. 혼합물을 실온에서 10분 동안 배양하고 10 mM 최종 농도의 EDTA를 첨가하여 반응을 종결시켰다. 약 1㎍의 DNA를 포함하는 분취량(20㎕)의 반응 혼합물을 100 V에서 1% 아가로스 겔에 40분 동안 전기영동시켰다. 그런 다음 겔을 1 mg/ml Et-Br(ethidium bromide)로 염색하고 AlphaEase gel image analysis software (Alpha Innotech, St. San Leandro, CA, USA)를 사용하여 UV광 하에서 시각화시켰다.
Hydrogen peroxide mediated DNA oxidation is described in Milne et al. (Milne, L., Nicotera, P., Orrenius, S., & Burkitt, MJ (1993) .Effects of glutathione and chelating agents on copper-mediated DNA oxidation: Pro-oxidant and antioxidant properties of glutathione.Archives of Biochemistry and Biophysics, 304, 102-109). 40 μl DNA reaction mixture was subjected to the same sequence of predetermined concentrations of experimental samples (or equivalent volume of distilled water as control), 100 μM final concentration of FeSO 4 , 0.1 mM final concentration of H 2 O 2 and 5 μl of isolated genomic DNA Prepared by addition. The mixture was incubated at room temperature for 10 minutes and the reaction was terminated by addition of 10 mM final concentration of EDTA. Aliquots (20 μl) of the reaction mixture containing about 1 μg of DNA were electrophoresed on a 1% agarose gel at 100 V for 40 minutes. The gel was then stained with 1 mg / ml Et-Br (ethidium bromide) and visualized under UV light using AlphaEase gel image analysis software (Alpha Innotech, St. San Leandro, Calif., USA).

펜톤 반응에 의해 생산된 히드록시 라디칼 (*OH)은 DNA 가닥에 산화 손상을 발생시켜 DNA를 개방 환상 형태 또는 완화 형태로 만드는 것으로 알려져 있다 DNA 산화 손상에 대한 펩티드의 보호 효과를 확인하기 위해 게놈 DNA를 RAW 264.7 세포로부터 분리하였다. 이 실험에서 게놈 DNA의 완전성에 대한 100 μM FeSO4 및 0.1 mM H2O2의 조합 효과를 펩티드 존재 및 부재 하에서 DNA 전기영동하여 측정하였다. 10분간 반응시킨 후에, Fe (II)-H2O2만을 처리한 대조군에서 거의 모든 DNA가 분해되었다. 이는 펩티드가 DNA의 산화 손상을 상당히 저해시킴을 나타내는 것이다 (도 5C). DNA 손상은 모든 실험 농도의 펩티드에 의해 DNA 밴드의 강도를 근거로 하였을 때 약 70% 저해되었다. 이러한 결과는 DNA가 Fe (II)/H2O2에 의해 발행한 *OH에 노출되었을 때 펩티드가 DNA의 산화 손상을 방지할 수 있음을 명확하게 설명해주는 것이다. Fe2+가 H2O2의 전환을 촉매하며, 이는 생체 시스템에서 *OH의 생합성의 주요 경로이다. *OH는 퓨린 및 피리미딘 염기 및 디옥시리보스 골격을 포함하는 DNA 분자의 모든 성분과 반응하여 DNA 손상을 발생시킨다. 이러한 손상은 세포의 DNA에 대한 자유 라디칼 공격을 증가시키며, 이는 돌연변이, 암 및 노화에 관련된다. 그러나 본 발명의 펩티드는 생세포에서 DNA 산화에 대한 저해 효과를 나타내어 이러한 질환을 예방하는데 기여할 수 있다.The hydroxy radicals (* OH) produced by the Fenton reaction are known to cause oxidative damage to the DNA strands, making the DNA in open annular or mitigating form. Were isolated from RAW 264.7 cells. The combined effect of 100 μM FeSO 4 and 0.1 mM H 2 O 2 on the integrity of genomic DNA in this experiment was determined by DNA electrophoresis in the presence and absence of peptide. After 10 minutes of reaction, almost all DNA was degraded in the control group treated with Fe (II) -H 2 O 2 only. This indicates that the peptide significantly inhibits oxidative damage of DNA (FIG. 5C). DNA damage was inhibited by about 70% based on the strength of the DNA band by peptides of all experimental concentrations. These results clearly demonstrate that peptides can prevent oxidative damage of DNA when DNA is exposed to * OH issued by Fe (II) / H 2 O 2 . Fe 2+ catalyzes the conversion of H 2 O 2 , which is a major route of biosynthesis of * OH in biological systems. * OH reacts with all components of the DNA molecule, including purine and pyrimidine bases, and the deoxyribose backbone, resulting in DNA damage. This damage increases free radical attack on the DNA of the cell, which is involved in mutations, cancer and aging. However, the peptide of the present invention may have an inhibitory effect on DNA oxidation in living cells and may contribute to preventing such diseases.

서열목록 전자파일 첨부Attach an electronic file to a sequence list

Claims (2)

나일 틸라피아(Oreochromis niloticus) 비늘 젤라틴으로부터 분리된, 서열번호 1의 아미노산 서열을 갖는 항산화 펩티드. An antioxidant peptide having the amino acid sequence of SEQ ID NO: 1 isolated from Oreochromis niloticus scale gelatin. 제1항의 항산화 펩티드를 유효성분으로 포함하는 항산화 조성물.Antioxidant composition comprising the antioxidant peptide of claim 1 as an active ingredient.
KR1020100074373A 2010-07-30 2010-07-30 Antioxidant peptide isolated from Nile tilapia and antioxidant composition comprising of the same KR101131223B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100074373A KR101131223B1 (en) 2010-07-30 2010-07-30 Antioxidant peptide isolated from Nile tilapia and antioxidant composition comprising of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100074373A KR101131223B1 (en) 2010-07-30 2010-07-30 Antioxidant peptide isolated from Nile tilapia and antioxidant composition comprising of the same

Publications (2)

Publication Number Publication Date
KR20120021450A KR20120021450A (en) 2012-03-09
KR101131223B1 true KR101131223B1 (en) 2012-03-28

Family

ID=46129739

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100074373A KR101131223B1 (en) 2010-07-30 2010-07-30 Antioxidant peptide isolated from Nile tilapia and antioxidant composition comprising of the same

Country Status (1)

Country Link
KR (1) KR101131223B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101415367B1 (en) 2013-02-22 2014-07-04 충북대학교 산학협력단 Harp seal collagen peptide, a method for manufacturing said halp seal collagen peptide and use of the same
WO2014178501A1 (en) * 2013-05-01 2014-11-06 (주)청룡수산 Functional cosmetic composition comprising enzymatic hydrolysate of tilapia mossambica scales
KR20160003961A (en) 2014-07-01 2016-01-12 순천향대학교 산학협력단 Antioxidant Peptide Including ApoA-I mutant protein G59V and Antioxidant Composition Comprising the Same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109350731A (en) * 2018-12-18 2019-02-19 汕尾市维明生物科技股份有限公司 A kind of Rofe fish protein peptide is preparing the application in immune formulation
CN112679581B (en) * 2021-01-27 2022-05-03 华南农业大学 Tilapia mossambica scale bone formation promoting peptide and application thereof
CN112851758B (en) * 2021-01-27 2022-03-22 华南农业大学 Tilapia mossambica scale bone formation promoting peptide and application thereof
CN116514912B (en) * 2023-05-27 2024-03-29 上海市农业科学院 Straw mushroom polypeptide for resisting skin oxidative damage and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050099747A (en) * 2004-04-12 2005-10-17 부경대학교 산학협력단 Composition for anti-oxidant containing hydrolysates from hoki skin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050099747A (en) * 2004-04-12 2005-10-17 부경대학교 산학협력단 Composition for anti-oxidant containing hydrolysates from hoki skin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101415367B1 (en) 2013-02-22 2014-07-04 충북대학교 산학협력단 Harp seal collagen peptide, a method for manufacturing said halp seal collagen peptide and use of the same
WO2014178501A1 (en) * 2013-05-01 2014-11-06 (주)청룡수산 Functional cosmetic composition comprising enzymatic hydrolysate of tilapia mossambica scales
KR20160003961A (en) 2014-07-01 2016-01-12 순천향대학교 산학협력단 Antioxidant Peptide Including ApoA-I mutant protein G59V and Antioxidant Composition Comprising the Same

Also Published As

Publication number Publication date
KR20120021450A (en) 2012-03-09

Similar Documents

Publication Publication Date Title
Ngo et al. In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems
KR101131223B1 (en) Antioxidant peptide isolated from Nile tilapia and antioxidant composition comprising of the same
Je et al. Purification and antioxidant properties of bigeye tuna (Thunnus obesus) dark muscle peptide on free radical-mediated oxidative systems
Kim et al. Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion
Jiang et al. Contribution of specific amino acid and secondary structure to the antioxidant property of corn gluten proteins
Rajapakse et al. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties
Zhang et al. Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin
Ko et al. Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress
Je et al. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis
Zielińska et al. Identification of antioxidant and anti‐inflammatory peptides obtained by simulated gastrointestinal digestion of three edible insects species (Gryllodes sigillatus, Tenebrio molitor, Schistocerca gragaria)
Zhang et al. Isolation and identification of antioxidative peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS/MS
Himaya et al. Peptide isolated from Japanese flounder skin gelatin protects against cellular oxidative damage
Ko et al. Purification and determination of two novel antioxidant peptides from flounder fish (Paralichthys olivaceus) using digestive proteases
Mendis et al. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects
Qian et al. Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage
Jiang et al. Purification and characterization of antioxidative peptides from round scad (Decapterus maruadsi) muscle protein hydrolysate
Je et al. Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate
Himaya et al. An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-1 converting enzyme (ACE) activity and cellular oxidative stress
Ngo et al. Free radical scavenging and angiotensin-I converting enzyme inhibitory peptides from Pacific cod (Gadus macrocephalus) skin gelatin
Gao et al. Antioxidant activity of peptide fractions derived from cottonseed protein hydrolysate
Lu et al. Identification of MMP-1 inhibitory peptides from cod skin gelatin hydrolysates and the inhibition mechanism by MAPK signaling pathway
Chi et al. Isolation and characterization of three antioxidant pentapeptides from protein hydrolysate of monkfish (Lophius litulon) muscle
KR101966503B1 (en) Protein Hydrolysate of larva of Tenebrio molitor, Method for Preparing the Same and Food Comprising the Same
Hsu et al. Antioxidative properties of peptides prepared from tuna cooking juice hydrolysates with orientase (Bacillus subtilis)
Naqash et al. Evaluation of bioactive properties of peptide isolated from Exocoetus volitans backbone

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150226

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160226

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170303

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee