KR101130298B1 - Reaction Sintered Si3N4 having discrete particle size distribution of Si and the manufacturing method of the same - Google Patents

Reaction Sintered Si3N4 having discrete particle size distribution of Si and the manufacturing method of the same Download PDF

Info

Publication number
KR101130298B1
KR101130298B1 KR1020090078302A KR20090078302A KR101130298B1 KR 101130298 B1 KR101130298 B1 KR 101130298B1 KR 1020090078302 A KR1020090078302 A KR 1020090078302A KR 20090078302 A KR20090078302 A KR 20090078302A KR 101130298 B1 KR101130298 B1 KR 101130298B1
Authority
KR
South Korea
Prior art keywords
silicon
particle size
silicon nitride
sintering
size distribution
Prior art date
Application number
KR1020090078302A
Other languages
Korean (ko)
Other versions
KR20110020610A (en
Inventor
이세훈
김해두
고재웅
유연석
박영조
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020090078302A priority Critical patent/KR101130298B1/en
Priority to PCT/KR2010/002006 priority patent/WO2011025117A1/en
Publication of KR20110020610A publication Critical patent/KR20110020610A/en
Application granted granted Critical
Publication of KR101130298B1 publication Critical patent/KR101130298B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

본 발명은 규소의 입도분포 조절을 이용한 반응소결 질화규소 및 그 제조방법에 관한 것으로, 보다 상세하게는, 질화규소를 제조하기 위한 출발물질로서 규소를 선정하고, 여기에 소결조제를 첨가하여 반응소결을 진행하되, 상기 규소의 입도를 적어도 두가지 이상의 범위를 갖는 입도분포로 구성되도록 하여 질화규소의 소결온도를 낮추고, 기계적 물성을 향상하도록 하는 규소의 입도분포 조절을 이용한 반응소결 질화규소 및 그 제조방법에 관한 것이다. The present invention relates to a reaction sintered silicon nitride using a particle size distribution of silicon and a method for producing the same, and more particularly, silicon is selected as a starting material for producing silicon nitride, and a sintering aid is added to the reaction sintering. However, the present invention relates to a reaction-sintered silicon nitride and a method for producing the same by controlling the particle size distribution of silicon to lower the sintering temperature of silicon nitride and to improve mechanical properties by configuring the particle size distribution of the silicon to have a particle size distribution having at least two or more ranges.

이를 위하여, 본 발명은 5 내지 10㎛의 입도범위를 갖는 제1규소와 0.1 내지 1㎛의 입도범위를 갖는 제2규소를 소결조제와 함께 혼합하는 단계; 상기 혼합된 규소들을 질화하는 단계; 상기 질화된 규소를 소결하는 단계;를 포함하여 구성되는 규소의 입도분포 조절을 이용한 반응소결 질화규소의 제조방법 및 이로부터 제조되는 질화규소를 제공한다.To this end, the present invention comprises the steps of mixing a first silicon having a particle size range of 5 to 10㎛ and a second silicon having a particle size range of 0.1 to 1㎛ with a sintering aid; Nitriding the mixed silicon; Sintering the nitrided silicon; provides a method for producing a reaction-sintered silicon nitride using a particle size distribution control of the silicon comprising a silicon nitride prepared from.

반응소결, 질화규소, 규소, 입도분포, 소결온도, 기계적 물성 Reaction Sintering, Silicon Nitride, Silicon, Particle Size Distribution, Sintering Temperature, Mechanical Properties

Description

규소의 입도분포 조절을 이용한 반응소결 질화규소 및 그 제조방법{Reaction Sintered Si3N4 having discrete particle size distribution of Si and the manufacturing method of the same}Reaction sintered Si3N4 having discrete particle size distribution of Si and the manufacturing method of the same}

본 발명은 규소의 입도분포 조절을 이용한 반응소결 질화규소 및 그 제조방법에 관한 것으로, 보다 상세하게는, 질화규소를 제조하기 위한 출발물질로서 규소를 선정하고, 여기에 소결조제를 첨가하여 반응소결을 진행하되, 상기 규소의 입도를 적어도 두가지 이상의 범위를 갖는 입도분포로 구성되도록 하여 질화규소의 소결온도를 낮추고, 기계적 물성을 향상하도록 하는 규소의 입도분포 조절을 이용한 반응소결 질화규소 및 그 제조방법에 관한 것이다. The present invention relates to a reaction sintered silicon nitride using a particle size distribution of silicon and a method for producing the same, and more particularly, silicon is selected as a starting material for producing silicon nitride, and a sintering aid is added to the reaction sintering. However, the present invention relates to a reaction-sintered silicon nitride and a method for producing the same by controlling the particle size distribution of silicon to lower the sintering temperature of silicon nitride and to improve mechanical properties by configuring the particle size distribution of the silicon to have a particle size distribution having at least two or more ranges.

이를 위하여, 본 발명은 5 내지 10㎛의 입도범위를 갖는 제1규소와 0.1 내지 1㎛의 입도범위를 갖는 제2규소를 소결조제와 함께 혼합하는 단계; 상기 혼합된 규소들을 질화하는 단계; 상기 질화된 규소를 소결하는 단계;를 포함하여 구성되는 규소의 입도분포 조절을 이용한 반응소결 질화규소의 제조방법 및 이로부터 제조되는 질화규소를 제공한다.To this end, the present invention comprises the steps of mixing a first silicon having a particle size range of 5 to 10㎛ and a second silicon having a particle size range of 0.1 to 1㎛ with a sintering aid; Nitriding the mixed silicon; Sintering the nitrided silicon; provides a method for producing a reaction-sintered silicon nitride using a particle size distribution control of the silicon comprising a silicon nitride prepared from.

질화규소는 우수한 기계적 물성과 산화저항성, 화학적 안정성을 갖기 때문에 산업적인 활용을 위한 활발한 연구가 진행되어 왔다. 그러나 고가의 원료 분말과 높은 소결온도 때문에 제조단가가 금속 등 다른 재료에 비하여 높은 단점이 있다. 또한 소결 후 비교적 높은 소결 수축률 때문에 제조된 부품의 치수 정밀도를 높이기 위한 표면 가공이 추가적으로 필요하며, 이때 질화규소가 갖는 높은 강도, 경도 및 파괴 인성 때문에 가공 공정에 다이아몬드 연삭제 등 고가의 장비가 필요하여 추가적인 제작비용이 요구된다. 이러한 높은 제조단가는 금속 등에 비하여 낮은 신뢰성과 함께 질화규소 부품의 산업적인 활용을 억제하는 가장 중요한 요인이 되어왔다. Since silicon nitride has excellent mechanical properties, oxidation resistance, and chemical stability, active research for industrial application has been conducted. However, due to the expensive raw material powder and high sintering temperature, the manufacturing cost is higher than other materials such as metal. In addition, due to the relatively high sintering shrinkage rate after sintering, additional surface machining is required to increase the dimensional accuracy of the manufactured parts.In this case, the high strength, hardness, and fracture toughness of silicon nitride require expensive equipment such as diamond grinding in the machining process. Manufacturing cost is required. This high manufacturing cost has been the most important factor to suppress the industrial utilization of silicon nitride components with low reliability compared to metals.

반응소결법은 이러한 질화규소의 단점을 개선하는 공정으로 주목받아 왔다. 질화규소의 반응소결법은 출발물질로 고가의 고순도 질화규소(kg 당 20만원 이상)를 사용하는 대신 kg당 2천원 내외인 고순도 규소(silicon) 분말을 사용한다. Reaction sintering has attracted attention as a process to ameliorate the disadvantages of silicon nitride. The reaction sintering method of silicon nitride uses high-purity silicon powder of about 2,000 won per kg instead of using expensive high-purity silicon nitride (more than 200,000 won per kg) as a starting material.

즉, 규소를 원하는 형태로 성형한 후 이를 질소 분위기에서 천천히 1350 ~ 1450℃로 수시간 가열하여 주면 규소가 질소와 반응하여 질화규소를 형성하게 된다. 이러한 질화반응은 제품의 가격을 크게 상승시키지 않으며, 질화 공정 이후 원료가격은 원료분말인 규소의 약 두 배 정도로 예상되고 있다. That is, after forming the silicon in the desired shape and slowly heated it for 1 hour at 1350 ~ 1450 ℃ in a nitrogen atmosphere, the silicon reacts with nitrogen to form silicon nitride. This nitriding reaction does not significantly increase the price of the product, and since the nitriding process, the raw material price is expected to be about twice that of the silicon powder.

질화 과정 도중 규소 구조 내로 질소가 첨가됨에 따라 질량증가와 함께 부피도 증가하게 되나, 성형체의 크기에는 큰 차이가 나타나지 않는데, 이는 부피팽창이 성형체의 기공을 메워주는 방향으로 진행되기 때문이다. 이에 의해 성형체의 상대밀도가 60% 내외에서 70% 이상으로 증가하게 되며, 소결수축률 역시 감소하게 된다. As nitrogen is added into the silicon structure during the nitriding process, the volume increases with mass, but there is no significant difference in the size of the molded body because the volume expansion proceeds to fill the pores of the molded body. As a result, the relative density of the molded article is increased to about 70% or more within 60%, and the sintering shrinkage is also reduced.

이와 같이 반응소결법을 사용할 경우 낮은 소결수축률을 갖는 질화규소를 기존의 공정보다 저렴한 가격으로 제조할 수 있다. 그러나 반응소결법으로 제조된 질화규소 성형체는 일반적으로 기존의 고가의 미세한 질화규소 원료분말을 사용하는 공정으로 제조된 것들에 비해 높은 소결온도가 필요하다는 문제점이 있었다.As such, when the reaction sintering method is used, silicon nitride having a low sinter shrinkage rate can be manufactured at a lower price than the conventional process. However, the silicon nitride molded product produced by the reaction sintering method has a problem in that it requires a higher sintering temperature than those manufactured by the conventional process using the expensive fine silicon nitride raw material.

또한, 제조된 제품의 기계적 물성 역시 현재까지는 신뢰성을 더 보완하는 방향으로의 개선이 필요한 실정이다. In addition, the mechanical properties of the manufactured products also need to be improved in a direction to further complement the reliability until now.

본 발명은 전술한 바와 같은 종래기술의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명은 반응소결 질화규소의 출발물질인 규소를 서로 다른 범위를 갖는 입도의 분말로 하여 이를 혼합하도록 함으로써 종래보다 소결온도를 수십 ~ 100℃ 이상 낮추도록 하는 반응소결 질화규소 및 그 제조방법을 제공하는 것을 목적으로 한다.The present invention has been made to solve the problems of the prior art as described above, the present invention is to make the sintering temperature than conventional by mixing the silicon as the starting material of the reaction-sintered silicon nitride into a powder having a particle size having a different range It is an object of the present invention to provide a reaction-sintered silicon nitride and a method for producing the same, which are lowered by several tens to 100 ° C. or more.

또한, 본 발명은 질화규소를 소결온도를 낮추어 제조하였음에도 불구하고, 종래의 질화규소에 비하여 소결밀도를 향상시키도록 함과 동시에 이로써 질화규소의 기계적 물성도 증진시키도록 하는 반응소결 질화규소 및 그 제조방법을 제공하는 것을 다른 목적으로 한다.In addition, the present invention, although the silicon nitride is produced by lowering the sintering temperature, compared with the conventional silicon nitride to improve the sintered density and thereby to improve the mechanical properties of the silicon nitride silicon nitride and a method for producing the same For other purposes.

또한, 본 발명은 질화규소의 소결온도를 낮춤으로써 공정경제에 이바지할 수 있도록 하는 것을 또 다른 목적으로 한다.Another object of the present invention is to reduce the sintering temperature of silicon nitride so as to contribute to the process economy.

본 발명은 전술한 바와 같은 목적을 달성하기 위하여, 5 내지 10㎛의 입도범위를 갖는 제1규소와 0.1 내지 1㎛의 입도범위를 갖는 제2규소를 소결조제와 함께 혼합하는 단계; 상기 혼합된 규소들을 질화하는 단계; 상기 질화된 규소를 소결하는 단계;를 포함하여 구성되는 규소의 입도분포 조절을 이용한 반응소결 질화규소의 제조방법을 제공한다.The present invention comprises the steps of mixing the first silicon having a particle size range of 5 to 10㎛ and the second silicon having a particle size range of 0.1 to 1㎛ with a sintering aid to achieve the object as described above; Nitriding the mixed silicon; It provides a method for producing a reaction-sintered silicon nitride using a particle size distribution control of the silicon comprising a step of sintering the silicon nitride.

상기 혼합된 규소들을 질화하는 단계 이전에, 상기 혼합된 규소를 가압성형 하는 단계를 더 포함하는 것이 바람직하다.Prior to nitriding the mixed silicon, it is preferable to further include pressing the mixed silicon.

상기 제2규소는 제1규소의 중량대비 5 ~ 30 중량%의 범위로 하여 혼합되는 것이 바람직하다.The second silicon is preferably mixed in the range of 5 to 30% by weight relative to the weight of the first silicon.

상기 혼합된 규소들을 질화하는 단계는, 1350 ~ 1500℃의 온도범위에서 진행되도록 하는 것이 바람직하다.Nitriding the mixed silicon, it is preferable to proceed in the temperature range of 1350 ~ 1500 ℃.

상기 질화된 규소를 소결하는 단계는, 1700 ~ 1950℃의 온도범위에서 진행되도록 하는 것이 바람직하다.Sintering the nitrided silicon, it is preferable to proceed in the temperature range of 1700 ~ 1950 ℃.

또한, 본 발명은 전술한 바와 같은 목적을 달성하기 위하여 전술한 방법에 의해 제조되어 상대밀도가 95 ~ 99%의 범위인 규소의 입도분포 조절을 이용한 반응소결 질화규소를 제공한다.In addition, the present invention provides a reaction-sintered silicon nitride prepared by the method described above in order to achieve the object as described above using a particle size distribution of silicon having a relative density of 95 to 99%.

이상과 같은 본 발명에 따르면, 반응소결 질화규소를 제조함에 있어서, 출발물질인 규소를 이종의 입도분포를 갖는 분말을 혼합하여 사용함으로써 소결온도를 낮출 수 있도록 하고, 그로써 공정경제에 이바지할 수 있는 작용효과가 기대된다.According to the present invention as described above, in the production of reaction-sintered silicon nitride, by using a mixture of powder having a particle size distribution of heterogeneous silicon as the starting material to lower the sintering temperature, thereby contribute to the process economy The effect is expected.

또한, 질화규소를 소결온도를 낮추어 제조하였음에도 불구하고, 종래의 질화규소에 비하여 소결밀도와 기계적 물성이 향상되도록 하는 작용효과가 기대된다.In addition, although silicon nitride was manufactured at a lower sintering temperature, an effect of improving the sintered density and mechanical properties is expected as compared with conventional silicon nitride.

이하에서는 첨부되는 도면을 기초로 본 발명을 보다 상세히 설명하기로 한다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 실시예에서는 질화규소를 제조하기 위한 출발물질로 평균입도 5 ~ 10㎛와 0.1 ~ 1㎛의 범위를 갖는 규소를 사용하였으며, 바람직하게는 약 7 ㎛의 평균입도를 갖는 제1규소와 약 0.3 ㎛의 평균입도를 갖는 제2규소를 선정하여 본 발명의 우수성을 입증하고자 하였다.In the exemplary embodiment of the present invention, silicon having a mean particle size of 5 to 10 μm and 0.1 to 1 μm is used as a starting material for producing silicon nitride. The second silicon having an average particle size of 0.3 μm was selected to demonstrate the superiority of the present invention.

이 때, 소결조제로는 규소의 혼합중량대비 Lu2O3 약 8 중량%와 SiO2 약 2중량%를 혼합하여 사용하였다. At this time, the sintering aid was used by mixing about 8% by weight of Lu 2 O 3 and about 2% by weight of SiO 2 with respect to the mixed weight of silicon.

또한, 비교예로서, 규소 원료로 약 7 ㎛의 평균입도를 갖는 분말만을 사용하여 질화규소를 제조하였다. In addition, as a comparative example, silicon nitride was prepared using only a powder having an average particle size of about 7 μm as a silicon raw material.

<실시예 및 비교예>&Lt; Examples and Comparative Examples &

먼저 상기 소결조제들을 planetary mill을 사용하여 2시간 동안 혼합하였으며, 이후 기존의 방법에서는 혼합된 소결조제들을 평균입도 약 7 ㎛의 규소와 혼합하여 12시간 ball milling 하였다. First, the sintering aids were mixed for 2 hours using a planetary mill, and then, in the conventional method, the mixed sintering aids were mixed with silicon having an average particle size of about 7 μm and ball milling for 12 hours.

이 때, 상기 소결조제들을 규소를 동시에 혼합하는 공정도 고려할 수 있다. In this case, a process of simultaneously mixing the sintering aids with silicon may be considered.

본 발명에 의한 제2규소는 planetary mill을 사용하여 250rpm으로 12시간 분쇄하여 제조된 미분말이며, 이를 제1규소의 중량대비 5 ~ 30중량% 첨가한 후, 여기에 상기 혼합된 소결조제들을 섞어서 12시간 ball milling 하였다. The second silicon according to the present invention is a fine powder prepared by pulverizing at 250rpm for 12 hours using a planetary mill, and after adding 5 to 30% by weight to the weight of the first silicon, the mixed sintering aids are mixed 12 Time ball milling.

이후 본 발명에 의한 실시예와 비교예에 의한 혼합분말을 각각 가압성형, 바람직하게는 정수압성형하여 30 * 24 * 3 mm의 크기로 제조한 후 그 무게 및 크기를 측정하여 성형체의 상대밀도를 계산하였다. Thereafter, the mixed powders according to the examples and the comparative examples according to the present invention were prepared by pressing, preferably hydrostatically, forming a size of 30 * 24 * 3 mm, and then calculating the relative density of the molded body by measuring their weight and size. It was.

이후 상기 성형체들을 질소가 분당 150ml의 속도로 흐르는 튜브로를 사용하여 1450℃에서 6시간 동안 질화하였다. The molded bodies were then nitrided at 1450 ° C. for 6 hours using a tube furnace in which nitrogen flowed at a rate of 150 ml per minute.

질화가 끝난 시편은 질화 전, 후의 질량증가 및 시편크기를 측정하여 이들의 질화율 및 상대밀도를 계산하였다. 이후 시편들은 GPS (gas pressure sintering) 로를 이용하여 50기압의 질소분위기 하에서 1700 ~ 1950℃ 에서 4시간 소결하였다. 실험에 사용된 질소의 압력은 치밀화를 촉진시키기 위한 목적이 아닌 1950℃에서 질화규소의 분해를 억제할 수 있는 최소한의 압력조건이다. After nitriding specimens, the mass increase and specimen size before and after nitriding were measured to calculate their nitriding rate and relative density. The specimens were then sintered at 1700 ~ 1950 ℃ for 4 hours using a gas pressure sintering (GPS) furnace under 50 atmospheres of nitrogen. The pressure of nitrogen used in the experiment is the minimum pressure condition that can suppress the decomposition of silicon nitride at 1950 ° C., not for the purpose of promoting densification.

소결 도중 대기중에 존재하는 탄소계 화합물과의 반응을 억제하기 위하여 시편은 Si3N4와 BN이 질량비로 1 : 1로 혼합된 powder bed 내부에 넣고 가열하였다. 소결이 끝난 시편은 아르키메데스 법을 이용하여 상대밀도를 측정하였다. 이후 시편은 2 * 1.5 * 25 mm 크기의 bar 형태로 가공하였다. 곡강도 측정을 위한 시편의 가공은 ASTM 법에 의거하여 수행하였다. 강도 측정은 조건당 5개의 시편으로 4점 곡강도법을 이용하였으며, 윗쪽과 아랫쪽 스팬의 길이는 각각 10mm 및 20mm였다. 파괴된 시편이 파단면은 주사전자현미경 (SEM)을 통하여 관찰하였다. In order to suppress the reaction with carbon-based compounds in the air during sintering, the specimen was heated in a powder bed mixed with Si 3 N 4 and BN in a mass ratio of 1: 1. The sintered specimens were measured for relative density using the Archimedes method. Afterwards, the specimen was processed into 2 * 1.5 * 25 mm bar. The specimens for bending strength measurements were performed according to ASTM method. The strength was measured by four-point bending strength with five specimens per condition. The lengths of the upper and lower spans were 10 mm and 20 mm, respectively. The fracture surface of the destroyed specimen was observed by scanning electron microscopy (SEM).

도 1에는 종래의 제조공정으로 제조된 출발물질의 혼합분말의 형상과 입도분포 그래프를, 도 2에는 본 발명의 일 실시예에 의한 제조공정으로 제조된 출발물질의 혼합분말의 형상과 입도분포 그래프를 각각 나타내었다. 종래의 제조공정에 의한 경우 약 2 ㎛와 7 ㎛에서 두개의 피크가 나타났으며 각각 소결조제와 규소의 평균 크기를 나타낸다. 여기서, 소결조제는 액상소결에 의해 용해되므로 그 입도는 의미가 매우 적다.1 is a shape and particle size distribution graph of the mixed powder of the starting material prepared by the conventional manufacturing process, Figure 2 is a shape and particle size distribution graph of the mixed powder of the starting material prepared by the manufacturing process according to an embodiment of the present invention Are shown respectively. According to the conventional manufacturing process, two peaks appeared at about 2 μm and 7 μm, respectively, indicating the average size of the sintering aid and silicon. Here, since the sintering aid is dissolved by liquid phase sintering, its particle size is very small.

이에 비하여 본 발명의 일 실시예에 의한 제조공정의 경우 전술된 2개의 피크 외에 0.3 ㎛대에 새로운 피크가 형성됨을 알 수 있으며, 이는 새로 분쇄된 후 첨가된 미세한 규소 분말에 의한 것이다.In contrast, in the case of the manufacturing process according to an embodiment of the present invention, it can be seen that a new peak is formed in the 0.3 μm band in addition to the two peaks described above, which is caused by the fine silicon powder added after the new milling.

분말의 입도분포에서 뚜렷하게 차이가 나는 두 종류의 규소 분말을 혼합하여 성형하였음에도 불구하고, 본 발명의 일 실시예에 의한 제조방법을 사용하여 정수압 성형하여 제조된 시편들의 상대밀도는 59.9%로 종래의 제조공정으로부터 얻은 값인 59.8%의 상대밀도값과 거의 차이가 나타나지 않았다. Although the two types of silicon powder having distinct differences in the particle size distribution of the powder were mixed and molded, the relative density of the specimens prepared by hydrostatic pressure molding using the manufacturing method according to an embodiment of the present invention was 59.9%. There was little difference from the relative density value of 59.8% obtained from the manufacturing process.

또한, 질화 후 질화율은 종래의 제조방법과 본 발명의 일 실시예에 의한 방법을 이용한 경우 각각 95.8% 및 96.2%로 역시 큰 차이가 나타나지 않았다.In addition, the nitriding rate after nitriding was 95.8% and 96.2%, respectively, when the conventional manufacturing method and the method according to one embodiment of the present invention were not significantly different.

표 1에 종래의 제조공정과 본 발명의 일 실시예에 의한 제조공정에 대하여 각 온도에서 소결된 시편들의 상대밀도와 4점 곡강도 값을 나타내었다. 종래의 제조 공정을 적용한 경우 소결체의 상대밀도 값은 1차의 경우 기존시편만 단독으로 소결했을 경우이고 2차는 수개월 후에 새로운 공정으로 제조된 시편들과 같은 도가니를 사용하여 동시에 소결된 된 경우의 값이다. 1차 소결의 경우 온도를 측정하는 pyrometer의 보정 문제 때문에 2차소결 보다 실제로는 15 ~ 30℃ 높은 온도에서 소결되었다. 2차 시편의 경우 상대밀도가 충분히 나오지 않았다. Table 1 shows the relative density and four-point bending strength values of the specimens sintered at each temperature for the conventional manufacturing process and the manufacturing process according to one embodiment of the present invention. In the case of applying the conventional manufacturing process, the relative density value of the sintered body is the value of the case where only the existing specimen is sintered in the first case and the second case is sintered simultaneously using the same crucible as the specimens manufactured by the new process after several months. to be. In the case of primary sintering, it was actually sintered at 15 ~ 30 ℃ higher than secondary sintering due to the calibration problem of pyrometer. In the case of secondary specimens, the relative density was not sufficient.

구분

소결온도(℃)
division

Sintering Temperature (℃)
종래의 제조공정Conventional manufacturing process 본 발명에 의한 제조공정Manufacturing process according to the present invention
상대밀도(%)Relative density (%) 강도(MPa)Strength (MPa) 상대밀도(%)Relative density (%) 강도(MPa)Strength (MPa) 1차Primary 2차Secondary 18001800 -- -- -- 92.592.5 712712 18501850 91.591.5 87.887.8 600600 98.498.4 822822 19001900 97.397.3 86.486.4 725725 98.598.5 999999

상대밀도의 경우, 종래의 제조공정 시편과 본 발명의 일 실시예에 의한 제조공정의 시편을 함께 소결하였을 때, 본 발명의 일 실시예에 의한 제조 공정을 적용한 경우는 1850℃에서 상대밀도 98.4%의 매우 치밀한 시편을 얻을 수 있었던 반면, 종래의 제조 공정을 사용한 경우는 1950℃에서도 상대밀도: 89.1%로 치밀한 시편을 얻을 수 없었다. 이로부터 본 발명에 의한 제조 공정을 적용할 경우, 종래의 제조공정에 비하여 소결온도를 100℃ 이상 낮출 수 있음을 알 수 있었다. In the case of relative density, when the conventional manufacturing process specimen and the specimen of the manufacturing process according to one embodiment of the present invention are sintered together, the relative density 98.4% at 1850 ° C. when the manufacturing process according to one embodiment of the present invention is applied. While very dense specimens of were obtained, when the conventional manufacturing process was used, it was not possible to obtain dense specimens with a relative density of 89.1% even at 1950 ° C. From this, when applying the manufacturing process according to the present invention, it can be seen that the sintering temperature can be lowered by 100 ℃ or more compared with the conventional manufacturing process.

본 발명의 일 실시예에 의한 제조 공정을 사용한 경우에도 1800℃에서는 상대밀도 92.5%로서 만족할만한 치밀한 시편을 얻을 수 없었으나, 여전히 종래의 제조공정과 비교하여 우수한 강도값을 얻을 수 있었다. Even in the case of using the manufacturing process according to an embodiment of the present invention, at 1800 ° C., a satisfactory dense specimen with a relative density of 92.5% could not be obtained, but still excellent strength values were obtained as compared with the conventional manufacturing process.

여기서, 종래의 제조공정에 의해 제조된 시편의 경우, 2차 시편은 충분히 치밀화가 이루어지지 않아 비교대상으로는 무리가 있으므로, 강도값을 측정하는 의미가 없었으며, 강도값은 1차 시편에 의한 것으로 하였다.Here, in the case of the specimen prepared by the conventional manufacturing process, the secondary specimen is not sufficiently compacted, so it is unreasonable to be compared. Therefore, the strength value is not determined by the primary specimen. It was assumed that.

종래의 제조 공정으로 제조한 1차 시편의 경우, 상대밀도가 높은 것은 pyrometer의 보정 문제에 따른 온도차이가 소결에 영향을 미친 것으로 생각된다.In the case of primary specimens manufactured by the conventional manufacturing process, it is thought that the high relative density influenced the sintering due to the temperature difference due to the correction problem of the pyrometer.

본 발명의 일 실시예에 의한 제조 공정은 시편의 강도 증진에도 뚜렷한 영향을 미쳤다. 종래의 제조 공정으로 제조된 시편들의 강도는 600 ~ 700 MPa에 불과한 반면, 본 발명의 일 실시예에 의한 제조 공정으로 제작된 시편들의 경우 강도는 700 ~ 1000 MPa 정도로 종래의 제조공정에 의해 제조된 시편에 비하여 약 25% 정도 개선된 값을 나타내었다(표 1). The manufacturing process according to one embodiment of the present invention had a significant effect on the strength enhancement of the specimen. While the strength of the specimens produced by the conventional manufacturing process is only 600 ~ 700 MPa, the strength of the specimens produced by the manufacturing process according to an embodiment of the present invention is about 700 ~ 1000 MPa produced by the conventional manufacturing process About 25% improved compared to the specimen (Table 1).

특히 본 발명의 일 실시예에 의한 제조 공정으로 1900℃에서 소결된 시편의 경우 999.4 MPa로 1 GPa에 근접하는 매우 우수한 강도값을 나타내었다. Hot pressing이나 hot isostatic pressing 등과 같이 소결 중 수십 ~ 수백 MPa의 고압을 가함으로써 소결을 촉진시키지 않을 경우, 질화규소가 4점 곡강도 값으로 1 GPa 이상의 값을 나타내는 경우는 고가인 질화규소 원료 분말을 사용한 경우에도 보고되고 있지 않으며, 가압소결을 한 경우에도 보고된 예가 거의 없다. 이로부터, 개선된 공정을 사용할 경우 반응소결법으로 제조된 질화규소의 기계적 특성을 뚜렷히 개선시킬 수 있음을 알 수 있었다.In particular, in the case of the specimen sintered at 1900 ℃ in the manufacturing process according to an embodiment of the present invention showed a very good strength value close to 1 GPa at 999.4 MPa. When sintering is not promoted by applying a high pressure of tens to hundreds of MPa during sintering, such as hot pressing or hot isostatic pressing, even when expensive silicon nitride raw material powder is used when silicon nitride shows a value of 1 GPa or more as a four-point bending strength value It is not reported, and there have been few reported cases even when pressurized. From this, it can be seen that the improved mechanical properties of the silicon nitride produced by the reaction sintering method can be significantly improved.

본 발명에 의할 경우, 소결특성 및 기계적 물성이 개선된 이유로는,According to the present invention, the reason for the improved sintering characteristics and mechanical properties,

1) 분쇄된 규소분말은 비교적 많은 양의 SiO2를 포함하며, 이들이 치밀화를 촉진하여 소결을 촉진시킨다.1) The ground silicon powder contains a relatively large amount of SiO 2 , which promotes densification and promotes sintering.

2) 조대분말만 있는 경우와는 달리 미세분말이 더 있는 경우, 미세분말은 조대분말과의 혼합에 의해서 치밀화를 촉진시킬 뿐만 아니라, 소결조제가 미세분말과 균일하게 혼합되도록 함으로써 치밀화가 촉진된다.2) Unlike the case where only the coarse powder is present, when there are more fine powders, the fine powder not only promotes densification by mixing with the coarse powder, but also promotes densification by allowing the sintering aid to be uniformly mixed with the fine powder.

등의 원인이 작용한 것에 기초하며, 이러한 이유들에 의해 본 발명이 특징을 갖는 것이다.It is based on the effect of the cause and the like, and the present invention is characterized by these reasons.

본 발명의 실시예와 달리 미세 분쇄된 규소 분말만으로 시편을 제조할 경우 성형 밀도가 낮아지고, 미세한 기공 때문에 시편의 균일한 질화에 어려움이 존재하였으며, 대량의 규소를 미분쇄하는데 따른 공정 단가의 증가 등의 문제점이 발견되었다. 따라서 일반적인 입도의 규소에 소량의 미분쇄 규소를 혼합하는 것은 공정 개선 및 제작 단가 절감에 있어서 중요한 의의를 갖는다.Unlike the embodiment of the present invention, when the specimen is manufactured using only finely pulverized silicon powder, the molding density is low, there is a difficulty in uniform nitriding of the specimen due to the fine pores, and an increase in the process cost due to the pulverization of a large amount of silicon. And other problems have been found. Therefore, mixing a small amount of finely pulverized silicon with silicon of general particle size is important for process improvement and manufacturing cost reduction.

도 3은 본 발명의 일 실시예에 의해 제조된 질화규소의 곡강도 측정용 시편들의 파단면 미세구조를 나타내는 것이다. 도시된 바와 같이 매우 치밀한 미세구조를 가지며, 침상의 베타상이 성장됨을 알 수 있었다.Figure 3 shows the fracture surface microstructure of the specimens for measuring the bending strength of silicon nitride prepared by one embodiment of the present invention. As shown, it has a very dense microstructure, it was found that the needle-like beta phase is grown.

이러한 결과들로부터 본 발명에서 제시한 새로운 제조공정을 통하여 기존의 반응소결 질화규소가 갖는 장점인 저렴한 원료가격과 작은 소결수축율을 그대로 살리면서 종래의 제조 공정의 단점인 높은 소결온도와 낮은 기계적 특성을 뚜렷히 개선할 수 있음을 알 수 있었다. From these results, through the new manufacturing process proposed in the present invention, while maintaining the low raw material price and the small sinter shrinkage ratio which are advantages of the conventional reaction sintered silicon nitride, the high sintering temperature and low mechanical characteristics, which are disadvantages of the conventional manufacturing process, are clearly observed. It was found that it can be improved.

이상에서 실시예를 들어 본 발명을 더욱 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시예로 국한되는 것이 아니고 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형실시될 수 있다. 따라서, 본 발명에 개시된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 안정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.Although the present invention has been described in more detail with reference to the examples, the present invention is not necessarily limited to these embodiments, and various modifications can be made without departing from the spirit of the present invention. Therefore, the embodiments disclosed in the present invention are intended to illustrate rather than limit the scope of the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

도 1은 종래의 제조공정으로 제조된 출발물질의 혼합분말의 형상과 입도분포 그래프, 1 is a graph of the shape and particle size distribution of the mixed powder of the starting material prepared by a conventional manufacturing process,

도 2는 본 발명의 일 실시예에 의한 제조공정으로 제조된 출발물질의 혼합분말의 형상과 입도분포 그래프, Figure 2 is a shape and particle size distribution graph of the mixed powder of the starting material prepared by the manufacturing process according to an embodiment of the present invention,

도 3은 본 발명의 일 실시예에 의해 제조된 질화규소의 곡강도 측정용 시편들의 파단면 미세구조로서 좌도는 1000배 확대사진, 우도는 3000배 확대사진이다. Figure 3 is a fracture surface microstructure of the specimens for measuring the bending strength of silicon nitride prepared by an embodiment of the present invention is the left view is 1000 times enlarged picture, the right is 3000 times enlarged picture.

Claims (6)

5 내지 10㎛의 입도범위를 갖는 제1규소와 0.1 내지 1㎛의 입도범위를 갖는 제2규소를 소결조제와 함께 혼합하는 단계;Mixing the first silicon having a particle size range of 5 to 10 μm and the second silicon having a particle size range of 0.1 to 1 μm with the sintering aid; 상기 혼합된 규소들을 질화하는 단계;Nitriding the mixed silicon; 상기 질화된 규소를 소결하는 단계;Sintering the nitrided silicon; 를 포함하여 구성되며, It is configured to include, 상기 제2규소는 제1규소의 중량대비 10 ~ 30 중량%의 범위로 하여 혼합되는 것을 특징으로 하는 규소의 입도분포 조절을 이용한 반응소결 질화규소의 제조방법.The second silicon is a method for producing a reaction-sintered silicon nitride using a particle size distribution control of silicon, characterized in that mixed in the range of 10 to 30% by weight relative to the weight of the first silicon. 제 1 항에 있어서,The method of claim 1, 상기 혼합된 규소들을 질화하는 단계 이전에, 상기 혼합된 규소를 가압성형하는 단계를 더 포함하는 것을 특징으로 하는 규소의 입도분포 조절을 이용한 반응소결 질화규소의 제조방법.Before the step of nitriding the mixed silicon, the method of producing a reaction-sintered silicon nitride using a particle size distribution control of silicon, characterized in that further comprising the step of pressing the mixed silicon. 삭제delete 제 1 항에 있어서,The method of claim 1, 상기 혼합된 규소들을 질화하는 단계는, 1350 ~ 1500℃의 온도범위에서 진행되는 것을 특징으로 하는 규소의 입도분포 조절을 이용한 반응소결 질화규소의 제조방법.The step of nitriding the mixed silicon, the reaction sintered silicon nitride manufacturing method using a particle size distribution control of silicon, characterized in that proceeds in the temperature range of 1350 ~ 1500 ℃. 제 1 항에 있어서,The method of claim 1, 상기 질화된 규소를 소결하는 단계는, 1700 ~ 1950℃의 온도범위에서 진행되는 것을 특징으로 하는 규소의 입도분포 조절을 이용한 반응소결 질화규소의 제조방법.The step of sintering the silicon nitride, the method of producing a reaction-sintered silicon nitride using a particle size distribution control of silicon, characterized in that proceeds in the temperature range of 1700 ~ 1950 ℃. 제 1 항 내지 제 5 항 중 어느 한 항의 방법에 의하여 제조되어, Prepared by the method of any one of claims 1 to 5, 상대밀도가 95 ~ 99%의 범위인 것을 특징으로 하는 규소의 입도분포 조절을 이용한 반응소결 질화규소.Reaction sintered silicon nitride using a particle size distribution control of silicon, characterized in that the relative density in the range of 95 ~ 99%.
KR1020090078302A 2009-08-24 2009-08-24 Reaction Sintered Si3N4 having discrete particle size distribution of Si and the manufacturing method of the same KR101130298B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020090078302A KR101130298B1 (en) 2009-08-24 2009-08-24 Reaction Sintered Si3N4 having discrete particle size distribution of Si and the manufacturing method of the same
PCT/KR2010/002006 WO2011025117A1 (en) 2009-08-24 2010-04-01 Reaction sintered silicon nitride for which silicon particle size distribution adjustment is employed, and a production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090078302A KR101130298B1 (en) 2009-08-24 2009-08-24 Reaction Sintered Si3N4 having discrete particle size distribution of Si and the manufacturing method of the same

Publications (2)

Publication Number Publication Date
KR20110020610A KR20110020610A (en) 2011-03-03
KR101130298B1 true KR101130298B1 (en) 2012-03-23

Family

ID=43628182

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090078302A KR101130298B1 (en) 2009-08-24 2009-08-24 Reaction Sintered Si3N4 having discrete particle size distribution of Si and the manufacturing method of the same

Country Status (2)

Country Link
KR (1) KR101130298B1 (en)
WO (1) WO2011025117A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101639576B1 (en) * 2014-04-28 2016-07-18 한국기계연구원 Manufacturing Method of Sintered Reaction Bonded Silicon Nitride With High Thermal Conductivity
KR20170067235A (en) * 2015-12-07 2017-06-16 한국기계연구원 Manufacturing Method of Sintered Reaction Bonded Silicon Nitride With High Thermal Conductivity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10101311A (en) * 1996-10-02 1998-04-21 Shin Etsu Chem Co Ltd Production of silicon nitride powder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2003811C (en) * 1988-12-08 1997-01-14 Jochen Hintermayer Production of silicon nitride and the product thereby obtained
JP2946990B2 (en) * 1993-02-01 1999-09-13 信越化学工業株式会社 Method for producing highly-fillable silicon nitride powder
JPH11278812A (en) * 1998-03-30 1999-10-12 Shin Etsu Chem Co Ltd Production of silicon nitride powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10101311A (en) * 1996-10-02 1998-04-21 Shin Etsu Chem Co Ltd Production of silicon nitride powder

Also Published As

Publication number Publication date
KR20110020610A (en) 2011-03-03
WO2011025117A1 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
KR100882924B1 (en) Ti3alc2 composite materials with high strength and manufacturing process of the same
US7749931B2 (en) Ceramic optical parts and production methods thereof
JP2014139130A (en) Abrasion resistant member and abrasion resistant device using the same
KR20190048811A (en) Method for manufacturing silicon carbide dense bodies having excellent thermal conductivity and thermal durability
KR101130298B1 (en) Reaction Sintered Si3N4 having discrete particle size distribution of Si and the manufacturing method of the same
KR102042668B1 (en) SiC sintered body and heater and manufacturing method of SiC sintered body
JP6354621B2 (en) Silicon nitride ceramic sintered body and method for producing the same
KR101620510B1 (en) Pressureless sintered silicon carbide ceramics with high fracture toughness and high hardness, compositions thereof and Process for producing the Same
CN108892528B (en) Porous silicon nitride ceramic material and preparation method thereof
KR101972234B1 (en) Manufacturing method of sintered reaction bonded silicon nitride ceramics from silicon scrap and sintered reaction bonded silicon nitride ceramics using the same
KR101017928B1 (en) Titanium diboride sintered body with metal as asintering aid and method for manufacture thereof
JP5430869B2 (en) Dense boron carbide sintered body and method for producing the same
EP4219427A1 (en) Process for producing ceramic composite materials for ballistic purposes based on b4c, tib2 and b4c/tib2
JP2008297188A (en) Method of manufacturing tungsten-addition zirconium boride
KR102626997B1 (en) Composition for manufacturing AlN ceramics including Sc2O3 as sintering aid and the AlN ceramics and the manufacturing method of the same
KR101062442B1 (en) Low Temperature Sintered Silicon Carbide with Excellent High Temperature Properties and Manufacturing Method Thereof
KR101144866B1 (en) Hot pressed ZrB2-SiC using zirconium silicides as precursor and manufacturing method of the same
JP5408591B2 (en) Method for producing high-density metal boride
KR102052592B1 (en) Manufacturing Of Sintered Silicon Nitride Body With High Thermal Conductivity
JPH01145380A (en) Production of silicon nitride sintered form
US7109139B2 (en) Process for manufacture of dense neodymium stabilized β-Si3N4 -α-SiAlON composite
CN118146006A (en) Whisker oriented toughened white silicon nitride ceramic and preparation method thereof
KR20000058855A (en) Preparation Method of Self-reinforced Silicon Carbide
KR20160088170A (en) TiC-FeAl HARD MATERIALS AND FABRICATING METHOD FOR THE SAME
JP5565724B2 (en) Method for producing Al2O3 / Mo2N composite by capsule-free hot isostatic pressing

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151209

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161207

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171218

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181211

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191210

Year of fee payment: 9