KR101130263B1 - Method for manufacturing uncooled infrared sensor using parylene - Google Patents

Method for manufacturing uncooled infrared sensor using parylene Download PDF

Info

Publication number
KR101130263B1
KR101130263B1 KR1020100107543A KR20100107543A KR101130263B1 KR 101130263 B1 KR101130263 B1 KR 101130263B1 KR 1020100107543 A KR1020100107543 A KR 1020100107543A KR 20100107543 A KR20100107543 A KR 20100107543A KR 101130263 B1 KR101130263 B1 KR 101130263B1
Authority
KR
South Korea
Prior art keywords
layer
paraline
infrared sensor
electrode
uncooled infrared
Prior art date
Application number
KR1020100107543A
Other languages
Korean (ko)
Inventor
한명수
고항주
김효진
김선훈
Original Assignee
한국광기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국광기술원 filed Critical 한국광기술원
Priority to KR1020100107543A priority Critical patent/KR101130263B1/en
Application granted granted Critical
Publication of KR101130263B1 publication Critical patent/KR101130263B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Abstract

PURPOSE: A method for manufacturing a non-cooling infrared sensor which uses parylene is provided to be easily controlled as a desired resistance value by using parylene materials which are changed according to pyrolysis temperatures and thickness. CONSTITUTION: A first electrode(20) and a reflective film(30) are evaporated on the upper side of an ROIC(Readout Integrated Circuit)(10). A sacrificial layer(40) is coated on the upper side of the first electrode and the reflective film. An insulating layer(50) is formed on the upper side of the sacrificial layer. A first parylene layer(60) is coated on the upper side of the insulating layer. A second electrode(70) is formed on the upper side of the first parylene layer. The second electrode is etched. A second parylene layer is coated on the upper side of the insulating layer. A pattern is etched. An absorption layer is evaporated on the upper side of the second parylene layer. The sacrificial layer is eliminated.

Description

패럴린을 이용한 비냉각 적외선 센서 제조방법{METHOD FOR MANUFACTURING UNCOOLED INFRARED SENSOR USING PARYLENE}Method for manufacturing uncooled infrared sensor using paraline {METHOD FOR MANUFACTURING UNCOOLED INFRARED SENSOR USING PARYLENE}

본 발명은 파이롤리시스 온도 및 두께에 따라 변화되는 패럴린 재료를 이용함으로써 원하는 저항값으로의 조절이 용이하며, 저가의 고분해능 비냉각 적외선 센서 및 카메라에 적용 가능한 패럴린을 이용한 비냉각 적외선 센서 제조방법에 관한 것이다. The present invention is easy to adjust to the desired resistance value by using a paraline material that changes depending on the pyrrolysis temperature and thickness, manufacturing a low-cost high-resolution uncooled infrared sensor and an uncooled infrared sensor using a paraline applicable to the camera It is about a method.

일반적으로 비냉각 적외선 흡수재료는 장파장 영역에서 저항이 수 mega Ohm ~ 수백 Kohm이며 재료에 따라 다르게 나타나며, 주로 사용되는 재료로는 비정질 실리콘(amorphous Si : a-Si), 산화바나듐(VOx) 등의 물질이 있다. In general, the uncooled infrared absorbing material has a resistance in the long wavelength range of several mega Ohm to several hundred Kohm and varies depending on the material. The mainly used materials are amorphous silicon (a-Si) and vanadium oxide (VOx). There is a substance.

한편, 비정질 실리콘(a-Si)은 수 ~ Mohm로 저항이 매우 높은 특성을 가지며, 산화바나듐(VOx)은 산소의 phase가 수십~KOhm 으로 매우 다양하여 재현성이 낮은 특성을 가진다. On the other hand, amorphous silicon (a-Si) has a very high resistance to a few ~ Mohm, vanadium oxide (VOx) has a characteristic of low reproducibility, because the oxygen phase is very diverse as dozens ~ KOhm.

따라서, 기존의 비냉각 적외선 센서 제조 공정에서는 비정질 실리콘(a-Si), 산화바나듐(VOx) 등의 물질의 특성에 의해, 저항 조절이 불가한 문제점이 있었다. Therefore, in the conventional uncooled infrared sensor manufacturing process, there is a problem in that resistance control is impossible due to the properties of materials such as amorphous silicon (a-Si) and vanadium oxide (VOx).

본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 재현성이 높은 패럴린 카본(Carbon)을 적외선 흡수재료로 사용함으로써, 저항 조절이 용이한 패럴린을 이용한 비냉각 적외선 센서 제조방법을 제공함에 그 목적이 있다. The present invention has been made in view of the above problems, by using a highly reproducible paraline carbon (Carbon) as an infrared absorbing material, to provide a method for manufacturing an uncooled infrared sensor using paraline easy to control resistance There is a purpose.

이러한 기술적 과제를 달성하기 위한 본 발명은 패럴린을 이용한 비냉각 적외선 센서 제조방법에 관한 것으로서, (a) Si Wafer 또는 Si 신호취득회로(Readout Integrated circuit: ROIC 상에 신호획득을 위한 제 1 전극 및 반사막을 증착하는 공정; (b) 희생층을 코팅하는 공정; (c) 상기 희생층 상부에 절연층을 증착하는 공정; (d) 상기 절연층 상부에 제 1 패럴린층을 코팅하는 공정; (e) 상기 제 1 패럴린 층 상부에 제 2 전극을 증착하는 공정; (f) 상기 제 2 전극을 식각하는 공정; (g) 씨앗층(Seed Layer)을 위한 Via 홀 도금공정을 수행하고, Au 도금 또는 Al 스퍼터링(sputtering) 방식을 이용하여 제 3 전극을 증착하는 공정; (h) 상기 절연층 및 제 1 패럴린층 상부 일부에 제 2 패럴린층을 코팅한 후, 패턴을 식각하는 공정; (i) 상기 제 1 페럴린층(60) 및 제 2 패럴린층 상부 일부에 흡수층을 증착한 후 패터닝하는 공정; 및 (j) 상기 희생층을 제거하는 공정; 을 포함하는 것을 특징으로 한다. The present invention for achieving the above technical problem relates to a method for manufacturing an uncooled infrared sensor using paraline, (a) a first electrode for obtaining a signal on a Si Wafer or Si signal acquisition circuit (ROIC) and (B) coating the sacrificial layer; (c) depositing an insulating layer over the sacrificial layer; (d) coating a first paraline layer over the insulating layer; A process of depositing a second electrode on the first paraline layer, (f) etching the second electrode, (g) performing a Via hole plating process for a seed layer, and Au plating Or depositing a third electrode using an Al sputtering method, (h) coating a second paraline layer on a portion of the insulating layer and an upper part of the first paraline layer, and then etching the pattern; Absorbed in the upper part of the first and the second parylene layer 60 A step of patterning after depositing; characterized in that it comprises; and (j) a step of removing the sacrificial layer.

또한 상기 (a) 공정은, Al, NiCr, TiW 중 한 가지 물질 또는 복합물질을 이빔(e-beam) 또는 스퍼터링(sputtering) 방식을 이용하여 0.3 ㎛ 내지 0.7 ㎛ 두께로 증착하는 것을 특징으로 한다.In addition, the step (a) is characterized in that to deposit one or a composite material of Al, NiCr, TiW to a thickness of 0.3 ㎛ to 0.7 ㎛ using an e-beam or sputtering method.

또한 상기 (b) 공정은, 폴리이미드(Polyimide)를 2 ㎛ 내지 2.5 ㎛로 코팅하며, 300℃ 내지 400℃ 온도로 열 경화하는 것을 특징으로 한다.In addition, the step (b), the polyimide (Polyimide) is coated with 2 ㎛ to 2.5 ㎛, it characterized in that the thermal curing at 300 ℃ to 400 ℃ temperature.

또한 상기 (c) 공정은, SIO2, SINx, SION 중, 한 가지 재료를 PECVD(Plasma-Enhanced Chemical Vapor Deposition) 방식을 이용하여, 0.2 ㎛ 내지 0.5 ㎛로 증착하는 것을 특징으로 한다. In the step (c), one material among SIO 2 , SINx, and SION is deposited at 0.2 μm to 0.5 μm by using a plasma-enhanced chemical vapor deposition (PECVD) method.

또한 상기 (d) 공정은, 550℃ 내지 800℃의 온도로 파이롤라이즈(Pyrolyze)된 제 1 패럴린층을 0.5 ㎛ 내지 1.5 ㎛의 두께로 코팅하는 것을 특징으로 한다.In addition, the step (d) is characterized in that the pyrrolyze (Pyrolyze) the first paraline layer at a temperature of 550 ℃ to 800 ℃ to coat a thickness of 0.5 ㎛ to 1.5 ㎛.

또한 상기 (e) 공정은, Al, NiCr, TiW 중, 어느 하나의 물질 또는 복합물질로 이루어진 제 2 전극을 0.2 ㎛ 내지 0.5 ㎛ 의 두께로 증착하는 것을 특징으로 한다.In addition, the step (e) is characterized in that to deposit a second electrode made of any one material or a composite material of Al, NiCr, TiW to a thickness of 0.2 ㎛ to 0.5 ㎛.

또한 상기 (f) 공정은, RIE(Reactive Ion Eching) 장비를 이용하여, 상기 제 2 전극을 식각하는 것을 특징으로 한다. In the step (f), the second electrode may be etched by using reactive ion etching (RIE) equipment.

또한 상기 (h) 공정은, 550℃ 내지 800℃ 온도로 파이롤라이즈(Pyrolyze)된 제 2 패럴린층을 0.5 ㎛ 내지 1.5 ㎛의 두께로 코팅하는 것을 특징으로 한다.In addition, the step (h) is characterized in that the coating of the second paraline layer (Pyrolyze) at a temperature of 550 ℃ to 800 ℃ to a thickness of 0.5 ㎛ to 1.5 ㎛.

또한 상기 (i) 공정은, TI, NiCr, TiW 중, 하나를 이용한 단일층 또는 2개이상을 이용한 복합층 구조로 흡수층을 증착한 후, 10 ㎚ 내지 50㎚ 의 두께로 코팅한 후, 패터닝하는 것을 특징으로 한다.In addition, in the step (i), after depositing the absorbing layer in a single layer using TI, NiCr, TiW, or a multi-layer structure using two or more, coating with a thickness of 10 nm to 50 nm, and then patterning It is characterized by.

그리고 상기 (j) 공정은, 플라즈마 연소(Plasma ashing) 방법을 이용하여 상기 희생층을 제거하는 것을 특징으로 한다. In the step (j), the sacrificial layer is removed using a plasma ashing method.

상기와 같은 본 발명에 따르면, 파이롤리시스 온도 및 두께에 따라 변화되는 패럴린 재료를 이용함으로써 원하는 저항값으로의 조절이 용이하며, 저가의 고분해능 비냉각 적외선 센서 및 카메라에 적용 가능한 효과가 있다. According to the present invention as described above, it is easy to adjust to the desired resistance value by using a paraline material that varies according to the pyrrolysis temperature and thickness, there is an effect that can be applied to a low-cost high-resolution uncooled infrared sensor and camera.

도 1 내지 도 2 는 본 발명의 일실시예에 따른 패럴린을 이용한 비냉각 적외선 센서 제조방법에 관한 전체 흐름도. 1 to 2 is an overall flow diagram of a method for manufacturing an uncooled infrared sensor using a paraline according to an embodiment of the present invention.

본 발명의 구체적 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서 본 발명에 관련된 공지 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 구체적인 설명을 생략하였음에 유의해야 할 것이다.Specific features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings. In the meantime, when it is determined that the detailed description of the known functions and configurations related to the present invention may unnecessarily obscure the subject matter of the present invention, it should be noted that the detailed description is omitted.

이하, 첨부된 도면을 참조하여 본 발명을 상세하게 설명한다. Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.

본 발명의 일실시예에 따른 패럴린을 이용한 비냉각 적외선 센서 제조방법에 관하여 도 1 내지 도 2 를 참조하여 설명하면 다음과 같다. A method of manufacturing an uncooled infrared sensor using paraline according to an embodiment of the present invention will be described with reference to FIGS. 1 to 2.

도 1 내지 도 2 는 본 발명에 따른 패럴린을 이용한 비냉각 적외선 센서 제조방법에 관한 전체 흐름도이다. 1 to 2 is an overall flow chart of a method for manufacturing an uncooled infrared sensor using a parline according to the present invention.

[제 1 공정] 앵커전극 및 반사막 증착(S100).[First Step] Anchor electrode and reflective film deposition (S100).

Si Wafer 또는 Si 신호취득회로(Readout Integrated circuit: ROIC)(10)상에 신호획득을 위한 제 1 전극(20) 및 반사막(30)을 증착한다. The first electrode 20 and the reflective film 30 for signal acquisition are deposited on a Si wafer or Si signal acquisition circuit (ROIC) 10.

이때, 제 1 전극(20) 및 반사막(30)은 Al, NiCr, TiW 중 한 가지 물질 또는 복합물질을 이빔(e-beam) 또는 스퍼터링(sputtering) 방식을 이용하여 0.3 ㎛ 내지 0.7 ㎛ 두께로 증착한다.
At this time, the first electrode 20 and the reflective film 30 is deposited to a thickness of 0.3 ㎛ to 0.7 ㎛ of one material or a composite material of Al, NiCr, TiW by using an e-beam or sputtering method do.

[제 2 공정] 희생층 코팅(S200).[Second Step] Sacrificial layer coating (S200).

희생층(40)으로서, 폴리이미드(Polyimide)를 장파장 적외선의 1/4 두께인 2 ㎛ 내지 2.5 ㎛로 코팅하며, 이후 300℃ 내지 400℃ 온도로 열 경화시킨다.
As the sacrificial layer 40, polyimide is coated with 2 μm to 2.5 μm, which is 1/4 of the long wavelength infrared ray, and then thermally cured at a temperature of 300 ° C. to 400 ° C.

[제 3 공정] 절연층 증착(S300).Third Step Insulating layer deposition (S300).

상기 희생층(40) 상부에 절연층(50)을 증착한다. The insulating layer 50 is deposited on the sacrificial layer 40.

이때, 상기 절연층(50)의 재료로서, SIO2, SINx, SION 중, 한 가지 재료를 PECVD(Plasma-Enhanced Chemical Vapor Deposition) 방식을 이용하여, 0.2 ㎛ 내지 0.5 ㎛로 증착한다.
At this time, as a material of the insulating layer 50, one of the SIO 2 , SINx, SION is deposited to 0.2 ㎛ to 0.5 ㎛ by using a Plasma-Enhanced Chemical Vapor Deposition (PECVD) method.

[제 4 공정] 제 1 패럴린층 코팅(S400).[Fourth step] The first parallel layer coating (S400).

상기 절연층(50) 상부에 550℃ 내지 800℃ 바람직하게 600℃의 온도로 파이롤라이즈(Pyrolyze)된 제 1 패럴린층(60)을 0.5 ㎛ 내지 1.5 ㎛의 두께로 코팅한다.
The pyrolyzed first paraline layer 60 is coated on the insulating layer 50 at a temperature of 550 ° C. to 800 ° C., preferably 600 ° C., to a thickness of 0.5 μm to 1.5 μm.

[제 5 공정] 제 2 전극 증착(S500).Fifth Step Second electrode deposition (S500).

상기 제 1 패럴린 층(60) 상부에 Al, NiCr, TiW 중, 어느 하나의 물질 또는 복합물질로 이루어진 제 2 전극(70)을 0.2 ㎛ 내지 0.5 ㎛ 의 두께로 증착한다.
A second electrode 70 made of any one of Al, NiCr, and TiW or a composite material is deposited on the first paraline layer 60 to a thickness of 0.2 μm to 0.5 μm.

[제 6 공정] 제 2 전극 식각(S600). [Sixth Step] Second Electrode Etching (S600).

RIE(Reactive Ion Eching) 장비를 이용하여, 상기 제 2 전극(70)을 식각한다. 이에 따라, 제 2 패럴린 층을 증착하기 위한 부분이 오픈된다.
The second electrode 70 is etched by using reactive ion etching (RIE) equipment. Thus, the part for depositing the second parylene layer is opened.

[제 7 공정] 제 3 전극 증착(S700). [Seventh Step] Third Electrode Deposition (S700).

씨앗층(Seed Layer)을 위한 Via 홀 도금공정을 수행하고, Au 도금 또는 Al 스퍼터링(sputtering) 방식을 이용하여 제 3 전극(80)을 증착한다.
Via hole plating is performed for the seed layer, and the third electrode 80 is deposited using Au plating or Al sputtering.

[제 8 공정] 제 2 패럴린층 코팅 및 식각(S800). [Eighth Step] Coating and etching of the second parylene layer (S800).

상기 절연층(50) 및 제 1 패럴린층(60) 상부 일부에 550℃ 내지 800℃ 바람직하게 750℃의 온도로 파이롤라이즈(Pyrolyze)된 제 2 패럴린층(90)을 0.5 ㎛ 내지 1.5 ㎛의 두께로 코팅한 후, 패턴을 식각한다.
A portion of the upper part of the insulating layer 50 and the first parallel layer 60 may be 0.5 μm to 1.5 μm of the second paralyzed layer 90 pyrolyzed at a temperature of 550 ° C. to 800 ° C., preferably 750 ° C. After coating to thickness, the pattern is etched.

[제 9 공정] 흡수층 증착 및 패터닝(S900). Ninth Step Absorption layer deposition and patterning (S900).

상기 제 1 페럴린층(60) 및 제 2 패럴린층(90) 상부 일부에 TI, NiCr, TiW 중, 하나를 이용한 단일층 또는 2개이상을 이용한 복합층 구조로 흡수층(100)을 증착한 후, 10 ㎚ 내지 50㎚ 의 두께로 코팅한 후, 패터닝한다.
After depositing the absorbing layer 100 on a part of the upper part of the first and the second parolin layer 60 and 90, a single layer using one of TI, NiCr, TiW, or a composite layer structure using two or more, After coating to a thickness of 10 nm to 50 nm, it is patterned.

[제 10 공정] 희생층 제거(S1000). [Step 10] Removing the sacrificial layer (S1000).

플라즈마 연소(Plasma ashing) 방법을 이용하여 상기 희생층(40)을 제거한다.The sacrificial layer 40 is removed using a plasma ashing method.

이때, 제거된 공간은 2 ㎛ 내지 2.5 ㎛의 두께이며, 8 ㎛ 내지 12 ㎛ 파장의 공명 흡수층으로 형성된다.
At this time, the removed space is 2 μm to 2.5 μm thick and is formed of a resonance absorbing layer having a wavelength of 8 μm to 12 μm.

이상으로 본 발명의 기술적 사상을 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 이와 같이 도시되고 설명된 그대로의 구성 및 작용에만 국한되는 것이 아니며, 기술적 사상의 범주를 일탈함이 없이 본 발명에 대해 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서, 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다. While the present invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. It will be appreciated by those skilled in the art that numerous changes and modifications may be made without departing from the invention. Accordingly, all such suitable changes and modifications and equivalents should be considered to be within the scope of the present invention.

10: Si or ROIC 20: 제 1 전극
30: 반사막 40: 희생층
50: 절연층 60: 제 1 패럴린층
70: 제 2 전극 80: 제 3 전극
90: 제 2 패럴린층 100: 흡수층
10: Si or ROIC 20: first electrode
30: reflective film 40: sacrificial layer
50: insulating layer 60: first paraline layer
70: second electrode 80: third electrode
90: second paraline layer 100: absorbing layer

Claims (10)

(a) Si Wafer 또는 Si 신호취득회로(Readout Integrated circuit: ROIC)(10)상에 신호획득을 위한 제 1 전극(20) 및 반사막(30)을 증착하는 공정;
(b) 희생층(40)을 코팅하는 공정;
(c) 상기 희생층(40) 상부에 절연층(50)을 증착하는 공정;
(d) 상기 절연층(50) 상부에 제 1 패럴린층(60)을 코팅하는 공정;
(e) 상기 제 1 패럴린 층(60) 상부에 제 2 전극(70)을 증착하는 공정;
(f) 상기 제 2 전극(70)을 식각하는 공정;
(g) 씨앗층(Seed Layer)을 위한 Via 홀 도금공정을 수행하고, Au 도금 또는 Al 스퍼터링(sputtering) 방식을 이용하여 제 3 전극(80)을 증착하는 공정;
(h) 상기 절연층(50) 상부에 제 2 패럴린층(90)을 코팅한 후, 패턴을 식각하는 공정;
(i) 상기 제 2 패럴린층(90) 상부에 흡수층(100)을 증착한 후 패터닝하는 공정; 및
(j) 상기 희생층(40)을 제거하는 공정; 을 포함하는 것을 특징으로 하는 패럴린을 이용한 비냉각 적외선 센서 제조방법.
(a) depositing a first electrode 20 and a reflective film 30 for signal acquisition on a Si wafer or Si signal acquisition circuit (ROIC) 10;
(b) coating the sacrificial layer 40;
(c) depositing an insulating layer 50 on the sacrificial layer 40;
(d) coating a first paraline layer (60) on the insulating layer (50);
(e) depositing a second electrode (70) on top of the first parallel layer (60);
(f) etching the second electrode (70);
(g) performing a via hole plating process for the seed layer, and depositing the third electrode 80 using Au plating or Al sputtering;
(h) etching the pattern after coating the second paraline layer 90 on the insulating layer 50;
(i) depositing and patterning an absorbing layer 100 on the second paraline layer 90; And
(j) removing the sacrificial layer 40; Method for producing an uncooled infrared sensor using a parline characterized in that it comprises a.
제 1 항에 있어서,
상기 (a) 공정은,
Al, NiCr, TiW 중 한 가지 물질 또는 복합물질을 이빔(e-beam) 또는 스퍼터링(sputtering) 방식을 이용하여 0.3 ㎛ 내지 0.7 ㎛ 두께로 증착하는 것을 특징으로 하는 패럴린을 이용한 비냉각 적외선 센서 제조방법.
The method of claim 1,
The step (a),
Fabrication of an uncooled infrared sensor using paraline, characterized in that the deposition of one material or a composite material of Al, NiCr, TiW to a thickness of 0.3 ㎛ to 0.7 ㎛ by e-beam or sputtering method Way.
제 1 항에 있어서,
상기 (b) 공정은,
폴리이미드(Polyimide)를 2 ㎛ 내지 2.5 ㎛로 코팅하며, 300℃ 내지 400℃ 온도로 열 경화하는 것을 특징으로 하는 패럴린을 이용한 비냉각 적외선 센서 제조방법.
The method of claim 1,
The step (b),
Polyimide (Polyimide) is coated with a 2 ㎛ to 2.5 ㎛, a method of manufacturing an uncooled infrared sensor using a paraline, characterized in that the thermal curing at 300 ℃ to 400 ℃ temperature.
제 1 항에 있어서,
상기 (c) 공정은,
SIO2, SINx, SION 중, 한 가지 재료를 PECVD(Plasma-Enhanced Chemical Vapor Deposition) 방식을 이용하여, 0.2 ㎛ 내지 0.5 ㎛로 증착하는 것을 특징으로 하는 패럴린을 이용한 비냉각 적외선 센서 제조방법.
The method of claim 1,
The step (c),
A method of manufacturing an uncooled infrared sensor using paraline, characterized in that one of SIO 2 , SINx, and SION is deposited at 0.2 μm to 0.5 μm using a Plasma-Enhanced Chemical Vapor Deposition (PECVD) method.
제 1 항에 있어서,
상기 (d) 공정은,
550℃ 내지 800℃의 온도로 파이롤라이즈(Pyrolyze)된 제 1 패럴린층(60)을 0.5 ㎛ 내지 1.5 ㎛의 두께로 코팅하는 것을 특징으로 하는 패럴린을 이용한 비냉각 적외선 센서 제조방법.
The method of claim 1,
The step (d),
A method of manufacturing an uncooled infrared sensor using paraline, characterized in that the pyrolyzed first paraline layer (60) at a temperature of 550 ℃ to 800 ℃ to a thickness of 0.5 ㎛ to 1.5 ㎛.
제 1 항에 있어서,
상기 (e) 공정은,
Al, NiCr, TiW 중, 어느 하나의 물질 또는 복합물질로 이루어진 제 2 전극(70)을 0.2 ㎛ 내지 0.5 ㎛ 의 두께로 증착하는 것을 특징으로 하는 패럴린을 이용한 비냉각 적외선 센서 제조방법.
The method of claim 1,
The above (e) step,
A method of manufacturing an uncooled infrared sensor using paraline, comprising depositing a second electrode (70) made of any one of Al, NiCr, and TiW or a composite material to a thickness of 0.2 μm to 0.5 μm.
제 1 항에 있어서,
상기 (f) 공정은,
RIE(Reactive Ion Eching) 장비를 이용하여, 상기 제 2 전극(70)을 식각하는 것을 특징으로 하는 패럴린을 이용한 비냉각 적외선 센서 제조방법.
The method of claim 1,
The step (f),
The method of manufacturing an uncooled infrared sensor using paraline, characterized in that for etching the second electrode (70) by using Reactive Ion Eching (RIE) equipment.
제 1 항에 있어서,
상기 (h) 공정은,
550℃ 내지 800℃ 온도로 파이롤라이즈(Pyrolyze)된 제 2 패럴린층(90)을 0.5 ㎛ 내지 1.5 ㎛의 두께로 코팅하는 것을 특징으로 하는 패럴린을 이용한 비냉각 적외선 센서 제조방법.
The method of claim 1,
The above (h) process,
A method of manufacturing an uncooled infrared sensor using paraline, characterized in that the pyrolyzed second paraline layer (90) at a temperature of 550 ℃ to 800 ℃ to a thickness of 0.5 ㎛ to 1.5 ㎛.
제 1 항에 있어서,
상기 (i) 공정은,
TI, NiCr, TiW 중, 하나를 이용한 단일층 또는 2개이상을 이용한 복합층 구조로 흡수층(100)을 증착한 후, 10 ㎚ 내지 50㎚ 의 두께로 코팅한 후, 패터닝하는 것을 특징으로 하는 패럴린을 이용한 비냉각 적외선 센서 제조방법.
The method of claim 1,
The step (i),
After depositing the absorbing layer 100 in a single layer using a single layer or a composite layer structure using two or more of TI, NiCr, TiW, and then coated in a thickness of 10 nm to 50 nm, the patterning is characterized in that the parallel Method for manufacturing an uncooled infrared sensor using lean.
제 1 항에 있어서,
상기 (j) 공정은,
플라즈마 연소(Plasma ashing) 방법을 이용하여 상기 희생층(40)을 제거하는 것을 특징으로 하는 패럴린을 이용한 비냉각 적외선 센서 제조방법.
The method of claim 1,
The (j) step is,
A method of manufacturing an uncooled infrared sensor using paraline, characterized in that to remove the sacrificial layer (40) using a plasma ashing method.
KR1020100107543A 2010-11-01 2010-11-01 Method for manufacturing uncooled infrared sensor using parylene KR101130263B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100107543A KR101130263B1 (en) 2010-11-01 2010-11-01 Method for manufacturing uncooled infrared sensor using parylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100107543A KR101130263B1 (en) 2010-11-01 2010-11-01 Method for manufacturing uncooled infrared sensor using parylene

Publications (1)

Publication Number Publication Date
KR101130263B1 true KR101130263B1 (en) 2012-03-26

Family

ID=46142800

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100107543A KR101130263B1 (en) 2010-11-01 2010-11-01 Method for manufacturing uncooled infrared sensor using parylene

Country Status (1)

Country Link
KR (1) KR101130263B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101498522B1 (en) * 2013-07-17 2015-03-04 한국광기술원 Fabrication method of high quality oxide thin films for micribolometer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000007482A (en) * 1998-07-03 2000-02-07 김충환 Method of fabricating thermal detector device
KR20070064674A (en) * 2004-10-15 2007-06-21 캐보트 코포레이션 High resistivity compositions
KR100983818B1 (en) 2009-09-02 2010-09-27 한국전자통신연구원 Resistive materials for bolometer, bolometer for infrared detector using the materials, and method for preparing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000007482A (en) * 1998-07-03 2000-02-07 김충환 Method of fabricating thermal detector device
KR20070064674A (en) * 2004-10-15 2007-06-21 캐보트 코포레이션 High resistivity compositions
KR100983818B1 (en) 2009-09-02 2010-09-27 한국전자통신연구원 Resistive materials for bolometer, bolometer for infrared detector using the materials, and method for preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101498522B1 (en) * 2013-07-17 2015-03-04 한국광기술원 Fabrication method of high quality oxide thin films for micribolometer

Similar Documents

Publication Publication Date Title
Wang et al. Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer
KR100925214B1 (en) Bolometer and manufacturing method thereof
KR100983818B1 (en) Resistive materials for bolometer, bolometer for infrared detector using the materials, and method for preparing the same
US5393351A (en) Multilayer film multijunction thermal converters
US7790226B2 (en) Pyrolyzed thin film carbon
US9212950B2 (en) Microbolometer for infrared detector or terahertz detector and method for manufacturing the same
CN101774530B (en) Microbolometer and preparation method thereof
US7238941B2 (en) Pyrolyzed-parylene based sensors and method of manufacture
KR101498522B1 (en) Fabrication method of high quality oxide thin films for micribolometer
US8053730B2 (en) Infrared sensor and method of fabricating the same
CN109813447B (en) Uncooled infrared focal plane integrated with broadband artificial surface and manufacturing method thereof
WO2018058450A1 (en) Pixel for uncooled infrared focal plane detector and preparation method therefor
KR101130263B1 (en) Method for manufacturing uncooled infrared sensor using parylene
KR20080052169A (en) Bolometer and method of manufacturing the same
McGee et al. Fabrication of phase change microstring resonators via top down lithographic techniques: incorporation of VO 2/TiO 2 into conventional processes
Inomata et al. Evaluation of piezoresistive property of vanadium oxide thin film deposited by sputtering
KR100906152B1 (en) Resistive Materials for Microbolometer, Method for Preparation of Resistive Materials and Microbolometer Containing the Same
CN205892743U (en) Porous carbon nanometer film and infrared micro -bolometer thereof
US11054311B1 (en) Thermal radiation detectors with carbon-nanotube-based optical absorbers
Alkorjia et al. Metasurface Enabled Uncooled Silicon Germanium Oxide Infrared Microbolometers for Long Wave Infrared Detection (2023)
Zhao et al. Preparation and characterization of lead zirconate titanate thin films grown by RF magnetron sputtering for pyroelectric infrared detector arrays
US9130081B2 (en) Bolometer having absorber with pillar structure for thermal shorting
CA3087748C (en) Thermal radiation detectors with carbon-nanotube-based optical absorbers
WO2022087782A1 (en) Pressure sensor based on zinc oxide nanowires and manufacturing method therefor
Wang et al. Reactive ion beams sputtering of vanadium oxides films for uncooled microbolometer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150227

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160223

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170223

Year of fee payment: 6