KR101127956B1 - Method for manufacturing material for hydrogen storage containing graphite powder and material for hydrogen storage manufactured by the same - Google Patents

Method for manufacturing material for hydrogen storage containing graphite powder and material for hydrogen storage manufactured by the same Download PDF

Info

Publication number
KR101127956B1
KR101127956B1 KR1020090081160A KR20090081160A KR101127956B1 KR 101127956 B1 KR101127956 B1 KR 101127956B1 KR 1020090081160 A KR1020090081160 A KR 1020090081160A KR 20090081160 A KR20090081160 A KR 20090081160A KR 101127956 B1 KR101127956 B1 KR 101127956B1
Authority
KR
South Korea
Prior art keywords
hydrogen storage
graphite powder
graphite
reaction vessel
present
Prior art date
Application number
KR1020090081160A
Other languages
Korean (ko)
Other versions
KR20110023344A (en
Inventor
박수진
김병주
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020090081160A priority Critical patent/KR101127956B1/en
Priority to PCT/KR2010/001601 priority patent/WO2011025110A1/en
Publication of KR20110023344A publication Critical patent/KR20110023344A/en
Application granted granted Critical
Publication of KR101127956B1 publication Critical patent/KR101127956B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0021Carbon, e.g. active carbon, carbon nanotubes, fullerenes; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

본 발명은 흑연 분말을 함유하는 수소 저장용 소재의 제조 방법과 그 방법으로 제조한 수소 저장 소재에 관한 것으로, 보다 구체적으로는 흑연을 볼 밀링으로 기계적 분쇄하여 수소저장능을 향상시킨 흑연분말을 함유하는 수소 저장용 소재를 제조하는 방법 및 상기의 방법에 의하여 제조되어 수소저장능이 향상된 흑연분말을 포함한 수소저장 소재에 관한 것이다. 본 발명에 의할 경우 수소저장매체의 수소저장능력을 대폭 향상시킬 수 있게 된다.The present invention relates to a method for producing a hydrogen storage material containing graphite powder and to a hydrogen storage material prepared by the method, and more specifically, to graphite powder mechanically pulverized by ball milling to contain a graphite powder which improves hydrogen storage capacity. It relates to a method for producing a hydrogen storage material and to a hydrogen storage material prepared by the above method including a graphite powder with improved hydrogen storage capacity. According to the present invention it is possible to significantly improve the hydrogen storage capacity of the hydrogen storage medium.

수소 저장능, 수소 저장 소재, 볼 밀링 Hydrogen storage capacity, hydrogen storage material, ball milling

Description

흑연분말을 함유하는 수소 저장용 소재의 제조방법 및 이에 의해 제조된 수소 저장용 소재{METHOD FOR MANUFACTURING MATERIAL FOR HYDROGEN STORAGE CONTAINING GRAPHITE POWDER AND MATERIAL FOR HYDROGEN STORAGE MANUFACTURED BY THE SAME}METHOD FOR MANUFACTURING MATERIAL FOR HYDROGEN STORAGE CONTAINING GRAPHITE POWDER AND MATERIAL FOR HYDROGEN STORAGE MANUFACTURED BY THE SAME}

본 발명은 기계적 가공을 이용한 수소 저장 물질의 제조 방법에 관한 것으로, 상세하게는 흑연을 가공하여 수소저장능을 증대시킨 수소 저장용 소재의 제조방법과 제조된 수소 저장용 소재에 관한 것이다.The present invention relates to a method for producing a hydrogen storage material using mechanical processing, and more particularly, to a method for producing a hydrogen storage material and a hydrogen storage material manufactured by increasing the hydrogen storage capacity by processing graphite.

최근 산업이 고도화됨에 따라 화석연료의 사용량이 현저하게 증가하게 되어 지구 온난화 등의 문제가 크게 대두되고 있다. 이에 따라 화석연료를 대체할 수 있는 새로운 친환경적 에너지원의 개발이 절실히 요구되고 있다. 부각되고 있는 대체에너지원 중의 하나가 수소에너지이다. 현재까지 개발된 수소저장 방법으로는 저온 액체수소저장, 고압 기체수소저장, 수소저장합금, 및 흡착을 이용한 방법 등이다. 이중 저온 액체수소저장은 에너지 밀도는 고압 기체수소저장에 비해 4-5배 높은 에 너지 밀도를 나타내지만 수소 kg당 액화에 약 10-14kWh의 전력이 소비되므로 에너지 소비량이 매우 크고, 증발에 의한 수소의 손실량이 매우 크다는 단점이 있다. 또한, 수소저장합금의 경우 상온에서 20-40atm이하의 압력으로 수소를 안전하게 저장할 수 있지만, 무게가 무겁고 가격이 비싸며 수소저장능력에서도 가솔린이나 디젤보다 떨어지고, 가역적 수소저장에 어려움이 있다. 고압 기체수소저장의 경우 700기압 이상의 고압으로 저장해야 경제성을 확보할 수 있기 때문에 고압에 견딜 수 있는 용기의 사용이 필수적이며 수소의 누출(leak)로 인한 폭발 위험이 상시 존재하므로 안전성에 문제가 있다. 따라서, 흡착법을 이용하여 상온 및 상대적 저압 (100기압)에서 수소를 저장할 기술의 필요성이 부각되었다. Recently, as the industry is advanced, the use of fossil fuels has increased significantly, causing problems such as global warming. Accordingly, there is an urgent need to develop new environmentally friendly energy sources that can replace fossil fuels. One of the emerging alternative energy sources is hydrogen energy. The hydrogen storage methods developed to date include low temperature liquid hydrogen storage, high pressure gas hydrogen storage, hydrogen storage alloys, and adsorption using adsorption. Low-temperature liquid hydrogen storage has an energy density of 4-5 times higher than that of high-pressure gas hydrogen storage, but consumes about 10-14 kWh of electricity per kg of hydrogen. There is a disadvantage that the loss amount is very large. In addition, the hydrogen storage alloy can safely store hydrogen at a pressure of 20-40 atm or less at room temperature, but the weight is heavy and expensive, and even in the hydrogen storage capacity is lower than gasoline or diesel, there is difficulty in reversible hydrogen storage. In the case of high pressure gas hydrogen storage, it is necessary to use a container that can withstand high pressure because it needs to be stored at a high pressure of 700 atm or higher, and there is a safety problem because there is always a risk of explosion due to leakage of hydrogen. . Thus, the need for a technique to store hydrogen at room temperature and relative low pressure (100 atmospheres) using the adsorption method has been highlighted.

다공성 탄소재료는 그 구조 안에 미세기공을 다수 포함하고 있어 비표면적이 매우 넓어서 종래부터 다양한 가스의 흡착재로서 활용되어 왔다. 특히 탄소재료는 기공구조의 제어가 가능하여 가스의 입자경에 따른 기공구조의 설계를 통한 성능개선에 용이하다. 또한, 표면에 최외곽 수소를 다수 가지고 있어, 각종 표면처리를 통해 다양한 관능기의 부여가 가능하며, 이를 통해 극성가스에 대해서 선택적인 흡착능의 부여도 가능하다.Porous carbon materials contain a large number of micropores in their structure and have a very large specific surface area, which has been utilized as an adsorbent for various gases. In particular, the carbon material can control the pore structure, and is easy to improve performance through the design of the pore structure according to the particle diameter of the gas. In addition, it has a plurality of outermost hydrogen on the surface, it is possible to give a variety of functional groups through various surface treatment, through which it is possible to give a selective adsorption capacity for polar gas.

탄소를 이용한 수소저장은 고압수소 및 액화수소저장에 비해서 안전할 뿐만 아니라 가격적으로도 저렴하며, 무엇보다 반응이 가역적이어서 반영구적으로 사용할 수 있다는 장점을 가진다.Hydrogen storage using carbon is not only safer than high pressure hydrogen and liquefied hydrogen storage, but also inexpensive, and most of all, the reaction is reversible and thus can be used semi-permanently.

하지만, 순수한 탄소재료 자체로는 수소분자와의 친화력이 부족할 뿐만 아니라 수소분자에 대한 탄소재료의 낮은 흡착에너지로 상온에서 수소저장은 기대에 크 게 못 미치는 현실이다. However, pure carbon material itself lacks affinity with hydrogen molecules, and hydrogen storage at room temperature is far below expectations due to low adsorption energy of carbon material to hydrogen molecules.

흑연은 수평방향의 층상구조를 가진 탄소재료로 각 층간이 물리적 결합으로 이루어져 있어 일정한 힘이 가해질 경우 층간 구조의 변형, 즉 벌어짐, 박리 등이 발생할 수 있다. 이러한 성질을 이용하여 적절한 처리기법을 이용할 경우 원하는 기공 및 구조의 설계가 가능하다. Graphite is a carbon material having a layered structure in the horizontal direction, and each layer is composed of physical bonds, and thus, when a constant force is applied, the graphite may be deformed, that is, delamination or peeling. Using these properties, it is possible to design the desired pore and structure by using the proper treatment technique.

본 발명자들은 이러한 문제를 해결하기 위해 예의 노력한 결과, 천연흑연을 일정한 조건에서 볼 밀링(ball milling) 방법으로 분쇄하면 새로운 기공의 생성 및 수소흡착점의 노출 등이 발생하게 되어 흑연의 수소저장능을 큰 폭으로 상승시킬 수 있음을 확인함으로써 본 발명을 완성하였다. As a result of our diligent efforts to solve this problem, the present inventors have crushed natural graphite by a ball milling method under certain conditions to generate new pores and to expose hydrogen adsorption points, thereby improving the hydrogen storage ability of graphite. This invention was completed by confirming that it can raise significantly.

따라서, 본 발명의 목적은 볼 밀링 방법으로 기계적 분쇄한 흑연 분말을 함유하는 수소 저장용 소재의 제조 방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a method for producing a hydrogen storage material containing graphite powder mechanically ground by a ball milling method.

또한, 본 발명의 다른 목적은 볼 밀링 방법으로 기계적 분쇄한 흑연 분말을 함유하는 수소 저장용 소재를 제공하는 것이다.Another object of the present invention is to provide a hydrogen storage material containing graphite powder mechanically pulverized by a ball milling method.

본 발명의 목적 및 장점은 하기의 발명의 상세한 설명, 청구의 범위 및 도면에 의해 더욱 명확하게 된다.The objects and advantages of the present invention will become more apparent from the following detailed description, claims and drawings.

상기와 같은 목적을 달성하기 위하여, 본 발명은 밀폐된 반응용기에 흑연과 볼을 투입하고 볼 밀링시켜 분쇄하는 단계; 및 분쇄되어 얻어지는 흑연 분말을 회수하는 단계를 포함하는 흑연분말을 함유하는 수소 저장용 소재의 제조 방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of pulverizing the graphite and the ball into a sealed reaction vessel and ball milling; And it provides a method for producing a hydrogen storage material containing a graphite powder comprising the step of recovering the graphite powder obtained by grinding.

또한, 본 발명은 밀폐된 반응 용기에 흑연을 볼 밀링 방법으로 기계적 분쇄하는 단계; 및 분쇄되어 얻어지는 흑연 분말을 회수하는 단계를 포함하여 제조되는 흑연분말을 함유하는 수소 저장용 소재를 제공한다.In addition, the present invention comprises the steps of mechanically grinding the graphite in a sealed reaction vessel by a ball milling method; And it provides a hydrogen storage material containing the graphite powder produced by the step of recovering the graphite powder obtained by grinding.

본 발명은 미래의 에너지원으로 각광받고 있는 수소 에너지의 실질적인 사용을 가능하게 하는 기술로써 수소 저장에 필요한 에너지 절감 및 안정성 확보가 가능하다는 장점을 지니고 있다. The present invention has the advantage that it is possible to secure the energy saving and stability required for hydrogen storage as a technology that enables the practical use of hydrogen energy, which has been spotlighted as a future energy source.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 밀폐된 반응용기에 흑연과 볼을 투입하고 볼 밀링시켜 분쇄하는 단계; 및 분쇄되어 얻어지는 흑연 분말을 회수하는 단계를 포함하는 흑연분말을 함유하는 수소 저장용 소재의 제조 방법을 제공한다.The present invention comprises the steps of putting graphite and balls in a sealed reaction vessel and milling by ball milling; And it provides a method for producing a hydrogen storage material containing a graphite powder comprising the step of recovering the graphite powder obtained by grinding.

본 발명의 반응용기 내부의 환경은 비활성가스 또는 활성 가스를 투입하여 유지하며, 비활성가스로는 질소, 헬륨 또는 아르곤 등을 투입하는 것이 바람직하고, 활성 가스로는 산소 또는 암모니아 등을 투입하는 것이 바람직하나, 이에 제한되지 않는다.The environment inside the reaction vessel of the present invention is maintained by adding an inert gas or active gas, it is preferable to add nitrogen, helium or argon as the inert gas, oxygen or ammonia is preferably added as the active gas, This is not restrictive.

본 발명의 "흑연"이란 볼 밀링에 사용될 수 있는 모든 종류의 흑연을 포함하는 의미로서 사용된다. 그러므로 상기 흑연은 인조 흑연이든 천연 흑연이든, 천연 흑연이라면 토상 흑연이든 인상 흑연이든 그것이 볼 밀링에 사용될 수 있는 한 그러한 모든 종류의 흑연을 포함하는 의미로서 이해돼야 한다.The term "graphite" of the present invention is used as meaning including all kinds of graphite which can be used for ball milling. Therefore, the graphite should be understood as including all kinds of graphite as long as it can be used for ball milling, whether artificial graphite or natural graphite, or earth graphite if it is natural graphite or impression graphite.

또한, 상기 흑연은 볼 밀링되어진 흑연 분말을 포함한다.The graphite also includes graphite powder that has been ball milled.

그러므로 본 발명의 흑연 분말은 이미 볼 밀링되어진 흑연 분말을 다시 볼 밀링시켜 얻어지는 흑연 분말도 포함하는 의미로서 이해되어 진다.Therefore, the graphite powder of the present invention is understood as a meaning including the graphite powder obtained by ball milling the graphite powder which has already been ball milled.

본 발명의 흑연의 상은 분말(powders), 박편(flakes) 또는 판상(plates) 형태인 것이 바람직하나, 이에 제한되지는 않는다.The phase of the graphite of the present invention is preferably in the form of powders, flakes or plates, but is not limited thereto.

본 발명의 볼은 1 내지 20 mm 의 직경, 바람직하게는 1 내지 10mm 의 직경을 사용하고, 알루미나(alumina), 철(steel), 카올린(kaolin), 지르코늄(zirconium) 또는 규산염(silicate)이 소재인 것을 사용하나 반응시에 파손이 일어나지 않는 재질이면 상기의 소재에 제한되지 않는다.The ball of the present invention uses a diameter of 1 to 20 mm, preferably a diameter of 1 to 10 mm, and alumina, iron, kaolin, zirconium or silicate is used. It is not limited to the material described above as long as it is a material that does not cause breakage during reaction.

본 발명의 용기에 투입되는 볼/흑연의 부피비(v/v)는 0.5 내지 5, 바람직하게는 1 내지 2로 한다.The volume ratio (v / v) of the balls / graphite to be put into the container of the present invention is 0.5 to 5, preferably 1 to 2.

한편, 본 발명의 흑연 분말의 제조에는 볼 밀링 방법(Ball Milling Process)을 사용하였는데, 여기서 볼 밀링 방법이란 금속이나 세라믹 등의 분말 입자를 다수의 볼(ball)과 함께 용기 내에 장입시켜 분말 입자를 혼합함과 동시에 볼들의 접촉 또는 볼들과 용기 사이의 접촉에 의해 상기 분말 입자들을 서로 압착하면서 그 압착된 것들을 다시 분쇄하는 과정을 반복함으로써 높은 기계적 에너지를 가하는 공정을 말한다. 이러한 볼 밀링 방법은 미세 분말을 얻기 위한 기계적 분쇄화(Mechanical Grinding)나 기계적 합금화(Mechanical Alloying)에 사용되어 왔다.On the other hand, the ball milling process (Ball Milling Process) was used to manufacture the graphite powder of the present invention, wherein the ball milling method is a powder particles such as a metal or a ceramic powder is charged with a plurality of balls (ball) in a container to It refers to a process of applying high mechanical energy by repeating the process of crushing the compressed particles again by pressing the powder particles with each other by contacting the balls or contact between the balls and the container while mixing. This ball milling method has been used for mechanical grinding or mechanical alloying to obtain fine powder.

이러한 볼 밀링에 의하여 가해지는 기계적 에너지는 볼 밀링 속도(장비의 운전 속도로서 볼 밀링이 이루어지는 용기의 공전 속도를 의미한다). 볼 밀링 시간, 볼과 원료의 부피비, 및/또는 볼 크기 등의 변수에 따라서 달라질 수 있는데, 본 발명의 실시예에서는 용기 상태가 질소, 산소 또는 암모니아 가스를 투입한 상태이고 상온(room temperature)인 25℃ 상태에서 자체 제작한 볼 밀(Ball Mill) 장치를 사용하여 흑연을 다음과 같은 조건으로 볼 밀링시켰다.The mechanical energy exerted by such ball milling is the ball milling speed (the running speed of the machine, which means the idle speed of the vessel in which the ball milling takes place). It may vary depending on variables such as ball milling time, volume ratio of the ball and the raw material, and / or ball size. In an embodiment of the present invention, the container state is nitrogen, oxygen, or ammonia gas, and room temperature. Graphite was ball milled under the following conditions using a ball mill device manufactured in-house at 25 ° C.

본 발명의 볼 밀링은 100 내지 2000 rpm의 속도, 바람직하게는 100 내지 1500rpm 의 속도로 반응시킨다. 반응조 안의 스틸 바의 회전속도가 너무 낮은 rpm에서는 반응시간이 너무 오래 걸리며, 너무 높은 rpm 에서는 볼이 손상되어 최종 흑연 분말 내의 이물질의 함유량이 증가하기 때문이다.The ball milling of the present invention is reacted at a speed of 100 to 2000 rpm, preferably at a speed of 100 to 1500 rpm. The reaction time takes too long at rpm of the steel bar in the reactor is too low, the ball is damaged at too high rpm to increase the content of foreign matter in the final graphite powder.

본 발명의 볼 밀링은 1분 내지 120분의 시간 동안 반응시킨다. 1분 미만에서는 볼과 흑연의 접촉시간이 짧아 반응이 거의 일어나지 않으며, 120분이 넘어가면 볼밀링에 의하여 과도한 열적, 기계적 에너지가 공급되어 완전히 미분말화되므로 수소 저장에는 적합하지 않다.The ball milling of the present invention is reacted for a time of 1 minute to 120 minutes. If the contact time between the ball and graphite is less than 1 minute, the reaction hardly occurs. If it is more than 120 minutes, excessive thermal and mechanical energy is supplied by the ball milling to completely fine powder, which is not suitable for hydrogen storage.

본 발명의 볼 밀링은 상온 내지 100℃의 온도에서 반응시킨다. 본 발명의 "상온"이란 물질의 상태가 일정하게 유지되는 상태의 온도를 의미하며, 일반적으로 15 내지 25℃를 말하나, 물질의 상태가 유지된다면 상기 온도에 한정하지 않는다.Ball milling of the present invention is reacted at a temperature of room temperature to 100 ℃. The term "room temperature" of the present invention means a temperature in a state in which a state of a material is kept constant, and generally refers to 15 to 25 ° C, but is not limited to the temperature if the state of a material is maintained.

또한, 본 발명은 밀폐된 반응 용기에 흑연을 볼 밀링 방법으로 기계적 분쇄하는 단계; 및 분쇄되어 얻어지는 흑연 분말을 회수하는 단계를 포함하여 제조되는 흑연분말을 함유하는 수소 저장용 소재를 제공한다.In addition, the present invention comprises the steps of mechanically grinding the graphite in a sealed reaction vessel by a ball milling method; And it provides a hydrogen storage material containing the graphite powder produced by the step of recovering the graphite powder obtained by grinding.

본 발명의 "흑연분말"은 흑연 층간격이 제어되어 수소 저장값이 흑연분말 총 중량에 대하여 0.01 내지 10중량%, 바람직하게는 0.2 내지 5중량 %이다.In the "graphite powder" of the present invention, the graphite layer interval is controlled so that the hydrogen storage value is 0.01 to 10% by weight, preferably 0.2 to 5% by weight, based on the total weight of the graphite powder.

본 발명의 반응 용기 내부의 분위기, 흑연의 상, 볼의 직경과 재질, 볼 밀링 속도, 볼 밀링 시간, 볼 밀링 온도는 제조방법에서 상술한 바와 같다.The atmosphere inside the reaction vessel of the present invention, the graphite phase, the diameter and material of the ball, the ball milling speed, the ball milling time, and the ball milling temperature are as described above in the production method.

이하, 실시예에 의하여 본 발명을 더욱 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

본 발명에 있어서 각각의 특성 값들은 다음 방법에 의하여 측정하였다.In the present invention, each characteristic value was measured by the following method.

측정예Measurement example 1. 반응 전후의 흑연 분말 부피의 측정방법.(%) 1.Measurement method of graphite powder volume before and after reaction. (%)

제조된 기능성 흑연의 물성으로서, 흑연분말의 부피증대율은 원재료인 천연흑연 1g의 부피와 볼 밀 처리된 뒤의 부피를 메스실린더를 사용하여 비교 측정하여 단위 무게당 부피의 비를 통해 측정하였다. As the physical properties of the prepared functional graphite, the volume increase rate of the graphite powder was measured by comparing the volume of natural graphite (1 g), a raw material, and the volume after ball milling with a measuring cylinder, using a ratio of volume per unit weight.

측정예Measurement example 2. 반응 전후의 흑연 분말 부피의 수소 저장량(중량 %) 측정방법. 2. Method of measuring hydrogen storage amount (% by weight) of graphite powder volume before and after reaction.

기능성 흑연의 수소저장양 측정을 위해 각 샘플은 573K에서 잔류 압력을 10-3 torr 이하로 유지한 상태로 6 h 동안 탈기시킨 후, BEL-HP (BEL Japan)을 이용하여 298K, 100기압의 조건에서 수소저장량을 측정하였다. 수소저장측정방식은 step-by-step 방식을 사용하였으며, 1회 평균 시료량은 0.5g으로 하였다.In order to measure the hydrogen storage of functional graphite, each sample was degassed for 6 h while the residual pressure was maintained at 10 −3 torr or lower at 573 K, followed by conditions of 298 K and 100 atm using BEL-HP (BEL Japan). The hydrogen storage amount was measured at. The hydrogen storage measurement method was a step-by-step method, and the average sample volume was 0.5g.

실시예Example 1.  One.

천연흑연 10g을 500ml 부피의 볼 밀 반응용기에 넣고 직경 10mm의 알루미나 볼(alumina ball)을 250 ml 까지 채운 뒤, 용기 안을 N2로 퍼징하였다. 반응용기의 회전은 100 rpm으로 고정하여 약 1분간 밀링 처리하였으며, 그때 온도는 25℃였다.10 g of natural graphite was placed in a ball mill reaction vessel having a volume of 500 ml and filled with 250 ml of alumina balls having a diameter of 10 mm, and then purged with N 2 in the vessel. The reaction vessel was rotated at 100 rpm and milled for about 1 minute, at which time the temperature was 25 ° C.

본 실시예에서 처리 전과 처리 후를 살펴보면 흑연분말의 부피 증대율은 5%였고, 수소저장량이 50%(0.2 wt%→0.3 wt%)가 증가하였다(표 1, 표 2).In the present example, before and after the treatment, the volume increase rate of the graphite powder was 5%, and the hydrogen storage amount increased by 50% (0.2 wt% → 0.3 wt%) (Table 1 and Table 2).

실시예Example 2.  2.

천연흑연 10 g을 500 ml 부피의 볼 밀 반응용기에 넣고 직경 10 mm의 알루미나 볼(alumina ball)을 250 ml 까지 채운 뒤, 용기 안을 N2로 퍼징하였다. 반응용기의 회전은 200 rpm으로 고정하여 약 10분간 밀링 처리하였으며, 그때 온도는 25℃였다.10 g of natural graphite was placed in a 500 ml volume ball mill reaction vessel, filled with alumina balls (alumina balls) having a diameter of 10 mm to 250 ml, and the vessel was purged with N 2 . The reaction vessel was fixed at 200 rpm and milled for about 10 minutes, at which time the temperature was 25 ° C.

본 실시예에서 처리 전과 처리 후를 살펴보면 흑연분말의 부피 증대율은 50%였고, 수소저장량이 400%(0.2 wt%→1.0 wt%)가 증가하였다(표 1, 표 2).In the present Example, before and after the treatment, the volume increase rate of the graphite powder was 50%, and the hydrogen storage amount increased by 400% (0.2 wt% → 1.0 wt%) (Table 1 and Table 2).

실시예Example 3. 3.

천연흑연 10 g을 500 ml 부피의 볼 밀 반응용기에 넣고 직경 10 mm의 알루미나 볼(alumina ball)을 250 ml 까지 채운 뒤, 용기 안을 N2로 퍼징하였다. 반응용기 의 회전은 400 rpm으로 고정하여 약 30분간 밀링 처리하였으며, 그때 온도는 25℃였다.10 g of natural graphite was placed in a 500 ml volume ball mill reaction vessel, filled with alumina balls (alumina balls) having a diameter of 10 mm to 250 ml, and the vessel was purged with N 2 . The reaction vessel was fixed at 400 rpm and milled for about 30 minutes, at which time the temperature was 25 ° C.

본 실시예에서 처리 전과 처리 후를 살펴보면 흑연분말의 부피 증대율은 140%였고, 수소저장량이 750%(0.2 wt%→1.7 wt%)가 증가하였다(표 1, 표 2).In the present embodiment, before and after the treatment, the volume increase rate of the graphite powder was 140%, and the hydrogen storage amount was increased by 750% (0.2 wt% → 1.7 wt%) (Table 1 and Table 2).

실시예Example 4. 4.

천연흑연 10 g을 500 ml 부피의 ball mill 반응용기에 넣고 직경 10 mm의 알루미나 볼(alumina ball)을 250 ml 까지 채운 뒤, 용기 안을 N2로 퍼징하였다. 반응용기의 회전은 800 rpm으로 고정하여 약 60분간 밀링 처리하였으며, 그때 온도는 25℃였다.10 g of natural graphite was placed in a 500 ml ball mill reaction vessel and filled with 250 ml of alumina balls having a diameter of 10 mm, and then purged with N 2 in the vessel. The reaction vessel was fixed at 800 rpm and milled for about 60 minutes, at which time the temperature was 25 ° C.

본 실시예에서 처리 전과 처리 후를 살펴보면 흑연분말의 부피 증대율은 270%였고, 수소저장량이 1650%(0.2 wt%→3.5 wt%)가 증가하였다(표 1, 표 2).In the present example, before and after the treatment, the volume increase rate of the graphite powder was 270%, and the hydrogen storage amount was increased by 1650% (0.2 wt% → 3.5 wt%) (Table 1 and Table 2).

실시예Example 5. 5.

천연흑연 10 g을 500 ml 부피의 ball mill 반응용기에 넣고 직경 10 mm의 알루미나 볼(alumina ball)을 250 ml 까지 채운 뒤, 용기 안을 N2로 퍼징하였다. 반응용기의 회전은 1500 rpm으로 고정하여 약 120분간 밀링 처리하였으며, 그때 온도는 25℃였다.10 g of natural graphite was placed in a 500 ml ball mill reaction vessel and filled with 250 ml of alumina balls having a diameter of 10 mm, and then purged with N 2 in the vessel. The reaction vessel was fixed at 1500 rpm and milled for about 120 minutes, at which time the temperature was 25 ° C.

본 실시예에서 처리 전과 처리 후를 살펴보면 흑연분말의 부피 증대율은 300%였고, 수소저장량이 1500%(0.2 wt%→3.2 wt%)가 증가하였다(표 1, 표 2).In the present Example, before and after the treatment, the volume increase rate of the graphite powder was 300%, and the hydrogen storage amount was increased by 1500% (0.2 wt% → 3.2 wt%) (Table 1 and Table 2).

실시예Example 6. 6.

천연흑연 10 g을 500 ml 부피의 ball mill 반응용기에 넣고 직경 10 mm의 알루미나 볼(alumina ball)을 250 ml 까지 채운 뒤, 용기 안을 O2로 퍼징하였다. 반응용기의 회전은 800 rpm으로 고정하여 약 60분간 밀링 처리하였으며, 그때 온도는 25℃였다.10 g of natural graphite was placed in a ball mill reaction vessel having a volume of 500 ml, and filled with 250 ml of alumina balls having a diameter of 10 mm, and then purged with O 2 . The reaction vessel was fixed at 800 rpm and milled for about 60 minutes, at which time the temperature was 25 ° C.

본 실시예에서 처리 전과 처리 후를 살펴보면 흑연분말의 부피 증대율은 290%였고, 수소저장량이 2150%(0.2 wt%→4.5 wt%)가 증가하였다(표 1, 표 2).In the present Example, before and after the treatment, the volume increase rate of the graphite powder was 290%, and the hydrogen storage amount was increased by 2150% (0.2 wt% → 4.5 wt%) (Table 1 and Table 2).

실시예Example 7. 7.

천연흑연 10 g을 500 ml 부피의 ball mill 반응용기에 넣고 직경 10 mm의 알루미나 볼(alumina ball)을 250 ml 까지 채운 뒤, 용기 안을 NH3로 퍼징하였다. 반응용기의 회전은 800 rpm으로 고정하여 약 60분간 밀링 처리하였으며, 그때 온도는 25℃였다.10 g of natural graphite was placed in a 500 ml ball mill reaction vessel and filled with 250 ml of alumina balls having a diameter of 10 mm, and then purged with NH 3 . The reaction vessel was fixed at 800 rpm and milled for about 60 minutes, at which time the temperature was 25 ° C.

본 실시예에서 처리 전과 처리 후를 살펴보면 흑연분말의 부피 증대율은 290%였고, 수소저장량이 1950%(0.2 wt%→4.0 wt%)가 증가하였다(표 1, 표 2).In the present Example, before and after the treatment, the volume increase rate of the graphite powder was 290%, and the hydrogen storage amount was increased by 1950% (0.2 wt% → 4.0 wt%) (Table 1 and Table 2).

실시예Example 8. 8.

천연흑연 10 g을 500 ml 부피의 볼밀 반응용기에 넣고 직경 10 mm의 철볼(steel ball)을 250 ml 까지 채운 뒤, 용기 안을 N2로 퍼징하였다. 반응용기의 회전은 800 rpm으로 고정하여 약 60분간 밀링 처리하였으며, 그때 온도는 25℃였다.10 g of natural graphite was placed in a ball mill reaction vessel having a volume of 500 ml, filled with steel balls having a diameter of 10 mm up to 250 ml, and the inside of the vessel was purged with N 2 . The reaction vessel was fixed at 800 rpm and milled for about 60 minutes, at which time the temperature was 25 ° C.

본 실시예에서 처리 전과 처리 후를 살펴보면 흑연분말의 부피 증대율은 270%였고, 수소저장량이 1700%(0.2 wt%→3.6 wt%)가 증가하였다(표 1, 표 2).In the present example, before and after the treatment, the volume increase rate of the graphite powder was 270%, and the hydrogen storage amount was increased by 1700% (0.2 wt% → 3.6 wt%) (Table 1 and Table 2).

실시예Example 9. 9.

천연흑연 10 g을 500 ml 부피의 볼 밀 반응용기에 넣고 직경 10 mm의 지르코늄 규산염 볼(zirconium silicate ball)을 250 ml 까지 채운 뒤, 용기 안을 N2로 퍼징하였다. 반응용기의 회전은 800 rpm으로 고정하여 약 60분간 밀링 처리하였으며, 그때 온도는 25℃였다.10 g of natural graphite was placed in a 500 ml ball mill reaction vessel, filled with 10 ml of zirconium silicate balls with a diameter of 250 mm, and the vessel was purged with N 2 . The reaction vessel was fixed at 800 rpm and milled for about 60 minutes, at which time the temperature was 25 ° C.

본 실시예에서 처리 전과 처리 후를 살펴보면 흑연분말의 부피 증대율은 270%였고, 수소저장량이 1600%(0.2 wt%→3.4 wt%)가 증가하였다(표 1, 표 2).In the present example, before and after the treatment, the volume increase rate of the graphite powder was 270%, and the hydrogen storage amount was increased by 1600% (0.2 wt% → 3.4 wt%) (Table 1 and Table 2).

실시예Example 10. 10.

천연흑연 10 g을 500 ml 부피의 볼 밀 반응용기에 넣고 직경 10 mm의 카올린 볼(kaolin ball)을 250 ml 까지 채운 뒤, 용기 안을 N2로 퍼징하였다. 반응용기의 회전은 800 rpm으로 고정하여 약 60분간 밀링 처리하였으며, 그때 온도는 25℃였다. 10 g of natural graphite was placed in a 500 ml volume ball mill reaction vessel, filled with 250 ml of kaolin balls having a diameter of 10 mm, and the vessel was purged with N 2 . The reaction vessel was fixed at 800 rpm and milled for about 60 minutes, at which time the temperature was 25 ° C.

본 실시예에서 처리 전과 처리 후를 살펴보면 흑연분말의 부피 증대율은 270%였고, 수소저장량이 1650%(0.2 wt%→3.5 wt%)가 증가하였다(표 1, 표 2).In the present example, before and after the treatment, the volume increase rate of the graphite powder was 270%, and the hydrogen storage amount was increased by 1650% (0.2 wt% → 3.5 wt%) (Table 1 and Table 2).

비교예Comparative example 1. One.

천연흑연 10 g을 500 ml 부피의 볼 밀 반응용기에 넣고 직경 10 mm의 카올린 볼(kaolin ball)을 250 ml 까지 채운 뒤, 용기 안을 N2로 퍼징하였다. 반응용기의 회전은 800 rpm으로 고정하여 약 600분간 밀링 처리하였으며, 그때 온도는 25℃였다.10 g of natural graphite was placed in a 500 ml volume ball mill reaction vessel, filled with 250 ml of kaolin balls having a diameter of 10 mm, and the vessel was purged with N 2 . The reaction vessel was fixed at 800 rpm and milled for about 600 minutes, at which time the temperature was 25 ° C.

본 비교예에서 처리 전과 처리 후를 살펴보면 흑연분말의 부피 증대율은 10%였고, 흑연 sheet의 완전박리로 인해 기공이 형성되지 않아 수소저장량은 증가하지 않았다(표 1, 표 2).In this comparative example, before and after the treatment, the volume increase rate of the graphite powder was 10%, and since the pores were not formed due to the complete peeling of the graphite sheet, the hydrogen storage amount did not increase (Table 1 and Table 2).

비교예Comparative example 2. 2.

천연흑연 10 g을 500 ml 부피의 볼 밀 반응용기에 넣고 직경 10 mm의 kaolin ball을 250 ml 까지 채운 뒤, 용기 안을 N2로 퍼징하였다. 반응용기의 회전은 10 rpm으로 고정하여 약 600분간 밀링 처리하였으며, 그때 온도는 25℃였다.10 g of natural graphite was placed in a ball mill reaction vessel having a volume of 500 ml, 10 ml of kaolin balls with a diameter of 250 ml were filled, and the inside of the vessel was purged with N 2 . The reaction vessel was fixed at 10 rpm and milled for about 600 minutes, at which time the temperature was 25 ° C.

본 비교예에서 처리 전과 처리 후를 살펴보면 흑연분말의 부피 증대율은 5% 미만이었고, 수소저장량은 증가하지 않았다(표 1, 표 2).In the comparative example, the volume increase rate of the graphite powder was less than 5% and the hydrogen storage amount did not increase (Table 1, Table 2).

Figure 112009053369953-pat00001
Figure 112009053369953-pat00001

Figure 112009053369953-pat00002
Figure 112009053369953-pat00002

이상으로 본 발명 내용의 특정 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 것은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. Having described specific parts of the present invention in detail, it will be apparent to those of ordinary skill in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

도 1은 볼 밀(Ball mill)의 개념도이다.1 is a conceptual diagram of a ball mill.

도 2는 볼 밀(Ball mill) 반응 용기 안의 세부 모습이다. 2 is a detailed view of the ball mill reaction vessel.

Claims (17)

(a) 밀폐된 반응용기에 흑연과 볼을 투입하는 단계; (a) injecting graphite and balls into the sealed reaction vessel; (b) 상기 (a)단계에서 흑연과 볼이 투입된 반응용기에 활성가스를 퍼징하는 단계;(b) purging an active gas into the reaction vessel into which graphite and balls are introduced in step (a); (c) 상기 (b)단계에 의해 활성가스가 퍼징된 반응용기를 800rpm으로 60분간 밀링 처리하는 단계;를 포함하는 흑연분말을 함유하는 수소 저장용 소재의 제조방법.(c) milling the reaction vessel in which the active gas is purged by the step (b) at 800 rpm for 60 minutes; manufacturing method of a hydrogen storage material containing graphite powder. 삭제delete 제 1항에 있어서, The method of claim 1, 상기 (b)단계에서 반응용기에 투입되는 활성가스는 산소 또는 암모니아인 것을 특징으로 하는 흑연분말을 함유하는 수소 저장용 소재의 제조방법.The active gas introduced into the reaction vessel in the step (b) is a method for producing a hydrogen storage material containing graphite powder, characterized in that the oxygen or ammonia. 제 1항에 있어서, The method of claim 1, 상기 흑연은 분말(powders), 박편(flakes) 또는 판상(plates) 형태인 것을 특징으로 하는 흑연분말을 함유하는 수소 저장용 소재의 제조 방법.The graphite is a method of producing a hydrogen storage material containing graphite powder, characterized in that the powder (flakes), flakes (flakes) or plate (plates) form. 삭제delete 제 1항에 있어서, The method of claim 1, 상기 볼은 알루미나(alumina), 철(steel), 카올린(kaolin), 지르코늄(zirconium) 또는 규산염(silicate)이 소재인 것을 특징으로 하는 흑연분말을 함유하는 수소 저장용 소재의 제조방법.The ball is a method for producing a hydrogen storage material containing graphite powder, characterized in that the alumina (alumina), iron (steel), kaolin (kaolin), zirconium (zirconium) or silicate (silicate) material. 제 1항에 있어서, The method of claim 1, 상기 볼/흑연의 부피비(v/v)는 0.5 내지 5인 것을 특징으로 하는 흑연분말을 함유하는 수소 저장용 소재의 제조방법.The volume ratio (v / v) of the ball / graphite is a method for producing a hydrogen storage material containing graphite powder, characterized in that 0.5 to 5. 삭제delete 삭제delete 제 1항에 있어서, The method of claim 1, 상기 볼 밀링은 상온 내지 100℃의 온도에서 처리하는 것을 특징으로 하는 흑연분말을 함유하는 수소 저장용 소재의 제조방법.The ball milling method for producing a hydrogen storage material containing graphite powder, characterized in that the treatment at a temperature of room temperature to 100 ℃. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020090081160A 2009-08-31 2009-08-31 Method for manufacturing material for hydrogen storage containing graphite powder and material for hydrogen storage manufactured by the same KR101127956B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020090081160A KR101127956B1 (en) 2009-08-31 2009-08-31 Method for manufacturing material for hydrogen storage containing graphite powder and material for hydrogen storage manufactured by the same
PCT/KR2010/001601 WO2011025110A1 (en) 2009-08-31 2010-03-15 Fabrication method of hydrogen storage material which contains graphite powder and fabricated hydrogen storage material thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090081160A KR101127956B1 (en) 2009-08-31 2009-08-31 Method for manufacturing material for hydrogen storage containing graphite powder and material for hydrogen storage manufactured by the same

Publications (2)

Publication Number Publication Date
KR20110023344A KR20110023344A (en) 2011-03-08
KR101127956B1 true KR101127956B1 (en) 2012-03-23

Family

ID=43628179

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090081160A KR101127956B1 (en) 2009-08-31 2009-08-31 Method for manufacturing material for hydrogen storage containing graphite powder and material for hydrogen storage manufactured by the same

Country Status (2)

Country Link
KR (1) KR101127956B1 (en)
WO (1) WO2011025110A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110282601B (en) * 2019-08-06 2022-06-17 贵州工程应用技术学院 Device is prepared to hydrogen storage material that graphite alkene mixes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047843A (en) * 2001-08-06 2003-02-18 Nippon Telegr & Teleph Corp <Ntt> Carbon material for hydrogen storage and method of producing the same
JP2003334438A (en) * 2002-05-20 2003-11-25 Toyota Motor Corp Method for producing gas adsorbent

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028483A (en) * 2000-07-13 2002-01-29 Toyota Central Res & Dev Lab Inc Hydrogen gas occluding substance
US6596055B2 (en) * 2000-11-22 2003-07-22 Air Products And Chemicals, Inc. Hydrogen storage using carbon-metal hybrid compositions
KR20020069328A (en) * 2001-02-24 2002-08-30 홍병선 Carbon nanotubes for fuel cells and manufacturing method thereof
US7384574B2 (en) * 2003-07-17 2008-06-10 Westinghouse Savannah River Co. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047843A (en) * 2001-08-06 2003-02-18 Nippon Telegr & Teleph Corp <Ntt> Carbon material for hydrogen storage and method of producing the same
JP2003334438A (en) * 2002-05-20 2003-11-25 Toyota Motor Corp Method for producing gas adsorbent

Also Published As

Publication number Publication date
WO2011025110A1 (en) 2011-03-03
KR20110023344A (en) 2011-03-08

Similar Documents

Publication Publication Date Title
Dehouche et al. Influence of cycling on the thermodynamic and structure properties of nanocrystalline magnesium based hydride
CN106115675B (en) A kind of method for preparing mesoporous graphene
Yang et al. Experimental studies on the poisoning properties of a low-plateau hydrogen storage alloy LaNi4. 3Al0. 7 against CO impurities
JPS62216901A (en) Cryogenic storage method and device for hydrogen by carbon for assisting metal
JP5443352B2 (en) Porous carbon material and method for producing the same
Huang et al. Increased air stability and decreased dehydrogenation temperature of LiBH 4 via modification within poly (methylmethacrylate)
Duan et al. Novel core–shell structured MgH 2/AlH 3@ CNT nanocomposites with extremely high dehydriding–rehydriding properties derived from nanoconfinement
El-Eskandarany et al. Bulk nanocomposite MgH2/10 wt%(8 Nb2O5/2 Ni) solid-hydrogen storage system for fuel cell applications
Zacharias et al. The impact of manufacturing methods on the performance of pelletized, iron-based oxygen carriers for fixed bed chemical looping hydrogen in long term operation
Kazakov et al. Experimental investigations of AB5-type alloys for hydrogen separation from biological gas streams
Ulmer et al. Performance improvement of V–Fe–Cr–Ti solid state hydrogen storage materials in impure hydrogen gas
KR20060125838A (en) Hydrogen storage materials having excellent kinetics, capacity, and cycle stability
Sofianos et al. Novel synthesis of porous aluminium and its application in hydrogen storage
Kazakov et al. AB5-type intermetallic compounds for biohydrogen purification and storage
JP2018047453A (en) Spherical phenol resin activated carbon for methane occlusion and method for producing the same, and methane occlusion material using activated carbon and methane occlusion method using activated carbon
KR101127956B1 (en) Method for manufacturing material for hydrogen storage containing graphite powder and material for hydrogen storage manufactured by the same
Huang et al. Fundamental understanding of electrochemical catalytic performance of carbonized natural wood: wood species and carbonization temperature
Cao et al. Structure and hydrogen storage performance of LaNi4. 25Al0. 75 alloy
KR100937517B1 (en) Porous carbon material, method for preparing the same and use of the same for hydrogen storage
RU2686898C1 (en) Method of producing magnesium hydride for chemical generator of hydrogen
Mandal et al. Effect of pore structure on the thermal stability of shape-stabilized phase change materials
JP2013168343A (en) Solid electrolyte, method for producing the same, and secondary battery provided with the same
US20070059859A1 (en) Hydrogen reservoir based on silicon nano-structures
CN113562691A (en) New application of nano black phosphorus in hydrogen storage field
CN106335900B (en) A method of active carbon hydrogen storage material is prepared using mangosteen shell microwave modification

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141204

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160309

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170214

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180308

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190312

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200309

Year of fee payment: 9