KR101118758B1 - The decomposition method of carbon-dioxide using paper mill sludge - Google Patents

The decomposition method of carbon-dioxide using paper mill sludge Download PDF

Info

Publication number
KR101118758B1
KR101118758B1 KR1020090081809A KR20090081809A KR101118758B1 KR 101118758 B1 KR101118758 B1 KR 101118758B1 KR 1020090081809 A KR1020090081809 A KR 1020090081809A KR 20090081809 A KR20090081809 A KR 20090081809A KR 101118758 B1 KR101118758 B1 KR 101118758B1
Authority
KR
South Korea
Prior art keywords
carbon dioxide
sludge
paper
paper sludge
reactor
Prior art date
Application number
KR1020090081809A
Other languages
Korean (ko)
Other versions
KR20110023985A (en
Inventor
고재철
한신호
Original Assignee
한국산업기술대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국산업기술대학교산학협력단 filed Critical 한국산업기술대학교산학협력단
Priority to KR1020090081809A priority Critical patent/KR101118758B1/en
Publication of KR20110023985A publication Critical patent/KR20110023985A/en
Application granted granted Critical
Publication of KR101118758B1 publication Critical patent/KR101118758B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6522Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Treatment Of Sludge (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 제지슬러지를 이용하여 이산화탄소를 분해하는 방법으로, 더욱 구체적으로는 제지슬러지와 이산화탄소를 반응시키는 것을 포함하는 이산화탄소의 분해 방법에 관한 것이다.The present invention relates to a method for decomposing carbon dioxide using paper sludge, and more particularly, to a method for decomposing carbon dioxide including reacting paper sludge with carbon dioxide.

본 발명에 따르면, 제지공장에서 폐수처리 후 발생하는 제지슬러지를 재활용함으로써 효율적으로 이산화탄소 분해를 할 수 있다. 또한, 이산화탄소의 발생을 감소시킴으로 지구 온난화를 예방할 수 있으며, 제지슬러지를 활용하여 이산화탄소 분해가 가능한 순환자원으로 재활용성을 확보할 수 있다.According to the present invention, it is possible to efficiently decompose carbon dioxide by recycling paper sludge generated after wastewater treatment in a paper mill. In addition, it is possible to prevent global warming by reducing the generation of carbon dioxide, and to ensure recyclability as a circulating resource that can decompose carbon dioxide by using paper sludge.

제지슬러지, 지구온난화, 이산화탄소 Paper sludge, global warming, carbon dioxide

Description

제지슬러지를 이용한 이산화탄소 분해 방법 {The decomposition method of carbon-dioxide using paper mill sludge}The decomposition method of carbon-dioxide using paper mill sludge}

본 발명은 제지슬러지를 이용하여 이산화탄소를 분해하는 방법으로, 더욱 구체적으로는 제지슬러지와 이산화탄소를 반응시키는 것을 포함하는 이산화탄소의 분해 방법에 관한 것이다.The present invention relates to a method for decomposing carbon dioxide using paper sludge, and more particularly, to a method for decomposing carbon dioxide including reacting paper sludge with carbon dioxide.

21세기는 환경 친화적인 에너지만이 세계 환경 규제 속에서 살아남을 수 있다고 한다. 에너지와 환경측면에서 지구의 기후변화에 가장 많은 영향을 미치는 것이 온실가스이다. 최근 온실가스에 의한 기후변화와 온난화 문제는 지구 규모의 환경문제라는 관점에서 많은 관심을 모으고 있으며, 전 세계적인 차원에서 문제를 해결하기 위해 노력하고 있다. 온실가스로는 이산화탄소(CO2), 메탄(CH4), 이산화질소(N2O), 프레온가스(CFCs), 육불화황(SF6) 등이 있다. 이들 중 지구 온난화에 가장 큰 영향을 미치는 것은 이산화탄소로써 대기중 농도는 약 370 ppm으로 지구 온난화 기여도가 약 55% 이상을 차지하고 있고, 2100년의 이산화탄소 농도는 약 570 ~ 970 ppm(1750년 때의 이산화탄소 농도인 280 ppm의 90 ~ 250%) 정도 될 것으로 예상하고 있다 [Hashimoto, et al., 1999; Choi, et al., 2005]. 우리나라는 에너지소비량이 세계 10위, 석유수입 세계 4위, 이산화탄소 배출은 9위로 온실가스 감축의무를 부담하라는 압력에서 자유롭지 않다. 온실가스를 1990년 수준으로 줄이는 교토의정서의 의무 이행국에 포함되지 않았지만, 2차 의무이행 기간(2013 ~ 2017년)에는 감축의무를 피하기 어렵기 때문에 대책을 세우지 않는다면 국가적 위기를 맞을 수도 있다. 따라서 에너지절약 및 대체에너지원을 활용한 이산화탄소의 저감기술이 활발히 개발되고 있으며, 이산화탄소 배출량 감소, 고정배출원에서 이산화탄소 분리 및 회수, 촉매 화학적 고정화에 의한 유용한 화학물질로 전환, 미생물에 의한 이산화탄소의 생물학적 고정화 그리고 발생원에 실제 적용 가능한 흡착 분리 및 수소환원 분해 고정 등의 연구가 진행 중에 있다 [Shin, et al., 2002; Kim, et al., 2005; Youssef, et al., 2009].In the 21st century, only environmentally friendly energy can survive global environmental regulations. In terms of energy and environment, greenhouse gases are the ones that have the greatest impact on global climate change. Recently, the problem of climate change and warming caused by greenhouse gases has attracted much attention in terms of environmental problems on a global scale, and is trying to solve the problem on a global level. Greenhouse gases include carbon dioxide (CO 2 ), methane (CH 4 ), nitrogen dioxide (N 2 O), freon gases (CFCs), and sulfur hexafluoride (SF 6 ). Among them, the biggest impact on global warming is carbon dioxide. Atmospheric concentration is about 370 ppm, which contributes more than 55% of global warming. In 2100, carbon dioxide concentration is about 570-970 ppm (carbon dioxide at 1750). Concentrations of 90 to 250% of the concentration of 280 ppm) (Hashimoto, et al., 1999; Choi, et al., 2005]. Korea's energy consumption is ranked 10th in the world, 4th in the world of oil imports, and 9th in carbon dioxide emissions. Although not included in the mandate of the Kyoto Protocol to reduce greenhouse gases to 1990 levels, it is difficult to avoid the reduction obligations during the second mandatory period (2013 to 2017), so a national crisis may be encountered if no countermeasures are taken. Therefore, technologies to reduce carbon dioxide using energy saving and alternative energy sources are being actively developed, reducing carbon dioxide emissions, separating and recovering carbon dioxide from fixed sources, converting to useful chemicals by catalytic chemical immobilization, and biological immobilization of carbon dioxide by microorganisms. In addition, studies on adsorptive separation and hydrogen reduction cracking, which are practically applicable to the source, are underway [Shin, et al., 2002; Kim, et al., 2005; Youssef, et al., 2009].

해양오염방지에 관한 런던협약이 2004년 말 발효될 계획이었으나, 국내 산업여건의 미성숙 등을 사유로 대응기간을 다소 확보해두고는 있으나 폐기물 주요관리 대상업종인 제지, 염색, 피혁 및 의약업계가 그 영향권에 있으며 민감한 업종들로 여겨지고 있다.Although the London Convention on Marine Pollution Prevention was planned to come into effect at the end of 2004, the response period has been secured somewhat due to immaturity of domestic industrial conditions, but the paper, dyeing, leather and pharmaceutical industries, which are major waste management industries, It is in the sphere of influence and is considered a sensitive sector.

공정슬러지로서 비교적 많은 발생량을 나타내고 있는 제지슬러지는 2006년 기준 약 100만톤 정도가 발생하였고, 이 중에서 64%가 자체소각 후 매립되었으며, 17%는 해양배출, 16%는 재활용으로 처리되었다. 고유가시대에 경제적인 이유로 자 체 소각양이 점점 감소하고 있으며, 처리비용이 가장 적게 소요되는 연안 해역으로의 해양배출 방식으로 처리하는 양이 증대되고 있다. 그러나 해양배출이 전면 금지될 경우에 기존의 열처리공정과 관리형 매립에는 비용이 많이 들어 관련업체의 경제적 부담이 가중 될 것으로 예상된다. 이러한 상황에서 제지슬러지의 재활용을 위해서 포장재 금속분 첨가제, 유해가스 흡착보조제, 시멘트 혼화제 및 철 산화물을 이용한 이산화탄소 분해 등 다양한 분야에서 재활용을 위한 방안이 고려되고 있다 [Ju, et al., 2003; Yutaka, et al., 1992; Shin, et al., 2003].Paper sludge, which represents a relatively high amount of process sludge, generated about 1 million tons as of 2006, of which 64% was landfilled after incineration, 17% was discharged from the ocean and 16% was recycled. In the high oil price period, the amount of self-incineration is gradually decreasing due to economic reasons, and the amount of treatment by ocean discharge into the coastal sea where the treatment cost is the least is increasing. However, if ocean emissions are totally banned, existing heat treatment processes and managed landfills will be expensive, adding to the economic burden on related companies. In this situation, the recycling of paper sludge has been considered in various fields such as packaging metal powder additive, harmful gas adsorption aid, cement admixture and carbon dioxide decomposition using iron oxide [Ju, et al., 2003; Yutaka, et al., 1992; Shin, et al., 2003].

특히, 제지슬러지를 활용한 이산화탄소 분해 연구는 전량 해양배출이 이뤄지고 있는 폐기물을 재활용할 수 있다는 장점을 가지고 있다. 또한, 폐수 처리 후 침전물로 배출되어 제조되는 제지슬러지의 경우, 일반적으로 이산화탄소 처리에 사용되는 다양한 금속 촉매가 자연적으로 첨가되기 때문에 이산화탄소 처리용 원료로서 가치가 높다고 할 수 있다. 그러나 현재까지는 제지슬러지를 이용한 이산화탄소 처리용 원료로서의 활용 연구는 거의 진행되고 있지 않은 상태이다.In particular, the study of carbon dioxide decomposition utilizing paper sludge has the advantage of recycling the wastes from which the total amount of ocean emissions are generated. In addition, in the case of paper sludge produced by being discharged as a sediment after wastewater treatment, various metal catalysts generally used for treating carbon dioxide are naturally added, and thus, it is highly valuable as a raw material for treating carbon dioxide. However, until now, research on utilization of paper sludge as a raw material for treating carbon dioxide has not been conducted.

이에, 본 발명자들은 상기 종래기술들의 문제점들을 극복하기 위하여 예의 연구노력한 결과, 제지슬러지와 이산화탄소를 반응시켜 이산화탄소 분해를 수행하는 경우, 효율적으로 이산화탄소가 분해됨을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made intensive studies to overcome the problems of the prior art, and when the reaction of paper sludge and carbon dioxide to perform carbon dioxide decomposition, it was confirmed that the carbon dioxide is effectively decomposed, and completed the present invention.

따라서, 본 발명의 주된 목적은 제지슬러지를 이용하여 효율적으로 이산화탄소를 분해하는 방법을 제공하는데 있다.Therefore, the main object of the present invention is to provide a method for efficiently decomposing carbon dioxide using paper sludge.

본 발명의 한 양태에 따르면, 본 발명은 제지슬러지(Paper Mill Sludge; PMS)와 이산화탄소(CO2)를 반응시키는 것을 포함하는 이산화탄소의 분해 방법을 제공한다.According to an aspect of the present invention, the present invention provides a method for decomposing carbon dioxide comprising reacting paper mill sludge (PMS) with carbon dioxide (CO 2 ).

본 발명의 방법에 있어서, 상기 제지슬러지는 제지공장의 펜톤산화 처리공정이 포함된 폐수처리에서 발생되는 제지슬러지인 것을 특징으로 한다. 상기 펜톤산화는 유기물을 분해하기 위하여 산업폐수 처리에 오래전부터 사용된 방법이다. 펜톤산화 공정은 매립지 침출수, 유기산 세정약품, 난분해성 유기물질을 완전 산화하여 중간 생성물질인 아세트산 등 유기산 생성과정을 거쳐 이산화탄소와 물 등의 최종 산물로 전환시키는 공정이다. 제지공장에서 발생되는 폐수 중에 함유된 유기물을 산화 시키기 위하여 펜톤산화 공정을 적용하고 있으며, 이 과정에서 발생되는 펜톤처리 공정슬러지에는 다량의 철(Fe) 성분이 함유되어 있다.In the method of the present invention, the paper sludge is characterized in that the paper sludge generated in the wastewater treatment including the fenton oxidation treatment process of the paper mill. Fenton oxidation is a method that has been used for a long time in the treatment of industrial wastewater to decompose organic matter. The fenton oxidation process is a process of completely oxidizing landfill leachate, organic acid cleaning chemicals, and hardly decomposable organic substances and converting them into final products such as carbon dioxide and water through the process of generating organic acids such as acetic acid, an intermediate product. Fenton oxidation process is applied to oxidize the organic matter contained in the wastewater generated in the paper mill. Fenton treatment sludge generated in this process contains a large amount of iron (Fe).

본 발명에서 이용한 제지슬러지는 반월?시화 산업단지내에 위치한 제지회사의 3차 폐수처리 후 발생된 탈수케이크 상태의 최종슬러지이다.Paper sludge used in the present invention is the final sludge of the dewatered cake generated after the third wastewater treatment of the paper company located in Banwol-Sihwa Industrial Complex.

본 발명의 방법에 있어서, 상기 제지슬러지는 철성분에 망간, 크롬, 니켈, 구리 등의 전이금속이 함유된 스피넬상의 마그네타이트(Spinel phase magnetite)인 것을 특징으로 한다. Masahiro(1993) 및 Yang(2000) 등에 의해 산소결함 Mn-페라이트(ferrites)의 이산화탄소 분해거동과 금속첨가 마그네타이트를 합성하여 이산화탄소를 분해하는 연구 등에서 Mn, Cu 등 전이금속류가 결합된 Fe3O4를 이용하여 높은 분해능을 나타내었다고 보고하였다. 상기 용어 “산소결함”은 산소가 일부분 빠져있는 빈자리를 나타내는 것을 의미한다. 따라서 본 발명의 제지슬러지는 스피넬상의 마그네타이트로서 다양한 전이금속류를 함유하고 있기 때문에 이산화탄소 분해를 위하여 충분한 재활용성을 확보할 수 있을 것으로 판단된다.In the method of the present invention, the papermaking sludge is a spinel magnetite (Spinel phase magnetite) containing a transition metal such as manganese, chromium, nickel, copper in the iron component. Fe 3 O 4 combined with transition metals such as Mn and Cu was synthesized by Masahiro (1993) and Yang (2000) to decompose carbon dioxide decomposition behavior of oxygen-deficient Mn-ferrites and metal-added magnetite. Reported high resolution. The term "oxygen deficiency" is meant to denote a void where oxygen is partially missing. Therefore, since the paper sludge of the present invention contains various transition metals as the spinel-type magnetite, it is determined that sufficient recyclability can be secured for carbon dioxide decomposition.

본 발명의 방법에 있어서, 하기의 단계를 포함하는 것을 특징으로 한다.In the method of the present invention, the method comprises the following steps.

a) 제지슬러지를 건조하는 단계;a) drying the paper sludge;

b) 상기 건조된 제지슬러지를 반응기에 충진하는 단계;b) filling the dried papermaking sludge into a reactor;

c) 상기 반응기에 수소를 주입하여 수소환원을 실시하는 단계;c) injecting hydrogen into the reactor to perform hydrogen reduction;

d) 수소주입을 차단하고 이산화탄소를 주입하는 단계;d) blocking hydrogen injection and injecting carbon dioxide;

e) 제지슬러지와 이산화탄소를 반응시키는 단계.e) reacting the paper sludge with carbon dioxide.

본 발명의 방법에 있어서, 상기 c)단계의 수소 주입은 100 ~ 300 cc/min으로 1 ~ 5시간 동안 주입하는 것을 특징으로 한다. 또한 상기 수소를 흘려보내면서 수소환원을 실시하였으며, 상기 수소환원은 도 2의 water trap 장치에 생기는 응축수의 유무로 확인하였다. 상기 수소주입을 300 cc/min이상으로 할 경우, 반응기 내부 에서 수소의 유속이 너무 빨라 반응기 한쪽으로만 수소가 흐르는 현상이 발생하여 시료(제지슬러지) 전체에 대해서 수소환원이 잘 이뤄지지 않을 수 있다. 또한 시료량과 비교하여 수소의 양이 너무 작아도 수소환원 반응이 제대로 이루어 지지 않을 수 있다.In the method of the present invention, the hydrogen injection in step c) is characterized in that the injection for 1 to 5 hours at 100 ~ 300 cc / min. In addition, hydrogen reduction was performed while flowing the hydrogen, and the hydrogen reduction was confirmed by the presence of condensate generated in the water trap apparatus of FIG. 2. When the hydrogen injection is 300 cc / min or more, the flow rate of hydrogen in the reactor is so fast that hydrogen flows only to one side of the reactor, so that hydrogen reduction may not be performed well for the entire sample (paper sludge). In addition, even if the amount of hydrogen is too small compared to the sample amount, the hydrogen reduction reaction may not be properly performed.

본 발명의 방법에 있어서, 상기 c)단계의 수소환원 조건은 250 ~ 450 ℃의 온도범위에서 수행하는 것을 특징으로 한다. 상기 온도범위 외의 조건에서 수소환원을 수행할 경우, 반응기 내에서 수소가 원활이 흐르지 못하는 현상이 발생하여 수소환원이 제대로 이뤄지지 않을 수 있다.In the method of the present invention, the hydrogen reduction conditions of step c) is characterized in that carried out in a temperature range of 250 ~ 450 ℃. When hydrogen reduction is performed under conditions outside the temperature range, hydrogen may not flow smoothly in the reactor, and hydrogen reduction may not be performed properly.

본 발명의 방법에 있어서, 상기 d)단계의 이산화탄소 주입은 반응기 내부의 압력이 10 ~ 20 psi(pound/inch2)가 될 때까지 주입하는 것을 특징으로 한다. 반응기 내부의 압력이 상기 범위가 되도록 이산화탄소를 주입할 경우, 이산화탄소가 분해되면서 산소결함되어 있는 부분에 산소가 채워지고 탄소는 표면에 흡착된다. 반면, 반응기 내부의 압력이 10 psi 이하 또는 20 psi 이상이 되도록 이산화탄소를 주입할 경우, 제지슬러지와 이산화탄소 사이의 반응이 원활이 이뤄지지 못할 수 있다.In the method of the present invention, the carbon dioxide injection in step d) is characterized in that the injection until the pressure inside the reactor is 10 ~ 20 psi (pound / inch 2 ). When carbon dioxide is injected such that the pressure inside the reactor is within the above range, oxygen is filled in the oxygen-deficient part while carbon dioxide is decomposed, and carbon is adsorbed on the surface. On the other hand, when injecting carbon dioxide such that the pressure inside the reactor is less than 10 psi or more than 20 psi, the reaction between the paper sludge and carbon dioxide may not be smoothly performed.

본 발명의 방법에 있어서, 상기 e)단계의 이산화탄소 분해 조건은 250 ~ 450 ℃의 온도범위에서 수행하는 것을 특징으로 한다. 상기 온도범위는 수소환원시의 온도조건과 동일하다. 또한 상기 온도범위는 제지슬러지를 이용하여 이산화탄소 분해를 수행하기 전, 먼저 산화철(Fe3O4)로 이산화탄소 분해를 수행하여 약 400 ℃에 서 이산화탄소 분해가 일어나는 것을 확인하고, 산화철에 다른 금속(Cu, Zn 등)을 첨가하였을 경우 약 350 ℃에서 이산화탄소 분해가 일어나는 것을 확인한 후, 이를 기준으로 설정하였다. 따라서 본 발명에서는 350 ℃를 기준으로 250 ~ 450 ℃의 온도범위를 설정하여 실험을 수행하였다.In the method of the present invention, the carbon dioxide decomposition conditions of step e) is characterized in that carried out at a temperature range of 250 ~ 450 ℃. The temperature range is the same as the temperature condition at the time of hydrogen reduction. In addition, the temperature range is confirmed that before the carbon dioxide decomposition using papermaking sludge, carbon dioxide decomposition occurs first with iron oxide (Fe 3 O 4 ) occurs at about 400 ℃, and other metals (Cu , Zn, etc.) was added, and after confirming that carbon dioxide decomposition occurred at about 350 ℃, it was set based on this. Therefore, in the present invention, the experiment was performed by setting the temperature range of 250 ~ 450 ℃ based on 350 ℃.

보다 바람직하게, 상기의 온도범위에서 50 ℃ 간격으로 시행한다. 본 발명의 이산화탄소 분해 조건은 하기의 표 1과 같다.More preferably, it is carried out at 50 ℃ interval in the above temperature range. Carbon dioxide decomposition conditions of the present invention are shown in Table 1 below.

[표 1. 이산화탄소 분해 조건][Table 1. Carbon Dioxide Decomposition Conditions]

Figure 112009053715914-pat00001
Figure 112009053715914-pat00001

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. These embodiments are only for illustrating the present invention, and thus the scope of the present invention is not construed as being limited by these embodiments.

실시예 1. 제지슬러지(PMS)의 건조 및 보관.Example 1 Drying and Storage of Paper Sludge (PMS)

본 발명에 이용한 제지슬러지(Paper Mill Sludge; PMS)는 반월?시화 산업단지 내에 위치한 제지회사의 3차 폐수처리 후 발생된 탈수케이크 상태의 최종슬러지이다. 상기 최종슬러지를 열풍건조기에서 105 ℃로 24시간 동안 건조 후, 마노막자 사발을 이용하여 미세한 분말상태로 제조하였으며 데시케이터에 보관하여 사용하였다.Paper mill sludge (PMS) used in the present invention is the final sludge of the dewatered cake produced after the third wastewater treatment of the paper company located in Banwol-Sihwa Industrial Complex. After drying the final sludge for 24 hours at 105 ℃ in a hot air dryer, was prepared in a fine powder state using a bowl of agate mortar was used to store in a desiccator.

실시예 2. 제지슬러지(PMS)의 물성 분석.Example 2 Analysis of Physical Properties of Paper Sludge (PMS)

2-1. 입도 분석2-1. Particle size analysis

제지슬러지의 물리화학적 특성을 살펴보기 위하여 제지슬러지의 평균 입자크기와 입자크기 분포를 입도분석기(SALD-2001, Shimadzu, Japan)를 사용하여 측정하였다. 측정결과는 도 1에 나타내었다. To investigate the physicochemical properties of paper sludge, the average particle size and particle size distribution of paper sludge were measured using a particle size analyzer (SALD-2001, Shimadzu, Japan). The measurement results are shown in FIG. 1.

도 1에 나타낸 것과 같이, 본 발명의 이산화탄소 분해용으로 사용되는 제지슬러지의 평균입도는 약 8 μm정도임을 확인할 수 있었다.As shown in Figure 1, the average particle size of the papermaking sludge used for the decomposition of carbon dioxide of the present invention was confirmed to be about 8 μm.

2-2. 3성분(수분(WC), 회분(Ash), 휘발성고형분(VS)) 및 유기물함량(Organic Matter Content; OMC) 분석2-2. Analysis of three components (water (WC), ash (Ash), volatile solids (VS)) and organic matter content (OMC)

대부분의 슬러지는 유기물이 존재하고 있으며 건조?보관시 악취발생 등의 2차 환경오염을 발생시키는 요인이 된다. 이에 본 발명에 사용된 제지슬러지의 재활용을 위해 3성분 및 유기물함량을 폐기물공정시험법을 이용하여 분석하였다. 성분은 가연성분만의 물리적 조성을 고려한 값과 비가연성분을 포함하여 물리적 조성을 고려한 값으로 나누어 제시할 수 있다. 유기물함량은 제지슬러지를 강열감량하여 하기 수학식 1을 이용하여 계산하였다. 측정결과는 표 2에 나타내었다.Most sludge contains organic matter and causes secondary environmental pollution such as bad smell when dried and stored. In order to recycle the paper sludge used in the present invention, three components and organic matter contents were analyzed using a waste process test method. The component may be divided into a value considering the physical composition of only the combustible component and a value considering the physical composition including the non-flammable component. The organic matter content was calculated by using the following formula 1 by ignition loss of paper sludge. The measurement results are shown in Table 2.

<수학식 1>&Quot; (1) &quot;

Figure 112009053715914-pat00002
Figure 112009053715914-pat00002

Ma : PMS 무게(105 ℃에서 10 시간)Ma: PMS weight (10 hours at 105 ℃)

Mb : Ash(650 ℃에서 3 시간)Mb: Ash (3 hours at 650 ° C.)

[표 2. 3성분 및 유기물 함량][Table 2. Three Component and Organic Content]

Figure 112009053715914-pat00003
Figure 112009053715914-pat00003

표 2에 나타낸 것과 같이, 제지슬러지의 수분(WC), 회분(Ash) 및 가연분(Volatile Solids; VS)의 함량은 각각 70.72%, 19.76%, 9.52%로 나타났으며, 유기물함량은 약 32.52%로 무기물이 상대적으로 많은 것으로 측정되었다. 일반적으로 제지슬러지는 유기성 슬러지로 간주하고 있으나, 제지공장의 펜톤 산화 처리공정이 포함된 폐수처리에서 발생되는 최종슬러지는 무기성 슬러지로 분리되어야 할 것으로 판단된다.As shown in Table 2, the water (WC), ash (Ash) and flammable (Volatile Solids; VS) contents of the paper sludge were 70.72%, 19.76%, and 9.52%, respectively, and the organic matter content was about 32.52. The percentage of minerals was measured in%. Paper sludge is generally regarded as organic sludge, but final sludge from wastewater treatment including Fenton's oxidation process in paper mills should be separated into inorganic sludge.

2-3. 결정구조 분석2-3. Crystal structure analysis

제지슬러지의 결정구조를 분석하기 위하여 X-선 회절분석(XRD, Rigaku, D/Max-2000, Japan)을 실시하였다. 입사선과 반사면의 회절은 모두 같은 평면에 있으며 회절성과 입사선의 각은 2θ이다. 여기서 θ는 하기 수학식 2의 Bragg 법칙에 의해 구해진다.X-ray diffraction analysis (XRD, Rigaku, D / Max-2000, Japan) was performed to analyze the crystal structure of paper sludge. The diffraction of the incident line and the reflecting surface are both on the same plane, and the angle of diffraction and the incident line is 2θ. Θ is obtained by Bragg's law of the following equation.

<수학식 2><Equation 2>

Figure 112009053715914-pat00004
Figure 112009053715914-pat00004

여기서 n은 반사차수, λ는 파장, d는 결정내의 여러면의 면간거리를 나타낸다.Where n is the reflection order, λ is the wavelength, and d is the interplanar distance of various planes in the crystal.

제지슬러지의 결정구조는 JCPDS(Joint Committee on Powder Diffraction Standards) 카드를 이용하여 표준물질의 데이터 파일과 powder diffraction file(Alphabetical Indexes Inorganic Phase Sets 1-45)을 비교하여 분석하였다. 분석결과는 도 2에 나타내었다.The crystal structure of paper sludge was analyzed by comparing the data file of the standard material and the powder diffraction file (Alphabetical Indexes Inorganic Phase Sets 1-45) using the Joint Committee on Powder Diffraction Standards (JCPDS) card. The analysis results are shown in FIG. 2.

도 2에 나타낸 것과 같이, 제지슬러지의 XRD 결과를 JCPDS 카드와 비교하여 29.4°, 35.4°, 47.7°, 62.5°에서 Fe3O4(마그네타이트)의 주피크를 형성하고 있음을 확인할 수 있으며, 이는 펜톤 산화반응에 의하여, α-Fe2O3(헤머타이트(hematite)), α-Fe(α-iron) 등 다양한 산화철을 함유하고 있는 것으로 판단된다.As shown in FIG. 2, the XRD results of the paper sludge were compared with those of the JCPDS card to form a main peak of Fe 3 O 4 (magnetite) at 29.4 °, 35.4 °, 47.7 °, and 62.5 °. by the Fenton oxidation, it is expected to contain a variety of iron oxides such as α-Fe 2 O 3 (hematite (hematite)), α-Fe (α-iron).

또한, 분해 반응온도에 따른 XRD 패턴을 함께 진행하여 확인하였다. 저온인 250 ℃의 PMS01과 300 ℃의 PMS02에서는 피크의 변화가 거의 나타나지 않았지만, 온도가 가장 높은 450 ℃의 PMS05에서는 주 피크인 Fe3O4에서 α-Fe2O3로 상전이가 일어남을 확인할 수 있었다.In addition, the XRD pattern according to the decomposition reaction temperature was confirmed by proceeding together. In the low temperature PMS01 at 250 ℃ and PMS02 at 300 ℃ showed little change in the peak, the phase transition from the main peak Fe 3 O 4 to α-Fe 2 O 3 occurs in PMS05 at 450 ℃ the highest temperature there was.

2-4. 화학원소 조성비 분석2-4. Chemical element composition ratio analysis

제지슬러지의 화학원소 조성비를 측정하기 위하여 XRF(X-ray Fluorescence)(PW2404, Philips, Netherlands)분석을 수행하였다. 분석결과는 표 3에 나타내었다.X-ray Fluorescence (XRF) (PW2404, Philips, Netherlands) analysis was performed to determine the chemical element composition of the paper sludge. The analysis results are shown in Table 3.

[표 3. 제지슬러지의 화학원소 조성비][Table 3. Composition of Chemical Elements in Paper Sludge]

Figure 112009053715914-pat00005
Figure 112009053715914-pat00005

표 3에 나타낸 것과 같이, Fe가 82.6%로 매우 높게 나타남을 볼 수 있다. 이는 제지폐수 처리공정 중 펜톤 산화처리에 의한 산화철이 다량 검출되는 것으로 판단된다. 또한 Ca 8.11%, Al 3.68%로 비교적 높게 나타났으며, Mn, Cr, Ni 및 Cu 등의 전이금속류가 각각 0.39%, 0.39%, 0.22%, 0.13% 등으로 검출되었다.As shown in Table 3, it can be seen that Fe is very high as 82.6%. It is determined that a large amount of iron oxide is detected by the Fenton oxidation treatment in the papermaking wastewater treatment process. In addition, it was relatively high as Ca 8.11%, Al 3.68%, transition metals such as Mn, Cr, Ni and Cu were detected as 0.39%, 0.39%, 0.22%, 0.13%, respectively.

실시예 3. 이산화탄소(COExample 3. Carbon Dioxide (CO 22 ) 분해반응 및 분해율 측정.) Decomposition reaction and degradation rate measurement.

이산화탄소(CO2) 분해를 위한 실험장치는 도 3과 같이 구성하였다. The experimental apparatus for decomposing carbon dioxide (CO 2 ) was configured as shown in FIG. 3.

실시예 1에서 건조시킨 제지슬러지 2g을 스테인레스강으로 제작한 내경 1.5 cm, 길이가 6 cm인 원통형 반응기에 충진시킨 후, 원통형 전기로에 장착하였다. 반응기에 수소를 200 cc/min으로 3시간 동안 흘려보내면서 수소환원을 실시하였다. 수소환원 상태는 도 2의 water trap에 생기는 응축수의 유무로 확인하였다. 이후, 수소의 유입을 차단하고 흡입펌프로 반응기내부의 압력을 0 psi(진공상태)로 유지시킨 상태에서 압력이 14.7 psi정도가 될 때까지 이산화탄소를 반응기에 주입하였다. 이때 이산화탄소 분해 조건은 상기 표 1과 같으며, 시료(PMS01 ~ PMS05)를 수소환원할 때의 온도와 동일하게 250 ~ 450 ℃의 온도범위에서 50 ℃ 간격으로 실시하였다 [Tamura and Nishizawa, 1992; Kato, 1994]. 이산화탄소 분해율은 분해반응에 의한 반응기 내부의 압력강하가 시간에 따라 변화하는 것으로 확인하였으며, 반응기 내부의 압력이 일정해질 때까지 측정하였다. 측정결과는 도 4에 나타내었다.2 g of the papermaking sludge dried in Example 1 was filled in a cylindrical reactor having an inner diameter of 1.5 cm and a length of 6 cm made of stainless steel, and then mounted in a cylindrical electric furnace. Hydrogen reduction was carried out while flowing hydrogen into the reactor at 200 cc / min for 3 hours. Hydrogen reduction was confirmed by the presence of condensate in the water trap of FIG. Subsequently, carbon dioxide was injected into the reactor until the pressure was about 14.7 psi while the hydrogen was blocked and the pressure in the reactor was maintained at 0 psi (vacuum state) with the suction pump. At this time, the carbon dioxide decomposition conditions are shown in Table 1 above, and the samples (PMS01 to PMS05) were carried out at 50 ° C. intervals in the temperature range of 250 to 450 ° C. in the same manner as the temperature of hydrogen reduction [Tamura and Nishizawa, 1992; Kato, 1994]. Carbon dioxide decomposition rate was confirmed that the pressure drop in the reactor by the decomposition reaction changes with time, measured until the pressure in the reactor is constant. The measurement results are shown in FIG. 4.

반응기 내부의 시료를 수소로 환원하게 되면 하기 화학식 1의 MxFe3-xO4-δ와 같이 산소가 결함된 형태로 표현할 수 있으며, M은 전이금속류를 나타낸다(Yang, et al., 2000). 시료의 수소환원 여부는 수소환원시 반응기 외부로 응축수가 흐르는 것으로 확인할 수 있었다.When the sample inside the reactor is reduced with hydrogen, oxygen may be expressed in a form that is defective, such as M x Fe 3-x O 4-δ of Chemical Formula 1, and M represents a transition metal (Yang, et al., 2000). ). The hydrogen reduction of the sample was confirmed that the condensed water flows outside the reactor during hydrogen reduction.

<화학식 1><Formula 1>

MxFe3-xO4 + δH2 → MxFe3-xO4-δ + δH2O M x Fe 3-x O 4 + δ H 2 → M x Fe 3-x O 4-δ + δH 2 O

이산화탄소는 수소환원시 산소가 결함된 MxFe3-xO4-δ와 접촉하면, 하기 화학식 2와 같이 이산화탄소의 분해에 의한 산소가 불안정한 화합물인 MxFe3-xO4-δ의 산소빈자리(δ)에 채워지고 안정한 상태의 구조인 마그네타이트를 이루게되어 반응기 내부의 압력이 감소하게 된다.Carbon dioxide is a hydrogen when in contact with an oxygen-defect M x Fe 3-x O 4 -δ upon reduction, to the oxygen of the M x Fe 3-x O 4 -δ is oxygen by the decomposition of carbon dioxide labile compound such as formula (2) Filled in the vacancy (δ) to form a magnetite of a stable state structure to reduce the pressure inside the reactor.

<화학식 2><Formula 2>

MxFe3-xO4-δ + 1/2 δCO2 → MxFe3-xO4 + 1/2 δCM x Fe 3-x O 4-δ + 1/2 δ CO 2 → M x Fe 3-x O 4 + 1/2 δC

또한, 이산화탄소의 분해는 반응기내의 압력변화에 의하여 이루어지며, 하기 수학식 3에 의하여 분해효율을 계산할 수 있다.In addition, the decomposition of carbon dioxide is made by the pressure change in the reactor, it is possible to calculate the decomposition efficiency by the following equation (3).

<수학식 3>&Quot; (3) &quot;

Figure 112009053715914-pat00006
Figure 112009053715914-pat00006

P IN : 초기 압력 P IN : Initial pressure

P OUT : 반응 시간에 따른 방출 압력 P OUT : release pressure with reaction time

상기 수학식에 따라 계산한 결과, 도 4에 나타낸 것과 같이, 이산화탄소의 분해효율은 모든 온도에서 초기 10분 이내에서 급격하게 증가하였으며, 20분 이후부터는 분해효율의 증가율이 천천히 감소하는 경향을 보이고 있다. 이산화탄소의 분해효율을 약 60분 동안 측정한 결과, 250 ~ 400 ℃ 온도범위에서는 온도가 증가할수록 이산화탄소 분해율이 증가하여 PMS01에서 약 41%, PMS02에서 약 50%, PMS03 에서 약 62%, PMS04에서는 약 73%로 분해율이 높게 나타났다. 그러나, 수소환원 온도가 450 ℃인 PMS05에서는 약 35%로 분해효율이 크게 떨어짐을 확인할 수 있었다. 수소환원 온도가 증가 될수록 Fe3O4 상이 α-Fe2O3 또는 α-Fe 형태로의 상변화가 됨을 도 3에서 확인하였다. 이것은 Zhang 등(2000)이 보고한 Fe3O4 상이 수소환원 온도가 높아짐에 따라 상전이가 일어나 분해효율이 낮아졌음을 보고한 내용과 유사하게 나타났다. 따라서, 이산화탄소 분해율을 증가시키기 위해서는 수소환원 온도를 증가시켜야 하지만 450 ℃ 이상에서는 상대적으로 상변화가 크게 일어남에 따라 분해율이 떨어지는 것을 확인할 수 있었다. 또한 반응기내부의 분해반응이 진행되면서 70분 이후에는 PMS04에서 약 80%, PMS03에서는 약 84%의 분해효율이 나타남을 확인할 수 있었다.As a result of calculation according to the above equation, as shown in FIG. 4, the decomposition efficiency of carbon dioxide increased rapidly within the initial 10 minutes at all temperatures, and after 20 minutes, the rate of increase of the decomposition efficiency tended to decrease slowly. . As a result of measuring the decomposition efficiency of carbon dioxide for about 60 minutes, the decomposition rate of carbon dioxide increases with increasing temperature in the temperature range of 250 ~ 400 ℃, about 41% in PMS01, about 50% in PMS02, about 62% in PMS03, and about PMS04 The decomposition rate was high at 73%. However, in PMS05 having a hydrogen reduction temperature of 450 ° C., the decomposition efficiency was found to drop significantly to about 35%. It was confirmed in FIG. 3 that the Fe 3 O 4 phase was changed to α-Fe 2 O 3 or α-Fe form as the hydrogen reduction temperature was increased. This is similar to the report that Fe 3 O 4 phase reported by Zhang et al. (2000) reported that the phase transition occurred as the hydrogen reduction temperature increased, resulting in lower decomposition efficiency. Therefore, in order to increase the decomposition rate of carbon dioxide, the hydrogen reduction temperature should be increased, but it was confirmed that the decomposition rate was lowered as the phase change was relatively large at 450 ° C. or higher. In addition, as the decomposition reaction proceeded in the reactor, after 70 minutes, PMS04 showed about 80% and PMS03 showed about 84% decomposition efficiency.

이산화탄소의 분해반응속도는 산소이온의 이동도와 밀접한 관계가 있으며 [Tamura and Nishizawa, 1992], 이산화탄소가 분해되어 산소결함자리로의 산소이온의 이동도는 350 ℃에서 금속촉매내의 산소이온 이동도가 가장 빠른 것에 기인하는 것으로 사료된다.The decomposition reaction rate of carbon dioxide is closely related to the mobility of oxygen ions [Tamura and Nishizawa, 1992], and the mobility of oxygen ions to oxygen-deficient sites due to the decomposition of carbon dioxide is the highest in the metal catalyst at 350 ℃. It is believed to be due to the fast.

이산화탄소 분해반응이 진행되면서 발생되는 탄소는 제지슬러지의 표면에 흡착되어 있으며, 이때의 탄소는 활성이 우수하므로 반응기에서 제거하면 공기중의 산소와 반응하여 강한 불꽃을 내는 것을 육안으로 확인할 수 있었다.Carbon generated during the carbon dioxide decomposition reaction is adsorbed on the surface of the paper sludge, and the carbon at this time has excellent activity, and when removed from the reactor, it was confirmed that the reaction with oxygen in the air gave a strong flame.

실시예 4. 이산화탄소(COExample 4 Carbon Dioxide (CO) 22 ) 분해반응 전?후의 미세구조 관찰.) Observation of microstructure before and after decomposition reaction.

이산화탄소 분해반응 전?후의 제지슬러지의 미세구조를 관찰하기 위해, PMS04 시료(400 ℃)를 SEM(Scanning Electron Microscope, JSM-6300, JEOL, Japan) 분석하였다. SEM 이미지는 도 5에 나타내었다.In order to observe the microstructure of the paper sludge before and after the carbon dioxide decomposition reaction, PMS04 samples (400 ℃) was analyzed by SEM (Scanning Electron Microscope, JSM-6300, JEOL, Japan). SEM images are shown in FIG. 5.

도 5에 보이는 바와 같이, 고온에서 이산화탄소 분해반응이 진행되면서 제지슬러지의 결정은 입자성장 및 탄소의 흡착 등으로 벌크상태로 결정상이 바뀌면서 제지슬러지의 주요 결정상태인 Fe3O4가 Fe2O3, FeO 등으로 상전이가 형성되는 것으로 사료된다.As shown in FIG. 5, as the carbon dioxide decomposition reaction proceeds at a high temperature, the crystal phase of the paper sludge is changed to a bulk state due to particle growth and carbon adsorption, and thus Fe 3 O 4, which is the main crystal state of paper sludge, is Fe 2 O 3. It is thought that the phase transition is formed by FeO or the like.

이상 설명한 바와 같이, 본 발명에 따르면 제지공장에서 폐수처리 후 발생하는 제지슬러지를 재활용함으로써 효율적으로 이산화탄소를 분해할 수 있다. 따라서, 지구 온난화의 가장 큰 원인인 이산화탄소의 발생을 현저히 낮출 수 있으며, 제지슬러지를 활용하여 이산화탄소 분해가 가능한 순환자원으로 재활용성을 확보할 수 있다.As described above, according to the present invention, carbon dioxide can be efficiently decomposed by recycling the paper sludge generated after the wastewater treatment in the paper mill. Therefore, the generation of carbon dioxide, which is the biggest cause of global warming, can be significantly lowered, and recyclability can be secured as a circulating resource capable of decomposing carbon dioxide using paper sludge.

도 1은 제지슬러지의 입자분포도를 나타낸 것이다.Figure 1 shows the particle distribution of the papermaking sludge.

도 2는 제지슬러지의 XRD 패턴을 나타낸 것이다.2 shows an XRD pattern of paper sludge.

도 3은 이산화탄소 분해를 위한 실험장치를 도식화한 것이다.3 is a schematic diagram of an experimental apparatus for carbon dioxide decomposition.

도 4는 이산화탄소의 분해 효율 측정결과를 나타낸 것이다.Figure 4 shows the results of measuring the decomposition efficiency of carbon dioxide.

도 5는 이산화탄소 분해 반응 전(A)?후(B)의 PMS04의 SEM 이미지를 나타낸 것이다.5 shows an SEM image of PMS04 before (A) and after (B) carbon dioxide decomposition reactions.

Claims (8)

제지슬러지(Paper Mill Sludge; PMS)와 이산화탄소(CO2)를 반응시키는 것을 포함하고, 상기 제지슬러지는 제지공장의 펜톤 산화 처리공정이 포함된 폐수처리에서 발생되는 제지슬러지로서 철성분에 망간, 니켈, 크롬, 구리의 전이금속이 함유된 스피넬상의 마그네타이트를 포함하는 것을 특징으로 하는 이산화탄소의 분해 방법.Paper Mill Sludge (PMS) and carbon dioxide (CO 2 ) comprising the reaction, the paper sludge produced from the wastewater treatment including the Fenton oxidation process of the paper mill as a manganese, nickel A method of decomposing carbon dioxide, comprising a spinel magnetite containing transition metals of chromium and chromium. 삭제delete 삭제delete 제 1항에 있어서, 하기 단계를 포함하는 것을 특징으로 하는 방법:The method of claim 1 comprising the following steps: a) 제지슬러지를 건조하는 단계;a) drying the paper sludge; b) 상기 건조된 제지슬러지를 반응기에 충진하는 단계;b) filling the dried papermaking sludge into a reactor; c) 상기 반응기에 수소를 주입하여 수소환원을 실시하는 단계;c) injecting hydrogen into the reactor to perform hydrogen reduction; d) 수소주입을 차단하고 이산화탄소를 주입하는 단계;d) blocking hydrogen injection and injecting carbon dioxide; e) 제지슬러지와 이산화탄소를 반응시키는 단계.e) reacting the paper sludge with carbon dioxide. 제 4항에 있어서, 상기 c)단계의 수소 주입은 100 ~ 300 cc/min으로 1 ~ 5시간 동안 주입하는 것을 특징으로 하는 방법.5. The method of claim 4, wherein the hydrogen injection in step c) is injected at 100 to 300 cc / min for 1 to 5 hours. 제 4항에 있어서, 상기 c)단계의 수소환원 조건은 250 ~ 450 ℃의 온도범위에서 수행하는 것을 특징으로 하는 방법.The method of claim 4, wherein the hydrogen reduction condition of step c) is performed at a temperature in the range of 250 to 450 ° C. 제 4항에 있어서, 상기 d)단계의 이산화탄소 주입은 반응기 내부의 압력이 10 ~ 20 psi가 될 때까지 주입하는 것을 특징으로 하는 방법.The method of claim 4, wherein the carbon dioxide injection in step d) is injected until the pressure inside the reactor is 10 ~ 20 psi. 제 4항에 있어서, 상기 e)단계의 이산화탄소 분해 조건은 250 ~ 450 ℃의 온도범위에서 수행하는 것을 특징으로 하는 방법.The method of claim 4, wherein the carbon dioxide decomposition conditions of step e) is carried out at a temperature range of 250 ~ 450 ℃.
KR1020090081809A 2009-09-01 2009-09-01 The decomposition method of carbon-dioxide using paper mill sludge KR101118758B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090081809A KR101118758B1 (en) 2009-09-01 2009-09-01 The decomposition method of carbon-dioxide using paper mill sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090081809A KR101118758B1 (en) 2009-09-01 2009-09-01 The decomposition method of carbon-dioxide using paper mill sludge

Publications (2)

Publication Number Publication Date
KR20110023985A KR20110023985A (en) 2011-03-09
KR101118758B1 true KR101118758B1 (en) 2012-03-13

Family

ID=43931900

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090081809A KR101118758B1 (en) 2009-09-01 2009-09-01 The decomposition method of carbon-dioxide using paper mill sludge

Country Status (1)

Country Link
KR (1) KR101118758B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10604894B2 (en) 2017-03-07 2020-03-31 Korea Institute Of Geoscience And Mineral Resources Method of reducing waste sludge using acid treatment and method of carbonating carbon dioxide with high purity using paper mill waste sludge
KR20200104579A (en) * 2019-02-27 2020-09-04 한국에너지기술연구원 Cu-FERRITE CATALYST FOR CO2 DECOMPOSITION AND THE METHOD THEREOF

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307090A (en) * 2001-04-11 2002-10-22 Konica Corp Pretreatment method of liming wastewater and fixing method of carbon dioxide
JP2004059830A (en) * 2002-07-31 2004-02-26 Fujita Corp Method for manufacturing ground improving material and apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307090A (en) * 2001-04-11 2002-10-22 Konica Corp Pretreatment method of liming wastewater and fixing method of carbon dioxide
JP2004059830A (en) * 2002-07-31 2004-02-26 Fujita Corp Method for manufacturing ground improving material and apparatus therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
한국세라믹학회지, 2001*
한국환경위생학회지, 1995*

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10604894B2 (en) 2017-03-07 2020-03-31 Korea Institute Of Geoscience And Mineral Resources Method of reducing waste sludge using acid treatment and method of carbonating carbon dioxide with high purity using paper mill waste sludge
KR20200104579A (en) * 2019-02-27 2020-09-04 한국에너지기술연구원 Cu-FERRITE CATALYST FOR CO2 DECOMPOSITION AND THE METHOD THEREOF
KR102229954B1 (en) 2019-02-27 2021-03-23 한국에너지기술연구원 Cu-FERRITE CATALYST FOR CO2 DECOMPOSITION AND THE METHOD THEREOF

Also Published As

Publication number Publication date
KR20110023985A (en) 2011-03-09

Similar Documents

Publication Publication Date Title
Hu et al. Microplastics remediation in aqueous systems: Strategies and technologies
Huang et al. Efficient activation of persulfate by a magnetic recyclable rape straw biochar catalyst for the degradation of tetracycline hydrochloride in water
Yoon et al. Synthesis of functionalised biochar using red mud, lignin, and carbon dioxide as raw materials
Cao et al. Electroplating sludge derived zinc-ferrite catalyst for the efficient photo-Fenton degradation of dye
Mian et al. Emerging applications of sludge biochar-based catalysts for environmental remediation and energy storage: A review
Zhang et al. Enhanced activity and stability of copper oxide/γ-alumina catalyst in catalytic wet-air oxidation: Critical roles of cerium incorporation
Fuentes et al. Catalytic glycolysis of poly (ethylene terephthalate) using zinc and cobalt oxides recycled from spent batteries
Yao et al. Phase change on stainless-steel mesh for promoting sulfate radical formation via peroxymonosulfate oxidation
CN101774678A (en) Treatment method of garbage percolate
Wilk et al. Hydrothermal carbonization of sewage sludge: Hydrochar properties and processing water treatment by distillation and wet oxidation
Yadav et al. A comprehensive review on low-cost waste-derived catalysts for environmental remediation
Huang et al. Highly efficient activation of peroxymonosulfate by Co, S co-doped bamboo biochar for sulfamethoxazole degradation: Insights into the role of S
Zhao et al. Activation of sulfite by micron-scale iron-carbon composite for metronidazole degradation: Theoretical and experimental studies
Dou et al. Removal of gaseous H2S using microalgae porous carbons synthesized by thermal/microwave KOH activation
Hu et al. Removal of organic contaminants by starch-derived porous carbon via peroxymonosulfate activation: the role of N doping and Fe/Mn loading
Shao et al. A dramatic enhancement of antibiotic photodegradation catalyzed by red mud-derived Bi5FeTi3O15
KR101118758B1 (en) The decomposition method of carbon-dioxide using paper mill sludge
An et al. Red mud supported on reduced graphene oxide as photo-Fenton catalysts for organic contaminant degradation
Wang et al. CO2 dual roles in food scraps-derived biochar activation to enhance lead adsorption capacity
Guo et al. Catalysts containing Fe and Mn from dewatered sludge showing enhanced electrocatalytic degradation of triclosan
Chen et al. Thermally regenerable FeS/N-doped biochar catalyzed peroxydisulfate oxidative destruction of aqueous triclosan
Sanito et al. Hydrogen and methane production from Styrofoam Waste using an atmospheric-pressure microwave plasma reactor
Zhao et al. Manganese stabilization in mine tailings by MgO-loaded rice husk biochar: Performance and mechanisms
Fu et al. Nitrogen self-doped chitosan carbon aerogel integrating with CoAl-LDH for ultra-efficient sulfamethoxazole degradation based on PS-AOPs: From batch to continuous process
Schlichter et al. Multi‐Metal‐Substituted‐Goethite as an Effective Catalyst for Azo Dye Wastewater Oxidation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150129

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170405

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180201

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee