KR101118691B1 - Active siRNA-Inorganic Layered Double Hydroxide Nanohybrid, a Process for Preparing the Same, and a Pharmaceutical Composition Comprising the Same for Treating Targeted Tumor - Google Patents
Active siRNA-Inorganic Layered Double Hydroxide Nanohybrid, a Process for Preparing the Same, and a Pharmaceutical Composition Comprising the Same for Treating Targeted Tumor Download PDFInfo
- Publication number
- KR101118691B1 KR101118691B1 KR1020090086644A KR20090086644A KR101118691B1 KR 101118691 B1 KR101118691 B1 KR 101118691B1 KR 1020090086644 A KR1020090086644 A KR 1020090086644A KR 20090086644 A KR20090086644 A KR 20090086644A KR 101118691 B1 KR101118691 B1 KR 101118691B1
- Authority
- KR
- South Korea
- Prior art keywords
- sirna
- layered inorganic
- inorganic hydroxide
- tumor
- target
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1138—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7105—Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/66—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid the modifying agent being a pre-targeting system involving a peptide or protein for targeting specific cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/35—Nature of the modification
- C12N2310/351—Conjugate
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- Biochemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
본 발명은 강력한 유전자 치료제인 siRNA (small interfering RNA)와 표적지향성 층상형 무기 수산화물과의 나노혼성체, 그 제조방법, 및 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체를 함유하는 종양 치료용 약학 조성물에 관한 것이다. The present invention is a nanocomposite of siRNA (small interfering RNA) and a target-oriented layered inorganic hydroxide, a powerful gene therapy agent, a method for preparing the same, and a pharmaceutical composition for treating a tumor containing a target-oriented siRNA-layered inorganic hydroxide nano hybrid It is about.
본 발명에 따른 나노혼성체는, 종양 마커와 특이적으로 결합할 수 있는 표적지향성 다작용기 리간드가 결합된 층상형 무기 수산화물과 나노혼성체를 이루고 있는 siRNA의 생체 내 안정성이 종양특이적 전달 효율을 향상시켜 비교적 낮은 농도의 투여량에서 siRNA의 종양치료 활성을 나타내므로 범용적인 표적지향성 종양치료에 널리 활용될 수 있을 것이다.In the nanocomposite according to the present invention, in vivo stability of siRNA forming a nanohybrid with a layered inorganic hydroxide to which a target-directed multifunctional ligand capable of specifically binding to a tumor marker may be improved. It can be widely used in general-purpose target-directed tumor therapies since it shows the tumor therapeutic activity of siRNA at relatively low concentrations.
siRNA, 층상형 무기 수산화물, 표적지향성, 나노하이브리드, 유전자 치료제 siRNA, Layered Inorganic Hydroxide, Targeted, Nanohybrid, Gene Therapeutics
Description
본 발명은 강력한 유전자 치료제인 siRNA (small interfering RNA)와 표적지향성 층상형 무기 수산화물과의 나노혼성체, 그 제조방법, 및 상기 나노혼성체를 함유하는 종양 치료용 약학 조성물에 관한 것이다.The present invention relates to a nano hybrid of a small interfering RNA (siRNA) and a target-oriented layered inorganic hydroxide, a method for producing the same, and a pharmaceutical composition for treating a tumor containing the nano hybrid, which is a powerful gene therapy agent.
유전자 치료에 있어서 안전하고 효율적인 유전자 전달기술은 오랫동안 연구되어 왔으며 다양한 유전자 전달체와 전달기술이 개발되어 왔다. 아데노바이러스, 레트로바이러스 등 바이러스를 이용한 유전자 전달기술과, 리포좀과 양이온성 지질, 그리고 양이온성 고분자 등을 이용한 비바이러스성 벡터(nonviral vector)를 이용한 유전자 전달기술들이 개발되어 왔다. 그러나, 현재까지 바이러스 자체를 유전자 치료제의 전달체로 이용하는 방법은 전달된 유전자가 숙주의 염색체에 이입되 어 숙주 유전자의 정상기능에 이상을 유도하거나 발암 유전자를 활성화시키지 않는다고 확신할 수 없으며, 바이러스 유전자가 적은 양이라도 계속 발현되고 있을 경우 자가면역증을 유발하거나, 바이러스 전달체로부터 변형된 형태의 바이러스 감염이 유발될 경우 효율적인 방어면역을 일으키지 못할 수도 있다. 따라서, 바이러스를 사용하는 방법 대신 리포좀에 유전자를 융합시키는 방법이나 양이온을 지닌 지질이나 고분자를 이용한 방법, 무기 나노입자를 이용한 방법 등이 그들 각각의 단점을 개량하는 방향으로 연구되고 있다. 이들 비바이러스성 벡터들은 바이러스성 벡터보다는 그 효율성에 있어 많이 뒤떨어지지만, 생체 내 안전성과 경제성을 고려해 볼 때 부작용이 적고 생산 가격이 저렴해 질 수 있다는 장점이 있다. 또한, 현재 유전자 전달 시스템(gene delivery system)에서 가장 중요하게 떠오르고 있는 접근법은 표적 특이적 전달성 (target specific delivery)에 관한 부분이다. 유전자를 생체내에 직접 투여하게 되면, 생체내 모든 장기 및 세포들이 동일하게 유전자의 공격을 받음으로써 정상세포 및 정상조직이 손상을 입게 되므로 선택적 유전자 전달 및 치료 방법을 위한 기술 개발이 중요하다. Safe and efficient gene delivery techniques for gene therapy have been studied for a long time and various gene carriers and delivery techniques have been developed. Gene transfer techniques using viruses such as adenoviruses and retroviruses, and gene transfer techniques using nonviral vectors using liposomes, cationic lipids, and cationic polymers have been developed. However, to date, the method of using the virus itself as a carrier for gene therapy is not convinced that the delivered gene enters the host chromosome and does not cause abnormal function of the host gene or activate the oncogenic gene. Continued expression, even in small amounts, may result in autoimmunity or, if a modified form of viral infection from a viral carrier, results in no effective defense immunity. Therefore, instead of using viruses, methods for fusing genes into liposomes, methods using lipids or polymers with cations, methods using inorganic nanoparticles, and the like have been studied to improve their respective disadvantages. These non-viral vectors are much lower in efficiency than viral vectors, but considering the safety and economy in vivo, there are advantages in that they have less side effects and a lower production price. In addition, the most important emerging approach in the current gene delivery system is the section on target specific delivery. When the gene is directly administered in vivo, all organs and cells in vivo are attacked by the same gene, thereby damaging normal cells and normal tissues, and thus, technology development for selective gene delivery and treatment method is important.
한편, siRNA는 최근 동물세포에서 특정 유전자의 발현을 저해시키는데 탁월한 효과를 나타내는 것으로 밝혀져 유전자 치료제로 각광을 받고 있는 물질로써, 이들의 높은 활성과 정밀한 유전자 선택성으로 인해 지난 20년간 연구되어 현재 치료제로 활용 중인 안티센스 올리고뉴클레오티드(ODN)를 대체할 치료제로 기대되고 있다. siRNA 는 19개에서 23개 정도의 뉴클레오티드로 구성된 짧은 이중 나선의 RNA 가닥으로, 이들과 염기서열이 상보적인 치료하고자 하는 유전자의 mRNA를 표적 으로 삼아 유전자 발현을 억제시킨다. 그러나, siRNA는 안정성이 낮아 생체 내에서 단시간에 분해되어 버리므로 그 치료 효율이 급격히 떨어지게 되고, 고가의 siRNA의 투여량을 높게 해야 하며, siRNA의 음이온성으로 인해 같은 음전하를 띄는 세포막을 쉽게 투과하기가 어려워 결과적으로 세포내로의 전달성이 떨어지게 된다는 문제점이 있다 (Celia M. &Henry, Chemical and Engineering News December, 22, 32-36, 2003). 또한, 비록 siRNA가 이중가닥으로 구성되어 있기는 하지만, RNA를 구성하는 리보스당의 결합은 DNA를 구성하는 디옥시리보스당의 결합에 비해 화학적으로 매우 불안정하여 대부분이 생체 내에서 반감기가 30분 내외로 빠르게 분해되어 버린다. 최근에는 siRNA에 여러 가지 작용기를 도입하여 이들을 분해효소로부터 보호하여 안정성을 향상시키고자 하는 시도를 하고 있으나 (Frank Czauderna et al., Nucleic Acids Research 31, 2705-2716, 2003 참조), 현재까지 siRNA의 안정성 확보 및 효율적인 세포막 투과성을 위한 기술은 개발 단계에 있다고 할 수 있다. 또한, siRNA의 치료효과를 얻기 위해 이들의 혈액 내에서의 불안정성을 고려하여 단순히 고농도의 siRNA 만을 계속적으로 주입하는 방법을 사용하고 있으나 그 효율이 낮은 것으로 알려져 있으며, 경제적인 측면에서도 유전자 치료제로써 siRNA를 이용하기 위해서는 이들의 세포내 전달이 용이한 새로운 비바이러스성 전달체 제조 기술개발이 필연적으로 요구된다고 할 수 있다. 대한민국등록특허 제10-0883471호에 의하면, siRNA와 친수성 고분자를 공유결합으로 연결시킨 하이브리드 접합체 및 상기 접합체와 양이온성 화합물로 이루어진 고분자 전해질 복합체 미셀을 이용하여 siRNA의 생체내 안정성을 향상시킴으로써 세포내로 치료용 siRNA를 효 율적으로 전달할 수 있으며, 또한 비교적 낮은 농도의 투여량에서 siRNA의 활성을 나타낼 수 있다고 보고되어 있다.On the other hand, siRNA has recently been found to have an excellent effect on inhibiting the expression of specific genes in animal cells, which has attracted the spotlight as a gene therapy agent. It is expected to replace antisense oligonucleotides (ODN). siRNA is a short, double-stranded RNA strand consisting of 19 to 23 nucleotides, and targets the mRNA of the gene to be treated complementary to these sequences to suppress gene expression. However, since siRNA is degraded in a short time in vivo due to its low stability, its treatment efficiency drops drastically, the dosage of expensive siRNA must be increased, and its anionicity makes it easy to penetrate the same negatively charged cell membrane. There is a problem that it is difficult, and as a result, the intracellular delivery is poor (Celia M. & Henry, Chemical and Engineering News December, 22, 32-36, 2003). In addition, although siRNA is composed of double strands, the binding of the ribose sugar constituting the RNA is chemically very unstable compared to the binding of the deoxyribose sugar constituting the DNA, so that the half-life is rapidly degraded within 30 minutes in vivo. It becomes. Recently, attempts have been made to improve the stability by introducing various functional groups into siRNAs to protect them from degrading enzymes (see Frank Czauderna et al., Nucleic Acids Research 31, 2705-2716, 2003). Technology for securing stability and efficient cell membrane permeability can be said to be in the development stage. In addition, in order to obtain the therapeutic effect of siRNA in consideration of their instability in the blood simply using a method of continuously injecting only a high concentration of siRNA, but its efficiency is known to be low, and economically, siRNA is used as a gene therapy agent. In order to use, it is necessary to develop a new non-viral carrier manufacturing technology that is easy to intracellular delivery. According to Korean Patent Registration No. 10-0883471, by intracellular stability by improving the in vivo stability of siRNA using a hybrid conjugate covalently linked siRNA and hydrophilic polymer and a polymer electrolyte complex micelle composed of the conjugate and a cationic compound It has been reported that it is possible to efficiently deliver soluble siRNAs and to exhibit siRNA activity at relatively low concentrations.
그러나, siRNA의 안정성 향상과 표적지향성 유전자 치료제 개발을 위한 비바이러스성 층상형 무기 수산화물을 이용한 종양 치료용 약학 조성물은 보고된 바 없으며, 이에 본 발명자들은 siRNA를 이용하는 표적지향성 유전자 치료제를 개발하고자 노력한 결과, siRNA를 종양 특이적 다작용기 리간드가 결합된 층상형 무기 수산화물과 나노혼성화시켜 효율적으로 종양을 치료할 수 있음을 확인하고, 본 발명을 완성하게 되었다. However, there has been no report on the pharmaceutical composition for the treatment of tumors using non-viral layered inorganic hydroxides to improve the stability of siRNAs and to develop target-oriented gene therapeutics. As a result, the present inventors have tried to develop target-oriented gene therapeutics using siRNA. The present invention has been completed by confirming that siRNA can be nano-hybridized with a layered inorganic hydroxide to which a tumor-specific multifunctional ligand is bound.
본 발명의 목적은 siRNA의 세포내 전달 효율성을 향상시키기 위해, siRNA를 층상형 무기 수산화물에 캡슐화시키고 종양 마커와 특이적으로 결합할 수 있는 표적지향성 다작용기 리간드가 결합된 나노혼성체 및 그 제조방법을 제공하는데 있다. Disclosure of Invention An object of the present invention is to encapsulate siRNA in a layered inorganic hydroxide and to specifically bind to a tumor marker to improve the intracellular delivery efficiency of siRNA, and to prepare a nano hybrid conjugated with a target-oriented polyfunctional ligand. To provide.
본 발명의 다른 목적은 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체 및 약제학적으로 허용가능한 담체를 함유하는 종양치료용 약학 조성물을 제공하는데 있다.Another object of the present invention is to provide a pharmaceutical composition for tumor treatment containing a target-oriented siRNA-layered inorganic hydroxide nano hybrid and a pharmaceutically acceptable carrier.
상기 목적을 달성하기 위하여, 본 발명은 하기의 화학식 1로 표시되는 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체를 제공한다: In order to achieve the above object, the present invention provides a target-oriented siRNA-layered inorganic hydroxide nano hybrid represented by the following formula (1):
[화학식 1] [Formula 1]
[M(Ⅱ)1- xM(Ⅲ)x(OH)2]X+[S][T] [M (II) 1- x M (III) x (OH) 2 ] X + [S] [T]
여기서, M(Ⅱ)는 2가 금속 양이온을 나타내고 M(Ⅲ)은 3가 금속 양이온을 나타내고, x는 0.1 내지 0.5 미만의 수이며 S는 siRNA이며, [T]는 종양 표적지향성 다작용기 리간드이다.Wherein M (II) represents a divalent metal cation and M (III) represents a trivalent metal cation, x is a number between 0.1 and less than 0.5, S is an siRNA, and [T] is a tumor targeting polyfunctional ligand. .
본 발명은 또한, (a) 2가 금속염과 3가 금속염 함유 수용액에 염기 수용액을 적가하여, 침전된 층상형 무기 수산화물을 제조하는 단계; (b) siRNA 함유 용액을 (a)단계에서 제조된 층상형 무기 수산화물이 분산된 용액과 혼합 및 교반하여 제조된 층상형 무기 수산화물이 분산된 용액과 혼합 및 교반하여 siRNA-층상형 무기 수산화물 나노혼성체를 이루는 단계; 및 (c) 상기 혼성체에 종양 마커 특이적 다작용기 리간드를 결합시켜 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체를 제조하는 단계를 포함하는 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체의 제조방법을 제공한다.The present invention also provides a method comprising the steps of: (a) adding a base aqueous solution to an aqueous solution containing a divalent metal salt and a trivalent metal salt to prepare a precipitated layered inorganic hydroxide; (b) a siRNA-layered inorganic hydroxide nanohybrid by mixing and stirring the siRNA-containing solution with the solution containing the layered inorganic hydroxide prepared in step (a). Forming a sieve; And (c) binding a tumor marker specific multifunctional ligand to the hybrid to prepare a target-oriented siRNA-layered inorganic hydroxide nano hybrid. To provide.
본 발명은 또한, 상기 나노혼성체를 함유하는 종양 치료용 약학 조성물 및 그 제조방법을 제공한다. The present invention also provides a pharmaceutical composition for treating tumors containing the nanohybrid and a method for producing the same.
본 발명에 따르면, 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체는 siRNA의 생체 내 안정성을 증가시키고, 종양 마커와 특이적으로 결합할 수 있는 표적지향성 다작용기 리간드는 종양특이적 전달 효율을 향상시켜 비교적 낮은 농도의 투여량에서 siRNA의 종양치료 활성을 나타내어 다양한 질병 종양 치료의 효율성 및 정확성을 향상시키는 조성물로 사용할 수 있을 뿐만 아니라 새로운 형태의 siRNA 전달 시스템으로 생명공학을 위한 기초연구와 의학 산업상의 매우 유용하게 사용될 수 있다. According to the present invention, the target-oriented siRNA-layered inorganic hydroxide nanohybrid increases the in vivo stability of the siRNA, and the target-oriented multifunctional ligand which can specifically bind the tumor marker improves tumor specific delivery efficiency. It can be used as a composition to improve the efficiency and accuracy of the treatment of various diseases by showing the tumor therapeutic activity of siRNA at relatively low concentrations, as well as a new type of siRNA delivery system for basic research in biotechnology and the medical industry. It can be usefully used.
달리 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법 및 이하에 기술하는 실험 방법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein and the experimental methods described below are well known and commonly used in the art.
본 발명은 표적지향성을 가지는 siRNA-층상형 무기 수산화물 나노혼성체에 관한 것이다.The present invention relates to siRNA-layered inorganic hydroxide nanocomposites having target orientation.
본 명세서에서 사용된 용어, "나노혼성체(nanohybrid)"는 siRNA가 층상형 무기 수산화물과 분자간 인력(intermolecular interaction)으로 결합되는 것을 의미한다. 상기 분자간 인력의 종류 (예, 정전기적 인력, 소수성 인력, 수소 결합, 공유 결합(예, 디설파이드 결합), 반데르 발스 결합, 이온 결합 등)는 특별히 제한적이지 않기 때문에 다양하게 선택될 수 있다. 또한, 상기 "나노혼성체"라는 용어는 siRNA-층상형 무기 수산화물 나노혼성체상에 표적지향성 다작용기 리간드가 분자간 인력으로 결합되어 있는 형태도 포함되는 것으로 이해되어야 한다.As used herein, the term "nanohybrid" means that siRNA is bound to a layered inorganic hydroxide by intermolecular interaction. The kind of intermolecular attraction (e.g., electrostatic attraction, hydrophobic attraction, hydrogen bond, covalent bond (e.g., disulfide bond), van der Waals bond, ionic bond, etc.) may be variously selected because it is not particularly limited. In addition, the term "nano hybrid" should be understood to include a form in which a target-oriented polyfunctional ligand is bound by intermolecular attraction on an siRNA-layered inorganic hydroxide nanohybrid.
본 발명은 일 관점에서, 하기의 화학식 1로 표시되는 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체에 관한 것이다: In one aspect, the present invention relates to a target-oriented siRNA-layered inorganic hydroxide nano hybrid represented by Formula 1 below:
[화학식 1] [Formula 1]
[M(Ⅱ)1- xM(Ⅲ)x(OH)2]X+[S][T] [M (II) 1- x M (III) x (OH) 2 ] X + [S] [T]
여기서, M(Ⅱ)는 2가 금속 양이온을 나타내고 M(Ⅲ)은 3가 금속 양이온을 나 타내고 x는 0.1 내지 0.5 미만의 수이며 S는 siRNA이며 T는 종양 표적지향성 다작용기 리간드이다.Where M (II) represents a divalent metal cation, M (III) represents a trivalent metal cation, x is a number less than 0.1 to less than 0.5, S is an siRNA and T is a tumor targeting polyfunctional ligand.
본 발명에 있어서, siRNA의 뉴클레오티드 길이가 긴, 예컨대 분자량 30,000 수준에서는 표적지향성 층상형 금속 수산화물과 결합된 경우에도 이중가닥의siRNA 올리고머가 이들의 유전자 저해작용에 관여하는 생체 내 효소 복합체인 RNA-유도성 사일런싱 복합체(RISC)와 안정적으로 결합할 수 있으나, 보통의 19개의 뉴틀레오티드인 10,000 수준의 siRNA의 경우 유전자 저해작용을 돕는 세포내 효소 복합체와 결합할 때 표적지향성 다작용기 리간드에 의해 구조적 안정성이 떨어질 수 있으므로 생체 내에서 또는 세포내에서 이들 결합체가 분해될 수 있는 결합을 도입하는 것이 유리하다. 따라서, 상기 siRNA의 올리고 가닥은 분자량 10,000 내지 30,000 사이에서 선택되는 것이 바람직하다. siRNA 올리고 가닥이 상기 범위의 분자량을 가질 경우, 19 내지 30개, 바람직하게는 19 내지 23개의 뉴클레오타이드를 포함하게 된다. 이 때, 상기 siRNA는 c-myc, c-myb, c-fos, c-jun, c-raf, c-src, bcl-2 또는 VEGF (vascular endothelial growth factor), VEGF-B, VEGF-C, VEGF-D, PIGF, 또는 서바이빈 유래의 siRNA를 사용하는 것이 바람직하지만, 반드시 이에 한정되는 것은 아니다. In the present invention, RNA-induced in vivo enzyme complexes in which double-stranded siRNA oligomers are involved in their gene inhibition, even when combined with target-oriented layered metal hydroxides at long nucleotide lengths, such as molecular weight levels of 30,000, are used. Although it can reliably bind to sexual silencing complexes (RISCs), the normal 19 nucleotides of 10,000 siRNAs are structurally linked by target-directed multifunctional ligands when combined with intracellular enzyme complexes that aid in gene inhibition. It may be advantageous to introduce bonds that can degrade these conjugates in vivo or in the cell, since their stability may be compromised. Thus, the oligo strand of the siRNA is preferably selected between 10,000 and 30,000 molecular weight. If the siRNA oligo strands have a molecular weight in the above range, it will comprise 19 to 30, preferably 19 to 23 nucleotides. At this time, the siRNA is c-myc, c-myb, c-fos, c-jun, c-raf, c-src, bcl-2 or VEGF (vascular endothelial growth factor), VEGF-B, VEGF-C, It is preferred to use siRNAs derived from VEGF-D, PIGF, or survivin, but are not necessarily limited thereto.
또한, 상기 siRNA 도입시에, 세포질 내에 과량 존재하는 글루타치온(glutathione)에 의해 세포내에서 분해되는 이황화결합, 세포내 유입된 후 산성을 띄는 환경에서 효과적으로 분해될 수 있는 산 분해성 결합, 세포내로 유입된 후 세포 안에서 효과적으로 분해가 가능한 에스테르결합, 안하이드라이드 결합과 특정 세포 주변에 존재하는 효소들에 의해 세포내로 유입되기 직전에 분해될 수 있는 효소분해성 결합 등을 도입하는 것이 바람직할 수 있다.In addition, when the siRNA is introduced, disulfide bonds that are degraded intracellularly by glutathione present in the cytoplasm, acid-degradable bonds that can be effectively degraded in an acidic environment after being introduced into the cell, introduced into the cell It may be desirable to introduce ester bonds, anhydride bonds, and enzyme-degradable bonds that can be degraded just before being introduced into the cells by enzymes present around the specific cell.
암(cancer)은 일반적으로 능동적이고 자발적인 세포의 죽음인 세포자멸(apoptosis)의 속도가 줄어들고 세포주기가 변하는 것과 연관되어 있기 때문에, 세포주기를 억제하거나 또는 세포자멸을 회복시키는 방법은 새로운 종양 치료방법으로 대두되고 있다. 세포자멸이 억제되는 종양에서는 세포자멸 억제 단백질(IAPs; inhibitors of apoptosis)이 발현된다고 알려지고 있으며, 전기 IAPs는 세포자멸을 유도하는 단백질분해효소(caspase)의 활성을 직접적으로 억제하거나 또는 관련된 전사인사인 NF-kB의 활성을 조절하는 방식으로, 그 작용을 나타내는 것으로 알려져 있다. 최근의 연구결과로부터, IAPs의 하나인 서바이빈(survivin) 단백질이 종양과 관련되어 있음이 밝혀지게 되었다. 서바이빈은 지금까지 테스트된 대부분의 신생 종양이나 형질변이된 세포주에서 공통적으로 발현되는 단백질로서, 지속적인 변이(mutation)가 일어나는 종양에서도 일정한 수준으로 발현된다고 알려지게 되어, 항암치료에 있어서 중요한 타겟이 될 것으로 예측되고 있다 (참조: Ambrosini G, et al., Nat. Med., 3(8):917-921, 1997).Cancer is generally associated with a slowing of apoptosis, active and spontaneous cell death, and a change in the cell cycle, so suppressing the cell cycle or restoring apoptosis is a new method for treating tumors. Is emerging. Tumors that inhibit apoptosis are known to express apoptosis inhibitor proteins (IAPs), and electrical IAPs directly inhibit the activity of apoptosis-causing enzymes or related transcription factors. It is known to exhibit its action in a manner that modulates the activity of phosphorus NF-kB. Recent studies have revealed that survivin, one of the IAPs, is associated with tumors. Survivin is a protein that is commonly expressed in most neoplastic tumors or transformed cell lines that have been tested to date. Survivin is known to be expressed at a constant level even in tumors with persistent mutations. (Ambrosini G, et al., Nat. Med., 3 (8): 917-921, 1997).
서바이빈을 암호화하는 유전자로부터 전사된 mRNA와 결합하여, 전기 mRNA를 불활성화시킬 수 있는 siRNA를 직접 종양세포에 도입시켜서, 종양 세포내에서 서바이빈의 발현을 억제시키거나 또는 서바이빈의 활성을 저해함으로써, 암세포를 효과적으로 치료하는 방법이 주목을 받고 있다 (대한민국등록특허 10-0848665). 본 발명의 이중가닥 siRNA는 서바이빈을 암호화하는 유전자로부터 전사된 mRNA와 결합할 수 있고, 세포내에서 서바이빈 발현을 억제한다. By binding to mRNA transcribed from a gene encoding survivin, siRNA capable of inactivating electric mRNA is introduced directly into tumor cells, thereby inhibiting the expression of survivin in tumor cells or By inhibiting activity, a method of effectively treating cancer cells has been attracting attention (Korea Patent Registration 10-0848665). Double-stranded siRNA of the present invention can bind to mRNA transcribed from a gene encoding survivin and inhibits survivin expression in cells.
본 발명의 siRNA의 바람직한 실시예로는, 거의 모든 종양으로부터 공통적으로 발현되는 서바이빈의 발현을 억제할 수 있는 서바이빈을 암호화하는 mRNA와 상보결합할 수 있는 siRNA일 수 있다.Preferred embodiments of the siRNA of the present invention may be siRNA capable of complementary binding to the mRNA encoding survivin, which can suppress the expression of survivin, which is commonly expressed in almost all tumors.
구체적으로, 상기 서바이빈을 암호화하는 mRNA와 상보결합할 수 있는 siRNA는, 하기 표 1과 같은 염기서열일 수 있다.Specifically, siRNA capable of complementary binding to the mRNA encoding the survivin may be a nucleotide sequence as shown in Table 1 below.
[표 1][Table 1]
또한, 상기 siRNA의 센스 또는 안티센스의 말단기는 다른 기능기로 치환될 수 있다. 예를 들어, 기능기의 예로서 3'의 하이드록시기는 아민기, 설프하이드릴기, 또는 포스페이트기 등으로서 치환될 수 있다. 본 발명에 따른 siRNA는 그 말단부에 종양 세포 선택적 리간드가 더 구비될 수도 있다. 상기 리간드로는 바람직하게는 세포특이적 항체, 세포 선택적 펩타이드, 세포성장인자, 폴산, 갈락토스, 만노스, 알지디, 트렌스페린 등이 사용될 수 있다. 이들 리간드는 이황화결합, 아미드 결합, 에스테르결합 등의 결합을 통해 상기 siRNA의 말단기에 도입될 수 있다.In addition, the end groups of the sense or antisense of the siRNA may be substituted with other functional groups. For example, as an example of the functional group, the hydroxyl group of 3 'may be substituted as an amine group, sulfhydryl group, phosphate group, or the like. SiRNA according to the present invention may be further provided with a tumor cell selective ligand at its terminal. Preferably, the ligand may be a cell specific antibody, a cell selective peptide, a cell growth factor, folic acid, galactose, mannose, alzidi, transferrin, or the like. These ligands can be introduced into the end groups of the siRNA through bonds such as disulfide bonds, amide bonds, ester bonds, and the like.
본 발명에 있어서, 상기 층상형 무기 수산화물은 결정 구조가 층상형이며, 음이온 교환능 (anion exchange capacity)이 있다. 이는 층상형 무기 수산화물의 수산화물층이 양전하를 띠고 있어 이를 보상하기 위해 음이온이 층간에 존재하며, 이 층간 음이온은 다른 음이온 화학종으로 치환될 수 있기 때문이다. 하기 화학식 2로 표시되는 것을 특징으로 할 수 있다: In the present invention, the layered inorganic hydroxide has a layered crystal structure and has anion exchange capacity. This is because the hydroxide layer of the layered inorganic hydroxide has a positive charge and an anion is present between the layers to compensate for this, and the interlayer anion may be replaced with another anionic species. It may be characterized by represented by the formula (2):
[화학식 2] [Formula 2]
[M(Ⅱ)1- xM(Ⅲ)x(OH)2]X+[An -]X/n ?yH2O [M (Ⅱ) 1- x M (Ⅲ) x (OH) 2] X + [A n -] X / n? yH 2 O
여기서, M(Ⅱ)는 2가 금속 양이온을 나타내고 M(Ⅲ)은 3가 금속 양이온을 나타내고 A는 음이온 화학종으로서 n은 음이온의 전하수 이며 x는 0.1 내지 0.5 미만의 수이고 및 y는 0을 초과하는 양수이다. Where M (II) represents a divalent metal cation, M (III) represents a trivalent metal cation, A is an anionic species, n is the number of charges of the anion, x is a number less than 0.1 to 0.5 and y is 0 Is more than positive.
본 발명에 있어서, 상기 2가 금속 양이온은 Mg2 +, Ca2 +, Co2 +, Cu2 +, Ni2 + 및 Zn2+로 구성된 군에서 선택되고, 상기 3가 금속 양이온은 Al3 +, Cr3 +, Fe3 +, Ga3 +, In3 +, V3 +, 및 Ti3 + 로 구성된 군에서 선택되고, 상기 음이온은 CO3 2 -, NO3 -, Cl-, OH-, O2 -, 및 SO4 2 -로 구성된 군에서 선택되는 것을 특징으로 할 수 있다. 상기 2가 금속 양이온과 3가 금속 양이온의 비율을 2:1, 3:1 및 4:1 등으로 조절하여 층 전하가 조절된 형태의 층상형 무기 수산화물을 형성시킬 수 있다. 상기 2가 금속 양이온, 3가 금속 양이온, 및 상기 음이온은 상기 종류로 한정되는 것은 아니며, 당해 기술분야에서 층상형 무기 수산화물로서 공지된 것에 해당하는 것을 모두 포함할 수 있다.In the present invention, the divalent metal cation is selected from the group consisting of Mg 2 + , Ca 2 + , Co 2 + , Cu 2 + , Ni 2 + and Zn 2+ , wherein the trivalent metal cation is Al 3 + , Cr 3 +, Fe 3 +, Ga 3 +, in 3 +, V 3 +, and Ti 3 + is selected from the group, the anion consists of the CO 3 2 -, NO 3 - , Cl -, OH -, O 2 - can be characterized as being selected from the group consisting of -, and SO 4 2. The ratio of the divalent metal cation to the trivalent metal cation may be adjusted to 2: 1, 3: 1 and 4: 1 to form a layered inorganic hydroxide having a controlled layer charge. The divalent metal cation, the trivalent metal cation, and the anion are not limited to the above types, and may include all of those known as layered inorganic hydroxides in the art.
본 발명에 있어서, 상기 "종양 표적지향성 다작용기 리간드"는, siRNA-층상형 무기 수산화물 나노혼성체에 추가적으로 결합되어 표적지향성을 부여하는 종양 특이적 결합성분을 의미한다. 이러한 종양 특이적 결합성분의 예로는, 항원, 항체, RNA, DNA, 합텐(hapten), 아비딘(avidin), 스트렙타비딘 (streptavidin), 뉴트라비딘 (neutravidin), 프로테인 A, 프로테인 G, 렉틴(lectin), 셀렉틴(selectin), 방사선동위원소로 표지된 바이오물질, 종양 마커와 특이적으로 결합할 수 있는 바이오물질을 포함하나 이에 제한되지 않는다. In the present invention, the "tumor target oriented polyfunctional ligand" means a tumor specific binding component that is additionally bound to the siRNA-layered inorganic hydroxide nanohybrid to confer target orientation. Examples of such tumor specific binding components include antigens, antibodies, RNA, DNA, hapten, avidin, streptavidin, neutravidin, protein A, protein G, lectin ), Selectin, radioisotope labeled biomaterials, biomaterials that can specifically bind to tumor markers, and the like.
여기서, 상기 표적지향성 다작용기 리간드는 (i) 부착영역, (ii) 교차연결영역 및 (iii) 활성성분영역을 포함하는 물질을 의미한다. 이하에서 상기 다작용기 리간드를 보다 구체적으로 설명한다. Here, the target oriented multifunctional ligand means a material including (i) an attachment region, (ii) a cross-linking region, and (iii) an active ingredient region. Hereinafter, the multifunctional ligand will be described in more detail.
상기 "부착영역"은 층상형 무기 수산화물에 표면개질되어 부착될 수 있는 작용기 (functional group)를 포함하는 스페이서 혹은 표적지향성 다작용기 리간드의 일부분, 바람직하게는 말단을 의미한다. 따라서 부착영역은 층상형 무기 수산화물 표면과 친화성이 높은 작용기를 포함하는 것이 바람직하며, 층상형 무기 수산화물 이루는 물질에 따라 다양하게 선택될 수 있다. 부착영역은 예를 들면 aminosilane, epoxysilane, vinylsilane, -COOH, -NH2, -SH, -CONH2, -PO3H, -PO4H, -SO3H, -SO4H 또는 -OH를 포함할 수 있다.The "attachment region" means a portion, preferably a terminal, of a spacer or target-oriented polyfunctional ligand comprising a functional group capable of surface modification to attach to a layered inorganic hydroxide. Therefore, the attachment region preferably includes a functional group having high affinity with the surface of the layered inorganic hydroxide, and may be variously selected according to the material of the layered inorganic hydroxide. Adhesion regions include, for example, aminosilane, epoxysilane, vinylsilane, -COOH, -NH 2 , -SH, -CONH 2 , -PO 3 H, -PO 4 H, -SO 3 H, -SO 4 H or -OH can do.
상기 "교차연결영역"은 표면개질된 층상형 무기 수산화물에 근접한 다작용기 리간드의 일부분과 교차연결할 수 있는 작용기를 포함하는 ‘부착영역의 말단’과 ‘표적지향성 다작용기 리간드의 말단’을 의미한다. "교차연결"이란 다작용기 리간드가 근접하여 위치한 표면개질된 층상형 무기 수산화물의 부착영역 말단과 분자간 인력(intermolecular interaction)으로 결합되는 것을 의미한다. 상기 분자간 인력의 종류 (예, 소수성 인력, 수소 결합, 공유 결합(예, 디설파이드 결합), 반데르 발스 결합, 이온 결합 등)는 특별히 제한적이지 않기 때문에 교차연결할 수 있는 작용기는 목적한 분자간 인력의 종류에 따라 다양하게 선택될 수 있다. 교차연결영역은 예를 들면 -SH, -NH2, -COOH, -OH, -NR4 +X-, -에폭시(epoxy), -에틸렌(ethylene), -아세틸렌(acetylene) -술포네이트(sulfonate), -니트레이트(nitrate), 또는 포스포네이트(phosphonate)를 작용기로서 포함할 수 있다. 상기 교차연결영역의 작용기는 부착영역의 말단과 활성성분 말단의 종류 및 이의 화학식에 따라 달라질 수 있다.The term "crosslinking region" refers to "end of the attachment region" and "end of the target-oriented polyfunctional ligand" that includes a functional group capable of crosslinking with a portion of the multifunctional ligand adjacent to the surface-modified layered inorganic hydroxide. By "crosslinking" is meant that the multifunctional ligand is bound by intermolecular interaction with the end of the attachment region of the surface-modified layered inorganic hydroxide located in close proximity. The types of intermolecular attraction (e.g., hydrophobic attraction, hydrogen bonds, covalent bonds (e.g. disulfide bonds), van der Waals bonds, ionic bonds, etc.) are not particularly limited. It can be variously selected according to. The cross-linking region, for example, -SH, -NH 2, -COOH, -OH , -
또한, 상기 분자간결합은 비분해성 결합 또는 분해성 결합 중 어느 것이어도 무방하다. 이때, 비분해성 결합으로는 아미드 결합(amide bond) 또는 포스페이트 결합(phosphate bond)이 있고, 분해성 결합으로는 이황화결합, 산분해성 결합, 에스테르 결합, 안하이드라이드(anhydride) 결합, 생분해성 결합, 또는 효소 분해성 결합 등이 있으나, 반드시 이에 한정되는 것은 아니다.The intermolecular bonds may be either non-degradable bonds or degradable bonds. At this time, the non-degradable bond is an amide bond or phosphate bond, and the degradable bond is a disulfide bond, an acid decomposable bond, an ester bond, anhydride bond, a biodegradable bond, or Enzyme degradable bonds, but are not necessarily limited thereto.
상기 "활성성분영역"은 부착영역과 교차연결 할 수 있는 작용기를 포함하는 종양 특이적 결합성분 혹은 표적지향성 다작용기 리간드의 일부분, 바람직하게는 상기 부착영역과 반대편에 위치한 말단을 의미한다. The "active ingredient region" means a portion of a tumor specific binding component or target-oriented multifunctional ligand including a functional group capable of crosslinking with an attachment region, preferably a terminal located opposite the attachment region.
여기서, 상기 종양 특이적 결합성분은 항원, 항체, RNA, DNA, 합텐(hapten), 아비딘(avidin), 스트렙타비딘 (streptavidin), 뉴트라비딘 (neutravidin), 프로테인 A, 프로테인 G, 렉틴(lectin), 셀렉틴(selectin), 방사선동위원소로 표지된 성분, 종양 마커와 특이적으로 결합할 수 있는 물질을 포함하나 이에 제한되지 않는다. 상기 종양 특이적 결합성분 리간드로 바람직하게는 세포특이적 항체, 세포 선택적 펩타이드, 세포성장인자, 폴산, 갈락토스, 만노스, 알지디, 트렌스페린 등이 사용될 수 있다. 상기 활성성분은 종양 특이적으로 결합할 수 있는 리간드 또는 항체가 적합할 것이다. 상기 리간드로는 바람직하게는 세포특이적 항체, 세포 선택적 펩타이드, 세포성장인자, 폴산, 갈락토스, 만노스, 알지디, 트렌스페린 등이 사용될 수 있다.Here, the tumor specific binding component is antigen, antibody, RNA, DNA, hapten, avidin (avidin), streptavidin (streptavidin), neutravidin, protein A, protein G, lectin (lectin) , But not limited to, selectin, radioisotope labeled components, and substances capable of specifically binding tumor markers. As the tumor specific binding component ligand, preferably, cell specific antibodies, cell selective peptides, cell growth factors, folic acid, galactose, mannose, algidi, transferrin, and the like may be used. The active ingredient will be suitably ligand or antibody capable of binding to the tumor. Preferably, the ligand may be a cell specific antibody, a cell selective peptide, a cell growth factor, folic acid, galactose, mannose, alzidi, transferrin, or the like.
본 발명은 상기 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체에 종양에 특이적으로 결합하여 치료할 수 있는 물질을 결합시킨 나노혼성체를 제공한다. 즉, 본 발명에서 "표적지향성 siRNA-층상형 무기 수산화물 나노혼성체"는 siRNA-층상형 무기 수산화물 나노혼성체가 부착영역, 교차연결영역 및 활성성분영역을 포함하는 표적지향성 다작용기 리간드에 의해 둘러싸여 있되, 상기 활성성분영역에는 종양 마커와 특이적으로 결합할 수 있는 물질이 결합되어 있는 나노혼성체를 의미한다.The present invention provides a nano hybrid in which the target-oriented siRNA-layered inorganic hydroxide nano hybrid is bound to a therapeutic agent by specifically binding to a tumor. That is, in the present invention, the "target oriented siRNA-layered inorganic hydroxide nano hybrid" is surrounded by a target-oriented polyfunctional ligand in which the siRNA-layered inorganic hydroxide nano hybrid is comprised of an attachment region, a cross-linking region, and an active ingredient region. In the active ingredient region, a nano hybrid is bound to a substance capable of specifically binding to a tumor marker.
본 발명의 바람직한 실시예에서는 상기 표적지향성 나노혼성체를 구성하는 표적지향성 다작용기 리간드로는, 종양 세포에서 과발현되는 폴레이트 수용기에 선택적으로 감응하면서 카복실 말단을 갖고 있는 폴산을 사용하였다. 즉, 부착영역은 아미노실란의 실란 부분이며, 교차연결영역은 아미노실란의 아민 말단 부분과 폴산의 카복실 말단이 반응하여 결합된 펩티드 영역이며, 활성성분영역은 폴레이트 수용기에 감응하는 영역이다. In a preferred embodiment of the present invention, folic acid having a carboxyl terminus is selectively used as a target-oriented multifunctional ligand constituting the target-oriented nanohybrid, selectively responding to a folate receptor overexpressed in tumor cells. That is, the attachment region is the silane portion of the aminosilane, the cross-linking region is the peptide region where the amine end portion of the aminosilane and the carboxyl end of the folic acid are bound, and the active ingredient region is a region that is sensitive to the folate receptor.
폴산 (folic acid (FA))는 세포 내에서 유전자를 생산하는 메커니즘인 폴레이트 회로 (folate cycle)에서 중요한 역할을 하는 영양분으로서 특히 세포 분화에 중요한 역할을 하는 것으로 알려져 있다. 일반적으로 암세포는 빠른 세포 분화를 위하여 많은 양의 폴산 (혹은 폴레이트)를 필요로 하며, 이를 위하여 세포막에 폴레이트 수용기 (folate receptor)를 과발현하여 대량의 폴산을 섭취하려는 경향이 있다. 특히 KB 세포와 같은 일부 유방암 세포에서는 정상 세포에 비하여 폴레이트 수용기가 과발현되어 있어, 폴레이트는 이들 암세포를 인지하는 일종의 리간드 (ligand) 역할을 할 수 있다. 암세포를 인지하는 리간드는 폴레이트와 같은 화학 물질 외에도 항체 (antibody), 압타머 (aptamer)등이 있을 수 있으나 면역 부작용이 없고, 비교적 싼 가격으로 접근할 수 있다는 점에서 폴레이트는 리간드로서의 이점이 크다. 따라서 최근 몇몇 연구에서는 폴레이트를 리간드로 사용하여 약물전달체의 암세포 친화력을 높이려는 노력을 보이고 있다. 특히 리포좀과 같은 약물전달체의 표면에 리간드를 부착하려는 연구 (Gabizon, A. et al., Adv. Drug Delivery Rev. (2004) 56:1177-1192)와 PEG-DSPE (polyethyelenglycol-disterarolyl phosphatidylethanolamine) 과 같은 고분자형 약물전달체의 말단에 리간드를 부착하여 담지된 DNA의 감염효율을 높이려는 연구 (Hattori, Y. et al., J. Contorlled Rel., (2004) 97:173-183) 혹은 pNIPAM (poly(Nisopropylacrylamide))과 같은 하이드로젤 형태의 약물 전달체에 폴레이트를 부착하여 세포 타겟팅 하려는 연구 (Nayak, S. et al., J. Am. Chem. Soc., (2004) 126:10258-10259) 등이 대표적인 예이다.Folic acid (FA) is a nutrient that plays an important role in the folate cycle, a mechanism for producing genes in cells, and is known to play an important role in cell differentiation. In general, cancer cells require a large amount of folic acid (or folate) for rapid cell differentiation. To this end, cancer cells tend to overexpress folate receptors on cell membranes and consume large amounts of folic acid. In particular, in some breast cancer cells, such as KB cells, the folate receptor is overexpressed compared to normal cells, so folate may act as a ligand for recognizing these cancer cells. Ligands that recognize cancer cells may include antibodies, aptamers, etc. in addition to chemicals such as folate, but folate has the advantage of ligand in that it has no immune side effects and is accessible at a relatively low price. Big. Therefore, several recent studies have shown efforts to increase the affinity of the drug carrier for cancer cells by using folate as a ligand. In particular, studies on attaching ligands to the surface of drug carriers such as liposomes (Gabizon, A. et al., Adv. Drug Delivery Rev. (2004) 56: 1177-1192) and PEG-DSPE (polyethyelenglycol-disterarolyl phosphatidylethanolamine) A study to increase the infection efficiency of the loaded DNA by attaching a ligand to the terminal of the polymer drug carrier (Hattori, Y. et al., J. Contorlled Rel., (2004) 97: 173-183) or pNIPAM (poly ( (Nayak, S. et al., J. Am. Chem. Soc., (2004) 126: 10258-10259) to target cells by attaching folate to hydrogel-type drug carriers such as Nisopropylacrylamide). Representative example.
본 발명의 나노혼성체는 종양과 관련된 다양한 질병, 예를 들어 위암, 폐암, 유방암, 난소암, 간암, 기관지암, 비인두암, 후두암, 췌장암, 방광암, 결장암 및 자궁경부암을 치료하는 유전자 치료제로 이용될 수 있다. The nanohybrid of the present invention is used as a gene therapy for treating various diseases associated with tumors, such as gastric cancer, lung cancer, breast cancer, ovarian cancer, liver cancer, bronchial cancer, nasopharyngeal cancer, laryngeal cancer, pancreatic cancer, bladder cancer, colon cancer and cervical cancer. Can be.
위와 같은 종양 질환 세포에서는, 정상 세포에서는 거의 또는 전혀 생산되지 않는 특정 물질을 발현 및/또는 분비하는데 이들을 일반적으로 "종양 마커(tumor marker)"라고 명명한다. 그러한 종양 마커와 특이적으로 결합할 수 있는 물질을 siRNA-층상형 무기 수산화물에 결합시켜 만든 나노혼성체는 종양 치료에 유용하게 이용될 수 있다. 당업계에는 다양한 종양 마커 뿐만 아니라 이들과 특이적으로 결합할 수 있는 물질이 공지되어 있다. 상기 리간드로는 바람직하게는 세포특이적 항체, 세포 선택적 펩타이드, 세포성장인자, 폴산, 갈락토스, 만노스, 알지디, 트렌스페린 등이 사용될 수 있다.In tumor disease cells such as the above, they express and / or secrete certain substances which are produced little or no in normal cells, which are generally termed "tumor markers". Nanocomposites made by binding a substance capable of specifically binding such tumor markers to siRNA-layered inorganic hydroxides can be usefully used for the treatment of tumors. Various tumor markers are known in the art, as well as substances that can specifically bind to them. Preferably, the ligand may be a cell specific antibody, a cell selective peptide, a cell growth factor, folic acid, galactose, mannose, alzidi, transferrin, or the like.
본 발명에 있어서, 상기 종양 마커는 작용 기작에 따라 리간드, 항원, 수용체, 이들을 코딩하는 핵산으로 분류할 수 있다.In the present invention, the tumor markers may be classified into ligands, antigens, receptors, and nucleic acids encoding them according to a mechanism of action.
종양 마커가 "리간드"인 경우에는 상기 리간드와 특이적으로 결합할 수 있는 물질을 본 발명에 따른 나노혼성체의 표적지향성 다작용기 리간드 성분으로 도입할 수 있는데, 상기 리간드와 특이적으로 결합할 수 있는 수용체 또는 항체가 적합할 것이다. 본 발명에서 이용 가능한 리간드 및 이와 특이적으로 결합할 수 있는 수용 체의 예로는 시냅토타그민의 C2(synaptotagmin의 C2)와 포스파티딜세린, 아넥신 V(annexin V)와 포스파티딜세린, 인테그린 (integrin)과 이의 수용체, VEGF(Vascular Endothelial Growth Factor)와 이의 수용체, 안지오포이에틴 (angiopoietin)과 Tie2 수용체, 소마토스타틴(somatostatin)과 이의 수용체, 바소인테스티날 펩타이드 (vasointestinal peptide)와 이의 수용체 등이 있지만 이에 제한되는 것은 아니다.When the tumor marker is "ligand", a substance capable of specifically binding to the ligand may be introduced as a target-oriented multifunctional ligand component of the nanohybrid according to the present invention, which may specifically bind to the ligand. Any receptor or antibody would be suitable. Examples of ligands and receptors that can specifically bind to the present invention include synaptotagmin C2 (synaptotagmin C2), phosphatidylserine, annexin V, phosphatidylserine, integrin and Its receptor, Vascular Endothelial Growth Factor (VEGF) and its receptor, angiopoietin and Tie2 receptor, somatostatin and its receptor, vasointestinal peptide and its receptor It doesn't happen.
종양 마커가 "항원"인 경우 상기 항원과 특이적으로 결합할 수 있는 물질을 본 발명에 따른 나노혼성체의 표적지향성 활성성분으로 도입할 수 있는데 상기 항원과 특이적으로 결합할 수 있는 항체가 적합할 것이다. 본 발명에서 이용 가능한 항원 및 이와 특이적으로 결합하는 항체의 예로는 암성 태아성 항원(carcinoembryonic antigen - 대장암 표지 항원)과 허셉틴(Genentech, USA), HER2/neu 항원(HER2/neu antigen - 유방암 표지항원)과 허셉틴, 전립선 특이 항원 (prostate-specific membrane antigen - 전립선암 표지 항원)과 리툭산 (IDCE/Genentech, USA) 등이 있다.When the tumor marker is an "antigen", a substance capable of specifically binding to the antigen can be introduced as a target-oriented active ingredient of the nanohybrid according to the present invention, and an antibody capable of specifically binding to the antigen is suitable. something to do. Examples of antigens and antibodies that specifically bind to the present invention include carcinoembryonic antigens (colon cancer marker antigens), Herceptin (Genentech, USA), and HER2 / neu antigens (HER2 / neu antigens-breast cancer markers). Antigen) and Herceptin, prostate-specific membrane antigen (prostate cancer marker antigen) and rituxan (IDCE / Genentech, USA).
종양 마커가 "수용체"인 대표적인 예는 난소암 세포에서 발현되는 폴산 수용체가 있다. 상기 수용체와 특이적으로 결합할 수 있는 물질(폴산 수용체의 경우에는 폴산)이 본 발명에 따른 나노혼성체의 표적지향성 다작용기 리간드로 도입될 수 있는데 상기 수용체와 특이적으로 결합할 수 있는 리간드 또는 항체, 바람직하게는, 항체가 적합할 것이다. A representative example where the tumor marker is a "receptor" is a folic acid receptor expressed in ovarian cancer cells. A substance capable of specifically binding to the receptor (folic acid in the case of a folic acid receptor) may be introduced as a target-oriented multifunctional ligand of the nanohybrid according to the present invention, or a ligand capable of specifically binding to the receptor or Antibodies, preferably antibodies, will be suitable.
여기서, 항체는 특정 대상과만 선택적이고 안정적으로 결합하는 성질을 갖고 있으며, 항체의 Fc 영역에 있는 리신의 -NH2, 시스테인의 -SH, 아스파라긴산 및 글루탐산의 -COOH는 나노혼성체의 표적지향성 활성성분 영역 작용기와 결합하는데 유용하게 이용될 수 있기 때문이다. 이러한 항체는 상업적으로 입수하거나 당업계에 공지된 방법에 따라 제조할 수 있다. 일반적으로 포유동물 (예, 마우스, 래트, 염소, 토끼, 말 또는 양)을 적절한 양의 항원으로 1회 이상 면역화시킨다. 일정 시간 후 역가가 적정 수준에 이르렀을 때, 포유동물의 혈청으로부터 회수한다. 회수한 항체는 원하는 경우 공지된 공정을 이용하여 정제하고 사용시까지 냉동 완충된 용액에 저장할 수 있다. 이러한 방법의 상세한 사항은 당업계에 잘 알려져 있다.Herein, the antibody has a property of selectively and stably binding only to a specific target, -NH 2 of lysine, -SH of cysteine, -COOH of aspartic acid and glutamic acid in the Fc region of the antibody are the target-directed activity of the nanocomposite. This is because it can be usefully used to bind component region functional groups. Such antibodies can be obtained commercially or prepared according to methods known in the art. In general, a mammal (eg, mouse, rat, goat, rabbit, horse or sheep) is immunized one or more times with an appropriate amount of antigen. After a period of time when the titer reaches an appropriate level, it is recovered from the serum of the mammal. The recovered antibody can be purified using known processes if desired and stored in a frozen buffered solution until use. Details of this method are well known in the art.
한편, 상기 "핵산"은 전술한 리간드, 항원, 수용체 또는 이의 일부분을 코딩하는 RNA 및 DNA를 포함한다. 핵산은 당업계에 알려진 바와 같이 상보적인 서열 간에 염기쌍(base pair)을 형성하는 특징을 갖고 있기 때문에 특정 염기서열을 갖는 핵산은 상기 염기서열에 상보적인 염기서열을 갖는 핵산을 이용하여 검출할 수 있다. 상기 효소, 리간드, 항원, 수용체를 코딩하는 핵산과 상보적인 염기서열을 갖는 핵산을 본 발명에 따른 나노혼성체의 표적지향성 활성성분으로 이용할 수 있다. On the other hand, "nucleic acid" includes RNA and DNA encoding the aforementioned ligand, antigen, receptor or part thereof. Nucleic acid having a specific base sequence can be detected using a nucleic acid having a base sequence complementary to the base sequence because the nucleic acid has a feature that forms a base pair between complementary sequences as known in the art . Nucleic acid having a nucleotide sequence complementary to the nucleic acid encoding the enzyme, ligand, antigen, receptor can be used as a target-oriented active ingredient of the nano-hybrid according to the present invention.
또한, 핵산은 5'- 및 3'- 말단에 -NH2, -SH, -COOH 등의 작용기가 있어 활성성분의 작용기와 결합하는데 유용하게 이용될 수 있다. 이러한 핵산은 당업계에 공지된 표준 방법에 의해, 예를 들면 자동 DNA 합성기 (예, 바이오써치, 어플라이드 바이오시스템스 등으로부터 구입할 수 있는 것)를 사용하여 합성할 수 있다. 예로서, 포스포로티오에이트 올리고뉴클레오타이드는 문헌(Stein et al. Nucl. Acids Res. 1988, vol.16, p.3209)에 기술된 방법에 의해 합성할 수 있다. 메틸포스포네이트 올리고뉴클레오타이드는 조절된 유리 중합체 지지체를 사용하여 제조할 수 있다(Sarin et al. Proc. Natl. Acad. Sci. U.S.A. 1988, vol.85, p.7448).In addition, the nucleic acid has a functional group such as -NH 2 , -SH, -COOH at the 5'- and 3'- terminal can be usefully used to bind to the functional group of the active ingredient. Such nucleic acids can be synthesized by standard methods known in the art, for example using automated DNA synthesizers (such as those available from BioSearch, Applied Biosystems, etc.). As an example, phosphorothioate oligonucleotides can be synthesized by the methods described in Stein et al. Nucl. Acids Res. 1988, vol. 16, p. 3209. Methylphosphonate oligonucleotides can be prepared using controlled free polymeric supports (Sarin et al. Proc. Natl. Acad. Sci. USA 1988, vol. 85, p.7448).
본 발명에 있어서, 상기 나노혼성체의 입도가 10 내지 350 nm 인 것이 바람직하며, 더 바람직하게는 50 내지 200 nm 이다. 이는 표적지향성 나노혼성체가 다작용기 리간드의 수용기, 즉 종양 마커에 선택적으로 감응한 뒤 효과적으로 세포에 내포화되도록 하며, 향후 생체 내에 투여할 시, 모세혈관이 막히지 않고, 세포에 물리적 충격을 가하지 않게 하기 위한 것이다. 표적지향성 나노혼성체가 너무 작아 50 nm에도 미치지 못할 경우에는 세포에 대량 유입되어 물리적 충격을 줄 수도 있다.In the present invention, the nanoparticles preferably have a particle size of 10 to 350 nm, more preferably 50 to 200 nm. This allows the target-oriented nanohybrid to selectively be sensitized to the receptor of the multifunctional ligand, i.e., the tumor marker, and then to be effectively nested in the cell, and to prevent capillary clogging and physical impact on the cell when administered in vivo in the future. It is for. If the target-oriented nanohybrid is too small to reach 50 nm, it may enter the cell in a large amount and give a physical shock.
본 발명에 있어서, 상기 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체 중의 siRNA 함량은 1~50 중량%인 것을 특징으로 할 수 있다. In the present invention, the siRNA content in the target-oriented siRNA-layered inorganic hydroxide nanohybrid may be 1 to 50% by weight.
본 발명은 다른 관점에서, (a) 2가 금속염과 3가 금속염 함유 수용액에 염기 수용액을 적가하여, 침전된 층상형 무기 수산화물을 제조하는 단계; (b) siRNA 함유 용액을 (a)단계에서 제조된 층상형 무기 수산화물이 분산된 용액과 혼합 및 교반하여 siRNA-층상형 무기 수산화물 나노혼성체를 이루는 단계; 및 (c) 상기 혼성체에 종양 마커 특이적 다작용기 리간드를 결합시켜 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체를 제조하는 단계를 포함하는, 표적지향성siRNA-층상형 무기 수산화물 나노혼성체의 제조방법에 관한 것이다.In another aspect, the present invention provides a method for preparing a precipitated layered inorganic hydroxide, the method comprising: (a) dropping a base aqueous solution into an aqueous solution containing a divalent metal salt and a trivalent metal salt to prepare a precipitated layered inorganic hydroxide; (b) mixing and stirring the siRNA-containing solution with the solution containing the layered inorganic hydroxide prepared in step (a) to form a siRNA-layered inorganic hydroxide nano hybrid; And (c) binding a tumor marker specific multifunctional ligand to the hybrid to prepare a target-oriented siRNA-layered inorganic hydroxide nanohybrid, the preparation of a target-oriented siRNA-layered inorganic hydroxide nanocomposite It is about a method.
또한, 상기 (c) 단계 후에, (d) 상기 나노혼성체에 1종 이상의 약제학적으 로 허용가능한 담체를 첨가하여 제제화하는 단계를 포함하는 상기 나노혼성체를 함유하는 종양 치료용 약학 조성물의 제조방법에 관한 것이다. In addition, after the step (c), (d) preparing a pharmaceutical composition for treating the tumor containing the nano- hybrid comprising the step of formulating by adding one or more pharmaceutically acceptable carrier to the nano- hybrid It is about a method.
본 발명에 있어서, 상기 (a) 단계의 층상형 무기 수산화물은 하기 화학식 2로 표시되는데, 공침 방법으로 쉽게 제조할 수 있다 In the present invention, the layered inorganic hydroxide of step (a) is represented by the following formula (2), can be easily prepared by the coprecipitation method
[화학식 2] [Formula 2]
[M(Ⅱ)1- xM(Ⅲ)x(OH)2]X+[An -]X/n ?yH2O [M (Ⅱ) 1- x M (Ⅲ) x (OH) 2] X + [A n -] X / n? yH 2 O
여기서, M(Ⅱ)는 2가 금속 양이온을 나타내고 M(Ⅲ)은 3가 금속 양이온을 나타내고 A는 음이온 화학종으로서 n은 음이온의 전하수 이며 x는 0.1 내지 0.5 미만의 수이고 및 y는 0을 초과하는 양수이다. Where M (II) represents a divalent metal cation, M (III) represents a trivalent metal cation, A is an anionic species, n is the number of charges of the anion, x is a number less than 0.1 to 0.5 and y is 0 Is more than positive.
상기 화학식 2에서 M(Ⅲ)는 이에 해당하는 3가의 양이온이 선택적으로 존재할 수 있으며, 전혀 존재하지 않을 수도 있다. 화학식 3와 같이 M(Ⅱ)이온과 M(Ⅲ)이온이 공존할 경우에는, 과량의 M(Ⅲ) 이온이 층상형 구조의 생성을 방해할 수 있으므로 M(Ⅲ)이온이 전체 금속이온에 대해 50몰% 이하로 존재하는 것이 바람직하다. In
상기 2가 금속 양이온과 3가 금속 양이온의 비율을 2:1, 3:1 및 4:1 등으로 조절하여 층 전하가 조절된 형태의 층상형 무기 수산화물을 형성시킬 수 있다.The ratio of the divalent metal cation to the trivalent metal cation may be adjusted to 2: 1, 3: 1 and 4: 1 to form a layered inorganic hydroxide having a controlled layer charge.
상기 2가 금속염으로는 Mg2 +, Ca2 +, Co2 +, Cu2 +, Ni2 +, 또는 Zn2 + 등을 양이온으로 하고, NO3 -, Cl-, OH-, O2-, SO4 2 -, CO3 2 - 또는, 숙시네이트 등을 음이온으로 하는 염 화합물이 이용될 수 있으나, 이에 한정되는 것은 아니다. 상기 3가 금속염으로는 Al3+, Cr3 +, Fe3 +, Ga3 +, In3 +, V3 +, 또는 Ti3 + 등을 양이온으로 하고, NO3 -, Cl-, OH-, O2-, SO4 2 -, CO3 2 - 또는, 숙시네이트 등을 음이온으로 하는 염화합물이 이용될 수 있으나, 이에 한정되는 것은 아니다. Mg 금속염의 경우 Mg(NO3)2, MgCl2, MgSO4, 또는 이들의 수화물 등을 사용할 수 있고, Al의 금속염의 경우는 Al(OH)3, Al(NO3)3, Al2(SO4)3, 또는 이들의 수화물 등을 사용할 수 있다. 상기 2가 금속 양이온, 3가 금속 양이온, 및 상기 음이온은 상기 종류로 한정되는 것은 아니며, 당해 기술분야에서 층상형 무기 수산화물로서 공지된 것에 해당하는 것을 모두 포함할 수 있다.The divalent metal salt is a Mg 2 +, Ca 2 +,
공침 반응은 염기를 가하여 침전을 유도할 수 있다. 적합한 염기로는 예를 들어, 수산화나트륨, 수산화칼륨, 수산화마그네슘, 수산화칼슘 또는 암모니아를 사용할 수 있다. 반응 용액의 pH는 5 내지 12, 바람직하게는 6 내지 10이고, 반응온도는 0℃ 내지 100℃, 바람직하게는 15℃ 내지 30℃이다. 반응 시간은 10분 이상이 바람직하다. 또한 반응 중에는 질소 또는 불활성 기체를 연속적으로 투입하여 반응시키는 것이 바람직하다.Coprecipitation can add a base to induce precipitation. Suitable bases can be used, for example, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide or ammonia. The pH of the reaction solution is 5 to 12, preferably 6 to 10, and the reaction temperature is 0 ° C to 100 ° C, preferably 15 ° C to 30 ° C. The reaction time is preferably 10 minutes or more. In addition, during the reaction, it is preferable to continuously add nitrogen or an inert gas to react.
상기 층상형 무기 수산화물은, 제조과정에 있어서, i) 반응액의 온도, ii) 반응액의 농도, iii) 금속양이온간의 혼합 비율, iv) 세척수의 온도, v) 건조온도 등의 합성 요인으로부터 다양한 입도와 형상을 나타낼 수 있다.In the manufacturing process, the layered inorganic hydroxide may be prepared from various synthetic factors such as i) the temperature of the reaction solution, ii) the concentration of the reaction solution, iii) the mixing ratio between the metal cations, iv) the temperature of the wash water, and v) the drying temperature. It can represent particle size and shape.
본 발명에 있어서, 상기 (b) 단계에 있어서, siRNA-층상형 무기수산화물 나 노혼성체 제조과정은, 층상형 무기 수산화물의 제조와 동시에 siRNA 함유 용액을 함께 공침시킴으로써 나노혼성체를 형성시키는 공침법 (co-precipitation method) 층상형 무기 수산화물을 형성시킨 다음 siRNA 함유 용액을 혼합 및 교반하여 이온교환에 의해 층상형 무기 수산화물의 층간에 도입하여 나노혼성체를 형성시키는 이온교환법 (ion-exchange method) 제조한 층상형 무기 수산화물을 하소시킨 다음 siRNA함유 용액을 가하여 재구성시킴으로써 나노혼성체를 형성시키는 하소-재구성법 (calcination-reconstruction method) 또는, 제조한 층상형 무기 수산화물을 낱장의 시트(sheet)형태로 박리화시킨 다음 siRNA 함유 용액을 가하여 재조합시킴으로써 나노혼성체를 형성시키는 박리화-재조합법(exfoliation-reassembling method) 등 이 있다.In the present invention, in the step (b), siRNA-layered inorganic hydroxide nano-hybrid manufacturing process, the co-precipitation method of forming a nano-hybrid by co-precipitating the siRNA-containing solution together with the preparation of the layered inorganic hydroxide ( co-precipitation method) The ion-exchange method was prepared in which a layered inorganic hydroxide was formed, followed by mixing and stirring the siRNA-containing solution and introducing the interlayer of the layered inorganic hydroxide by ion exchange to form nano hybrids. Calcination-reconstruction method of calcination of the layered inorganic hydroxide followed by reconstitution by addition of siRNA-containing solution to form a nano hybrid, or exfoliation of the prepared layered inorganic hydroxide in the form of a sheet. Exfoliation, followed by the addition of siRNA-containing solutions and recombination to form nanohybrids. reassembling method).
상기 공침법에 의한 본 발명에 따른 나노혼성체의 제조방법은 siRNA 및 2가/3가 금속염의 용액을 제조하는 단계 및 상기 용액에 염기를 가해 pH를 6 내지 10으로 적정하여 침전물을 수득하는 단계를 포함한다. In the method of preparing a nano hybrid according to the present invention by the co-precipitation method, preparing a solution of siRNA and a divalent / 3 valent metal salt and adding a base to the solution to titrate the pH to 6 to 10 to obtain a precipitate. It includes.
상기 이온교환법에 의한 본 발명에 따른 나노혼성체의 제조방법은 2가/3가 금속염의 용액을 제조하는 단계 상기 2가/3가 금속염의 용액에 염기를 가해 pH를 6 내지 10으로 적정하여 층상형 무기 수산화물 침전물을 형성시키는 단계 및 상기 형성된 침전물에 siRNA함유 용액을 부가하여 상기 침전물의 층간에 존재하는 음이온과의 이온교환에 의해 상기 침전물의 층간에 siRNA를 도입시키는 단계를 포함한다. In the method for preparing a nanocomposite according to the present invention by the ion exchange method, a step of preparing a solution of a divalent / 3 valent metal salt is added to a base of the solution of the divalent / 3 valent metal salt, and the pH is adjusted to 6 to 10 to obtain a layer. Forming an epitaxial inorganic hydroxide precipitate and introducing an siRNA-containing solution to the formed precipitate to introduce siRNA between layers of the precipitate by ion exchange with anions present between the layers of the precipitate.
상기 하소-재구성법에 의한 본 발명에 따른 나노혼성체의 제조방법은 2가/3가 금속염의 용액을 제조하는 단계 상기 2가/3가 금속염의 용액에 염기를 가해 pH 를 6 내지 10으로 적정하여 층상형 무기 수산화물 침전물을 형성시키는 단계 상기 형성된 침전물의 층간 음이온을 제거하기 위해 250℃ 내지 500℃ 이내의 온도에서 1 시간 이상 열처리, 바람직하게는 400℃에서 4시간 정도 열처리 하여 하소시키는 단계 및 siRNA 함유 용액에 상기 하소된 침전물에 부가하고 교반시켜 재구성하는 단계를 포함한다.In the method for preparing a nanocomposite according to the present invention by the calcination-reconstruction method, preparing a solution of a divalent / 3 valent metal salt by adding a base to the solution of the divalent / 3 valent metal salt, the pH is adjusted to 6 to 10. Forming a layered inorganic hydroxide precipitate by heat treatment at a temperature within 250 to 500 ℃ for at least 1 hour, preferably at 400 ℃ for 4 hours to remove the interlayer anion of the formed precipitate and siRNA Adding to the calcined precipitate to the containing solution and reconstituting by stirring.
상기 박리화-재조합법에 의한 본 발명에 따른 나노혼성체의 제조방법은 2가/3가 금속염의 용액을 제조하는 단계 상기 2가/3가 금속염의 용액에 염기를 가해 pH를 6 내지 10으로 적정하여 층상형 무기 수산화물 침전물을 형성시키는 단계 상기 형성된 침전물의 층간 음이온을 긴 탄소사슬의 음이온성 이온으로 치환하거나 특정 용매를 사용하여 층상형 무기 수산화물을 낱장의 단일층 시트로 박리화, 바람직하게는 포름아마이드 용액에 0.05 중량%로 분산 및 2일간 교반하여 박리화시키는 단계 및 siRNA 함유 용액을 상기 박리화된 콜로이드 용액에 부가하고 교반시켜 재조합하는 단계를 포함한다.In the method for preparing a nano hybrid according to the present invention by the exfoliation-recombination method, preparing a solution of a divalent / 3 valent metal salt by adding a base to the solution of the divalent / 3 valent metal salt, the pH is adjusted to 6 to 10. Titration to form a layered inorganic hydroxide precipitate by replacing the interlayer anions of the formed precipitate with anionic ions of a long carbon chain or exfoliating the layered inorganic hydroxide into a single sheet of sheet using a specific solvent, preferably Dispersing in a formamide solution at 0.05% by weight and stirring for 2 days to exfoliate, and adding siRNA-containing solution to the exfoliated colloidal solution and stirring to recombine.
상기 제조방법에서, 2가/3가 금속염 용액, 염기 용액 또는 siRNA 함유 용액을 제조하기 위한 용매는 상기 반응에 관여하지 않으면서 상기 siRNA 및 금속염을 모두 용해할 수 있는 용매이기만 하면 특별히 제한되는 것은 아니며, 예를 들어 증류수, 에탄올, 증류수 및 에탄올의 혼합용매가 이 이용될 수 있다. In the above production method, the solvent for preparing the divalent / 3 valent metal salt solution, base solution or siRNA containing solution is not particularly limited as long as it is a solvent capable of dissolving both the siRNA and the metal salt without being involved in the reaction. For example, a mixed solvent of distilled water, ethanol, distilled water and ethanol may be used.
상기 제조방법에서 층상형 무기 수산화물과 siRNA간의 반응은 특별히 한정되는 것은 아니며, 통상적으로는 상온에서, 바람직하게는 siRNA 변성 온도이하에서 수행이 가능하고, 대략 10분 내지 7일간 동안 반응시켜 얻어질 수 있다. 반응에 요 구되는 상기 각 반응물의 첨가비는 특별히 한정되지는 않으며, siRNA:층상형 무기 수산화물 몰비(%)로 10:90 내지 90:10으로 첨가될 수 있고, 이를 통해 siRNA의 층상형 무기 수산화물 도입률을 조절할 수 있다.In the preparation method, the reaction between the layered inorganic hydroxide and siRNA is not particularly limited, and can be generally performed at room temperature, preferably at a siRNA denaturation temperature, and can be obtained by reacting for about 10 minutes to 7 days. have. The addition ratio of each of the reactants required for the reaction is not particularly limited, and may be added in a molar ratio of siRNA: layered inorganic hydroxide (%) from 10:90 to 90:10, and thus, the layered inorganic hydroxide of siRNA. The rate of introduction can be controlled.
또한 siRNA가 종양 세포내로 전달된 이후, 층상형 무기 수산화물로부터 분해된 금속 양이온의 존재 하에서는 이중가닥 siRNA의 인산기와 금속 양이온의 상호작용으로 불용성 형태로 siRNA의 활성에 부정적인 영향을 줄 수 있다. (Duguid J et al., Biophys . J. 65:1916-1928, 1993). 2가/3가 금속 양이온과 강하게 킬레이트 결합을 형성하는 EDTA (Ethylene diamine tetra acetic acid) 를 상기 siRNA-층상형 무기 수산화물 나노혼성체 제조 (b) 단계에서 siRNA와 함께 첨가하여 나노혼성체를 형성시켜 종양치료에 사용하면, 세포 내로 유입된 이후, 약산성 조건에서 층상형 금속 수산화물의 분해 산물인 금속 양이온과의 상호작용을 줄임으로써, siRNA의 활성을 증가시키는데 보조적 역할을 할 수 있다.In addition, after the siRNA is delivered into tumor cells, in the presence of a metal cation decomposed from the layered inorganic hydroxide, the interaction of the phosphate group and the metal cation of the double stranded siRNA may negatively affect the activity of the siRNA in insoluble form. (Duguid J et al. , Biophys . J. 65: 1916-1928, 1993). Ethylene diamine tetra acetic acid (EDTA), which strongly forms a chelate bond with a divalent / trivalent metal cation, was added together with siRNA in the preparation of the siRNA-layered inorganic hydroxide nano hybrid (b) to form a nano hybrid. When used in tumor therapy, it may play a role in increasing siRNA activity by reducing interactions with metal cations, which are degradation products of layered metal hydroxides, after being introduced into cells, in weakly acidic conditions.
본 발명은 다른 관점에서, 상기 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체를 유효성분으로 함유하는 종양 치료용 약학조성물에 관한 것이다.In another aspect, the present invention relates to a pharmaceutical composition for tumor treatment containing the target-oriented siRNA-layered inorganic hydroxide nano hybrid as an active ingredient.
본 발명에 있어서, 상기 약학조성물은 통상적으로 사용되는 약학적으로 허용가능한 담체 또는 비히클을 포함할 수 있다. In the present invention, the pharmaceutical composition may include a pharmaceutically acceptable carrier or vehicle which is commonly used.
본 발명에 있어서, 상기 종양은 이에 제한되는 것은 아니나, 유방암, 폐암, 구강암, 췌장암, 결장암, 전립선암, 난소암 등일 수 있으며, 일 예로, 실시예에서 나타난 바와 같은, 구강암 또는 폐암일 수 있다. In the present invention, the tumor is not limited thereto, but may be breast cancer, lung cancer, oral cancer, pancreatic cancer, colon cancer, prostate cancer, ovarian cancer, or the like, and for example, oral cancer or lung cancer, as shown in the Examples.
본 발명의 종양치료용 약학 조성물에 사용될 수 있는 약제학적으로 허용되는 담체로는 이들로 한정되는 것은 아니지만 이온 교환 수지, 알루미나, 알루미늄 스테아레이트, 레시틴, 혈청 단백질(예, 사람 혈청 알부민), 완충 물질(예, 여러 인산염, 글리신, 소르브산, 칼륨 소르베이트, 포화 식물성 지방산의 부분적인 글리세라이드 혼합물), 물, 염 또는 전해질(예, 프로타민 설페이트, 인산수소이나트륨, 인산수소캄륨, 염화나트륨 및 아연 염), 교질성 실리카, 마그네슘 트리실리케이트, 폴리비닐피롤리돈, 셀룰로즈계 기질, 폴리에틸렌 글리콜, 나트륨 카르복시메틸셀룰로즈, 폴리아릴레이트, 왁스, 폴리에틸렌 글리콜 및 양모지 등이 포함된다. 본 발명의 종양치료용 약학 조성물은 상기 성분들 이외에 윤활제, 습윤제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다.Pharmaceutically acceptable carriers that can be used in the pharmaceutical composition for treating tumors of the present invention include, but are not limited to, ion exchange resins, alumina, aluminum stearate, lecithin, serum proteins (eg, human serum albumin), buffer substances (E.g. various phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids), water, salts or electrolytes (e.g. protamine sulfate, disodium hydrogen phosphate, carbohydrogen phosphate, sodium chloride and zinc salts) , Colloidal silica, magnesium trisilicate, polyvinylpyrrolidone, cellulose based substrates, polyethylene glycol, sodium carboxymethylcellulose, polyarylates, waxes, polyethylene glycols and wool, and the like. The pharmaceutical composition for treating tumors of the present invention may further include a lubricant, a humectant, an emulsifier, a suspending agent, a preservative, and the like, in addition to the above components.
본 발명의 나노혼성체 함유 약학 조성물은 임상투여를 위해 공지의 기술을 이용하여 적합한 제형으로 제제화할 수 있다. 예를 들어, 경구투여 시에는 불활성 희석제 또는 식용 담체와 혼합하거나, 경질 또는 연질 젤라틴 캡슐에 밀봉되거나 또는 정제로 압형하여 투여할 수 있다. 경구 투여용의 경우, 활성 화합물은 부형제와 혼합되어 섭취형 정제, 협측 정제, 트로키, 캡슐, 엘릭시르, 서스펜션, 시럽, 웨이퍼 등의 형태로 사용될 수 있다. 또한, 주사용, 비경구 투여용 등의 각종 제형은 당해 기술 분야의 공지된 기법 또는 통용되는 기법에 따라 제조할 수 있다. The nanohybrid-containing pharmaceutical compositions of the present invention can be formulated into suitable formulations using known techniques for clinical administration. For example, during oral administration, it may be mixed with an inert diluent or an edible carrier, sealed in hard or soft gelatin capsules, or pressed into tablets. For oral administration, the active compounds can be mixed with excipients and used in the form of intake tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers and the like. In addition, various formulations, such as for injection and parenteral administration, can be prepared according to techniques known in the art or commonly used techniques.
본 발명의 나노혼성체 함유 종양치료용 약학 조성물은 투여를 위해서 상기 기재한 유효성분 이외에 추가로 약제학적으로 허용 가능한 담체를 1종 이상 포함하여 제조할 수 있다. 약제학적으로 허용 가능한 담체는 본 발명의 유효성분과 양립가능 하여야 하며, 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있고, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한, 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형으로 제제화할 수 있다. 더 나아가 당분야의 적정한 방법으로 또는 Remington's Pharmaceutical Science(최근판), Mack Publishing Company, Easton PA에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다.The nanocomposite-containing tumor therapeutic pharmaceutical composition of the present invention may be prepared by additionally containing one or more pharmaceutically acceptable carriers in addition to the above-described active ingredients for administration. Pharmaceutically acceptable carriers should be compatible with the active ingredients of the present invention and may be used in combination with saline, sterile water, Ringer's solution, buffered saline, dextrose solution, maltodextrin solution, glycerol, ethanol and one or more of these components. Other conventional additives such as antioxidants, buffers, bacteriostatics, etc. may be added as necessary. In addition, diluents, dispersants, surfactants, binders and lubricants may be additionally added to formulate injectable formulations such as aqueous solutions, suspensions, emulsions and the like. Furthermore, it may be preferably formulated according to each disease or component by a suitable method in the art or using a method disclosed in Remington's Pharmaceutical Science (Recent Edition), Mack Publishing Company, Easton PA.
본 발명에 따른 나노혼성체 함유 종양치료용 약학 조성물은 의약 분야에서 통상적으로 이용되는 경로를 통해 투여될 수 있으며, 비경구 투여가 바람직하고 예를 들어 정구강, 정맥내, 근육내, 동맥내, 골수내, 경막내, 심장내, 경피, 피하, 복강내, 장관, 설하 또는 국소 투여경로를 통하여 투여할 수 있다.The pharmaceutical composition for the treatment of a nano hybrid containing tumor according to the present invention may be administered through a route commonly used in the pharmaceutical field, and parenteral administration is preferred, for example, oral, intravenous, intramuscular, intraarterial, Administration may be by intramedullary, intradural, intracardiac, transdermal, subcutaneous, intraperitoneal, intestinal, sublingual or topical routes of administration.
일 구현예로써, 본 발명에 따른 나노혼성체 함유 종양치료용 약학 조성물은 비경구 투여를 위한 수용성 용액으로 제조할 수 있다. 바람직하게는 한스 용액(Hank's solution), 링거 용액(Ringer's solution) 또는 물리적으로 완충된 염수와 같은 완충 용액을 사용할 수 있다. 수용성 주입(injection) 현탁액은 소디움 카르복시메틸셀룰로즈, 솔비톨 또는 덱스트란과 같이 현탁액의 점도를 증가시킬 수 있는 기질을 첨가할 수 있다. In one embodiment, the nanocomposite-containing tumor therapy pharmaceutical composition according to the present invention can be prepared in an aqueous solution for parenteral administration. Preferably, buffer solutions such as Hanks' solution, Ringer's solution, or physically buffered saline may be used. Aqueous injection suspensions can be added with a substrate that can increase the viscosity of the suspension, such as sodium carboxymethylcellulose, sorbitol or dextran.
본 발명에 있어서, 상기 제형은 정제, 캡슐제, 액제, 주사제, 연고제 및 시럽제로 구성된 군에서 선택되는 것을 특징으로 할 수 있으며, 상기 주사제의 제형인 경우에는, 액제, 현탁액제 또는 유탁액제 형태일 수 있다.In the present invention, the formulation may be selected from the group consisting of tablets, capsules, solutions, injections, ointments and syrups, in the case of formulations of the injections, it may be in the form of solutions, suspensions or emulsions Can be.
본 발명의 바람직한 나노혼성체 함유 종양치료용 약학 조성물은 멸균 주사용 수성 또는 유성 현탁액으로서 멸균 주사용 제제의 형태일 수 있다. 이러한 현탁액은 적합한 분산제 또는 습윤제(예를 들면 트윈 80) 및 현탁화제를 사용하여 본 분야에 공지된 기술에 따라 제형될 수 있다. 멸균 주사용 제제는 또한 무독성의 비경구적으로 허용되는 희석제 또는 용매 중의 멸균 주사 용액 또는 현탁액(예를 들면 1,3-부탄디올 중의 용액)일 수 있다. 사용될 수 있는 비히클 및 용매로는 만니톨, 물, 링거 용액 및 등장성 염화나트륨 용액이 있다. 또한, 멸균 비휘발성 오일이 통상적으로 용매 또는 현탁화 매질로서 사용된다. 이러한 목적을 위해 합성 모노 또는 디글리세라이드를 포함하여 자극성이 적은 비휘발성 오일은 그 어느 것도 사용할 수 있다.Preferred nano hybrid-containing tumor therapeutic pharmaceutical compositions of the present invention may be in the form of sterile injectable preparations as sterile injectable aqueous or oily suspensions. Such suspensions can be formulated according to techniques known in the art using suitable dispersing or wetting agents (eg Tween 80) and suspending agents. Sterile injectable preparations may also be sterile injectable solutions or suspensions (eg solutions in 1,3-butanediol) in nontoxic parenterally acceptable diluents or solvents. Vehicles and solvents that may be used include mannitol, water, Ringer's solution, and isotonic sodium chloride solution. In addition, sterile, nonvolatile oils are conventionally employed as a solvent or suspending medium. For this purpose any non-irritating non-volatile oil can be used including synthetic mono or diglycerides.
또는, 주사용 또는 주입용 최종 제제 이외에도, 동결건조물 또는 살균 산제로 존재하고, 투여 직전에 용매, 예를 들어 물과 혼합하여 주사용 또는 주입용 최종 제제를 제조할 수 있는 투여형태일 수 있다.Alternatively, in addition to the final preparation for injection or infusion, it may be in the form of a lyophilized or sterile powder, which may be mixed with a solvent, for example water, immediately prior to administration to produce the final preparation for injection or infusion.
본 발명의 나노혼성체 함유 종양치료용 약학 조성물은 통상의 환자 증후와 질병의 심각도에 기초하여 본 기술분야의 통상의 전문가가 결정할 수 있다. 또한, 산제, 정제, 캡슐제, 액제, 주사제, 연고제, 시럽제 등의 다양한 형태로 제제화할 수 있으며 단위-투여량 또는 다-투여량 용기, 예를 들면 밀봉된 앰플 및 병 등으로 제공될 수도 있다.The nanocomposite-containing oncology pharmaceutical compositions of the present invention can be determined by one of ordinary skill in the art based on common patient symptoms and disease severity. It may also be formulated in various forms, such as powders, tablets, capsules, solutions, injections, ointments, syrups, and the like, and may also be provided in unit-dose or multi-dose containers, such as sealed ampoules and bottles. .
본 발명의 나노혼성체 함유 약학 조성물의 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설율 및 질환의 중증도 등에 따라 그 범위가 다양하며, 본 기술분야의 통상의 전문가가 용이하게 결정할 수 있다.The dosage of the nano hybrid-containing pharmaceutical composition of the present invention varies depending on the weight, age, sex, health condition, diet, time of administration, administration method, excretion rate and severity of the disease, etc. of the patient, A person of ordinary skill can easily decide.
본 발명에 있어서, 서바이빈을 암호화하는 유전자와 상보결합할 수 있는 siRNA-층상형 무기 수산화물 나노혼성체의 투여량은, 환자의 연령, 성별, 증상, 투여방법 또는 예방목적에 따라, 체중 kg 당 siRNA 기준으로 0.05 내지 0.1㎍을 비경구 투여할 수 있다. 특이 증상을 나타내는 환자에 대한 투여용량 수준은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법 등에 따라 당업자가 투여량을 변화시킬 수도 있다.In the present invention, the dosage of siRNA-layered inorganic hydroxide nanocomposites capable of complementary binding to a gene encoding survivin is weight kg, depending on the age, sex, symptoms, administration method or prophylaxis of the patient. Parenteral administration may be from 0.05 to 0.1 μg on the basis of sugar siRNA. Dosage levels for patients with specific symptoms may vary by those skilled in the art depending on the patient's weight, age, sex, health condition, diet, time of administration, method of administration, and the like.
이하 실시예를 통하여 본 발명을 보다 상세히 설명한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail by way of examples. These examples are intended to illustrate the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.
실시예 1: 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체 제조Example 1: Preparation of Targeted siRNA-Layered Inorganic Hydroxide Nanocomposites
1-1. NO1-1. NO 33 -층상형 무기 수산화물 제조-Layered inorganic hydroxide manufacture
Mg(NO3)2?H2O (0.2 M) 및 Al(NO3)3?H2O (0.1 M)을 탄산이온 (CO3 2 -)이 제거된 증류수에 용해시키고, NaOH 수용액 (1 M)으로 pH 9~10 값으로 적정하여 침전에 의해 형성된 층상형 무기 수산화물 결정체를 얻었다. 층상형 무기 수산화물 결정체를 100℃에서 16시간 동안 교반하고, 세척과정을 거쳐 미반응 염을 제거한 후, 동결건조하여 NO3-층상형 무기 수산화물을 얻었다. ?? Mg (NO 3) 2 H 2 O (0.2 M) and Al (NO 3) 3 H 2 O (0.1 M) a carbonate ion (CO 3 2 -) has been removed was dissolved in distilled water, NaOH solution (1 The mixture was titrated at a pH of 9 to 10 to obtain a layered inorganic hydroxide crystal formed by precipitation. The layered inorganic hydroxide crystals were stirred at 100 ° C. for 16 hours, washed to remove unreacted salt, and then lyophilized to obtain a NO 3 -layered inorganic hydroxide.
1-2. siRNA-층상형 무기 수산화물 나노혼성체 제조 1-2. Preparation of siRNA-Layered Inorganic Hydroxide Nanocomposites
상기 1-1에서 수득한 층상형 무기 수산화물을 증류수에 재분산시키고, 이 분산용액에 서바이빈을 암호화하는 유전자와 상보 결합할 수 있는 siRNA (바이오니아, KR, 서열번호 1)를 증류수에 용해된 용액을 첨가하고 (siRNA:층상형 무기 수산화물=3:1 중량비) 37℃에서 2일간 교반한 후, 세척과정을 거쳐 미반응 siRNA를 제거한 후, siRNA가 층상형 무기 수산화물의 층간에 삽입된 나노혼성체를 수득하였다. 상기 나노혼성체 제조과정은 공기 중의 이산화탄소에 의한 탄산이온(CO3 2-) 생성을 방지하기 위하여 질소 분위기 하에서 진행되었다.The layered inorganic hydroxide obtained in 1-1 was redispersed in distilled water, and siRNA (Bionia, KR, SEQ ID NO: 1) capable of complementarily binding to a gene encoding survivin in this dispersion solution was dissolved in distilled water. The solution was added (siRNA: layered inorganic hydroxide = 3: 1 weight ratio), stirred at 37 ° C for 2 days, washed to remove unreacted siRNA, and then the nanohybrid was inserted between layers of layered inorganic hydroxide. A sieve was obtained. The nano hybrid manufacturing process was performed under a nitrogen atmosphere in order to prevent the production of carbonate ions (CO 3 2- ) by carbon dioxide in the air.
1-3. 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체 제조 1-3. Preparation of Targeted SiRNA-Layered Inorganic Hydroxide Nanocomposites
폴산 다작용기 리간드가 활성성분으로 결합된 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체를 제조하기 위해, 우선 상기 1-2에서 제조된 siRNA-층상형 무기 수산화물을 아미노실란이 부착된 siRNA-층상형 무기 수산화물 나노혼성체를 합성하였다. siRNA-층상형 무기 수산화물을 에탄올에 재분산하고 건조하여 표면수를 증발시킨 후, 아미노 프로필 실란이 용해되어 있는 톨루엔 용액에 첨가하여 60℃에서 6시간 교반하고 세척하여 아미노실란이 부착영역에 결합된 siRNA-층상형 무기 수산화물 나노혼성체를 얻었다. 상기 아미노실란이 결합된 siRNA-층상형 무기 수산화물 나노혼성체를 재분산시킨 수용액, 반응 촉매제인 1-에틸-3-(3-디메틸아미노프로필)-카보디이미드 (EDC), N-하이드록시숙신이미드 (NHS), 트리에틸아민 (ET3N)이 각각 용해된 수용액, 폴산 (폴레이트)이 디메틸술폭사이드 (DMSO) 에 용해된 용액을 준비하였다. siRNA-층상형 무기 수산화물 나노혼성체 분산액에 1-에틸-3-(3-디메틸아미노프로필)-카보디이미드 수용액과 N-하이드록시숙신이미드 수용액을 첨가하고, 폴산 용액을 첨가한 후, 트리에틸아민 수용액을 사용하여 pH를 9로 적정한다. 반응물은 38℃에서 5시간 동안 교반하고, 디메틸술폭시드와, 증류수로 세척한 뒤 동결건조함으로써, 폴산 다작용기 리간드가 결합된 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체를 수득하였다.In order to prepare a target-oriented siRNA-layered inorganic hydroxide nano hybrid in which a folic acid polyfunctional ligand is bound as an active ingredient, the siRNA-layered inorganic hydroxide prepared in the above 1-2 is first used as an aminosilane-attached siRNA-layered type. Inorganic hydroxide nano hybrids were synthesized. The siRNA-layered inorganic hydroxide was redispersed in ethanol and dried to evaporate the surface water, and then added to the toluene solution in which the amino propyl silane was dissolved, stirred at 60 ° C. for 6 hours, and washed, whereby the aminosilane was bound to the attachment region. siRNA-layered inorganic hydroxide nano hybrids were obtained. Aqueous redispersed solution of siRNA-layered inorganic hydroxide nanocomposite to which the aminosilane is bound, 1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide (EDC), N-hydroxysuccinate, which is a reaction catalyst An aqueous solution in which imide (NHS) and triethylamine (ET 3 N) were dissolved, and a solution in which folic acid (folate) was dissolved in dimethyl sulfoxide (DMSO) were prepared. To the siRNA-layered inorganic hydroxide nano hybrid dispersion, 1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide aqueous solution and N-hydroxysuccinimide aqueous solution were added, followed by addition of folic acid solution, and then The pH is titrated to 9 using aqueous ethylamine solution. The reaction was stirred at 38 ° C. for 5 hours, washed with dimethylsulfoxide, distilled water and lyophilized to obtain a target-oriented siRNA-layered inorganic hydroxide nanohybrid with a folic acid polyfunctional ligand.
상기의 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체 제조의 표면 반응은 1차적으로 부착영역인, 층상형 무기 수산화물의 M(금속)-OH 결합이 M-O-Si-아민으로 표면 개질되고, 2차적으로 교차연결영역에서 말단의 아민과 폴산의 카복실기가 반응하여M-O-Si-펩타이드-폴산이 형성되며, 활성성분영역은 폴레이트 수용기에 감응하는 말단 영역이다. The surface reaction of the preparation of the target-oriented siRNA-layered inorganic hydroxide nanocomposite is primarily a surface-modified M (metal) -OH bond of the layered inorganic hydroxide, which is an adhesion region, and is secondary In the cross-linking region, the terminal amine reacts with the carboxyl group of folic acid to form MO-Si-peptide-folic acid, and the active component region is the terminal region sensitive to the folate receptor.
상기 실시예 1에 제조한 나노혼성체의 결정 구조를 확인하기 위하여 X 선 회절(Rigaku, D/Max 2200) 분석을 수행하였다. 그 결과 도 2에서 나타난 바와 같이, 층상형 무기 수산화물의 층간 간격은 약 7.9 Å으로 질산음이온이 삽입되어 있는 전형적인 층상형 구조임을 확인하였고, siRNA-층상형 무기 수산화물의 층간 간격은 약 25 Å으로 질산음이온이 siRNA와 이온교환되며 siRNA가 수산화층과 평행한 구조로 층간에 삽입되면서 약 20 Å 팽창되었고, 그 결과 2차원 구조를 갖는 siRNA-층상형 무기 수산화물 나노혼성체가 수득되었음을 알 수 있다. 표적지향성 siRNA-층상형 무기 수산화물 역시 다작용기 리간드 결합 반응 이후에도 층간 간격을 유지하는 것을 통해, siRNA 층간에 삽입되어 있는 형태의 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체가 제조되었음을 알 수 있다.X-ray diffraction (Rigaku, D / Max 2200) analysis was performed to confirm the crystal structure of the nanocomposite prepared in Example 1. As a result, as shown in FIG. 2, the interlayer spacing of the layered inorganic hydroxide was about 7.9 Å and the typical lamellae structure into which nitrate anions were inserted. The interlayer spacing of the siRNA-layered inorganic hydroxide was about 25 Å. The anion was ion exchanged with siRNA and the siRNA was intercalated into the layer in a structure parallel to the hydroxide layer and expanded about 20 mm, resulting in a siRNA-layered inorganic hydroxide nanocomposite having a two-dimensional structure. The target-oriented siRNA-layered inorganic hydroxide also maintains the interlayer spacing even after the multi-functional ligand binding reaction, it can be seen that the target-oriented siRNA-layered inorganic hydroxide nanocomposite of the form inserted between the siRNA layers.
상기 실시예 1에서 제조한 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체의 형상 및 입도를 확인하기 위하여 투과 전자 현미경(JEOL JEM-2100F) 분석을 수행하였다. 그 결과 도 3에 도시한 바와 같이, 상기 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체는 평균 100±20 nm크기의 육각 형상의 나노입자로 제조되었음을 알 수 있다. Transmission electron microscopy (JEOL JEM-2100F) analysis was performed to confirm the shape and particle size of the target-oriented siRNA-layered inorganic hydroxide nano hybrid prepared in Example 1. As a result, as shown in Figure 3, it can be seen that the target-oriented siRNA-layered inorganic hydroxide nano hybrids were made of hexagonal nanoparticles having an average size of 100 ± 20 nm.
실험예 1: 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체의 혈청내 안정성 분석Experimental Example 1 Analysis of Stability in Serum of Target-oriented siRNA-Layered Inorganic Hydroxide Nanocomposites
상기 실시예 1에서 제조한 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체의 혈청내 안정성을 조사하였다. Serum stability of the target-oriented siRNA-layered inorganic hydroxide nano hybrids prepared in Example 1 was investigated.
siRNA 기준으로 농도 10㎍을 안정성 반응액(rat 혈청 10% 포함, Invitrogen) 90㎕에 가하고, 37℃에서 방치하였다. 소정 시간 (0, 0.5, 1, 2, 4, 6, 8, 10, 12 및 24시간)이 경과한 시점에서 12㎕씩을 분주하여, -70℃에 즉시 동결시켜 보관하고, 보관된 각각의 시간별 시료 2.5㎕를 트리스-아세테이트(TAE) 버퍼에서 젤 전기 영동(1% 아가로즈 젤)하여, 혈청내에서 siRNA가 유지되는 지의 여부를 확인하였다. 비교군으로는 순수 siRNA를 사용하였다. A concentration of 10 µg was added to 90 µl of the stability reaction solution (including 10% of rat serum, Invitrogen) based on siRNA, and left at 37 ° C. After a predetermined time (0, 0.5, 1, 2, 4, 6, 8, 10, 12 and 24 hours), dispense 12 μl each, immediately freeze at -70 ° C, and store for each hour 2.5 μl of the sample was subjected to gel electrophoresis (1% agarose gel) in Tris-Acetate (TAE) buffer to confirm whether siRNA was maintained in serum. Pure siRNA was used as a comparative group.
그 결과, 도 4에 도시한 바와 같이 순수 siRNA는 혈청을 포함하는 반응액에서 8시간 배양하면 거의 완전히 분해되었다 (도 4(a)). 반면, 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체는 동일한 조건 하에서 뉴클레아제에 의해 매개되는 siRNA 분해가 24시간이 경과한 후에도 전혀 검출되지 않았다 (도 4(b)). 이와 같은 혈청내에서의 지속적인 siRNA의 안정화는 층상형 무기 수산화물에 층간 삽입되어 있는 siRNA가 층상형 무기 수산화물의 양이온성 층전하와 siRNA의 음이온성 인산기가 강한 정전기적 인력으로 결합되어 뉴클레아제가 나노혼성체 내부 중심부로 접근하는 것을 구조적으로 가려주기 때문에 얻어지는 것으로 판단된다.As a result, as shown in Fig. 4, pure siRNA was almost completely degraded after 8 hours of incubation in the reaction solution containing serum (Fig. 4 (a)). In contrast, no target-oriented siRNA-layered inorganic hydroxide nanohybrids were detected at all after 24 hours of nuclease-mediated siRNA degradation (Fig. 4 (b)). Sustained stabilization of the siRNA in the serum is characterized by the intercalation of the siRNA intercalated into the layered inorganic hydroxide with the cationic layer charge of the layered inorganic hydroxide and the anionic phosphate group of the siRNA with strong electrostatic attraction. This is believed to be achieved because it structurally masks access to the inner core of the sieve.
실시예 2: 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체의 In-Vitro 효능 시험 Example 2 In-Vitro Efficacy Test of Targeted siRNA-Layered Inorganic Hydroxide Nanocomposites
2-1. 종양 세포주 배양 및 세포주에서의 서바이빈의 발현억제2-1. Tumor cell line culture and suppression of survivin expression in cell line
종양 세포주인 인간 구강암 세포주(KB, 한국세포주 은행)는 폴레이트 수용체가 과발현되는 세포로 이의 최대 발현을 유도하기 위하여 폴레이트가 없는 배양액에서 최소 2주 이상 37℃, CO2 조건하에서 배양 후 사용하였다. Human oral cancer cell line (KB, Korea Cell Line Bank), a tumor cell line, was used after incubation at 37 ° C. and CO 2 conditions for at least 2 weeks in a folate-free medium to induce its maximum expression as cells overexpressing folate receptors. .
KB세포를 RPMI 1640 배지(Welgene, KR)에 각각 1 x 105/2ml로 분주하여 37℃, CO2 배양기에서 배양한 뒤, 실시예 1에서 제조된 siRNA-층상형 무기 수산화물 나노혼성체, 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체를 siRNA 기준으로 100 nM의 농도로 세포에 처리하여 37℃, CO2 배양기에서 배양하였다. 6시간 경과 후, RPMI 1640 배지로 2회 세척한 다음, 신선한 RPMI 1640 배지로 교체한 후 24시간 동안 37℃, CO2 배양기에서 서바이빈의 발현을 억제하기 위해 추가적으로 배양하였다. The KB cells RPMI 1640 medium (Welgene, KR) for each 1 x 10 5 / seeded into 2ml 37 ℃, a back, Example 1 siRNA- layered inorganic hydroxide nano hybrid material, the target prepared from the culture in a CO 2 incubator The directional siRNA-layered inorganic hydroxide nanohybrids were treated with cells at a concentration of 100 nM based on siRNA and incubated in a 37 ° C., CO 2 incubator. After 6 hours, washed twice with RPMI 1640 medium, and then replaced with fresh RPMI 1640 medium and further incubated for 24 hours to suppress the expression of survivin in 37 ℃, CO 2 incubator.
비교군으로는 아무 처리하지 않은 세포, 대조군으로는 NO3-층상형 무기 수산화물, 및 실험군으로는 siRNA-층상형 무기 수산화물 나노혼성체를 처리한 세포를 사용하였다. 또한 대조군으로 표적지향성 리간드인 폴산에 의한 종양 특이적 세포내재화를 확인하기 위해, 폴산 (1mg/ml) 함유 배양액을 24시간 동안 배양한 후에 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체를 처리한 세포를 사용하였다.The cells treated with no treatment in the comparison group, the NO 3 -layered inorganic hydroxide as the control group, and the cells treated with the siRNA-layered inorganic hydroxide nano hybrids were used as the experimental group. In addition, in order to confirm tumor specific cellular internalization by folic acid, which is a target-oriented ligand, the cells treated with the target-oriented siRNA-layered inorganic hydroxide nanohybrid after incubating the culture solution containing folic acid (1 mg / ml) for 24 hours. Was used.
본 발명에 따른 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체는 종양 마커인 폴레이트 수용체가 과발현된 종양 세포에서 리셉터-매개를 통하여 세포 내로 투과되며 (receptor-mediated endocytosis), 종양 마커가 발현되지 않는 종양 세포에서는 siRNA-층상형 무기 수산화물 나노혼성체 혹은 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체 모두 클라드린-매개 내포화 (clathrin-mediated endocytosis)라는 메커니즘에 의해 세포 내재화되어 종양 치료 효과를 나타내는 것으로 판단된다. 또한 표적지향성 다작용기 리간드가 부착된 나노혼성체를 사용한 경우에 많은 양의 나노혼성체가 종양 선택적으로 세포 내로 유입됨을 알 수 있다. 이 결과는 표적지향성 층상형 무기 수산화물이 종양 세포 특이적 siRNA 전달 매개 체로서 역할을 할 수 있음을 제시한다.Target oriented siRNA-layered inorganic hydroxide nanohybrids according to the present invention are permeated into cells through receptor-mediated tumor cells in which tumor markers, which are overexpressed as tumor markers (receptor-mediated endocytosis), do not express tumor markers. In tumor cells, both siRNA-layered inorganic hydroxide nanohybrids or targeted oriented siRNA-layered inorganic hydroxide nanohybrids are internalized by a mechanism called clathrin-mediated endocytosis to show tumor therapeutic effects. Judging. In addition, it can be seen that a large amount of nanohybrids are selectively introduced into cells in the case of using a nanocomposite to which a target-directed multifunctional ligand is attached. These results suggest that targeted oriented inorganic hydroxides can serve as tumor cell specific siRNA delivery mediators.
2-2. 2-2. RTRT -- PCRPCR 에 의한 On by 서바이빈Survival mRNAmRNA 의 정량분석Quantitative Analysis of
종양 세포 억제가 실제로 세포내 서바이빈mRNA의 양의 감소로부터 기인하는지 여부를 확인하기 위하여, RNA 추출키트(RNeasy mini kit, Qiagen, Germany)를 이용하여 전체 RNA 중 서바이빈 mRNA의 농도를 RT-PCR (Real-time PCR) 분석에 의해, 다음과 같은 방법으로 정량하였다. To determine whether tumor cell suppression actually results from a decrease in the amount of intracellular survivin mRNA, the RNA extraction kit (RNeasy mini kit, Qiagen, Germany) was used to monitor the concentration of survivin mRNA in total RNA. It was quantified by the following method by -PCR (Real-time PCR) analysis.
즉, 각 시료의 전체 RNA 1㎍을 oligo-dT18 (500ng/㎕) 1㎕ 및 dNTP(각 2.5mM) 2㎕와 같이 혼합하고, 70℃에서 10분간 반응시킨 다음, 얼음에서 5분간 냉각시키고, 역전사효소(reverse superscript (200U/㎕), Invitrogen) 0.5㎕, 10X 반응완충액 2㎕, RNase 저해재 (inhibitor) 0.5㎕ 및 적량의 멸균수를 혼합하여, 전체 부피를 20㎕로 맞춘 후, 42℃에서 15분 반응시키고, 95℃에서 5분동안, 4℃에서 5분동안 반응시켜서 각각의 cDNA를 수득하였다. 그런 다음, 각각의 cDNA 1㎕, RT-PCR 시스템(Applied Biosystems Prism 7900 Sequence Detection System, Applied Biosystems, USA)의 2X SYBR Green Master Mix 10㎕, 서바이빈 및 GAPDH에 특이적인 각각의 정방향 프라이머(10pM) 0.4㎕ 및 역방향 프라이머 (10pM) 0.4㎕을 혼합한 다음, RT-PCR을 수행하였다 (50℃에서 2분, 95℃에서 10분, 95℃에서 30초, 60℃에서 30초, 72℃에서 30초로 40회 반복). 이때, 사용된 정방향(forwarding) 프라이머와 역방향(reverse) 프라이머의 서열은 다음과 같다:That is, 1 μg of total RNA of each sample was mixed with 1 μl of oligo-dT18 (500 ng / μl) and 2 μl of dNTP (2.5 mM each), reacted at 70 ° C. for 10 minutes, and then cooled on ice for 5 minutes, 0.5 μl reverse superscriptase (200 U / μl), Invitrogen), 2
서바이빈 특이적 정방향 프라이머: 5'-CCTTCACATCTGTCACGTTCTCC-3' (서열번 호 10)Survivin specific forward primer: 5'-CCTTCACATCTGTCACGTTCTCC-3 '(SEQ ID NO: 10)
서바이빈 특이적 역방향 프라이머: 5'-ATCATCTTACGCCAGACTTCAGC-3' (서열번호 11)Survivin specific reverse primer: 5'-ATCATCTTACGCCAGACTTCAGC-3 '(SEQ ID NO: 11)
GAPDH 특이적 정방향 프라이머: 5'-GGTGAAGGTCGGAGTCAACG-3' (서열번호 12)GAPDH specific forward primer: 5'-GGTGAAGGTCGGAGTCAACG-3 '(SEQ ID NO: 12)
GAPDH 특이적 역방향 프라이머: 5'-ACCATGTAGTTGAGGTCAATGAAGG-3' (서열번호 13)GAPDH specific reverse primer: 5'-ACCATGTAGTTGAGGTCAATGAAGG-3 '(SEQ ID NO: 13)
PCR이 종료된 후, cDNA 표준곡선을 사용하여, 각각의 수득한 서바이빈 PCR 산물의 양 및 GAPDH PCR 산물의 양을 측정하고, 서바이빈의 측정값을 GAPDH의 측정값으로 나누어, 서바이빈 상대적 발현량을 산출하고, 이로부터 서바이빈 mRNA의 발현감소율을 비교하였다.After the completion of PCR, using the cDNA standard curve, the amount of each obtained survivin PCR product and the amount of GAPDH PCR product were measured, and the measured value of survivin was divided by the measured value of GAPDH and survived. The relative empty expression level was calculated, and the expression reduction rate of survivin mRNA was compared.
그 결과를 도 5에 나타내었으며, KB세포에서 siRNA-층상형 무기 수산화물 나노혼성체를 처리한 경우에는 40% 서바이빈 발현감소, 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체를 처리한 경우에는 60% 서바이빈 발현을 감소시켰다. The results are shown in FIG. 5, in the case of treatment of siRNA-layered inorganic hydroxide nanohybrids in KB cells, 40% survivin expression reduction, and treatment of target-oriented siRNA-layered inorganic hydroxide nanohybrids 60% reduced survivin expression.
이를 통해, 본 발명의 siRNA-층상형 무기 수산화물 나노혼성체 및 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체는 서바이빈의 mRNA 수준을 감소시킬 뿐만 아니라, 서바이빈의 발현감소에 따른 종양세포의 증식억제를 직접적으로 유발시킬 수 있음을 확인할 수 있었다. Through this, the siRNA-layered inorganic hydroxide nano hybrid and the target-oriented siRNA-layered inorganic hydroxide nano hybrid of the present invention not only reduce the mRNA level of survivin, but also decrease the expression of survivin tumor cells. It could be confirmed that it can directly induce the growth inhibition of.
본 발명에 따른 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체는 siRNA의 생체 내 안정성이 증가시켰으며, 종양 마커와 특이적으로 결합할 수 있는 표적지향성 다작용기 리간드는 종양특이적 전달 효율을 향상시켜 비교적 낮은 농도의 투여량에서 siRNA의 종양치료 활성을 나타내어 다양한 질병 종양 치료의 효율성 및 정확성을 향상시키는 조성물로 사용할 수 있음을 확인하였고, 새로운 형태의 siRNA 전달 시스템으로 생명공학을 위한 기초연구와 의학 산업상의 매우 유용하게 사용될 수 있는 유용한 발명임이 확인되었다. Targeted siRNA-layered inorganic hydroxide nano hybrids according to the present invention increased the in vivo stability of siRNA, the target-directed multi-functional ligand that can specifically bind tumor markers improve tumor specific delivery efficiency It has been shown that it can be used as a composition to improve the efficiency and accuracy of the treatment of various diseases by showing the tumor therapeutic activity of siRNA at relatively low concentrations. The new type of siRNA delivery system is a basic research and medical industry for biotechnology. It has been found that the invention is a useful invention that can be used very usefully.
이상으로 본 발명 내용의 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. As described above in detail the present invention, it will be apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
도 1은 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체를 제조하는 반응의 모식도이다. 1 is a schematic diagram of a reaction for preparing a target-oriented siRNA-layered inorganic hydroxide nanohybrid.
도 2는 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체의 X선 회절도이다. ((a): NO3-층상형 무기 수산화물, (b): siRNA-층상형 무기 수산화물, (c): 표적지향성 siRNA-층상형 무기 수산화물) 2 is an X-ray diffraction diagram of a target-oriented siRNA-layered inorganic hydroxide nanohybrid. ((a): NO 3 -layered inorganic hydroxide, (b): siRNA-layered inorganic hydroxide, (c): target oriented siRNA-layered inorganic hydroxide)
도 3은 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체의 투과전자현미경 이미지이다. 3 is a transmission electron microscope image of a target-oriented siRNA-layered inorganic hydroxide nanohybrid.
도 4는 siRNA와 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체의 혈액내 안정성 평가를 위해, 혈청 단백질이 존재하는 환경 하에서 시간에 따른 siRNA의 분해 정도를 나타내는 전기영동 이미지이다. ((a): 순수 siRNA, (b): 표적지향성 siRNA-층상형 무기 수산화물)Figure 4 is an electrophoretic image showing the degree of degradation of siRNA over time in the presence of serum proteins for the evaluation of blood stability of siRNA and target-oriented siRNA-layered inorganic hydroxide nanohybrids. ((a): pure siRNA, (b): target oriented siRNA-layered inorganic hydroxide)
도 5는 표적지향성 siRNA-층상형 무기 수산화물 나노혼성체가 종양 세포 내에서 서바이빈의 발현을 억제하는 정도를 mRNA 수준으로 나타낸 그래프이다. ((a): 비교군, (b): NO3-층상형 무기 수산화물, (c) siRNA-층상형 무기 수산화물, (d): 표적지향성 siRNA-층상형 무기 수산화물, 폴산 함유 배지, (e): 표적지향성 siRNA-층상형 무기 수산화물, 폴산 함유하지 않는 배지)FIG. 5 is a graph showing mRNA levels of target-directed siRNA-layered inorganic hydroxide nanohybrids inhibiting the expression of survivin in tumor cells. (a): comparative group, (b): NO 3 -layered inorganic hydroxide, (c) siRNA-layered inorganic hydroxide, (d): target oriented siRNA-layered inorganic hydroxide, folic acid containing medium, (e) : Target-oriented siRNA-layered inorganic hydroxide, medium without folic acid)
<110> Nanohybrid <120> Active siRNA-Inorganic Layered Double Hydroxide Nanohybrid, a Process for Preparing the Same and a Pharmaceutical Composition Comprising the Same for Treating Targeted Tumor <130> P09-B100 <160> 13 <170> KopatentIn 1.71 <210> 1 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> siRNA derived from survivin <400> 1 aaggagauca acauuuuca 19 <210> 2 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> siRNA derived from survivin <400> 2 uaggaaagga gaucaacau 19 <210> 3 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> siRNA derived from survivin <400> 3 aggaaaggag aucaacauu 19 <210> 4 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> siRNA derived from survivin <400> 4 aggaaaggag aucaacauu 19 <210> 5 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> siRNA derived from survivin <400> 5 ggaaaggaga ucaacauuu 19 <210> 6 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> siRNA derived from survivin <400> 6 gaaaggagau caacauuuu 19 <210> 7 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> siRNA derived from survivin <400> 7 aaaggagauc aacauuuuc 19 <210> 8 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> siRNA derived from survivin <400> 8 aggagaucaa cauuuucaa 19 <210> 9 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> siRNA derived from survivin <400> 9 ggagaucaac auuuucaaa 19 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> survivin specific forwarding primer <400> 10 ccttcacatc tgtcacgttc tcc 23 <210> 11 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> survivin specific reverse primer <400> 11 atcatcttac gccagacttc agc 23 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GAPDH specific forwarding primer <400> 12 ggtgaaggtc ggagtcaacg 20 <210> 13 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> GAPDH specific reverse primer <400> 13 accatgtagt tgaggtcaat gaagg 25 <110> Nanohybrid <120> Active siRNA-Inorganic Layered Double Hydroxide Nanohybrid, a Process for Preparing the Same and a Pharmaceutical Composition Comprising the Same for Treating Targeted Tumor <130> P09-B100 <160> 13 <170> KopatentIn 1.71 <210> 1 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> siRNA derived from survivin <400> 1 aaggagauca acauuuuca 19 <210> 2 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> siRNA derived from survivin <400> 2 uaggaaagga gaucaacau 19 <210> 3 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> siRNA derived from survivin <400> 3 aggaaaggag aucaacauu 19 <210> 4 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> siRNA derived from survivin <400> 4 aggaaaggag aucaacauu 19 <210> 5 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> siRNA derived from survivin <400> 5 ggaaaggaga ucaacauuu 19 <210> 6 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> siRNA derived from survivin <400> 6 gaaaggagau caacauuuu 19 <210> 7 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> siRNA derived from survivin <400> 7 aaaggagauc aacauuuuc 19 <210> 8 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> siRNA derived from survivin <400> 8 aggagaucaa cauuuucaa 19 <210> 9 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> siRNA derived from survivin <400> 9 ggagaucaac auuuucaaa 19 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> survivin specific forwarding primer <400> 10 ccttcacatc tgtcacgttc tcc 23 <210> 11 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> survivin specific reverse primer <400> 11 atcatcttac gccagacttc agc 23 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GAPDH specific forwarding primer <400> 12 ggtgaaggtc ggagtcaacg 20 <210> 13 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> GAPDH specific reverse primer <400> 13 accatgtagt tgaggtcaat gaagg 25
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090086644A KR101118691B1 (en) | 2009-09-14 | 2009-09-14 | Active siRNA-Inorganic Layered Double Hydroxide Nanohybrid, a Process for Preparing the Same, and a Pharmaceutical Composition Comprising the Same for Treating Targeted Tumor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090086644A KR101118691B1 (en) | 2009-09-14 | 2009-09-14 | Active siRNA-Inorganic Layered Double Hydroxide Nanohybrid, a Process for Preparing the Same, and a Pharmaceutical Composition Comprising the Same for Treating Targeted Tumor |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110028981A KR20110028981A (en) | 2011-03-22 |
KR101118691B1 true KR101118691B1 (en) | 2012-03-12 |
Family
ID=43935010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090086644A KR101118691B1 (en) | 2009-09-14 | 2009-09-14 | Active siRNA-Inorganic Layered Double Hydroxide Nanohybrid, a Process for Preparing the Same, and a Pharmaceutical Composition Comprising the Same for Treating Targeted Tumor |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101118691B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210236406A1 (en) * | 2019-05-03 | 2021-08-05 | Webiotree Co., Ltd. | Novel metal layered hydroxide complex and method of preparing same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016516804A (en) | 2013-04-17 | 2016-06-09 | ファイザー・インク | N-piperidin-3-ylbenzamide derivatives for treating cardiovascular diseases |
KR101883719B1 (en) | 2016-08-18 | 2018-08-01 | (주) 에이치엔에이파마켐 | Composition for transdermal delivery comprising nanoemulsion and modified layered double hydroxide |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060049386A (en) * | 2004-10-27 | 2006-05-18 | (주)바이오니아 | Sirna for inhibiting survivin gene expression |
-
2009
- 2009-09-14 KR KR1020090086644A patent/KR101118691B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060049386A (en) * | 2004-10-27 | 2006-05-18 | (주)바이오니아 | Sirna for inhibiting survivin gene expression |
Non-Patent Citations (1)
Title |
---|
International Journal of Nanomedicine, Vol. 2, No. 2, pp. 163-174 (2007.06.30.) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210236406A1 (en) * | 2019-05-03 | 2021-08-05 | Webiotree Co., Ltd. | Novel metal layered hydroxide complex and method of preparing same |
Also Published As
Publication number | Publication date |
---|---|
KR20110028981A (en) | 2011-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1915449B1 (en) | Sirna-hydrophilic polymer conjugates for intracellular delivery of sirna and method thereof | |
US9598465B2 (en) | Cell penetrating peptides for intracellular delivery of molecules | |
US8969543B2 (en) | SiRNA-hydrophilic polymer conjugates for intracellular delivery of siRNA and method thereof | |
CN108026527A (en) | Definite more coupling oligonucleotides | |
EP3749288B1 (en) | Nanoparticle-hydrogel composite for nucleic acid molecule delivery | |
JP2003509034A (en) | Magnetic nanoparticles with biochemical activity, their production and use | |
US20120220647A1 (en) | Nano-hybrid of targetable sirna-layered inorganic hydroxide, manufacturing method thereof, and pharmaceutical composition for treating tumor comprising the nano-hybrid | |
KR101118691B1 (en) | Active siRNA-Inorganic Layered Double Hydroxide Nanohybrid, a Process for Preparing the Same, and a Pharmaceutical Composition Comprising the Same for Treating Targeted Tumor | |
KR20160090005A (en) | RNA/DNA hybrid nanoparticle used for target-specific siRNA delivery and use thereof | |
Jere et al. | Biodegradable nano-polymeric system for efficient Akt1 siRNA delivery | |
JP2022550901A (en) | Tumor-targeted polypeptide nanoparticle delivery system for nucleic acid therapeutics | |
KR101579879B1 (en) | Hyaluronic acid-cholesterol nanoparticles for siRNA delivery and composition comprising the same | |
KR20170050395A (en) | Multiple tandem shDNA used for tumor-selective drug delivery and use thereof | |
CN113648429A (en) | Polymer for activating immunity by targeting tumor peripheral cells and preparation method and application thereof | |
EP4296274A1 (en) | Peptides for intracellular delivery | |
US20240141345A1 (en) | CD70-TARGETED MICELLES ENHANCE HIF2? siRNA DELIVERY AND INHIBIT ONCOGENIC FUNCTIONS IN PATIENT-DERIVED CLEAR CELL RENAL CARCINOMA CELLS | |
JP7535327B2 (en) | Polyol-based polydixylitol gene carrier containing cancer stem cell specific binding peptide and vitamin B6 bound thereto, and cancer stem cell targeted therapy technology | |
US20240336655A1 (en) | Amphiphilic peptides for nucleic acid and protein delivery | |
JP2023545401A (en) | Highly cell-permeable peptide carrier | |
WO2023049814A2 (en) | Nanoparticle pharmaceutical compositions with reduced nanoparticle size and improved polydispersity index | |
KR101415985B1 (en) | Composite for delivering a gene into a cell and gene delivery system using the same | |
Tremel et al. | Functionalized Magnetic Nanoparticles for Selective Targeting of Cells | |
Tremel et al. | Cell Specific Targeting of Multifunctional γ-Fe2O3 Nanoparticles Through Surface Binding of dsDNA | |
Shukoor et al. | Functionalized magnetic nanoparticles for selective targeting of cells | |
WO2015057016A2 (en) | Peptide molecule comprising anionic amino acid and hydrophobic amino acid and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20150216 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20160212 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170214 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20180207 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20190211 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20200213 Year of fee payment: 9 |