KR101117525B1 - Cerium oxide abrasive grain and manufacturing method of the same - Google Patents

Cerium oxide abrasive grain and manufacturing method of the same Download PDF

Info

Publication number
KR101117525B1
KR101117525B1 KR1020050049703A KR20050049703A KR101117525B1 KR 101117525 B1 KR101117525 B1 KR 101117525B1 KR 1020050049703 A KR1020050049703 A KR 1020050049703A KR 20050049703 A KR20050049703 A KR 20050049703A KR 101117525 B1 KR101117525 B1 KR 101117525B1
Authority
KR
South Korea
Prior art keywords
cerium oxide
oxide abrasive
abrasive particles
hydrothermal reaction
particles
Prior art date
Application number
KR1020050049703A
Other languages
Korean (ko)
Other versions
KR20060128341A (en
Inventor
박종대
공현구
이봉상
손정현
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to KR1020050049703A priority Critical patent/KR101117525B1/en
Publication of KR20060128341A publication Critical patent/KR20060128341A/en
Application granted granted Critical
Publication of KR101117525B1 publication Critical patent/KR101117525B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

반도체 다층구조를 형성하기 위한 화학 기계적 연마(Chemical Mechanical Polishing: CMP)공정에서 미세 스크래치를 감소시킨 산화세륨 연마입자 및 수열반응을 이용한 그 제조방법이 개시된다. 상기 제조방법은 산화세륨 연마입자 및 물을 혼합하는 혼합공정; 상기 혼합 용액 내의 산화세륨 연마입자를 분쇄하는 밀링공정; 미네랄라이저를 첨가하여 상기 분쇄된 산화세륨 연마입자의 날카로운 입자면을 용해시키는 수열반응; 및 세척제를 이용하여 상기 수열반응 후 잔존하는 미네랄라이저를 제거하는 세척공정을 포함한다. 본 발명은 또한 상기 수열반응을 이용하여 제조된 산화세륨 연마입자, 연마입자 분산제, pH조절제 및 물을 포함하는 화학 기계적 연마 슬러리 조성물을 제공한다.Disclosed are a cerium oxide abrasive particle having reduced fine scratches in a chemical mechanical polishing (CMP) process for forming a semiconductor multilayer structure, and a method of manufacturing the same using a hydrothermal reaction. The manufacturing method comprises a mixing step of mixing the cerium oxide abrasive particles and water; Milling process of grinding the cerium oxide abrasive particles in the mixed solution; Hydrothermal reaction for dissolving the sharp particle surface of the pulverized cerium oxide abrasive particles by adding a mineralizer; And a washing step of removing the remaining mineralizer after the hydrothermal reaction using a washing agent. The present invention also provides a chemical mechanical polishing slurry composition comprising cerium oxide abrasive particles, abrasive particle dispersant, pH adjuster and water prepared using the hydrothermal reaction.

화학 기계적 연마, STI 공정, 연마 슬러리, 수열반응, 미세 스크래치, 산화세륨 Chemical Mechanical Polishing, STI Process, Polishing Slurry, Hydrothermal Reaction, Fine Scratch, Cerium Oxide

Description

산화세륨 연마입자 및 그 제조방법{Cerium oxide abrasive grain and manufacturing method of the same}Cerium oxide abrasive grain and manufacturing method of the same

도 1은 본 발명에 따른 산화세륨 연마입자의 제조 공정도.1 is a manufacturing process of the cerium oxide abrasive particles according to the present invention.

도 2는 통상의 산화세륨 연마입자를 투과전자현미경으로 측정한 사진.Figure 2 is a photograph of ordinary cerium oxide abrasive particles measured by transmission electron microscope.

도 3은 본 발명의 일실시예에 따라 수열반응을 거친 산화세륨 연마입자를 투과전자현미경으로 측정한 사진. Figure 3 is a photograph of the cerium oxide abrasive particles subjected to hydrothermal reaction in accordance with an embodiment of the present invention by transmission electron microscope.

도 4는 본 발명의 일실시예에 따른 산화세륨 연마입자의 X선 회절분석(XRD) 그래프.4 is an X-ray diffraction analysis (XRD) graph of cerium oxide abrasive particles according to an embodiment of the present invention.

본 발명은 산화세륨 연마입자 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 반도체 다층구조를 형성하기 위한 화학 기계적 연마(Chemical Mechanical Polishing: CMP)공정에서 미세 스크래치를 감소시킬 수 있는 산화세륨 연마입자 및 수열반응을 이용한 산화세륨 연마입자의 제조방법에 관한 것이다.The present invention relates to a cerium oxide abrasive particle and a method for manufacturing the same, and more particularly, to a cerium oxide abrasive particle capable of reducing fine scratches in a chemical mechanical polishing (CMP) process for forming a semiconductor multilayer structure. It relates to a method for producing cerium oxide abrasive particles using the hydrothermal reaction.

최근 반도체 소자의 집적도가 증가함에 따라 고성능의 노광 공정에 대한 마진을 확보하기 위하여 광역평탄화 공정이 필요하게 되었다. 화학 기계적 연마는 이러한 반도체 디바이스의 광역평탄화에 이용되는 공정으로서, 다른 평탄화 방법에 비하여 평탄화 능력이 우수하고 공정이 간편한 장점을 지니고 있다. 화학 기계적 연마 공정에 사용되는 연마 슬러리는 일반적으로 연마입자, 탈이온수 및 첨가제를 포함하며, 상기 연마입자로는 콜로이달 실리카 입자 또는 퓸드 실리카 입자가 주로 사용되고 있으나, 이러한 연마입자는 산화막의 연마 속도가 충분히 높지 않고, 산화막과 질화막의 연마 선택성이 낮아 여러 단계의 공정이 추가로 진행되어야 하는 문제점이 있다.     Recently, as the degree of integration of semiconductor devices increases, a wide area flattening process is required to secure a margin for a high-performance exposure process. Chemical mechanical polishing is a process used for wide-area flattening of such semiconductor devices, and has the advantages of superior planarization capability and simple process compared to other planarization methods. The polishing slurry used in the chemical mechanical polishing process generally includes abrasive particles, deionized water, and additives. Colloidal silica particles or fumed silica particles are mainly used as the abrasive particles. It is not high enough, and the polishing selectivity of the oxide film and the nitride film is low, and there is a problem in that various steps of the process must be further performed.

상기 문제점을 보완하기 위하여, 기존의 유리 가공 공정에서 사용되는 산화세륨 입자를 포함하는 슬러리의 사용이 고려되고 있다. 산화세륨 입자는 연마 속도와 산화막과 질화막의 연마 선택성이 높은 장점이 있지만, 비중이 실리카 입자에 비해 6~8배나 높아 슬러리 제조시 분산 안정성이 떨어지며, 화학 기계적 연마 공정 중 입자간 응집에 의하여 다량의 미세 스크래치가 발생하는 문제점이 있다. 특히 화학 기계적 연마공정 중, STI(Shallow Trench Isolation)공정에서는 트렌치가 얇고 미세하므로 미세 스크래치가 발생하면 반도체 소자의 성능이나 생산 수율의 측면에서 심각한 결과가 발생한다. 따라서 반도체 공정 중, 화학 기계적 연마 공정에 사용되는 연마 슬러리 입자는 높은 연마 속도와 연마 공정 중 미세 스크래치의 유 발이 없어야 한다. In order to supplement the above problem, the use of a slurry containing cerium oxide particles used in the existing glass processing process is contemplated. Cerium oxide particles have the advantage of high polishing rate and high polishing selectivity of oxide film and nitride film, but specific gravity is 6 ~ 8 times higher than silica particles, which makes dispersion stability less during slurry production. There is a problem that a fine scratch occurs. Particularly, during the chemical mechanical polishing process, the trench is thin and fine in the shallow trench isolation (STI) process, so that the fine scratches have serious consequences in terms of the performance and production yield of the semiconductor device. Therefore, the polishing slurry particles used in the chemical mechanical polishing process during the semiconductor process should have a high polishing rate and no micro scratches during the polishing process.

이러한 산화세륨 입자와 같은 금속 산화물 미립자를 제조하는 방법은 제조하는 상(Phase)에 따라 기상법, 고상법 및 액상법으로 구분된다. 기상법은 기화법, 열분해법, 화염연소분해법 등의 제조방법이 있으나 제조 에너지 소모가 많으며 장치비가 비싸고 제조 생산성이 떨어지는 단점이 있다. 또한 고상법에는 소성법과 기계 화학적 합성법 등이 있으나 고온에서 장시간 반응시켜야 하고, 반응 후 밀링 고정을 진행하여 입자의 크기를 작게 하는 공정이 추가되는 단점이 있다. 또한 이러한 밀링 공정으로 미세화된 입자는 그 결정성 때문에 입자의 모서리가 날카롭게 되어 화학 기계적 연마 공정시 미세 스크래치를 유발하는 단점이 있다. 그리고 액상법은 졸-겔법, 침전법 등이 있으나 이러한 방법 등은 재료비가 고가이며 공정 후 폐액이 과량 발생하는 단점이 있다. 따라서, 상기와 같은 산화세륨 등의 금속 산화물 미립자 제조방법을 단독으로 이용해서는 연마속도가 높으며 동시에 미세 스크래치의 유발을 방지하는 특성을 갖춘 화학 기계적 연마 공정에 적합한 산화세륨 입자의 제조를 기대할 수 없다.Methods for producing metal oxide fine particles such as cerium oxide particles are classified into a gas phase method, a solid phase method, and a liquid phase method according to the prepared phase. The gas phase method has a manufacturing method such as vaporization method, pyrolysis method, flame combustion decomposition method, etc., but there are disadvantages in that it consumes a lot of manufacturing energy, is expensive in equipment, and in which manufacturing productivity is low. In addition, there are disadvantages in that the solid phase method includes a calcination method and a mechanical chemical synthesis method, but requires a reaction for a long time at a high temperature, and a process for reducing the size of particles by performing milling and fixing after the reaction. In addition, the particles that have been refined by the milling process has a disadvantage in that the edges of the particles are sharpened due to their crystallinity, causing fine scratches in the chemical mechanical polishing process. In addition, the liquid phase method includes a sol-gel method and a precipitation method, but these methods have a disadvantage in that a material cost is high and excessive waste solution is generated after the process. Therefore, the production of cerium oxide particles suitable for a chemical mechanical polishing process having a high polishing rate and at the same time preventing the occurrence of microscratches cannot be expected by using the above-described method for producing metal oxide fine particles such as cerium oxide.

따라서 본 발명의 목적은 화학 기계적 연마 공정 중 연마 속도가 높으며 미세 스크래치를 감소시킬 수 있는 산화세륨 연마입자를 제공하는 것이다.Accordingly, an object of the present invention is to provide a cerium oxide abrasive particle having a high polishing rate during the chemical mechanical polishing process and capable of reducing fine scratches.

본 발명의 다른 목적은 수열반응을 이용한 산화세륨 연마입자의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing cerium oxide abrasive particles using hydrothermal reaction.

본 발명의 또 다른 목적은 상기 수열반응을 거쳐 제조된 산화세륨 연마입자를 포함하는 화학 기계적 연마 슬러리 조성물을 제공하는 것이다.Still another object of the present invention is to provide a chemical mechanical polishing slurry composition comprising cerium oxide abrasive particles prepared through the hydrothermal reaction.

상기 목적을 달성하기 위하여, 본 발명은 산화세륨 연마입자 및 물을 혼합하는 혼합공정; 상기 혼합 용액 내의 산화세륨 연마입자를 분쇄하는 밀링공정; 및 미네랄라이저의 존재 하에, 상기 분쇄된 산화세륨 연마입자를 수열반응 시키는 공정을 포함하는 산화세륨 연마입자의 제조방법을 제공한다. 본 발명은 또한 상기 제조방법에 따라 제조된 화학 기계적 연마를 위한 산화세륨 연마입자 및 상기 제조방법에 따라 제조된 산화세륨 연마입자, 연마입자 분산제, pH조절제 및 물을 포함하는 화학 기계적 연마 슬러리 조성물을 제공한다.In order to achieve the above object, the present invention is a mixing process of mixing cerium oxide abrasive particles and water; Milling process of grinding the cerium oxide abrasive particles in the mixed solution; And hydrothermal reaction of the pulverized cerium oxide abrasive particles in the presence of a mineralizer. The present invention also provides a chemical mechanical polishing slurry composition comprising a cerium oxide abrasive grain prepared for chemical mechanical polishing according to the preparation method and a cerium oxide abrasive grain prepared according to the preparation method, an abrasive grain dispersant, a pH adjuster and water. to provide.

이하, 첨부된 도면을 참조하여 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 산화세륨 연마입자의 제조 공정도로서, 도 1에 도시된 바와 같이, 본 발명에 따라 산화세륨 연마입자를 제조하기 위해서는, 먼저, 산화세륨 연마입자 및 물을 혼합하는 혼합공정을 실시한다. 상기 혼합공정에 사용되는 산화세륨 연마입자는 산화막 및/또는 질화막의 기계적 연마를 수행하는 것으로서, 통상적으로 사용되는 산화세륨 입자를 사용할 수 있다. 상기 산화세륨 연마입 자의 순도는 99.0중량% 이상이 바람직하며, 99.9중량% 이상인 것이 더욱 바람직하다. 상기 순도가 99.0중량% 미만이면 연마 후 반도체소자 세정과정을 거치더라도 불순물이 잔류하여 반도체 소자 특성에 악영향을 미치고, 그 결과 불량이 증가하여 생산수율이 저하될 염려가 있다. 1 is a manufacturing process diagram of the cerium oxide abrasive particles according to the present invention, as shown in Figure 1, in order to manufacture the cerium oxide abrasive particles according to the present invention, first, a mixing process of mixing the cerium oxide abrasive particles and water Is carried out. The cerium oxide abrasive particles used in the mixing process is to perform mechanical polishing of the oxide film and / or nitride film, it can be used cerium oxide particles commonly used. The purity of the cerium oxide abrasive grains is preferably at least 99.0% by weight, more preferably at least 99.9% by weight. If the purity is less than 99.0% by weight, even after the semiconductor device cleaning process after polishing, impurities remain, which adversely affects the characteristics of the semiconductor device. As a result, defects may increase, leading to a decrease in production yield.

상기 산화세륨 연마입자와 혼합되는 물은 산화세륨 연마입자의 밀링공정을 원활히 수행하기 위한 것으로서 통상적으로 사용되는 물을 사용할 수 있으며, 용해되어 있는 이온을 모두 제거한 탈이온수 또는 초순수를 사용하는 것이 바람직하다. 상기 혼합공정에 있어서 산화세륨 연마입자의 사용량은 물 100중량부에 대하여 1.0 내지 50.0 중량부이다. 상기 산화세륨 연마입자의 사용량이 너무 작거나 너무 크면 추후의 밀링공정이 원활하게 수행되지 못 할 우려가 있다.The water mixed with the cerium oxide abrasive particles is used to smoothly perform the milling process of the cerium oxide abrasive particles, and may be water that is commonly used. It is preferable to use deionized water or ultrapure water from which all dissolved ions are removed. . The amount of cerium oxide abrasive grains used in the mixing step is 1.0 to 50.0 parts by weight based on 100 parts by weight of water. If the amount of the cerium oxide abrasive particles used is too small or too large, there is a concern that the subsequent milling process may not be performed smoothly.

상기 산화세륨 연마입자와 물이 균일하게 혼합되면, 상기 혼합 용액 내의 산화세륨 입자를 분쇄하는 밀링공정을 수행한다. 상기 밀링공정은 뭉쳐있는(agglomerate) 상태로 비교적 약하게 응집되어 있는 산화세륨 이차입자를 원하는 입경으로 세분화하는 공정이다. 밀링공정의 종류로는 비드 밀링, 초음파 밀링, 제트 밀링 등이 있는데, 상기 비드밀링은 연마입자가 분산액 중에 고르게 분산되도록 사용한 비드 및 반응용기가 분쇄된 물질에 의한 오염 정도가 크고, 초미립화, 다분산도 등 밀링 효율 및 생산성이 저하되는 문제점이 있으며, 초음파 밀링공정은 원하는 정도의 초미립화가 어렵고, 밀링된 이차입자가 다시 응집하려는 경향이 강해 안정성이 저하되어 초음파 처리 장치에서 금속 불순물이 발생될 위험이 크다는 문제점이 있다. 그에 반하여, 본 발명에서 사용되는 제트 밀링공정은 연마입자 분산액 내의 연마입자를 대향 충돌시켜 깨뜨리는 방식의 밀링공정으로서, 오염의 원인이 적고 전체적으로 균일한 충격량을 가할 수 있어 균일한 크기의 입자로 분쇄할 수 있어 생산성이 우수하다는 장점이 있다. 상기 제트 밀링공정은 시판되는 상품명 나노마이저(Nanomizer), 마이크로플루이다이저(Microfluidizer), 얼티마이저(Ultimizer) 등의 다양한 제트밀링장비를 사용하여 수행할 수 있고, 연마입자의 초기 혼합용액의 대향 충돌 압력은 500 내지 3000kgf/cm2인 것이 바람직하고, 700 내지 3000kgf/cm2이면 더욱 바람직하고, 1000 내지 3000kgf/cm2이면 더더욱 바람직하다. 상기 충돌 압력이 500kgf/cm2이면 입자의 분쇄가 어렵고, 3000kgf/cm2을 초과하면 분쇄되는 입자의 크기가 너무 작고, 장비의 수명이 단축되는 단점이 있다.When the cerium oxide abrasive particles and water are uniformly mixed, a milling process of grinding the cerium oxide particles in the mixed solution is performed. The milling process is a process of subdividing the cerium oxide secondary particles, which are relatively weakly aggregated in an agglomerate state, into desired particle diameters. Types of milling processes include bead milling, ultrasonic milling, jet milling, and the like. The bead milling has a high degree of contamination by the beads and reaction vessels used to grind the abrasive particles evenly in the dispersion, and the finely divided particles. The milling efficiency and productivity are deteriorated, such as dispersion degree, and the ultrasonic milling process is difficult to achieve ultrafine granulation to a desired degree, and the tendency of the milled secondary particles to re-aggregate is strong so that the stability is lowered and metal impurities are generated in the ultrasonic processing apparatus. There is a problem that the risk is large. In contrast, the jet milling process used in the present invention is a milling process in which the abrasive grains in the abrasive grain dispersion are collided with each other so as to break the abrasive grains. There is an advantage that the productivity is excellent. The jet milling process may be performed using a variety of jet milling equipment, such as a commercially available brand name Nanomizer, Microfluidizer, Ultimateizer, etc., and face collision of the initial mixed solution of abrasive particles The pressure is preferably 500 to 3000 kgf / cm 2 , more preferably 700 to 3000 kgf / cm 2 , and even more preferably 1000 to 3000 kgf / cm 2 . If the impact pressure is 500kgf / cm 2 It is difficult to crush the particles, if the exceeding 3000kgf / cm 2 The size of the particles to be crushed is too small, there is a disadvantage that the life of the equipment is shortened.

상기의 밀링 방법에 의하여 원하는 입자 크기로 조절된 산화세륨 입자는 날카로운 입자면을 가지고 있는데, 이러한 날카로운 입자면은 화학 기계적 연마 공정 중 미세 스크래치를 유발시킨다. 본 발명에서는 미세 스크래치를 감소시키기 위하여 수열반응 공정을 진행하여 밀링된 입자의 날카로운 입자면을 용해시킨다. 통상적인 수열반응은 고온고압의 조건하에서 무기산화물을 합성하는 방법이지만, 본 발명에서는 수열반응의 조건을 조절하여 산화세륨 입자의 날카로운 면을 용해시키는 공정으로 도입하였다. 본 발명에서 수행하는 수열반응의 반응온도는 60 내지 250℃ 가 바람직하고, 80 내지 220℃이면 더욱 바람직하다. 반응온도가 60℃ 미만이면 산화세륨 입자의 날카로운 면을 용해시키지 못하고, 250℃를 초과하면 반응용기의 내구성이 떨어지는 단점이 있다. 또한 반응시간은 10분 내지 48시간이 바람직하고, 0.5 내지 24시간이면 더욱 바람직하다. 반응시간이 10분 미만이면 산화세륨 입자의 날카로운 면을 용해시키지 못하고, 반응시간이 48시간을 초과하면 산화세륨 입자들이 결정 성장을 하여 입자의 크기가 커지고 응집이 발생하는 단점이 있다. The cerium oxide particles adjusted to the desired particle size by the milling method have sharp particle surfaces, which cause fine scratches during the chemical mechanical polishing process. In the present invention, to reduce the fine scratches, hydrothermal reaction is performed to dissolve the sharp particle surface of the milled particles. Conventional hydrothermal reaction is a method of synthesizing an inorganic oxide under conditions of high temperature and high pressure, but in the present invention, the hydrothermal reaction is controlled to introduce a step of dissolving the sharp surface of the cerium oxide particles. 60-250 degreeC is preferable and, as for the reaction temperature of the hydrothermal reaction performed by this invention, it is more preferable if it is 80-220 degreeC. If the reaction temperature is less than 60 ℃ do not dissolve the sharp surface of the cerium oxide particles, if it exceeds 250 ℃ there is a disadvantage that the durability of the reaction vessel is poor. The reaction time is preferably 10 minutes to 48 hours, more preferably 0.5 to 24 hours. If the reaction time is less than 10 minutes, the sharp surface of the cerium oxide particles may not be dissolved, and if the reaction time exceeds 48 hours, the cerium oxide particles may grow crystals, resulting in large particle size and aggregation.

상기 수열반응은 미네랄라이저(Mineralizer)의 존재하에서 수행되며, 상기 미네랄라이저는 불용성 화합물들이 최소한의 용해도를 갖는 조건을 만들며, 용액속에서 자유롭게 움직이다가 고체화합물의 표면에서 수열반응을 촉진시키기 위한 것이다. 즉, 일반적인 수열반응법에서 미네랄라이저(mineralizer)는 용액 상의 과포화도를 증가시켜 수열반응을 쉽게 일어나도록 도와주는 역할을 한다. 상기 미네랄라이저로는 통상적으로 알려진 무기산을 제한 없이 사용할 수 있으며, 바람직하게는 인산, 황산, 염산, 질산 및 이들의 혼합물을 사용할 수 있다. 상기 미네랄라이저의 함량은 산화세륨 연마입자를 날카로운 면을 충분히 용해시킬 수 있는 정도의 양으로서, 무기산 및 그 혼합물의 종류 및 농도 등에 따라 달라질 수 있으나, 전체 수열반응 용액의 0.1 내지 50중량%가 바람직하고, 1.0 내지 30중량%이면 더욱 바람직하다. 상기 미네랄라이저의 함량이 0.1중량% 미만이면 산화세륨 입자와의 반응이 충분하게 일어나지 않아 날카로운 입자면의 용해가 미약하고, 50중량%를 초과하면 수열반응 후 산화세륨 연마입자의 표면 제타 전하가 변화하여 응집이 발생하고 화학 기계적 연마 특성을 악화시키는 문제가 있다.The hydrothermal reaction is carried out in the presence of a mineralizer, which creates conditions under which the insoluble compounds have minimal solubility, and moves freely in solution to promote hydrothermal reaction on the surface of the solid compound. . That is, in the general hydrothermal reaction method, the mineralizer increases the supersaturation of the solution and helps the hydrothermal reaction to occur easily. As the mineralizer, conventionally known inorganic acids may be used without limitation, and preferably phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid and mixtures thereof may be used. The content of the mineralizer is an amount sufficient to dissolve the sharp surface of the cerium oxide abrasive particles, and may vary depending on the type and concentration of the inorganic acid and its mixture, but preferably 0.1 to 50% by weight of the total hydrothermal reaction solution. It is more preferable if it is 1.0-30 weight%. If the content of the mineralizer is less than 0.1% by weight, the reaction with the cerium oxide particles does not occur sufficiently, so that dissolution of the sharp particle surface is weak. If the content of the mineralizer exceeds 50% by weight, the surface zeta charge of the cerium oxide abrasive particles is changed after hydrothermal reaction. Agglomeration occurs and there is a problem of deteriorating chemical mechanical polishing properties.

또한 수열반응에 투입되는 산화세륨 입자의 함량은 전체 용액의 0.1 내지 50 중량%가 바람직하고 1.0 내지 30중량%이면 더욱 바람직하다. 투입되는 산화세륨 입자의 함량이 0.1중량% 미만이면 생산의 효율성이 떨어지고 50중량%를 초과하면 산화세륨 입자의 용해 효율이 떨어지는 단점이 있다. 상기 수열반응용액의 나머지 성분은 물이다.In addition, the content of the cerium oxide particles added to the hydrothermal reaction is preferably 0.1 to 50% by weight of the total solution, more preferably 1.0 to 30% by weight. If the content of the cerium oxide particles is less than 0.1% by weight of the production efficiency is lowered, if the content of more than 50% by weight has a disadvantage that the dissolution efficiency of the cerium oxide particles. The remaining components of the hydrothermal reaction solution is water.

이와 같이 수열반응을 수행한 후, 필요에 따라 수열반응이 수행된 산화세륨 연마입자를 세척제를 이용하여 세척하는 공정 및 세척된 산화세륨 연마입자를 드라이 오븐에서 건조시키는 건조공정을 더욱 수행할 수 있다. 상기 세척공정은 수열반응 후 산화세륨 입자 표면에 잔존하는 무기산을 제거하기 위한 것이다. 상기 세척공정이 적합하게 이루어지지 않으면, 산화세륨 입자 표면에 수열반응의 미네랄라이저인 무기산이 잔류하여 슬러리 제조시 입자의 분산성을 떨어뜨리고 사용되는 첨가제들에 의한 연마 선택비 구현을 방해한다. 상기 세척공정에 사용되는 세척제는 통상적으로 알려진 약염기를 제한 없이 사용할 수 있으며, 바람직하게는 암모니아, 수산화칼륨, 테트라메틸암모늄 하이드록사이드(TMAH) 등의 약염기를 사용할 수 있다. 상기 세척공정은 최소 1회 실시하며, 3 내지 10회가 바람직하다. 상기 세척공정이 이루어지면 산화세륨 연마입자를 드라이 오븐에서 건조시키는 건조공정을 더욱 실시할 수 있다. 상기 드라이 오븐의 온도는 90 내지 120℃가 바람직하며, 건조시간은 8 내지 48시간이 바람직하다. 물론 상기 세척공정 후 곧바로 슬러리 제조에 산화세륨 연마입자를 사용할 수도 있으며, 약염기 외에 탈이온수로 세척하는 공정 도 추가할 수 있다.After performing the hydrothermal reaction as described above, a process of washing the cerium oxide abrasive particles subjected to the hydrothermal reaction with a washing agent and a drying process of drying the washed cerium oxide abrasive particles in a dry oven may be further performed as necessary. . The washing step is for removing the inorganic acid remaining on the surface of the cerium oxide particles after the hydrothermal reaction. If the washing process is not performed properly, the mineral acid, which is a mineralizer of hydrothermal reaction, remains on the cerium oxide particle surface, thereby reducing the dispersibility of the particles during slurry production and preventing the implementation of the polishing selectivity by the additives used. The cleaning agent used in the washing process may be used conventionally known weak base without limitation, preferably may be used a weak base such as ammonia, potassium hydroxide, tetramethylammonium hydroxide (TMAH). The washing process is carried out at least once, preferably 3 to 10 times. When the washing step is performed, the drying step of drying the cerium oxide abrasive particles in a dry oven may be further performed. The temperature of the dry oven is preferably 90 to 120 ℃, the drying time is preferably 8 to 48 hours. Of course, the cerium oxide abrasive particles may also be used to prepare the slurry immediately after the washing process, and in addition to the weak base, a process of washing with deionized water may be added.

본 발명은 수열반응을 이용한 상기 제조방법에 따라 제조된 화학 기계적 연마를 위한 산화세륨 연마입자를 제공한다. 도 3은 본 발명에 따라 수열반응을 거친 산화세륨 연마입자를 투과전자현미경으로 측정한 사진이다. 상기 산화세륨 연마입자는 도 2의 통상적인 산화세륨 연마입자와 비교해 볼 때 날카로운 입자면이 용해되어 뭉툭해진 특징을 보인다. 따라서 화학 기계적 연마(Chemical Mechanical Polishing: CMP)공정에서 미세 스크래치를 감소시킬 수 있다. 상기 산화세륨 입자의 평균 크기는 5 내지 700nm인 것이 바람직하고, 10 내지 500nm이면 더욱 바람직하다. 상기 입자 크기가 5nm 미만이면 화학 기계적 연마 공정시 연마 속도가 저하되고 화학 기계적 연마 공정간 웨이퍼 표면에 흡착되어 연마 후 웨이퍼 세정이 곤란해질 염려가 있다. 또한 입자크기가 700nm를 초과하면 연마면에 미세 스크래치가 발생할 염려가 있다. The present invention provides cerium oxide abrasive particles for chemical mechanical polishing prepared according to the above production method using hydrothermal reaction. 3 is a photograph of the cerium oxide abrasive particles subjected to hydrothermal reaction according to the present invention measured by transmission electron microscope. The cerium oxide abrasive particles have a characteristic that the sharp particle surface is dissolved and blunted as compared with the conventional cerium oxide abrasive particles of FIG. 2. Therefore, it is possible to reduce the fine scratches in the chemical mechanical polishing (CMP) process. The average size of the cerium oxide particles is preferably 5 to 700 nm, more preferably 10 to 500 nm. If the particle size is less than 5 nm, the polishing rate may be lowered during the chemical mechanical polishing process and adsorbed onto the wafer surface during the chemical mechanical polishing process, making it difficult to clean the wafer after polishing. In addition, when the particle size exceeds 700nm, there is a fear that fine scratches on the polishing surface.

본 발명에 따른 화학 기계적 연마 슬러리 조성물은 수열반응을 이용한 상기 제조방법에 따라 제조된 산화세륨 연마입자, 연마입자 분산제, pH조절제 및 물을 포함한다.The chemical mechanical polishing slurry composition according to the present invention comprises cerium oxide abrasive particles, abrasive particle dispersant, pH adjuster and water prepared according to the above production method using hydrothermal reaction.

상기 산화세륨 연마입자의 함량은, 연마 공정의 압력, 속도 등의 공정 조건에 따라 달라질 수 있으나, 전체 슬러리 조성물에 대하여 0.05 내지 50중량%인 것이 바람직하고, 0.1 내지 30중량%이면 더욱 바람직하다. 상기 산화세륨 연마입자의 함량이 0.05중량% 미만이면 산화막의 연마 속도가 저하되고, 50중량%를 초과하면 초기 분산성이 저하되는 문제가 있다.The content of the cerium oxide abrasive particles may vary depending on process conditions such as pressure and speed of the polishing process, but is preferably 0.05 to 50% by weight based on the total slurry composition, and more preferably 0.1 to 30% by weight. If the content of the cerium oxide abrasive particles is less than 0.05% by weight, the polishing rate of the oxide film is lowered. If the content of the cerium oxide abrasive particles is more than 50% by weight, the initial dispersibility may be lowered.

상기 연마입자 분산제는, 연마입자들을 피복하여 슬러리 내의 산화세륨 연마입자의 분산도를 향상시키는 역할을 하는 것으로, 카르복실산 또는 그 염 등의 통상적인 분산제를 사용할 수 있고, 바람직하게는 폴리카르복실산 또는 그 염을 사용할 수 있다. 상기 카르복실산의 구체적인 예로는 글루타르산, 글루콘산, 글리콜산, 라우르산, 락트산, 말산, 말론산, 발레르산, 시트르산, 스테아르산, 숙신산, 아세트산, 옥살산, 아디프산, 카프르산, 카프로산, 카프릴산, 포름산, 푸마르산, 프탈산, 프로피온산, 피루브산, 타르타르산, 폴리아크릴산 및 이들의 염 등과 이들의 혼합물을 예시할 수 있다. 그리고 상기 카르복실산의 염으로는 나트륨염, 암모늄염, 포타시움염 등 통상적인 카르복실산 염들을 사용할 수 있다. 상기 카르복실산 또는 그 염은 단독으로 또는 두 종류 이상을 조합하여 사용할 수 있으며, 그 사용량은 전체 슬러리 조성물에 대하여 0.01 내지 20중량%인 것이 바람직하고, 0.05 내지 10중량%이면 더욱 바람직하다. 상기 카르복실산 또는 그 염의 사용량이 0.01중량% 미만이면 산화막과 질화막의 연마선택비가 감소하며, 20중량%를 초과하면 연마 속도가 저하될 우려가 있다.The abrasive grain dispersant serves to improve the dispersibility of the cerium oxide abrasive grains in the slurry by coating the abrasive grains, and may be used a conventional dispersant such as carboxylic acid or salt thereof, and preferably polycarboxyl. Acids or salts thereof can be used. Specific examples of the carboxylic acid include glutaric acid, gluconic acid, glycolic acid, lauric acid, lactic acid, malic acid, malonic acid, valeric acid, citric acid, stearic acid, succinic acid, acetic acid, oxalic acid, adipic acid, capric acid , Caproic acid, caprylic acid, formic acid, fumaric acid, phthalic acid, propionic acid, pyruvic acid, tartaric acid, polyacrylic acid, salts thereof, and mixtures thereof. As the salt of the carboxylic acid, conventional carboxylic acid salts such as sodium salt, ammonium salt, and potassium salt may be used. The said carboxylic acid or its salt can be used individually or in combination of 2 or more types, It is preferable that the usage-amount is 0.01-20 weight% with respect to the whole slurry composition, More preferably, it is 0.05-10 weight%. If the amount of the carboxylic acid or its salt is less than 0.01% by weight, the polishing selectivity of the oxide film and the nitride film is reduced, and if it exceeds 20% by weight, the polishing rate may be lowered.

본 발명에 따른 연마 슬러리의 pH는 통상적인 산, 염기 등의 pH 조절제를 사용하여 조절할 수 있으며, 구체적으로는 인산, 염산, 황산, 질산, 암모니아, 수 산화칼륨, 테트라메틸암모늄 하이드록사이드(TMAH) 등을 상기 pH 조절제로 사용할 수 있다. 상기 pH 조절제의 사용량은 다른 성분의 기능을 훼손하지 않으면서, 원하는 pH를 얻을 수 있는 범위 내에서 사용한다.The pH of the polishing slurry according to the present invention can be adjusted using a pH adjuster such as conventional acids, bases, specifically, phosphoric acid, hydrochloric acid, sulfuric acid, nitric acid, ammonia, potassium hydroxide, tetramethylammonium hydroxide (TMAH ) May be used as the pH adjusting agent. The pH adjusting agent is used within a range in which a desired pH can be obtained without compromising the function of other components.

본 발명에 따른 화학 기계적 연마를 위한 연마입자 슬러리의 나머지 성분인 물은 바람직하게 탈이온수를 사용할 수 있으며, 필요에 따라 pH 변화를 억제하기 위한 버퍼 용액, 연마입자 슬러리의 점도를 낮추기 위한 각종 염류 등의 통상적인 첨가제를 더욱 포함할 수 있다.As the remaining component of the abrasive grain slurry for chemical mechanical polishing according to the present invention, deionized water may be preferably used. If necessary, a buffer solution for suppressing pH change, various salts for reducing the viscosity of the abrasive grain slurry, etc. It may further comprise a conventional additive of.

이하 구체적인 실시예 및 비교예를 통하여 본 발명을 더욱 상세하게 설명한다. 하기 실시예는 본 발명을 더욱 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 하기 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to specific examples and comparative examples. The following examples are intended to illustrate the present invention more specifically, but the scope of the present invention is not limited by the following examples.

[비교예 1] Comparative Example 1

화학 기계적 연마에 사용되는 산화세륨 슬러리를 제조하기 위하여, 순도 99.999%의 산화세륨 분말을 탈이온수에 20중량%가 되도록 혼합한 후, 밀링기인 얼티마이저(Ultimaizer)를 이용하여 분쇄하였다. 얼티마이저의 대항 충돌 압력은 2000kgf/cm2으로 조절하고, 산화세륨의 평균 입자 크기가 200nm가 될 때까지 밀링 공정을 진행하였다. 도 2는 상기 산화세륨 연마입자를 투과전자현미경을 이용하여 측정한 사진이다. In order to prepare a cerium oxide slurry used for chemical mechanical polishing, cerium oxide powder having a purity of 99.999% was mixed in deionized water to 20% by weight, and then ground using a millizer (Ultimaizer). The counter-impact pressure of the optimizer was adjusted to 2000 kgf / cm 2 , and the milling process was performed until the average particle size of cerium oxide became 200 nm. 2 is a photograph of the cerium oxide abrasive particles measured using a transmission electron microscope.

[실시예 1] Example 1

탈이온수에 상기 비교예 1에서 제조된 평균 입자 크기가 200nm로 조절된 산화세륨 입자를 전체 용액의 20중량%, 수열반응의 미네랄라이저인 질산을 전체 용액의 20중량% 첨가하고, 180℃에서 8시간 동안 수열반응 시킨 후, 20% TMAH(Tetra Methyl Ammonium Hydroxide)를 이용하여 5회 세척하고, 탈이온수를 이용하여 3회 세척하였다. 이후 110℃의 오븐에서 24시간 건조하였다.  20% by weight of the cerium oxide particles having the average particle size prepared in Comparative Example 1 was adjusted to 200 nm in deionized water, 20% by weight of nitric acid, a mineralizer of hydrothermal reaction, and 20% by weight of the total solution. After hydrothermal reaction for an hour, it was washed 5 times using 20% TMAH (Tetra Methyl Ammonium Hydroxide) and 3 times using deionized water. Then dried in an oven at 110 ℃ for 24 hours.

[실시예 2] [Example 2]

산화세륨 입자를 전체 용액의 10중량% 첨가하고, 120℃에서 24시간 동안 수열반응 시킨 것을 제외하고는 상기 실시예 1과 동일한 방법으로 산화세륨 입자를 제조하였다.  Cerium oxide particles were added in the same manner as in Example 1 except that 10 wt% of the total solution was added and hydrothermally reacted at 120 ° C. for 24 hours.

도 4는 상기 산화세륨 입자의 결정상 및 결정성, 결정립의 크기를 측정하기 위한 XRD 회절분석의 그래프이다. 셰러(Scherrer) 방정식을 이용하여 측정한 산화세륨 분말의 결정립의 크기는 34nm이었다.4 is a graph of XRD diffraction analysis for measuring the size of the crystal phase, crystallinity, and grains of the cerium oxide particles. The grain size of the cerium oxide powder measured using the Scherrer equation was 34 nm.

[실시예 3-5]Example 3-5

탈이온수에 상기 비교예 1과 동일한 방법으로 평균 입자 크기가 190nm로 조절된 산화세륨 입자를 전체 용액의 20중량%, 수열반응의 미네랄라이저인 질산을 전 체 용액의 20중량% 첨가한 후, 160℃에서 하기 표 1에 나타낸바와 같이, 수열반응 시간을 조절하였다. 다음으로, 반응이 끝난 산화세륨 입자를 분리한 후, 남아있는 상등액 성분을 유도결합 플라즈마 방출분광(ICP-AES)법으로 분석하여 수열반응으로 용해되어 제거된 산화세륨의 양을 측정하고, 그 결과를 하기 표 1에 나타내었다. 분리된 산화세륨 입자는 20% TMAH를 이용하여 5회 세척한 후, 탈이온수를 이용하여 3회 세척하고 110℃의 오븐에서 24시간 건조하였다.After adding 20% by weight of the cerium oxide particles having an average particle size of 190 nm and 20% by weight of nitric acid, a mineralizer of hydrothermal reaction, to deionized water in the same manner as in Comparative Example 1, 160 As shown in Table 1 below, the hydrothermal reaction time was adjusted. Next, after separation of the cerium oxide particles, the remaining supernatant is analyzed by inductively coupled plasma emission spectroscopy (ICP-AES) to measure the amount of cerium oxide dissolved and removed by hydrothermal reaction. It is shown in Table 1 below. The separated cerium oxide particles were washed five times with 20% TMAH, washed three times with deionized water and dried in an oven at 110 ° C. for 24 hours.

산화세륨 슬러리의 화학 기계적 연마 성능을 평가하기 위하여, 상기 방법에 따라 제조된 산화세륨 1.0중량%, 폴리아크릴산(중량평균분자량 300,000) 1.0중량%, 자이리톨 0.01중량%, 슬러리의 pH를 조절하기 위한 TMAH 및 잔여량의 초순수를 포함하는 슬러리 조성물을 제조하였다. 연마 슬러리의 연마 특성을 측정하기 위하여, 기판 위에 고밀도 플라즈마 증착법(HDP, High Density Plasma)을 이용하여 10,000Å 두께의 산화막을 증착하였고, 저압 화학기상증착법을 이용하여 1,200Å 두께의 질화막을 증착하였다. (주)스피드팸(Speedfam)사의 MomantumTM 연마 장비, 로델사의 IC1400 패드 및 상기 연마 슬러리를 사용하여 상기 산화막 및 질화막을 연마한 뒤, 연마속도를 측정하고 이로부터 연마 선택비를 계산하였다. 연마조건은 600rpm의 오비탈(Platen), 속도, 4.8psi의 평균 하중 압력이며, 슬러리 공급 속도는 200ml/min이었다. 또한 TENCOR사의 KLA2531 장비를 이용하여 미세 스크래치를 측정하였고, 상기 측정결과를 하기 표 1에 나타내었다.In order to evaluate the chemical mechanical polishing performance of the cerium oxide slurry, 1.0% by weight of cerium oxide prepared according to the above method, 1.0% by weight of polyacrylic acid (weight average molecular weight 300,000), 0.01% by weight of zyritol, TMAH for adjusting the pH of the slurry And a residual amount of ultrapure water was prepared. In order to measure the polishing characteristics of the polishing slurry, an oxide film having a thickness of 10,000 Å was deposited on a substrate using a high density plasma deposition (HDP) method, and a nitride film having a thickness of 1,200 Å was deposited using a low pressure chemical vapor deposition method. After polishing the oxide film and the nitride film using a Speedman Co., Ltd. Momantum TM polishing equipment, a Rodel IC1400 pad and the polishing slurry, the polishing rate was measured and the polishing selectivity was calculated therefrom. Polishing conditions were 600 rpm orbital, speed, average load pressure of 4.8 psi, and slurry feed rate was 200 ml / min. In addition, fine scratches were measured using KLA2531 equipment of TENCOR, and the measurement results are shown in Table 1 below.

실시예
번호
Example
number
수열반응시간(hr)Hydrothermal reaction time (hr) 용해된 산화세륨의양(%)Amount of dissolved cerium oxide (%) 산화막의 연마속도
(Å/min)
Polishing speed of oxide film
(Å / min)
산화막의 평탄율
(%)
Flatness of oxide film
(%)
질화막의 연마속도
(Å/min)
Polishing speed of nitride film
(Å / min)
질화막의
평탄율(%)
Nitride
% Flatness
선택비Selectivity 미세스크래치개수(개수/장)Fine scratch count (count / sheet)
33 8.08.0 1.271.27 27012701 8.38.3 8787 6.36.3 3131 2424 44 12.012.0 1.631.63 26872687 7.57.5 8181 5.85.8 3333 2121 55 16.016.0 2.422.42 26552655 7.27.2 8383 5.75.7 3232 1515 비교예1Comparative Example 1 00 00 27242724 7.27.2 8383 5.35.3 3333 3131

상기 표 1에 나타난 바와 같이, 통상의 산화세륨 슬러리 제조 공정에 수열반응을 추가하면 수열반응 시간이 증가함에 따라 산화세륨 입자의 용해가 증가하고, 그 결과 미세 스크래치가 감소됨을 알 수 있다.As shown in Table 1, when the hydrothermal reaction is added to the conventional cerium oxide slurry manufacturing process, it can be seen that the dissolution of the cerium oxide particles increases as the hydrothermal reaction time increases, and as a result, fine scratches are reduced.

이상 상술한 바와 같이, 수열반응을 이용하여 제조된 화학 기계적 연마를 위한 산화세륨 연마입자를 포함하는 슬러리 조성물은 연마 속도가 높으며, 미세 스크래치를 현저히 감소시킬 수 있다. 따라서 본 발명에 따른 연마 슬러리 조성물을 사용하면 우수한 품질을 지닌 반도체 소자를 생산할 수 있다.As described above, the slurry composition including the cerium oxide abrasive grains for chemical mechanical polishing prepared using hydrothermal reaction has a high polishing rate and can significantly reduce fine scratches. Therefore, by using the polishing slurry composition according to the present invention, it is possible to produce semiconductor devices having excellent quality.

Claims (10)

산화세륨 연마입자 및 물을 혼합하는 혼합공정; A mixing process of mixing cerium oxide abrasive particles and water; 상기 혼합 용액 내의 산화세륨 연마입자를 분쇄하는 밀링공정; 및 Milling process of grinding the cerium oxide abrasive particles in the mixed solution; And 미네랄라이저의 존재 하에, 상기 분쇄된 산화세륨 연마입자를 수열반응 시키는 공정을 포함하는 산화세륨 연마입자의 제조방법. And hydrothermally reacting the pulverized cerium oxide abrasive particles in the presence of a mineralizer. 제 1항에 있어서, 상기 수열반응이 수행된 산화세륨 연마입자를 세척제를 이용하여 세척하는 공정을 더욱 포함하는 산화세륨 연마입자의 제조방법.The method of claim 1, further comprising the step of washing the cerium oxide abrasive particles subjected to the hydrothermal reaction with a cleaning agent. 제 1항 또는 제 2항에 있어서, 세척된 산화세륨 연마입자의 건조공정을 더욱 포함하는 산화세륨 연마입자의 제조방법.The method for producing cerium oxide abrasive particles according to claim 1 or 2, further comprising the step of drying the washed cerium oxide abrasive particles. 제 1항에 있어서, 상기 밀링공정은 제트 밀링공정인 것인 산화세륨 연마입자의 제조방법.The method of claim 1, wherein the milling process is a jet milling process. 제 1항에 있어서, 상기 수열반응의 반응온도는 60 내지 250℃이고 반응시간은 10분 내지 48시간인 것인 산화세륨 연마입자의 제조방법.The method of claim 1, wherein the reaction temperature of the hydrothermal reaction is 60 to 250 ℃ and the reaction time is 10 minutes to 48 hours. 제 1항에 있어서, 상기 수열반응에 사용되는 미네랄라이저가 인산, 황산, 질 산 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것인 산화세륨 연마입자의 제조방법.The method of claim 1, wherein the mineralizer used in the hydrothermal reaction is selected from the group consisting of phosphoric acid, sulfuric acid, nitric acid and mixtures thereof. 제 6항에 있어서, 상기 미네랄라이저의 함량은 전체 수열반응 용액의 0.1 내지 50중량%인 것인 산화세륨 연마입자의 제조방법.The method of claim 6, wherein the content of the mineralizer is 0.1 to 50% by weight of the total hydrothermal solution. 제 2항에 있어서, 상기 세척공정에 사용되는 세척제는 암모니아, 수산화칼륨, 테트라메틸암모늄 하이드록사이드(TMAH) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것인 산화세륨 연마입자의 제조방법.The method of claim 2, wherein the cleaning agent used in the cleaning process is selected from the group consisting of ammonia, potassium hydroxide, tetramethylammonium hydroxide (TMAH), and mixtures thereof. 제 1항의 방법에 따라 제조된 화학 기계적 연마를 위한 산화세륨 연마입자.Cerium oxide abrasive particles for chemical mechanical polishing prepared according to the method of claim 1. 제 1항의 방법에 따라 제조된 산화세륨 연마입자, 연마입자 분산제, pH조절제 및 물을 포함하는 화학 기계적 연마 슬러리 조성물. A chemical mechanical polishing slurry composition comprising cerium oxide abrasive particles, abrasive particle dispersant, pH adjuster and water prepared according to the method of claim 1.
KR1020050049703A 2005-06-10 2005-06-10 Cerium oxide abrasive grain and manufacturing method of the same KR101117525B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050049703A KR101117525B1 (en) 2005-06-10 2005-06-10 Cerium oxide abrasive grain and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050049703A KR101117525B1 (en) 2005-06-10 2005-06-10 Cerium oxide abrasive grain and manufacturing method of the same

Publications (2)

Publication Number Publication Date
KR20060128341A KR20060128341A (en) 2006-12-14
KR101117525B1 true KR101117525B1 (en) 2012-03-20

Family

ID=37731023

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050049703A KR101117525B1 (en) 2005-06-10 2005-06-10 Cerium oxide abrasive grain and manufacturing method of the same

Country Status (1)

Country Link
KR (1) KR101117525B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220157327A (en) 2021-05-20 2022-11-29 주식회사 엠피에스피 Ceria particle for abrasive and slurry comprising the same
KR102529505B1 (en) 2022-06-08 2023-05-10 주식회사 한국나노오트 Apparatus for preparing ceria particle and manufacturing method of ceria particle using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106916567B (en) * 2015-12-25 2020-10-09 安集微电子科技(上海)股份有限公司 Cerium oxide abrasive preparation method and CMP polishing application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521004B1 (en) 2000-10-16 2003-02-18 3M Innovative Properties Company Method of making an abrasive agglomerate particle
KR20030081942A (en) * 2002-04-15 2003-10-22 주식회사 엘지화학 Mehtod for preparing single craystalline cerium oxide powders

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521004B1 (en) 2000-10-16 2003-02-18 3M Innovative Properties Company Method of making an abrasive agglomerate particle
KR20030081942A (en) * 2002-04-15 2003-10-22 주식회사 엘지화학 Mehtod for preparing single craystalline cerium oxide powders

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220157327A (en) 2021-05-20 2022-11-29 주식회사 엠피에스피 Ceria particle for abrasive and slurry comprising the same
KR102529505B1 (en) 2022-06-08 2023-05-10 주식회사 한국나노오트 Apparatus for preparing ceria particle and manufacturing method of ceria particle using the same
KR20230168952A (en) 2022-06-08 2023-12-15 주식회사 한국나노오트 Apparatus for preparing ceria particle and manufacturing method of ceria particle using the same

Also Published As

Publication number Publication date
KR20060128341A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
KR100812052B1 (en) Cerium carbonate powder, cerium oxide powder, method for preparing the same, and cmp slurry comprising the same
KR102484643B1 (en) Cerium oxide particle and method for manufacturing the same, and method for manufacturing chemical mechanical polishing slurry composition comprising cerium oxide particle
EP0786504A2 (en) Polishing composition
KR20080045326A (en) Methodd for preparing cerium oxide powder using organic solvent and cmp slurry comprising the same
JP3782771B2 (en) Abrasive grain and method for producing abrasive
US20060156635A1 (en) Abrasive particles, polishing slurry, and producing method thereof
KR101117525B1 (en) Cerium oxide abrasive grain and manufacturing method of the same
CN107353833B (en) Preparation process of high-selectivity shallow-trench-isolation chemical mechanical polishing slurry
KR101492234B1 (en) Method of preparing ceria particle, ceria particle thereby and polishing slurry comprising the same
KR20100067489A (en) Method of preparing ceria powder and slurry composite using the same
KR20190064319A (en) Slurry composition for polishing and method for polishing semiconductor thin film of high aspect raio
KR101090913B1 (en) Cerium oxide abrasive suspension for chemical mechanical polishing and method for producing the same
US7578862B2 (en) Abrasive compound for glass hard disk platter
KR100665300B1 (en) Ceria slurry for chemical mechanical polishing and its fabrication method
JPH10172935A (en) Composition for polishing
KR20100124988A (en) Method of preparing ceria powder and slurry composite using the same
KR101103748B1 (en) Ceria slurry for polishing semiconductor thin layer and preparation thereof
KR102679496B1 (en) Slurry composition for polishing, method for producing the same and method for polishing semiconductor thin film by using the same
KR20190064182A (en) Slurry composition for polishing, method for producing the same and method for polishing semiconductor thin film by using the same
KR100584007B1 (en) Slurry for polishing and method of manufacturing the same
KR20240062242A (en) Chemical-mechanical polishing slurry composition and method for manufacturing semiconductor by using the same
KR20230048843A (en) Ceria abrasive, preparing method therof and polishing slurry composition comprising the ceria abrasive
KR20240062235A (en) Chemical-mechanical polishing slurry composition and method for manufacturing semiconductor by using the same
KR101171805B1 (en) Method for preparing cerium oxide for polishing of a semiconductor thin film

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee