KR101117209B1 - Benzothiazole-based semisquarylium dye and method for detecting mercury metal ion - Google Patents

Benzothiazole-based semisquarylium dye and method for detecting mercury metal ion Download PDF

Info

Publication number
KR101117209B1
KR101117209B1 KR1020090096631A KR20090096631A KR101117209B1 KR 101117209 B1 KR101117209 B1 KR 101117209B1 KR 1020090096631 A KR1020090096631 A KR 1020090096631A KR 20090096631 A KR20090096631 A KR 20090096631A KR 101117209 B1 KR101117209 B1 KR 101117209B1
Authority
KR
South Korea
Prior art keywords
benzothiazole
squarylium
metal ion
dye
clo
Prior art date
Application number
KR1020090096631A
Other languages
Korean (ko)
Other versions
KR20110039678A (en
Inventor
김성훈
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020090096631A priority Critical patent/KR101117209B1/en
Publication of KR20110039678A publication Critical patent/KR20110039678A/en
Application granted granted Critical
Publication of KR101117209B1 publication Critical patent/KR101117209B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0066Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of a carbocyclic ring,(e.g. benzene, naphtalene, cyclohexene, cyclobutenene-quadratic acid)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0075Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of an heterocyclic ring

Abstract

본 발명은 벤조티아졸계 세미스쿠아릴리움 염료 및 이를 이용한 수은 금속 이온 검출 방법에 관한 것이다. 더욱 상세하게는 3,4-디부톡시-3-사이클로부텐-1,2-디온과 벤조티아졸리움 염과의 합성 반응을 통해 제조된 신규한 벤조티아졸계 세미스쿠아릴리움 염료 및 이를 이용한 수은 금속 이온 검출 방법에 관한 것이다.

Figure 112009062248601-pat00001

세미스쿠아릴리움, 염료, 수은, 검출 방법, 흡광, 벤조티아졸

The present invention relates to a benzothiazole-based semi squarylium dye and a method for detecting mercury metal ions using the same. More specifically, a novel benzothiazole-based semi squarylium dye prepared by the synthesis reaction of 3,4-dibutoxy-3-cyclobutene-1,2-dione with a benzothiazolium salt and mercury metal ion using the same It relates to a detection method.

Figure 112009062248601-pat00001

Semisquarialium, Dyes, Mercury, Detection Method, Absorption, Benzothiazole

Description

벤조티아졸계 세미스쿠아릴리움 염료 및 이를 이용한 수은 금속 이온 검출방법{Benzothiazole-based semisquarylium dye and method for detecting mercury metal ion}Benzothiazole-based semisquarylium dye and method for detecting mercury metal ion using same

본 발명은 벤조티아졸계 세미스쿠아릴리움 염료 및 이를 이용한 수은 금속 이온 검출 방법에 관한 것이다. 더욱 상세하게는 3,4-디부톡시-3-사이클로부텐-1,2-디온과 벤조티아졸리움 염과의 합성 반응을 통해 제조된 신규한 벤조티아졸계 세미스쿠아릴리움 염료 및 이를 이용한 수은 금속 이온 검출 방법에 관한 것이다. The present invention relates to a benzothiazole-based semi squarylium dye and a method for detecting mercury metal ions using the same. More specifically, a novel benzothiazole-based semi squarylium dye prepared by the synthesis reaction of 3,4-dibutoxy-3-cyclobutene-1,2-dione with a benzothiazolium salt and mercury metal ion using the same It relates to a detection method.

중금속 오염은 환경에 유의적인 위험성을 제기한다. 특히 수은은 매우 독성이 강하고 광범한 오염원으로 간주된다. 수은이 생물축적의 결과로서 먹이 사슬 내에 도입되면 그의 환경 순환은 인간 보건 및 생태에 심각한 위협을 유발한다. 이들 산업상 이용의 감소 노력에도 불구하고 수은 오염은 다양한 자연적 및 인류 발생학 적 원인을 통해 여전히 지속되고 있다. Heavy metal contamination poses a significant risk to the environment. Mercury, in particular, is considered to be very toxic and a wide range of pollutants. When mercury is introduced into the food chain as a result of bioaccumulation, its environmental cycle poses a serious threat to human health and ecology. Despite efforts to reduce these industrial uses, mercury pollution still persists through various natural and anthropogenic causes.

현재까지 많은 Hg2+ 이온 검출 방법이 개발되었고 이는 색상측정 방법 및 플루로이오노포어(fluroionophore) 방법을 포함한다. 본 발명자들은 이미 스쿠아릴리움(squarylium) 염료의 합성 및 금속 이온 검출 특성을 측정하고 비대칭 스쿠아릴리움 염료의 응집 특성을 개시한 바 있다. Many Hg 2+ ion detection methods have been developed to date, including colorimetric methods and fluoionophore methods. We have already measured the synthesis and metal ion detection properties of squarylium dyes and disclosed the agglomeration properties of asymmetric squarylium dyes.

이와 같은 선행 연구를 근거로 본 발명자들은 현재 생물학적 적용 및 환경 적용 모두를 위해 금속 이온의 선택적 및 정량적 검출을 위한 신규한 색소원을 잠재적으로 생성할 수 있는 신규한 스쿠아릴리움 염료 유도체의 합성 및 특성을 측정하였다. Based on these prior studies, the present inventors have now synthesized and characterized the novel squarylium dye derivatives that could potentially produce novel pigment sources for the selective and quantitative detection of metal ions for both biological and environmental applications. Was measured.

따라서 본 발명자들은 황 원자가 수은-배위 결합 요소를 제공할 수 있는 벤조티아졸리움 골격을 함유하는 세미스쿠아릴리움계 염료를 합성하고 이를 수은 금속이온을 선택적으로 감지할 수 있는 간결한 화학센서(chemosensor)로서 개발함으로써 본 발명을 완성하게 된 것이다.Therefore, the present inventors have synthesized a semi squalylium-based dye containing a benzothiazolium skeleton capable of providing a sulfur atom mercury-coordinated binding element and as a simple chemosensor capable of selectively sensing mercury metal ions. The present invention has been completed by the development.

본 발명이 해결하고자 하는 과제는 현재 생물학적 적용 및 환경 적용 모두를 위해 금속 이온의 선택적 및 정량적 검출을 위한 신규한 색소를 잠재적으로 생성할 수 있는 신규한 스쿠아릴리움 염료 유도체를 개발코자 한 것이다. 또한 황 원자가 수은-배위 결합 요소를 제공할 수 있는 벤조티아졸리움 골격을 함유하는 세미스쿠아릴리움계 염료를 합성하여 이를 수은 금속이온을 선택적으로 감지할 수 있는 간결한 화학센서로서 개발코자 한 것이다.The problem to be solved by the present invention is to develop a novel squarylium dye derivative that can potentially produce novel pigments for the selective and quantitative detection of metal ions for both biological and environmental applications. In addition, a semi- squarylium-based dye containing a benzothiazolium skeleton capable of providing a mercury-coordinated binding element with a sulfur atom was synthesized and developed as a simple chemical sensor capable of selectively detecting mercury metal ions.

본 발명의 목적은 하기 식으로 표시되는 벤조티아졸계 세미스쿠아릴리움 염료 화합물을 제공하는 것이다. An object of the present invention is to provide a benzothiazole-based semi squarylium dye compound represented by the following formula.

Figure 112009062248601-pat00002
Figure 112009062248601-pat00002

또한 본 발명은 벤조티아졸리움 브로마이드(1)를 트리에틸아민 용매 존재하에 3,4-디부톡시-3-사이클로부텐-1,2-디온(2)를 반응시켜 제 1항의 벤조티아졸계 세미스쿠아릴리움 염료 화합물을 제조하는 방법을 제공하는 것이다. In the present invention, the benzothiazole semiscuaryl of claim 1 is reacted with 3,4-dibutoxy-3-cyclobutene-1,2-dione (2) in the presence of triethylamine solvent. It is to provide a method for producing a lithium dye compound.

Figure 112009062248601-pat00003
Figure 112009062248601-pat00003

또한 본 발명은 상기 벤조티아졸계 세미스쿠아릴리움 염료 화합물의 흡광도 변화를 이용한 수은 금속이온 감지 측정방법을 제공하는 것이다. In another aspect, the present invention provides a method for detecting mercury metal ion detection using a change in absorbance of the benzothiazole-based semi squarylium dye compound.

이때 상기 흡광도 변화는 벤조티아졸계 세미스쿠아릴리움-Hg2+ 복합체를 형성함으로써 야기됨을 특징으로 한다. In this case, the absorbance change may be caused by forming a benzothiazole-based semi squarylium-Hg 2+ complex.

본 발명의 효과는 현재 생물학적 적용 및 환경 적용 모두를 위해 금속 이온의 선택적 및 정량적 검출을 위한 신규한 색소를 잠재적으로 생성할 수 있는 신규한 스쿠아릴리움 염료 유도체를 제공하기 위한 것이다. 또한 황 원자가 수은-배위 결합 요소를 제공할 수 있는 벤조티아졸리움 골격을 함유하는 세미스쿠아릴리움계 염료를 합성하여 이를 수은 금속이온을 선택적으로 감지할 수 있는 간결한 화학센서로서 제공하기 위한 것이다.The effect of the present invention is to provide novel squarylium dye derivatives which can potentially produce novel pigments for the selective and quantitative detection of metal ions for both biological and environmental applications. It is also intended to synthesize a semi squarylium-based dye containing a benzothiazolium skeleton in which sulfur atoms can provide a mercury-coordinated binding element and provide it as a simple chemical sensor capable of selectively sensing mercury metal ions.

신규한 세미스쿠아릴리움 염료는 3,4-디부톡시-3-사이클로부텐-1,2-디온과 벤조티아졸리움 염 사이의 반응에 의해 합성되었고, 그의 금속 이온 감지 특성은 흡광 및 발광 분광법을 이용하여 조사되었다. 이들 세미스쿠아릴리움은 DMSO/H2O(9:1, v/v) 내에서 Ca2+, Pb2+, Al3+, Ce2+, Ba2+, Ni2+, Cd2+, Zn2+ 및 Mg2+ 이온과 비교 시 Hg2+ 이온에 대해 높은 선택성을 나타내었고, 이는 벤조티아졸계 세미스쿠아릴리움(BSQ)과 Hg2+가 2:1로 배위결합 복합체를 형성함에 의한 것이고, 이러한 복합체의 형성은 계산된 기하학적 구조에 의해 지지된다.The novel semiscooaryllium dyes were synthesized by reaction between 3,4-dibutoxy-3-cyclobutene-1,2-dione and benzothiazolium salts, and their metal ion sensing properties using absorption and emission spectroscopy. Was investigated. These semiscooaryliums can be prepared in DMSO / H 2 O (9: 1, v / v) by Ca 2+ , Pb 2+ , Al 3+ , Ce 2+ , Ba 2+ , Ni 2+ , Cd 2+ , Compared with Zn 2+ and Mg 2+ ions, it showed high selectivity for Hg 2+ ions due to the formation of a 2: 1 coordination complex with benzothiazole-based semisqualarilium (BSQ) and Hg 2+. The formation of this complex is supported by the calculated geometry.

이하 본 발명을 더욱 상세히 설명한다.The present invention is described in more detail below.

본 발명은 기타 금속이온 분석물에 대해 Hg2+의 존재를 검출하기 위한 벤조티아졸계 세미스쿠아릴리움(BSQ)의 디자인 및 합성을 목적으로 한다. 벤조티아졸계 세미스쿠아릴리움의 구조 및 합성은 도 1에 나타나 있다.The present invention aims at the design and synthesis of benzothiazole-based semiscuaryllium (BSQ) for detecting the presence of Hg 2+ for other metal ion analytes. The structure and the synthesis of the benzothiazole-based semi squarylium are shown in FIG. 1.

도 1에 나타난 바와 같이 벤조티아졸계 세미스쿠아릴리움(BSQ)은 트리에틸아민(40%) 용매 존재 하에 3-(카르복시메틸)-2-메틸벤조티아졸리움 브로마이드 1과 3,4-디부톡시-3-사이클로부텐-1,2-디온 2의 축합에 의해 합성되었다. As shown in FIG. 1, benzothiazole-based semisquararylium (BSQ) is a 3- (carboxymethyl) -2-methylbenzothiazolium bromide 1 and 3,4-dibutoxy- in the presence of triethylamine (40%) solvent. It was synthesized by condensation of 3-cyclobutene-1,2-dione 2 .

벤조티아졸계 세미스쿠아릴리움은 1H, 13C 및 FAB 질량 분광계를 이용하여 특성화되었다. 산성 프로톤에 대한 피크는 12.8 ppm의 낮은 범위에서 관찰되었다. 또한 티아졸 고리에 인접한 메틸렌은 5.46 ppm에서 관찰되었다. 본 발명의 실험에서 Hg(ClO4)2는 수은 공급원으로서 DMSO/H2O(9:1, v/v) 내의 벤조티아졸계 세미스쿠아릴리움 용액에 서서히 첨가되었고 벤조티아졸계 세미스쿠아릴리움과 Hg2+의 배위결합 능력은 UV-Vis 분광계에 의해 조사되었다. Benzothiazole-based semi squarylium was characterized using 1 H, 13 C and FAB mass spectrometers. Peaks for acidic protons were observed in the low range of 12.8 ppm. Also, methylene adjacent to the thiazole ring was observed at 5.46 ppm. In the experiments of the present invention, Hg (ClO 4 ) 2 was slowly added to the benzothiazole semiscuarylium solution in DMSO / H 2 O (9: 1, v / v) as a source of mercury, The coordination capacity of Hg 2+ was investigated by UV-Vis spectrometer.

도 2는 실온에서 DMSO/H2O(9:1, v/v) 내에 Hg2+ 농도의 함수로서 벤조티아졸계 세미스쿠아릴리움의 흡광 스펙트럼 변화를 나타내었고; Hg2+ 농도 증가시 446 nm에서 벤조티아졸계 세미스쿠아릴리움의 흡광도는 감소되었고, 용액은 황색에서 무색 용액으로 변화되었다. 그러나 유사한 조건 하에서 Ca2+, Pb2+, Al3+, Ce2+, Ba2+, Ni2+, Cd2+, Zn2+ 및 Mg2+와 같은 다른 금속 이온의 첨가는 벤조티아졸계 세미스쿠아릴리움의 흡광 스펙트럼 상에 유의적인 변화를 지니지 않는다. 벤조티아졸계 세미스쿠아릴리움 용액으로의 적정으로부터 본 발명자들은 벤조티아졸계 세미스쿠아릴리움-Hg2+ 복합체의 화학량론이 2:1임을 확인하였다(도 2(b)).FIG. 2 shows the change in absorbance spectra of benzothiazole-based semi squarylium as a function of Hg 2+ concentration in DMSO / H 2 O (9: 1, v / v) at room temperature; As the Hg 2+ concentration increased, the absorbance of the benzothiazole semiscuarylium at 446 nm decreased, and the solution changed from yellow to colorless solution. However, under similar conditions, the addition of other metal ions such as Ca 2+ , Pb 2+ , Al 3+ , Ce 2+ , Ba 2+ , Ni 2+ , Cd 2+ , Zn 2+ and Mg 2+ is based on benzothiazole type There is no significant change in the absorbance spectrum of semiscooaryllium. From titration with a benzothiazole-based semi squarylium solution, the present inventors confirmed that the stoichiometry of the benzothiazole-based semi squarylium-Hg 2+ complex is 2: 1 (FIG. 2 (b)).

도 2(a)에 나타난 바와 같이 DMSO/H2O(9:1, v/v) 용액 내 Hg2+에 대한 벤조티아졸계 세미스쿠아릴리움의 우수한 선택성은 금속 이온의 흡광 응답으로부터 입증되었다.As shown in FIG. 2 (a), the excellent selectivity of the benzothiazole-based semiscooaryllium for Hg 2+ in DMSO / H 2 O (9: 1, v / v) solution was demonstrated from the absorbance response of the metal ions.

또한 벤조티아졸계 세미스쿠아릴리움의 형광 강도는 Hg2+ 상에서 현저하게 감소되었다. 다른 금속은 벤조티아졸계 세미스쿠아릴리움의 형광 강도 상에 유의적인 변화를 지니지 않았다. 선택적 복합체 형성은 플루로포어(flurophore)의 광물리적 특성을 변화시키는 것으로 예측되고, 따라서 이들은 Hg2+의 검출에 사용될 수 있다.In addition, the fluorescence intensity of the benzothiazole-based semi squarylium was significantly reduced on Hg 2+ . The other metal did not have a significant change in the fluorescence intensity of the benzothiazole-based semiscooaryllium. Selective complex formation is expected to change the photophysical properties of flurophores, and therefore they can be used for the detection of Hg 2+ .

벤조티아졸계 세미스쿠아릴리움 및 벤조티아졸계 세미스쿠아릴리움-Hg2+의 복합체 형성 및 전자 구조를 규명하기 위해 양자 화학 DMol3 방법이 이용되었다. 모든 이론적 계산은 밀도 기능 이론을 이용한 양자 기계적 코드인 Materials Studio 4.4 팩키지 내의 DMol3 프로그램에 의해 수행되었다. 이중 수치 분극 기본 세트로의 일반화 기울기 근사(generalized gradient approximation, GGA) 수치의 Perdew-Burke-Ernzerhof(PBE) 함수는 프론티어 분자 전자 궤도의 에너지 수치를 계산하는 데 사용되었다.A quantum chemistry DMol 3 method was used to characterize the formation of the complex and electronic structure of the benzothiazole-based semi squarylium and the benzothiazole-based semi squarylium-Hg 2+ . All theoretical calculations were performed by the DMol 3 program in the Materials Studio 4.4 package, a quantum mechanical code using density functional theory. The Perdew-Burke-Ernzerhof (PBE) function of generalized gradient approximation (GGA) values to a double numerical polarization basic set was used to calculate the energy values of the frontier molecular electron orbits.

도 4(a)는 벤조티아졸계 세미스쿠아릴리움의 계산된 분자 구조 및 그의 HOMO 및 LUMO의 전자 분포를 나타낸다. 프로티어 MO 내 전자 분포 비교는 HOMO-LUMO 여기가 전자 분포를 티아졸 모이어티에서 사이클로부텐 모이어티로 이동시키고, 이는 벤조티아졸계 세미스쿠아릴리움의 분자내 전하-전이 특성의 강한 이동을 반영함을 나타낸다. 따라서 HOMO 에너지 수치 내의 벤조티아졸 모이어티의 황 원자는 이러한 시스템 내에서 Hg2+와의 효과적인 복합체 형성에 중요하다. 그 결과로서 황 원자에 대한 Hg2+와의 복합체 형성은 황 원자 상의 전자 밀도를 감소시키고 티아졸 모이어티의 전자 공여 능력을 저하시킨다. 최적화된 벤조티아졸계 세미스쿠아릴리움-Hg2+ 바이덴테이트(bidentate) 구조는 도 4에 나타나 있다; Hg2+ 이온은 황 원자와 카르보닐 산소 원자 사이를 가교시킨다.Fig. 4 (a) shows the calculated molecular structure of the benzothiazole-based semiscooaryllium and the electron distribution of its HOMO and LUMO. Comparison of electron distribution in Protea MO suggests that HOMO-LUMO excitation shifts the electron distribution from the thiazole moiety to the cyclobutene moiety, which reflects the strong shift in the intramolecular charge-transfer properties of the benzothiazole-based semiscuaryllium Indicates. Thus the sulfur atom of the benzothiazole moiety in the HOMO energy level is important for effective complex formation with Hg 2+ in this system. As a result, the complex formation with Hg 2+ on the sulfur atom reduces the electron density on the sulfur atom and lowers the electron donating ability of the thiazole moiety. The optimized benzothiazole-based semiscooaryllium-Hg 2+ bidentate structure is shown in FIG. 4; Hg 2+ ions crosslink between sulfur atoms and carbonyl oxygen atoms.

결론적으로 벤조티아졸계 세미스쿠아릴리움(BSQ)은 3-(카르복시메틸)-2-메틸벤조티아졸리움 브로마이드 1과 3,4-디부톡시-3-사이클로부텐-1,2-디온 2 사이의 축합 반응에 의해 40% 수율로 합성되었고, 그의 특성이 시각적 및 형광 기술을 이용하여 다양한 금속 이온에 대해 조사되었다. 또한 DFT 계산에 의해 인식 이벤트가 조사되었다. 벤조티아졸계 세미스쿠아릴리움은 수성 매질 내 Hg2+의 검출을 위한 유효한 화학센서로서 개발될 수 있음을 확인하였다.In conclusion, benzothiazole-based semi squarylium (BSQ) is a condensation between 3- (carboxymethyl) -2-methylbenzothiazolium bromide 1 and 3,4-dibutoxy-3-cyclobutene-1,2-dione 2 The reaction was synthesized in 40% yield and its properties were investigated for various metal ions using visual and fluorescence techniques. In addition, recognition events were investigated by DFT calculation. It has been found that benzothiazole-based semiscooaryllium can be developed as an effective chemical sensor for the detection of Hg 2+ in aqueous media.

이하 실시예를 통해 본 발명을 더욱 상세히 설명한다. 그러나 이러한 실시예들로 본 발명의 범위를 한정하는 것은 아니다.The present invention will be described in more detail with reference to the following examples. However, these examples do not limit the scope of the present invention.

재료 및 특징Material and features

2-메틸벤토티아졸[ed. 특징: 유해함; 자극적] 브로모아세트산 및 3,4-디부톡시-3-사이클로부텐-1,2-디온은 Aldrich에서 구입하였다. 다른 화학물질은 최상 등급이고 추가 정제 없이 사용되었다. 모든 사용된 용매는 분석학적으로 순수한 것이고 추가 건조 또는 정제 없이 사용되었다. 2-methylbentothiazole [ed. Features: Harmful; Irritant] Bromoacetic acid and 3,4-dibutoxy-3-cyclobutene-1,2-dione were purchased from Aldrich. Other chemicals were of the highest grade and used without further purification. All solvents used were analytically pure and were used without further drying or purification.

화합물 1, 3-(카르복시메틸)-2-메틸벤조티아졸리움 브로마이드는 Tatay S et al., Organic Letters 8:3857-60, 2006에 따라 합성되었다. 융점은 Electrothermal IA900을 이용하여 측정되었고 교정되지 않았다. FAB 질량 스펙트럼은 JMS700을 이용하여 기록되었다. 1H NMR 스펙트럼은 내부 표준으로서 TMS와 함께 Varian Unity Inova 400 MHz FT-NMR 분광계 상에서 기록되었다.Compound 1 , 3- (carboxymethyl) -2-methylbenzothiazolium bromide was synthesized according to Tatay S et al., Organic Letters 8: 3857-60, 2006. Melting points were measured using Electrothermal IA900 and were not calibrated. FAB mass spectra were recorded using JMS700. 1 H NMR spectra were recorded on a Varian Unity Inova 400 MHz FT-NMR spectrometer with TMS as an internal standard.

(실시예 1) 벤조티아졸계 세미스쿠아릴리움(BSQ)의 합성Example 1 Synthesis of Benzothiazole Semiscuarylium (BSQ)

무수 에탄올(5 ml) 내에서 벤조티아졸리움 브로마이드 1(0.25 g, 0.886 mmol)과 3,4-디부톡시-3-사이클로부텐-1,2-디온 2(0.3 g, 1.33 mmol) 혼합물이 트리에틸아민(0.3 ml)의 존재 하에 역류되면서 1시간 동안 가열되었다. 반응 혼합물은 디에틸에테르(30 ml) 내에 옮겨지고 수득된 생성물은 여과되고 디에틸에테르(100 ml)로 세척되어 적색 고형의 벤조티아졸계 세미스쿠아릴리움(BSQ)을 제조하였다. Triethyl benzothiazolium bromide 1 (0.25 g, 0.886 mmol) and 3,4-dibutoxy-3-cyclobutene-1,2-dione 2 (0.3 g, 1.33 mmol) in dry ethanol (5 ml) Heated for 1 hour with reflux in the presence of amine (0.3 ml). The reaction mixture was transferred into diethyl ether (30 ml) and the product obtained was filtered and washed with diethyl ether (100 ml) to give a red solid benzothiazole-based semi squarylium ( BSQ ).

1H NMR(CDCl3, 400 MHz): δ 0.98(t, J = 7.3 Hz, 3H), 1.48(6개 세트, J = 7.3 Hz, 2H), 1.82(5개 세트, J = 7.3 Hz, 2H), 4.56(s, 2H), 4.76(t, J = 6.5 Hz, 2H), 5.45(s, 1H), 7.06(d, J = 8.3 Hz, 1H), 7.13(t, J = 7.5 Hz, 1H), 7.29(t, J = 8.3 Hz, 1H), 7.47(d, J = 7.6 Hz, 1H), 12.8(s, 1H). 1 H NMR (CDCl 3 , 400 MHz): δ 0.98 (t, J = 7.3 Hz, 3H), 1.48 (6 sets, J = 7.3 Hz, 2H), 1.82 (5 sets, J = 7.3 Hz, 2H ), 4.56 (s, 2H), 4.76 (t, J = 6.5 Hz, 2H), 5.45 (s, 1H), 7.06 (d, J = 8.3 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H ), 7.29 (t, J = 8.3 Hz, 1H), 7.47 (d, J = 7.6 Hz, 1H), 12.8 (s, 1H).

13C NMR(DMSO, 100 MHz): δ 9.08, 14.06, 19.04, 32.42, 46.53, 48.55, 56.79, 73.87, 101.01, 111.59, 122.12, 124.04, 126.68, 127.42, 141.68, 160.75, 169.71, 186.04. 13 C NMR (DMSO, 100 MHz): δ 9.08, 14.06, 19.04, 32.42, 46.53, 48.55, 56.79, 73.87, 101.01, 111.59, 122.12, 124.04, 126.68, 127.42, 141.68, 160.75, 169.71, 186.04.

FAB-MS: 계산치. C18H17NO5S m/z (M+) 359.4; 실측치 m/z (M + H+) 360.4. 분 석 계산치 C18H17NO5S: C, 60.16; H, 4.73; N, 3.89. 실측치: C, 60.19; H, 4.68; N, 3.85.FAB-MS: calculated. C 18 H 17 NO 5 S m / z (M + ) 359.4; Found m / z (M + H + ) 360.4. Analyzes calculated C 18 H 17 NO 5 S: C, 60.16; H, 4.73; N, 3.89. Found: C, 60.19; H, 4.68; N, 3.85.

도 1은 벤조티아졸계 세미스쿠아릴리움의 합성을 나타낸 개요도이다.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic diagram showing the synthesis of a benzothiazole-based semi squarylium.

도 2(a)는 (1) Al(ClO4)3, (2) Ca(ClO4)2, (3) Cd(ClO4)2, (4) Cr(NO3)3, (5) Cu(ClO4)2, (6) Fe(ClO4)2, (7) Fe(NO3)3, (8) Hg(ClO4)2, (9) LiClO4, (10) Ni(ClO4)2, (11) Pb(ClO4)2 및 (12) Zn(ClO4)2의 4 등량 첨가에 대한 DMSO/H2O(9:1, v/v) 용액 내 벤조티아졸계 세미스쿠아릴리움(30 μM)의 흡광 반응(λ = 446 nm)을 나타낸 것이다. 도 2(b)는 0 μM 부터 40 μM까지 DMSO/H2O(9:1, v/v) 용액 내 Hg2+ 첨가에 따른 벤조티아졸계 세미스쿠아릴리움(30 μM)의 흡광 스펙트럼 변화를 나타낸 것이다. 삽입도는 흡광도 대 벤조티아졸계 세미스쿠아릴리움에 대한 Hg2+의 비율의 도표를 나타낸다.2 (a) shows (1) Al (ClO 4 ) 3 , (2) Ca (ClO 4 ) 2 , (3) Cd (ClO 4 ) 2 , (4) Cr (NO 3 ) 3 , (5) Cu (ClO 4 ) 2 , (6) Fe (ClO 4 ) 2 , (7) Fe (NO 3 ) 3 , (8) Hg (ClO 4 ) 2 , (9) LiClO 4 , (10) Ni (ClO 4 ) Benzothiazole-based semiscooarylium in DMSO / H 2 O (9: 1, v / v) solution for 4 equivalent additions of 2 , (11) Pb (ClO 4 ) 2 and (12) Zn (ClO 4 ) 2 (30 μM) shows an absorbance reaction (λ = 446 nm). Figure 2 (b) shows the change in the absorption spectrum of benzothiazole-based semi squarylium (30 μM) with Hg 2+ in DMSO / H 2 O (9: 1, v / v) solution from 0 μM to 40 μM It is shown. Inset shows a plot of the ratio of absorbance to Hg 2+ relative to benzothiazole-based semisquararyllium.

도 3(a)는 (1) Al(ClO4)3, (2) Ca(ClO4)2, (3) Cd(ClO4)2, (4) Cr(NO3)3, (5) Cu(ClO4)2, (6) Fe(ClO4)2, (7) Fe(NO3)3, (8) Hg(ClO4)2, (9) LiClO4, (10) Ni(ClO4)2, (11) Pb(ClO4)2 및 (12) Zn(ClO4)2의 4 등량 첨가에 대한 DMSO/H2O(9:1, v/v) 용액 내 벤조티아졸계 세미스쿠아릴리움(30 μM)의 형광 반응(λex = 420 nm, λem = 468 nm)을 나타낸 것이다. 도 3(b)는 420 nm에서 여기된 0 μM 부터 40 μM까지 DMSO/H2O(9:1, v/v) 용액 내 Hg2+ 첨가에 따른 벤조티아졸계 세미스쿠아릴리움(30 μM)의 형광 스펙트럼 변화를 나타낸 것이다. 삽입도는 흡광도 대 벤조티아졸계 세미스쿠아릴리움에 대한 Hg2+의 비율의 도표를 나타낸다.3 (a) shows (1) Al (ClO 4 ) 3 , (2) Ca (ClO 4 ) 2 , (3) Cd (ClO 4 ) 2 , (4) Cr (NO 3 ) 3 , (5) Cu (ClO 4 ) 2 , (6) Fe (ClO 4 ) 2 , (7) Fe (NO 3 ) 3 , (8) Hg (ClO 4 ) 2 , (9) LiClO 4 , (10) Ni (ClO 4 ) Benzothiazole-based semiscooarylium in DMSO / H 2 O (9: 1, v / v) solution for 4 equivalent additions of 2 , (11) Pb (ClO 4 ) 2 and (12) Zn (ClO 4 ) 2 (30 μM) shows a fluorescence reaction (λ ex = 420 nm, λ em = 468 nm). FIG. 3 (b) shows a benzothiazole-based semi squarylium (30 μM) with Hg 2+ addition in a DMSO / H 2 O (9: 1, v / v) solution from 0 μM to 40 μM excited at 420 nm. The change in fluorescence spectrum is shown. Inset shows a plot of the ratio of absorbance to Hg 2+ relative to benzothiazole-based semisquararyllium.

도 4(a)는 벤조티아졸계 세미스쿠아릴리움의 HOMO 및 LUMO 에너지 수치의 전자 분포를 나타낸 것이다. 도 4(b)는 벤조티아졸계 세미스쿠아릴리움-Hg2+ 복합체의 최적 구조를 나타낸 것이다.Figure 4 (a) shows the electron distribution of the HOMO and LUMO energy values of the benzothiazole-based semi squarylium. Figure 4 (b) shows the optimal structure of the benzothiazole-based semi squarylium-Hg 2+ complex.

Claims (4)

삭제delete 삭제delete 하기식으로 표시되는 벤조티아졸계 세미스쿠아릴리움 염료 화합물의 흡광도 변화를 이용한 수은 금속이온 감지 측정방법. Mercury metal ion detection measurement method using the change in absorbance of the benzothiazole-based semi squarylium dye compound represented by the following formula.
Figure 112011055378453-pat00010
Figure 112011055378453-pat00010
제 3항에 있어서, 상기 흡광도 변화는 벤조티아졸계 세미스쿠아릴리움-Hg2+ 복합체를 형성함으로써 야기됨을 특징으로 하는 수은 금속이온 감지 측정방법. 4. The method of claim 3, wherein the absorbance change is caused by forming a benzothiazole-based semisquararylium-Hg 2+ complex.
KR1020090096631A 2009-10-12 2009-10-12 Benzothiazole-based semisquarylium dye and method for detecting mercury metal ion KR101117209B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090096631A KR101117209B1 (en) 2009-10-12 2009-10-12 Benzothiazole-based semisquarylium dye and method for detecting mercury metal ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090096631A KR101117209B1 (en) 2009-10-12 2009-10-12 Benzothiazole-based semisquarylium dye and method for detecting mercury metal ion

Publications (2)

Publication Number Publication Date
KR20110039678A KR20110039678A (en) 2011-04-20
KR101117209B1 true KR101117209B1 (en) 2012-03-19

Family

ID=44046165

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090096631A KR101117209B1 (en) 2009-10-12 2009-10-12 Benzothiazole-based semisquarylium dye and method for detecting mercury metal ion

Country Status (1)

Country Link
KR (1) KR101117209B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423547B1 (en) * 1998-04-03 2002-07-23 Mallinckrodt Inc. Non-covalent bioconjugates useful for diagnosis and therapy
EP1867682A1 (en) 2005-04-05 2007-12-19 Adeka Corporation Cyanine compounds, optical filters and optical recording materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423547B1 (en) * 1998-04-03 2002-07-23 Mallinckrodt Inc. Non-covalent bioconjugates useful for diagnosis and therapy
EP2108378A2 (en) 1998-04-03 2009-10-14 Mallinckrodt Inc. Non-covalent bioconjugates useful for diagnosis and therapy
EP1867682A1 (en) 2005-04-05 2007-12-19 Adeka Corporation Cyanine compounds, optical filters and optical recording materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Deep-Coloured Squarylium Dyes, Nobuhiro Kurtamoto 외, Dyes and Pigments, 11 (1989) 21-35쪽.*

Also Published As

Publication number Publication date
KR20110039678A (en) 2011-04-20

Similar Documents

Publication Publication Date Title
Jung et al. A thiazolothiazole based Cu 2+ selective colorimetric and fluorescent sensor via unique radical formation
Vishnoi et al. Charge transfer aided selective sensing and capture of picric acid by triphenylbenzenes
Li et al. A dual functional probe for “turn-on” fluorescence response of Pb 2+ and colorimetric detection of Cu 2+ based on a rhodamine derivative in aqueous media
Mandal et al. A new pyridoxal based fluorescence chemo-sensor for detection of Zn (II) and its application in bio imaging
Park et al. A new coumarin-based chromogenic chemosensor for the detection of dual analytes Al 3+ and F−
Naskar et al. A simple Schiff base molecular logic gate for detection of Zn2+ in water and its bio-imaging application in plant system
Wu et al. Dansyl-based fluorescent chemosensors for selective responses of Cr (III)
Saini et al. A highly selective, sensitive and reversible fluorescence chemosensor for Zn 2+ and its cell viability
Uahengo et al. Three-channel ferrocene-based chemosensors for Cu (II) and Hg (II) in aqueous environments
dos Santos et al. Lanthanide luminescent anion sensing: evidence of multiple anion recognition through hydrogen bonding and metal ion coordination
Li et al. A rare salamo-salophen type “on-off-on” fluorescent probe for relay recognition of Hg2+ and phosphate ions and its applications
KR101642406B1 (en) Novel rhodamine-based chemosensors for the detection of Hg2+ in aqueous samples and manufacturing method of the same
Kaur et al. Dansyl-anthracene dyads for ratiometric fluorescence recognition of Cu 2+
Kowser et al. Solvent effect and fluorescence response of the 7-tert-butylpyrene-dipicolylamine linkage for the selective and sensitive response toward Zn (II) and Cd (II) ions
Fan et al. A fast-response, fluorescent ‘turn-on’chemosensor for selective detection of Cr 3+
Yuan et al. A new series of dinucleating macrocyclic ligands and their complexes of zinc (II)
Sadhu et al. Cryptand derived fluorescence signaling systems for sensing Hg (II) ion: A comparative study
Wu et al. A novel fluorescence “on–off–on” chemosensor for Hg 2+ via a water-assistant blocking heavy atom effect
Moriuchi-Kawakami et al. AC 3-substituted cyclotriveratrylene derivative with 8-quinolinyl groups as a fluorescence-enhanced probe for the sensing of Cu 2+ ions
Bhalla et al. Terphenyl-phenanthroline conjugate as a Zn 2+ sensor: H 2 PO 4− induced tuning of emission wavelength
Lee et al. Distinction between Mn (III) and Mn (II) by using a colorimetric chemosensor in aqueous solution
Bell et al. Ultra-sensitive and selective Hg 2+ chemosensors derived from substituted 8-hydroxyquinoline analogues
Huo et al. Highly selective and sensitive colorimetric chemosensors for Hg 2+ based on novel diaminomaleonitrile derivatives
Dos Santos et al. The recognition of anions using delayed lanthanide luminescence: The use of Tb (III) based urea functionalised cyclen complexes
Ngororabanga et al. A novel multidentate pyridyl ligand: A turn-on fluorescent chemosensor for Hg2+ and its potential application in real sample analysis

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150130

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160126

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170119

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180109

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190201

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200203

Year of fee payment: 9