KR101115123B1 - The surface treatment solution of PEO in electroplating - Google Patents

The surface treatment solution of PEO in electroplating Download PDF

Info

Publication number
KR101115123B1
KR101115123B1 KR1020090072671A KR20090072671A KR101115123B1 KR 101115123 B1 KR101115123 B1 KR 101115123B1 KR 1020090072671 A KR1020090072671 A KR 1020090072671A KR 20090072671 A KR20090072671 A KR 20090072671A KR 101115123 B1 KR101115123 B1 KR 101115123B1
Authority
KR
South Korea
Prior art keywords
weight
parts
surface treatment
treatment solution
electroplating
Prior art date
Application number
KR1020090072671A
Other languages
Korean (ko)
Other versions
KR20110015118A (en
Inventor
유재인
유재용
박창훈
김진희
Original Assignee
주식회사 위스코하이텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 위스코하이텍 filed Critical 주식회사 위스코하이텍
Priority to KR1020090072671A priority Critical patent/KR101115123B1/en
Publication of KR20110015118A publication Critical patent/KR20110015118A/en
Application granted granted Critical
Publication of KR101115123B1 publication Critical patent/KR101115123B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

본 발명은 마그네슘합금의 전기 도금용 플라즈마 표면처리 용액제조방법에 관한 것으로 전이금속 분말과 NaOH, Al2O3, Na3PO4, SiO2, Zn3(PO4)2 및 Na2HPO4의 약품을 물에 배합하여 표면처리용액의 수중에서 플라즈마를 이용하여 소재에 산화 막을 형성시킬 수 있도록 한다.The present invention relates to a method for preparing a plasma surface treatment solution for electroplating a magnesium alloy, the transition metal powder and NaOH, Al 2 O 3 , Na 3 PO 4 , SiO 2 , Zn 3 (PO 4 ) 2 and Na 2 HPO 4 Chemicals are added to the water to form an oxide film on the material using plasma in the water of the surface treatment solution.

마그네슘합금, 표면처리, 산화 막, 전이금속, 전기도금Magnesium alloy, surface treatment, oxide film, transition metal, electroplating

Description

마그네슘합금의 전기 도금용 플라즈마 표면처리 용액제조방법{The surface treatment solution of PEO in electroplating}The surface treatment solution of PEO in electroplating

마그네슘합금은 초경량 및 전자차폐 성이 우수함에도 불구하고 내식성과 내 접착력이 매우 약하기 때문에 사용에 제한이 있다. 따라서 이러한 단점을 보완하기 위해 타금속에 비해 필수적으로 표면처리가 필요하다. 보통 마그네슘합금 표면처리기술에는 습식과 건식으로 크게 2가지로 나눌 수 있다. 본 발명이 속하는 기술은 습식에 해당된다. 그 이류로는 표면처리가 행해지는 환경은 수중에서 행해지기 때 문이다. 습식 방법에도 하드 코팅과 소프트 코팅방법으로 나눌 수 있다. 하드 코팅에는 아노다이징 및 PEO(Plasma electrolyte oxidation)이며, 소프트 코팅은 넌 크로메이트 또는 화성처리 분야이다. 본 발명은 PEO 방법의 한 분야이다. 그러나 PEO로 산화 막을 형성시키면 보통 MgO나 Mg(OH)2 형태의 절연 산화 막을 형성할 수 있다. 이러한 막은 절연체이기 때문에 원칙적으로 전기도금이 불가능하다. 본 발명에서는 표면처리용액을 자체 개발하여 MgO나 Mg(OH)2의 막에 인위적으로 전이금속을 첨가하여 표면전기장을 유발하여 전도성을 띤 막을 형성하는 기술이다.Although magnesium alloy has excellent light weight and electron shielding property, magnesium alloy has a limitation in use because it has very low corrosion resistance and adhesion resistance. Therefore, in order to compensate for these disadvantages, surface treatment is necessary in comparison with other metals. Usually, magnesium alloy surface treatment technology can be divided into two types, wet and dry. The technology to which the present invention belongs is wet. This is because the environment in which the surface treatment is performed is carried out underwater. Wet method can be divided into hard coating and soft coating method. Hard coatings are anodizing and plasma electrolyte oxidation (PEO), while soft coatings are non chromate or chemical conversion applications. The present invention is one field of PEO methods. However, when the oxide film is formed of PEO, it is possible to form an insulating oxide film in the form of MgO or Mg (OH) 2 . Since such a film is an insulator, electroplating is in principle impossible. In the present invention, a surface treatment solution is developed by itself to artificially add a transition metal to the MgO or Mg (OH) 2 film to induce a surface electric field to form a conductive film.

마그네슘합금은 가볍고, 전자파 차폐성, 절삭성이 좋으며, 인체에 무해하므로 많이 사용될 수 있는 장점을 가진 금속이다. 그러나 상온에서 압연가공이 어려워 폭넓은 어플리케이션에 제약이 많이 있었다. 최근 마그네슘합금이 노트북 컴퓨터, 휴대폰 케이스로 사용이 증가하는 배경에는 가공방법의 큰 진전을 보인 영향이 크다. 압출가공은 알루미늄 합금과 열간변형저항이 비슷하여 알루미늄에 준한 가공이 가능하다. 한편, 다이캐스팅은 니어 넷 세이프(near net shape)의 방법으로 양산하는 것이 유리하다. 반용융 가공법의 하나인 틱소몰딩(thixo molding)이 실용화되었고, 표면처리는 탄소강판이나 알루미늄 합금 다이캐스팅 제품과 동등한 수준까지 진보되어 있다. 그러나, 마그네슘합금은 전기화학적으로 다른 금속과 접촉하여 전위차가 생기는 조건에서는 부식이 쉽게 발생하는 단점 및 PEO 방법으로 표면처리를 행함에 도금이 불가능하여 이에 대한 표면처리가 필요하다. 마그네슘합금의 표면처 리기술로는 크로메이트, 화성처리 및 아노다이징 및 PEO 등이 주로 사용되었는데, 그 중에서도 크로메이트법이 차지하는 비율이 약 80% 이상이다. 그러나 크로메이트법에는 필수적으로 인체에 유해한 6가 크롬이 사용된다. 이로 인해서 현재 유럽 및 미국에서는 규제가 이루어지고 있다. 반면에 화성처리 기술의 경우에는 공정이 까다롭고 크로메이트법에 비해서, 품질이 낮아지는 단점이 있다. 또한 아노다이징법 및 PEO의 경우에는 산화막 자체가 절연체이기 때문에 전기 도금이 불가능한 단점과 비용이 많이 들고 표면이 깨끗하지 못하다는 이중 단점이 있다. 따라서, 전기도금이 가능하며, 친환경적이고 경제적이며 표면처리결과가 뛰어난 마그네슘합금의 표면처리방법에 대한 수요가 크며, 이러한 문제를 해결할 경우 애플리케이션의 확대에 긍정적인 영향을 줄 수 있을 것으로 보인다.   Magnesium alloy is light, good electromagnetic shielding, good cutting, and harmless to the human body is a metal that can be used a lot. However, due to the difficulty in rolling at room temperature, there were many limitations in a wide range of applications. Recently, the use of magnesium alloys as notebook computers and mobile phone cases is increasing. Extrusion is similar to aluminum alloy and hot deformation resistance, so aluminum-based processing is possible. On the other hand, die casting is advantageously mass produced by the method of near net shape. Thixo molding, one of the semi-melt processing methods, has been put into practical use, and the surface treatment has been advanced to the same level as that of carbon steel sheet or aluminum alloy die casting products. However, magnesium alloy has a disadvantage in that corrosion easily occurs under conditions in which potential difference occurs due to contact with other metals electrochemically, and surface treatment is required due to the surface treatment by PEO method. As the surface treatment technology of magnesium alloy, chromate, chemical conversion, anodizing, and PEO were mainly used. Among them, the ratio of chromate method is about 80% or more. However, the chromate method uses hexavalent chromium, which is essentially harmful to the human body. As a result, regulations are currently in place in Europe and the United States. On the other hand, in the case of chemical conversion technology, the process is difficult and the quality is lower than that of the chromate method. In addition, in the case of the anodizing method and PEO, since the oxide film itself is an insulator, there are disadvantages in that electroplating is impossible and a high cost and the surface is not clean. Therefore, there is a great demand for the surface treatment method of magnesium alloy which can be electroplated, eco-friendly, economical and has excellent surface treatment results.

이에 본 발명은 상기한 문제점을 해결하기 위해 창출된 것으로 수중에서 마그네슘합금 소재에 플라즈마를 발생을 용이하게 하며, 표면처리용액을 원천적으로 개발하여 표면전기장을 유발하여 전도성 산화 막을 형성시킨 후, 전기 도금할 수 있도록 함을 그 목적으로 한다. Accordingly, the present invention was created to solve the above problems and facilitates the generation of plasma in magnesium alloy material in water, and developed a surface treatment solution to induce the surface electric field to form a conductive oxide film, electroplating Its purpose is to make it possible.

마그네슘합금이 전기도금이 가능하도록 원천적 PEO 표면처리용액을 개발하는 데 있다.It is to develop native PEO surface treatment solution for magnesium alloy to be electroplated.

이상과 같은 본 발명인 마그네슘합금 표면처리용액은 종래의 PEO 표면처리방법에서 사용된 표면처리용액을 통해 형성된 MgO 나 Mg(OH)2의 산화막이 아니라, MgSiO2 또는 MgZnO2, MgMnO4 형태의 산화막을 형성시켜 표면 전기장을 유발시켜 전기도금이 가능하게 하는 유용한 발명이라 하겠다. The magnesium alloy surface treatment solution of the present invention as described above is not an oxide film of MgO or Mg (OH) 2 formed through the surface treatment solution used in the conventional PEO surface treatment method, MgSiO 2 or MgZnO 2 , MgMnO 4 type oxide film It can be said to be a useful invention that enables electroplating by forming a surface electric field.

본 발명에 있어서 제일 중요한 부분은 화학약품 배합 비율과 온도이다.
특히 본 발명에 의한 마그네슘합금의 전기 도금용 플라즈마 표면처리 용액제조방법은 물 중량 100중량부에 대하여 전이금속 분말 1~10중량부, 수산화나트륨(NaOH) 10~50중량부, 산화알루미늄(Al2O3) 1~15중량부, 삼인산나트륨(Na3PO4) 1~20중량부, 산화규소(SiO2) 1~10중량부, 아연인산염(Zn3(PO4)2) 1~30중량부 및 인산수소이나트륨(Na2HPO4) 1~10중량부를 물에 배합한 것이며, 이러한 용액을 이용하여 표면 전기장이 유발할 수 있는 산화막 즉 MgSiO2, MgZnO2, MgMnO4 형태의 산화막을 마그네슘합금의 표면에 PEO 표면처리방식으로 형성할 수 있다.
물론 상기 표면처리용액으로 PEO 표면처리할 경우, 표면처리용액의 온도는 20~70도 범위를 갖는 것이 바람직하다.
여기서 상기 수산화나트륨(NaOH) 10~50중량부를 상기와 같은 다른 물질과 함께 물에 혼합하는 바, 수산화나트륨은 PEO 표면처리 방식에 사용되는 기본적인 물질 즉 박막 형성의 기본적인 물질인 것이다.
참고로 수산화나트륨은 탄산나트륨의 가성화(caustification)와 염화나트륨의 전기분해로 제조되는 것이며, 조해성이 강하며, 순수한 것은 무색 투명한 결정이지만 보통 불순물이 포함되어 약간불투명한 흰색의 고체이며, 실온에서는 사방정계의 α형(저온형)이며, 299.6℃에서 입방정계의 β형(고온형)으로 전이한다.
그리고 완전히 탈수된(無水) 것의 녹는점은 328℃이나 실제로는 매우 제거하기 힘든 수분과 탄산염을 소량 함유하므로 약 10℃ 정도 낮은 318.4℃이며, 끓는점 1390℃, 비중 2.130, 굴절률 1.3576이며, 융해열 1.70㎉/㏖, 생성열 102.7㎉/㏖이다. 1, 2, 3, 3.5, 4, 5, 7수화물이 알려져 있으며, 3.5수화물은 무색의 단사정계 결정으로서 녹는점 15.5℃이다.
물에 잘 녹으며 용해할 때 대량의 열을 발생시키고, 수용액은 강한 염기성을 띠며, 물 100g에 대한 용해도는 0℃에서 42g, 20℃에서 109g, 100℃에서 347g이며, 에틸알코올?글리세롤에는 잘 녹으나 에테르?아세톤?액체암모니아에는 녹지 않는다.
상기 전이금속 중에서 선택되는 어느 하나 이상의 금속 분말 1~10중량부를 상기와 같은 다른 물질과 함께 물에 혼합하게 되며, 예컨대 마그네슘합금 표면에는 MgMnO4 형태의 산화막이 전이금속 중의 하나인 망간(Mn)에 의해 형성되어 마그네슘합금 표면의 산화막의 전기전도성을 증대하게 된다.
참고로 전이금속은 녹는점, 끓는점이 높고, 열과 전기의 양도체, 단단하고 밀도가 크며, 이온화에너지의 크기가 알칼리금속과 비활성기체의 중간정도로 비슷, 공기중에서는 큰 변화를 나타내지 않아 화학적 활성이 적으며, d 또는 f 오비탈의 전자도 가전자 역할을 할 수 있어서 산화 상태의 다양성이 있으며, 최외각 안쪽에 불완전한 d, f 오비탈을 가지고 있어 배위할 수 있는 전자쌍을 더 받을 수 있기 때문에 여러 가지 착이온의 중심원소가 된다.
상기 산화알루미늄(Al2O3) 1~15중량부를 상기와 같은 다른 물질과 함께 물에 혼합하는 바, 산화알루미늄은 수용액의 전해 특성을 강화하고, 박막의 저항을 감소하는 것이다.
참고로 상기 산화알루미늄은 화학적으로 안정하고 융점(2050°C)이 높고, 전기절연성, 기계적 강도, 경도 등의 물리적 성질도 탁월하기 때문에 여러 산업분야에서 광범히 사용되고 있으며, 고기능 재료에 알루미나가 사용되기 위해서는 원료 분체인 알루미나의 고순도화 및 미립화가 필요하고, 고순도 알루미나란 일반적으로 99.9% 이상의 순도를 가지며, 평균 입자크기가 1mm 이하인 미세분말로서, 소결이 쉬운 알루미나를 지칭한다.
상기 삼인산나트륨(Na3PO4) 1~20중량부를 상기와 같은 물질과 함께 물에 혼합되는 바, 삼인산나트륨은 수용액의 알칼리도 안정화 역할을 하며, 박막 전이금속을 안착시키는 것이다.
참고로 삼인산나트륨은 삼인산나트륨은 인산수소이나트륨의 수용액에 당량의 수산화나트륨을 가하여 증발, 건조시킨 뒤 전기로에서 가열?탈수하면, 무수화물이 얻어지며, 인산에 과잉의 수산화나트륨을 가하여 증발, 농축시키면 실온에서 12수화물이 얻어진다.
정출(晶出) 온도에 따라 10, 6, 0.5수화물 등도 얻어지며, 무수화물은 무색의 분말로 녹는점 1340℃, 밀도 2.536g/㎤(17℃)이고, 물 100g에 0℃에서 4.5g, 100℃에서 77g 녹는다. 12수화물은 녹는점 73.4℃, 비중 1.62, 무색의 육방정계결정으로 용해도는 28.32g/100g(물 15℃)이며, 100℃에서 탈수하여 1수화물로 되며, 알칼리성세척제?가죽이기기제?청관제(淸罐劑)?경수연화제 등으로 쓰인다.
상기 산화규소(SiO2) 1~10중량부를 상기와 같은 다른 물질과 함께 물에 혼합되는 바, 산화규소는 전이박막 형성의 매개처 역할을 하며, MgSiO2으로 산화막을 표면에 형성하게 하여 전기 전도성을 향상하게 되는 것이다.
참고로 산화규소는 물에 잘 녹지도 않고 잘 분해되지도 않으며, 산소이온의 크기와 산소이온의 크기 사이에는 산소이온 4 개가 만났을 때, 그 4 산소이온들이 만드는 공간의 크기가 규소이온 하나가 들어가기에 딱 알맞는 크기이어서 산화규소의 결정체가 매우 견고하다.
상기 아연인산염(Zn3(PO4)2) 1~30중량부를 상기와 같은 다른 물질과 함께 물에 혼합되는 바, 아연인산염은 전이박막의 저항을 감소시키는 역할을 하며, MgO 나 Mg(OH)2의 산화막보다 전기 전도성이 우수한 MgZnO2 산화막을 형성하게 하며, 아연인산염은 금속 표면에 부식 방지 코팅으로 이용된 무기 화합물이다
상기 인산수소이나트륨(Na2HPO4) 1~10중량부를 상기와 같은 다른 물질과 함께 물에 혼합되는 바, 인산수소이나트륨은 전기박막의 저항을 감소시키고 촉매 역할을 하게 된다.
참고로 수용액은 약알카리성을 나타낸다. 알코올에 녹지않고 물에 잘 녹으며, 청관제, 탄철제, 피혁탄닝, 목제의 방부제, 범랑제조, 염색 매연제, 안료(침전제), 의약 (페니실린, 스트렙토 마이신의 제조), 전분, 인산에스테르나트륨 제조에 사용되고, 완충작용이 강하고 식품가공의 제조시 pH조정에 사용된다.
물론 물 중량 100중량부에 대하여 전이금속 분말 1~10중량부, 수산화나트륨(NaOH) 10~50중량부, 산화알루미늄(Al2O3) 1~15중량부, 삼인산나트륨(Na3PO4) 1~20중량부, 산화규소(SiO2) 1~10중량부, 아연인산염(Zn3(PO4)2) 1~30중량부 및 인산수소이나트륨(Na2HPO4) 1~10중량부를 혼합하는 것이 바람직한 바, 각각의 물질을 1중량부보다 작게 혼합하면 첨가량이 매우 작아서 의미가 없으며, 각각의 물질을 상기와 같은 최고 중량부보다 많이 첨가하더라도 마그네슘합금의 표면에 형성되는 최적의 산화막에 크게 영향을 미치지 않게 된다.
The most important part of the present invention is the chemical compounding ratio and temperature.
In particular, the method for producing a plasma surface treatment solution for electroplating magnesium alloy according to the present invention includes 1 to 10 parts by weight of transition metal powder, 10 to 50 parts by weight of sodium hydroxide (NaOH), and aluminum oxide (Al 2 ) based on 100 parts by weight of water. O 3 ) 1-15 parts by weight, sodium triphosphate (Na 3 PO 4 ) 1-20 parts by weight, silicon oxide (SiO 2 ) 1-10 parts by weight, zinc phosphate (Zn 3 (PO 4 ) 2 ) 1-30 parts Parts and disodium hydrogen phosphate (Na 2 HPO 4 ) 1-10 parts by weight in water, using this solution to the oxide film that can cause surface electric field, that is, MgSiO 2 , MgZnO 2 , MgMnO 4 type oxide film of magnesium alloy It can be formed on the surface by PEO surface treatment method.
Of course, when PEO surface treatment with the surface treatment solution, it is preferable that the temperature of the surface treatment solution has a range of 20 ~ 70 degrees.
Here, 10-50 parts by weight of sodium hydroxide (NaOH) is mixed with water together with other materials as described above, and sodium hydroxide is a basic material used for PEO surface treatment, that is, a basic material for thin film formation.
For reference, sodium hydroxide is prepared by causification of sodium carbonate and electrolysis of sodium chloride. It is strongly deliquescent and pure is a colorless transparent crystal, but is a slightly opaque white solid with impurities. It is (alpha) type (low temperature type) of, and it transitions to the beta (high temperature type) form of cubic system at 299.6 degreeC.
The melting point of completely dehydrated is 328 ℃, but it actually contains a small amount of water and carbonate that is very difficult to remove, so it is 318.4 ℃ as low as 10 ℃, boiling point 1390 ℃, specific gravity 2.130, refractive index 1.3576, heat of fusion 1.70㎉. / Mol and generated heat of 102.7 Pa / mol. 1, 2, 3, 3.5, 4, 5, and 7 hydrates are known, and 3.5 hydrate is a colorless monoclinic crystal with a melting point of 15.5 占 폚.
It dissolves well in water and generates a large amount of heat when dissolved. The aqueous solution has a strong basicity. Solubility in 100g of water is 42g at 0 ° C, 109g at 20 ° C and 347g at 100 ° C. It is soluble but insoluble in ether, acetone and liquid ammonia.
1-10 parts by weight of any one or more metal powders selected from the transition metals are mixed with water together with other materials as described above. For example, on the surface of the magnesium alloy, an oxide film in the form of MgMnO 4 is added to manganese (Mn) which is one of transition metals. Formed to increase the electrical conductivity of the oxide film on the surface of the magnesium alloy.
For reference, transition metals have high melting point and boiling point, heat and electricity good conductor, hard and dense, and the ionization energy is about the same as alkali metal and inert gas. The electrons of the d or f orbitals can also act as valences, so there is a variety of oxidation states, and because they have incomplete d and f orbitals inside the outermost shell, they can receive more coordination electron pairs. Becomes the central element of.
When 1 to 15 parts by weight of the aluminum oxide (Al 2 O 3 ) is mixed with water together with other materials as described above, aluminum oxide is to enhance the electrolytic properties of the aqueous solution, and to reduce the resistance of the thin film.
For reference, the aluminum oxide is widely used in various industrial fields because it is chemically stable, has a high melting point (2050 ° C), and has excellent physical properties such as electrical insulation, mechanical strength, and hardness, and alumina is used for high-performance materials. In order to achieve high purity and fineness of alumina, which is a raw material powder, high purity alumina generally refers to alumina having a purity of 99.9% or more and having an average particle size of 1 mm or less, which is easy to sinter.
1 to 20 parts by weight of sodium triphosphate (Na 3 PO 4 ) is mixed with water as described above, sodium triphosphate serves to stabilize the alkalinity of the aqueous solution, and to deposit the thin film transition metal.
For reference, sodium triphosphate is evaporated and dried by adding an equivalent amount of sodium hydroxide to an aqueous solution of disodium hydrogen phosphate, and then heated and dehydrated in an electric furnace. Anhydrides are obtained. An excess of sodium hydroxide is added to phosphoric acid to evaporate and concentrate. 12 hydrates are obtained at room temperature.
Depending on the crystallization temperature, 10, 6 and 0.5 hydrates are also obtained, and the anhydride is a colorless powder with a melting point of 1340 ° C, a density of 2.536 g / cm 3 (17 ° C), and 100 g of water at 0 ° C to 4.5 g, 77 g is melted at 100 ° C. 12-hydrate is a melting point of 73.4 ℃, specific gravity 1.62, colorless hexagonal crystal, solubility is 28.32g / 100g (15 ℃ of water), dehydrated at 100 ℃ to become monohydrate, alkaline cleaner, leather cleaner,罐 劑)? Used as a water softener.
1-10 parts by weight of the silicon oxide (SiO 2 ) is mixed with water together with other materials as described above, silicon oxide serves as a medium for the formation of a transition thin film, and electrically conductive by forming an oxide film on the surface with MgSiO 2 Will be improved.
Note that silicon oxide does not dissolve well or decompose well in water, and when four oxygen ions meet between the size of the oxygen ion and the size of the oxygen ion, the size of the space created by the four oxygen ions enters one silicon ion. The size is just right, so the crystal of silicon oxide is very strong.
1-30 parts by weight of the zinc phosphate (Zn 3 (PO 4 ) 2 ) is mixed with water together with other materials as described above, zinc phosphate serves to reduce the resistance of the transition thin film, MgO or Mg (OH) than that of the second oxide film, and the electrical conductivity is excellent MgZnO formed second oxide film, zinc phosphate is an inorganic compound is used as a corrosion-resistant coating on a metal surface
1-10 parts by weight of the disodium hydrogen phosphate (Na 2 HPO 4 ) is mixed with water together with other materials as described above, disodium hydrogen phosphate reduces the resistance of the electric thin film and serves as a catalyst.
For reference, the aqueous solution exhibits weak alkalinity. Insoluble in alcohol, well soluble in water, rust agent, charcoal iron, leather tanning, wood preservative, bumrang manufacture, dye soot, pigment (precipitant), medicine (penicillin, preparation of streptomycin), starch, sodium phosphate It has a strong buffering effect and is used for pH adjustment in food processing.
Of course, 1 to 10 parts by weight of the transition metal powder, 10 to 50 parts by weight of sodium hydroxide (NaOH), 1 to 15 parts by weight of aluminum oxide (Al 2 O 3 ), sodium triphosphate (Na 3 PO 4 ) 1 to 20 parts by weight, 1 to 10 parts by weight of silicon oxide (SiO 2 ), 1 to 30 parts by weight of zinc phosphate (Zn 3 (PO 4 ) 2 ) and 1 to 10 parts by weight of disodium hydrogen phosphate (Na 2 HPO 4 ) Since it is preferable to mix each material smaller than 1 part by weight, the amount of addition is very small, which is meaningless. It will not affect.

Claims (1)

마그네슘합금의 전기 도금용 플라즈마 표면처리 용액제조방법에 있어서,In the plasma surface treatment solution manufacturing method for electroplating magnesium alloy, 물 중량 100중량부에 대하여 전이금속 분말 1~10중량부, 수산화나트륨(NaOH) 10~50중량부, 산화알루미늄(Al2O3) 1~15중량부, 삼인산나트륨(Na3PO4) 1~20중량부, 산화규소(SiO2) 1~10중량부, 아연인산염(Zn3(PO4)2) 1~30중량부 및 인산수소이나트륨(Na2HPO4) 1~10중량부를 배합하는 것으로 이루어지는 마그네슘합금의 전기 도금용 플라즈마 표면처리 용액제조방법.1 to 10 parts by weight of transition metal powder, 10 to 50 parts by weight of sodium hydroxide (NaOH), 1 to 15 parts by weight of aluminum oxide (Al 2 O 3 ), sodium triphosphate (Na 3 PO 4 ) 1 To 20 parts by weight, 1 to 10 parts by weight of silicon oxide (SiO 2 ), 1 to 30 parts by weight of zinc phosphate (Zn 3 (PO 4 ) 2 ) and 1 to 10 parts by weight of disodium hydrogen phosphate (Na 2 HPO 4 ) A method for producing a plasma surface treatment solution for electroplating magnesium alloys, comprising:
KR1020090072671A 2009-08-07 2009-08-07 The surface treatment solution of PEO in electroplating KR101115123B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090072671A KR101115123B1 (en) 2009-08-07 2009-08-07 The surface treatment solution of PEO in electroplating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090072671A KR101115123B1 (en) 2009-08-07 2009-08-07 The surface treatment solution of PEO in electroplating

Publications (2)

Publication Number Publication Date
KR20110015118A KR20110015118A (en) 2011-02-15
KR101115123B1 true KR101115123B1 (en) 2012-03-08

Family

ID=43773992

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090072671A KR101115123B1 (en) 2009-08-07 2009-08-07 The surface treatment solution of PEO in electroplating

Country Status (1)

Country Link
KR (1) KR101115123B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101213590B1 (en) * 2012-04-10 2012-12-18 주식회사 위스코하이텍 Plasma electrolysing oxcidation solution for coating ceramic on mg alloys goods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007073213A1 (en) 2005-12-20 2007-06-28 Auckland Uniservices Limited Micro-arc assisted electroless plating methods
JP2007308757A (en) 2006-05-18 2007-11-29 Aisin Seiki Co Ltd Magnesium or magnesium alloy member
KR100927196B1 (en) 2009-08-25 2009-11-18 주식회사 세미유 Plasma electrolysing oxcidation device for mg alloys goods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007073213A1 (en) 2005-12-20 2007-06-28 Auckland Uniservices Limited Micro-arc assisted electroless plating methods
JP2007308757A (en) 2006-05-18 2007-11-29 Aisin Seiki Co Ltd Magnesium or magnesium alloy member
KR100927196B1 (en) 2009-08-25 2009-11-18 주식회사 세미유 Plasma electrolysing oxcidation device for mg alloys goods

Also Published As

Publication number Publication date
KR20110015118A (en) 2011-02-15

Similar Documents

Publication Publication Date Title
KR100962418B1 (en) Plasma electrolysing oxcidation solution for mg alloys goods
Yang et al. Hydrogen generation by aluminum‐water reaction in acidic and alkaline media and its reaction dynamics
CN102650068B (en) Sealing agent for aluminum and aluminum alloy anode oxide films and preparation method for sealing agent
KR101046082B1 (en) Plasma electrolysing oxcidation solution for mg alloys goods
CN108624935A (en) A kind of closing process of alkali resistance confining liquid and aluminum alloy surface oxidation film
DE602005002299D1 (en) Process for producing high shrinkage spherical silver powder
TW201026906A (en) Process for plating chromium from a trivalent chromium plating bath
JP2020531694A (en) Anticorrosion treatment method for copper-containing materials
CN101649471B (en) Method for producing high purity vanadium metal
CN101876082A (en) Ionic liquid gallium chloride/1-methyl-3-ethylimidazole chloride system electroplating solution
CN103510136B (en) A kind of method at ultra-fine tungsten wires surface electrical deposition of aluminum magnesium alloy film
KR101115123B1 (en) The surface treatment solution of PEO in electroplating
CN102828218A (en) Electrolyte used for magnesium alloy anode oxidation treatment and treatment method
CN103553219B (en) Preparation method and application of corrosion and scale inhibitor for ethylene glycol sealed circulating water
TW201239138A (en) Nickel plating solution and nickel plating method
CN105483403A (en) Aluminum alloy smelting method
CN105324520B (en) The manufacture method of magnesium alloy product
CN106119926A (en) A kind of ceramic coating formed by micro-arc oxidation and preparation method thereof
CN105040067A (en) Environment-friendly nickel-free fluoride-free intermediate-temperate sealing agent and sealing method
CN103088332A (en) Water electrolysis pole plate surface coating liquid
CN105239104A (en) Method for electrolyzing scaly zinc powder by alkaline process
KR101216778B1 (en) Plasma electrolysing oxcidation solution
JPS58153795A (en) Suppressing of gas generation from anode in trivalent chromium plating bath
Pareek et al. Mixed metal oxides composites as corrosion inhibitors
JP2010215937A (en) Method for producing silica gel, metal complex of silica gel with the use of the silica gel, method for producing the same, and method for producing nano-metal

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150129

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151224

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170201

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180402

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 8