KR101115023B1 - Inorganic binder composition comprising aluminium-hydroxide sludge, and thermal-resistance inorganic pigments comprising the same - Google Patents
Inorganic binder composition comprising aluminium-hydroxide sludge, and thermal-resistance inorganic pigments comprising the same Download PDFInfo
- Publication number
- KR101115023B1 KR101115023B1 KR1020090069084A KR20090069084A KR101115023B1 KR 101115023 B1 KR101115023 B1 KR 101115023B1 KR 1020090069084 A KR1020090069084 A KR 1020090069084A KR 20090069084 A KR20090069084 A KR 20090069084A KR 101115023 B1 KR101115023 B1 KR 101115023B1
- Authority
- KR
- South Korea
- Prior art keywords
- inorganic
- aluminum hydroxide
- inorganic binder
- binder composition
- weight
- Prior art date
Links
- 239000011230 binding agent Substances 0.000 title claims abstract description 39
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 title claims abstract description 35
- 239000000203 mixture Substances 0.000 title claims abstract description 22
- 239000010802 sludge Substances 0.000 title description 4
- 229910021502 aluminium hydroxide Inorganic materials 0.000 title 1
- 229940024545 aluminum hydroxide Drugs 0.000 title 1
- 239000001023 inorganic pigment Substances 0.000 title 1
- 230000005855 radiation Effects 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 25
- 239000002699 waste material Substances 0.000 claims abstract description 24
- 239000003973 paint Substances 0.000 claims abstract description 18
- 230000008569 process Effects 0.000 claims abstract description 16
- 238000005530 etching Methods 0.000 claims abstract description 15
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 14
- 150000004645 aluminates Chemical class 0.000 claims abstract description 9
- 238000004064 recycling Methods 0.000 claims abstract description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 33
- 238000000576 coating method Methods 0.000 claims description 29
- 239000011248 coating agent Substances 0.000 claims description 28
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000000498 ball milling Methods 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 10
- 238000004381 surface treatment Methods 0.000 abstract description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 abstract 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 abstract 1
- 229910001887 tin oxide Inorganic materials 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 239000011819 refractory material Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 6
- 229910010271 silicon carbide Inorganic materials 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 150000002506 iron compounds Chemical class 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000002894 chemical waste Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000004017 vitrification Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910017709 Ni Co Inorganic materials 0.000 description 1
- 229910003267 Ni-Co Inorganic materials 0.000 description 1
- 229910003262 Ni‐Co Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- -1 aluminate ions Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000007420 reactivation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2231—Oxides; Hydroxides of metals of tin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2262—Oxides; Hydroxides of metals of manganese
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Paints Or Removers (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Abstract
본 발명은 알루미늄 표면처리 에칭공정에서 발생하는 폐수산화알루미늄을 활용한 무기 바인더, 및 이를 포함하는 무기도료에 관한 것이다. 특히, 본 발명은, 알루민산염을 주된 성분으로 포함하는 것을 특징으로 한다. 본 발명의 무기 바인더 조성물, 및 이를 포함하는 무기도료는 내열성 및 열방사성이 우수한 효과가 있다. 또한, 폐수산화알루미늄을 재활용하는 경제적?친환경적 효과도 있다.The present invention relates to an inorganic binder using waste aluminum hydroxide generated in an aluminum surface treatment etching process, and an inorganic paint containing the same. In particular, the present invention is characterized by including aluminate as a main component. Inorganic binder composition of the present invention, and the inorganic paint containing the same has an excellent effect of heat resistance and heat radiation. In addition, there is an economical and environmentally friendly effect of recycling waste aluminum hydroxide.
폐수산화알루미늄, 무기 바인더, 내열 도료, 열 방사, 망간 산화물, 주석 산화물 Waste aluminum hydroxide, inorganic binder, heat resistant paint, heat radiation, manganese oxide, tin oxide
Description
본 발명은 알루미늄 표면처리 에칭공정에서 발생하는 폐수산화알루미늄을 활용한 무기 바인더, 및 이를 포함하는 무기도료에 관한 것이다. The present invention relates to an inorganic binder using waste aluminum hydroxide generated in an aluminum surface treatment etching process, and an inorganic paint containing the same.
일반적으로 공업용 로(爐)는 가스, 오일, 전기 등에 의해 가열되어 고온상태에서 작동한다. 이 때, 로 내벽을 구성하고 있는 내화물은, 열이 로 외부로 가는 것을 차단하여 로내의 온도를 유지시키고, 로의 다른 구조물을 열로부터 보호하며, 흡수된 열을 다시 로 내부로 재방사하는 역할을 한다.In general, industrial furnaces are heated by gas, oil, electricity, etc. and operate at high temperature. At this time, the refractory material constituting the furnace inner wall blocks the heat from going to the outside of the furnace to maintain the temperature in the furnace, protects other structures in the furnace from heat, and re-radiates the absorbed heat back into the furnace. do.
특히, 로벽의 열 재방사 작용은, 로의 운용하는 측면에서, 목적온도에 이르게하는 단위에너지를 절감시켜주므로 비용절감 효과와 직접적인 상관관계를 지닌다. 즉, 단위에너지당 열방사율이 높으면 높을수록 에너지 절감효과 커지는 것이 다.In particular, the thermal re-radiation action of the furnace wall has a direct correlation with the cost-saving effect because it reduces the unit energy reaching the target temperature in terms of the operation of the furnace. In other words, the higher the heat radiation rate per unit energy, the greater the energy saving effect.
키르히호프(Kirchoff)법칙에 따르면, 일정온도에서 열평형에 있는 물체가 전자파를 방사하는 강도와 흡수하는 강도의 비는 물체의 온도와 파장에 따르게 되어 방사율과 흡수율은 같고, 어느 온도에 있는 물체의 방사량은 그 물체의 재질에 따라 달라진다. 또한, 어느 물체의 표면에서 방사되는 에너지량은 플랭크(Plank)식에 의해 계산되어 질 수 있으며, 스테판-볼쯔만(Stefan-Boltzman) 법칙에 따르면 방사량은 절대온도 4승에 비례하여 증가하게 되고, 방사에너지의 최대강도 파장은 빈(Wien)의 법칙에 따라 절대온도에 반비례하여 단파장 쪽에서 발생한다.According to Kirchoff's law, the ratio of the intensity and absorption of an electromagnetic wave by an object in thermal equilibrium at a given temperature depends on the temperature and wavelength of the object, so that the emissivity and absorption are the same, The amount of radiation depends on the material of the object. In addition, the amount of energy radiated from the surface of an object can be calculated by the Plank equation, and according to Stefan-Boltzman's law, the amount of radiation increases in proportion to the absolute power of 4, The maximum intensity wavelength of the radiant energy occurs on the short wavelength side in inverse proportion to the absolute temperature according to Wien's law.
상기의 적외선 지배법칙들을 고려하면, 공업로 내벽의 내화물이 고온이 될수록 많은 적외선에너지를 재방사하고, 최대 방사파장 부근에서 방사량이 많아야 전체적인 방사 효율을 높일 수 있음을 알 수 있다. 예를 들면, 내화물의 온도가 1200K라고 하면 최대 방사파장은 약 2 ㎛ 부근이 되는데, 상기 최대 파장부근에서 방사율이 높은 재질의 내화물은 로내부로 방사량이 많아 에너지 절감효과 더욱 큰 것이다.Considering the above-mentioned infrared governing laws, it can be seen that the higher the refractory of the inner wall of the industrial furnace, the higher the radiation energy, and the greater the radiation amount near the maximum radiation wavelength, the higher the overall radiation efficiency. For example, if the temperature of the refractory is 1200K, the maximum radiation wavelength is about 2 μm, and the refractory material having a high emissivity near the maximum wavelength has a large amount of radiation to the inside of the furnace, which is more energy saving effect.
상기와 같은 공업로 내벽의 열방사 효율 증진을 위한 종래의 기술은 하기 문헌 1 내지 문헌 2의 특허문헌을 예시할 수 있다.The prior art for improving the thermal radiation efficiency of the inner wall of the industrial furnace as described above can illustrate the patent documents of the following Documents 1 to 2.
문헌 1은 열방사성이 우수한 철화합물계 내화도료 및 이의 코팅방법에 관한 것으로, 좀 더 구체적으로 방사율이 0.8 이상인 철화합물 30 ~ 70중량%, 무기 결합재 5 ~ 40중량% 및 수분 25 ~ 60중량%를 포함하는 열방사성이 우수한 철화합물계 내화도료와 상기 철화합물계 내화도료를 공업용 가열로의 화로 또는 벽면 ㎡당 0.5 ~ 2㎏의 양으로 도포 또는 코팅시켜 피막을 형성시키는 코팅방법에 관한 것을 개시하고 있다. Document 1 relates to an iron compound-based refractory paint having excellent thermal radiation and a coating method thereof. More specifically, 30 to 70 wt% of an iron compound having an emissivity of 0.8 or more, 5 to 40 wt% of an inorganic binder, and 25 to 60 wt% of moisture. Disclosed is a coating method for forming a film by coating or coating an iron compound-based refractory paint having excellent thermal radiation and an iron compound-based refractory paint in an industrial furnace or in an amount of 0.5 to 2 kg per square meter of wall. Doing.
문헌 2는 스테인레스 강의 열처리 공정시 표면에 생성되는 Fe-Cr-Ni-Co계 복합 산합물을 기계적으로 분쇄하여 복합산화물 분체를 얻는 단계; 상기 복합 산화물 분체에 고온용 복사 물질인 세륨옥사이드를 혼합하여 혼합물을 만드는 단계; 및 상기 혼합물에 결합분산제로 퓸드 실리카 및 물을 혼합하는 단계를 포함하는 것을 특징으로 하는 열복사율이 높은 세라믹 열복사 단열코팅제를 제조하는 방법에 대한 것을 개시하고 있다.Document 2 includes the steps of mechanically grinding the Fe-Cr-Ni-Co-based composite compound produced on the surface during the heat treatment process of stainless steel to obtain a composite oxide powder; Mixing the composite oxide powder with cerium oxide, which is a high-temperature radiation material, to form a mixture; And it discloses a method for producing a high thermal radiation ceramic thermal radiation insulating coating agent comprising the step of mixing fumed silica and water as a binder dispersant to the mixture.
[ 문헌 1 ] KR 10-0529010(등록) 2005.11.09.Document 1 KR 10-0529010 (registered) 2005.11.09.
[ 문헌 2 ] KR 10-0580079(등록) 2006.05.08.Document 2 KR 10-0580079 (registered) 2006.05.08.
현재 공업로 내벽에 사용되고 있는 내화물들은 SiO2, ZrO2 , Al2O3, Cr2O3, MgO, CaO 등의 재질을 사용하고 있거나 SiO2가 주성분인 세라믹화이버 종류를 사용하고 있다. 특히, 상기한 문헌 1, 및 문헌 2의 두 특허 역시 무기바인더로 실리카를 사용하여 SiO2가 다량 함유되어있다.The refractory materials currently used for the interior walls of industrial furnaces are made of materials such as SiO 2 , ZrO 2 , Al 2 O 3 , Cr 2 O 3 , MgO, CaO, or ceramic fiber types mainly composed of SiO 2 . In particular, the above two patents in Documents 1 and 2 also contain a large amount of SiO 2 using silica as an inorganic binder.
그러나 이러한 재질의 내화물은 대부분 원적외선 영역인 장파장에서는 높은 방사율을 나타내고 있으나, 4 ㎛이하의 단파장 영역의 적외선 방사율이 낮은 바, 고온에서의 방사 효율이 높지 않은 문제점 있다. 특히, 공업용 로의 작동환경은 대부분 초고온임을 고려하면 단파장 영역의 방사율이 높은 재료가 에너지 절감효과가 큰 영향을 미칠 것임을 이해할 수 있을 것이다.However, the refractory materials of these materials show high emissivity in the long wavelength, which is the far infrared region, but the infrared radiation in the short wavelength region of 4 μm or less is low, and thus the radiation efficiency at high temperature is not high. In particular, considering that the operating environment of the industrial furnace is mostly ultra-high temperature, it will be understood that the energy saving effect of the material having high emissivity in the short wavelength region will have a great effect.
또한, 실리카를 주성분으로 포함하는 내화물은, 로내 분위기가 1000℃ 이상의 고온에서 장시간 사용하게 되면, 실리카 바인더의 유리질화 등으로 인하여 열방사율이 떨어질 뿐만 아니라, 로벽의 내화물이 부스러지는 현상이 발생하여 수명이 단축되는 문제점이 있다. In addition, when the refractory material containing silica as a main component is used for a long time at a high temperature of 1000 ° C. or higher in the furnace, the thermal emissivity decreases due to vitrification of the silica binder, etc. There is a problem that is shortened.
한편, 알루미늄 에칭공정에 의해 발생한 폐수산화알루미늄은 화학폐기물인 바, 그대로 버려지게 되면 환경오염 문제를 야기할 수 있고, 이를 처리하는 경우에는 많은 비용이 소용될 수 있다. 따라서, 폐수산화알루미늄을 처리하는 방법에 대해 많은 연구가 행하여지고 있는 실정이고, 이에 대한 참조할 종래의 기술로는 등록특허 KR 10-0430750 등을 예시할 수 있지만, 더 다양한 폐수산화알루미늄의 재활용 방법이 개발되면 좋을 것이다.On the other hand, waste aluminum hydroxide generated by the aluminum etching process is a chemical waste, if discarded as it may cause environmental pollution problems, when processing this can be costly. Therefore, a lot of research has been conducted on the method of treating waste aluminum hydroxide, and the conventional technique to refer to this can be exemplified by Patent No. 10-0430750, but more various methods of recycling waste aluminum hydroxide. It would be nice if it was developed.
이에, 본 발명은 상기한 바와 같이 공업로 내벽의 방사증진에 따른 에너지절약을 위하여, 알루미늄 표면처리 에칭공정에서 발생하는 폐수산화알루미늄을 이용하여 내열성을 뛰어난 무기바인더 제조하고 열방사성이 뛰어난 SnO2, MnO2 등의 금속산화물을 혼합하여 내열성 및 열방사성이 우수한 무기도료를 제조하는 방법을 제공하고자 한다.Thus, the present invention is to produce an inorganic binder with excellent heat resistance using waste aluminum hydroxide generated in the aluminum surface treatment etching process for energy saving according to the radiation enhancement of the inner wall of the industrial furnace as described above SnO 2 , It is intended to provide a method of preparing an inorganic coating having excellent heat resistance and thermal radiation resistance by mixing metal oxides such as MnO 2 .
본 발명은 상기한 종래기술의 문제점을 해결하기 위해 안출된 것으로서,The present invention has been made to solve the above problems of the prior art,
알루민산염을 주된 성분으로 포함하는 것을 특징으로 하는 무기 바인더 조성물을 제공한다.It provides an inorganic binder composition comprising aluminate as a main component.
또한, 본 발명에 있어서, 수산화알루미늄 10 ~ 40 중량%, 수산화나트륨 10 ~ 40 중량%, 및 물 20 ~ 80중량% 를 포함하는 것임을 특징으로 하는 무기 바인더 조성물을 제공한다.In addition, the present invention provides an inorganic binder composition comprising 10 to 40% by weight of aluminum hydroxide, 10 to 40% by weight of sodium hydroxide, and 20 to 80% by weight of water.
또한, 본 발명에 있어서, 상기 수산화알루미늄은 폐수산화알루미늄인 것임을 특징으로 하는 무기 바인더 조성물을 제공한다.In addition, in the present invention, the aluminum hydroxide provides an inorganic binder composition, characterized in that the waste aluminum hydroxide.
또한, 본 발명의 무기 바인더 조성물; MnO2 ; 및 SnO2 을 포함하는 것을 특징으로 하는 열방사성 무기도료를 제공한다.In addition, the inorganic binder composition of the present invention; MnO 2 ; And it provides a thermal radiation inorganic coating, characterized in that it comprises SnO 2 .
또한, 본 발명의 무기 바인더 조성물 20 ~ 50 중량%, MnO2 10 ~ 40 중량%, 및 SnO2 10 ~ 40 중량%를 포함하는 것을 특징으로 하는 열방사성 무기도료를 제공한다.In addition, the inorganic binder composition of the present invention provides 20 to 50% by weight, MnO 2 10 to 40% by weight, and provides a thermal radiation inorganic coating, characterized in that it comprises 10 to 40% by weight of SnO 2 .
또한, 알루미늄 에칭공정에 의해 발생한 폐수산화알루미늄을 수산화나트륨 수용액과 혼합한 후, 볼밀로 분산?분쇄한 것을 무기 바인더로서 사용함을 특징으로 하는 에칭공정에 의해 발생한 폐수산화알루미늄의 재활용 방법을 제공한다.The present invention also provides a method for recycling waste aluminum hydroxide produced by an etching process, wherein the waste aluminum hydroxide produced by the aluminum etching process is mixed with an aqueous sodium hydroxide solution and then dispersed and pulverized with a ball mill as an inorganic binder.
또한, 알루미늄 에칭공정에 의해 발생한 폐수산화알루미늄을 수산화나트륨 수용액과 혼합한 후, 볼밀로 분산?분쇄한 무기 바인더에, MnO2, 및 SnO2 을 추가로 넣고 이를 볼밀로 분산시켜 열방사성 무기도료로서 사용함을 특징으로 하는 에칭공정에 의해 발생한 폐수산화알루미늄의 재활용 방법을 제공한다.In addition, after mixing the waste aluminum hydroxide produced by the aluminum etching process with an aqueous sodium hydroxide solution, MnO 2 and SnO 2 are further added to the inorganic binder dispersed and pulverized by a ball mill, and dispersed by a ball mill to form a thermal radiation inorganic coating. It provides a method for recycling waste aluminum hydroxide produced by an etching process characterized in that the use.
본 발명의 무기 바인더 조성물, 및 이를 포함하는 무기도료는 내열성 및 열방사성이 우수한 효과가 있다. 또한, 폐수산화알루미늄을 재활용하는 경제적?친화경적 효과도 있다.Inorganic binder composition of the present invention, and the inorganic paint containing the same has an excellent effect of heat resistance and heat radiation. In addition, there is an economic and eco-friendly effect of recycling waste aluminum hydroxide.
이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명은,The present invention,
알루민산염을 주된 성분으로 포함하는 것을 특징으로 하는 무기 바인더 조성물에 관한 것이다.It relates to an inorganic binder composition comprising aluminate as a main component.
상기 ‘주된 성분’의 의미는 여러 화합물이 포함된 조성물의 일성분 중 용매를 제외하고 가장 많이 포함된 일성분을 말하는 것이다.The meaning of the 'main component' refers to one component that is most included in the one component of the composition containing various compounds except for the solvent.
본 발명에 있어서, 상기 알루민산염은 무기 바인더 조성물의 주된 성분이다. 종래의 무기 바인더는 실리카를 주된 성분으로 포함하였으나, 실리카는 내화재 표면의 유리질화를 일으키고, 이에 따라 방사율이 떨어질 뿐만 아니라, 로벽의 내화물이 부스러지는 현상이 발생하는 점은 「해결하고자 하는 과제」에 상기한 바와 같다.In the present invention, the aluminate is a main component of the inorganic binder composition. Conventional inorganic binders include silica as a main component, but silica causes vitrification of the surface of the refractory material, resulting in a decrease in emissivity and a phenomenon in which the refractory material of the furnace wall is broken. As described above.
이에, 본 발명에서는 과감히 실리카를 배제하고 알루민산염을 주된 성분으로 사용하는 것이다. 특히, 무기 바인더에 포함된 알루민산염이 로벽의 내화물에 포함되게 되면, 1000℃ 이상의 고온에서 결정질의 α-알루미나로의 상전이가 일어나면서 내열성 및 부착력이 더욱 강해질 뿐만 아니라, 로내의 가스분위기로부터의 내화 학성도 강해지는 장점이 있어 매우 바람직하다.Accordingly, in the present invention, silica is dared to be used and aluminate is used as a main component. In particular, when the aluminate contained in the inorganic binder is included in the refractory material of the furnace wall, the phase transition to crystalline α-alumina occurs at a high temperature of 1000 ° C. or higher, resulting in stronger heat resistance and adhesion, as well as from the gas atmosphere in the furnace. It is also very desirable because of its strong chemical resistance.
알루미늄을 수산화나트륨으로 용해시키면 수산화알루미늄 용액이 생성되고, 이것에 알루미늄이 과포화 상태가 되면 수산화알루미늄 슬러지로 침전된다. 이 수산화알루미늄은 수산화나트륨 수용액과 혼합하고 볼밀공정으로 분산/분쇄를 거치면 수산화알루미늄은 더욱 미립자로 분쇄되면서 하기 화학식1과 같이 반응하여 알루민산 이온을 생성한다. When aluminum is dissolved in sodium hydroxide, an aluminum hydroxide solution is produced, and when aluminum is supersaturated, it precipitates as aluminum hydroxide sludge. When the aluminum hydroxide is mixed with an aqueous sodium hydroxide solution and subjected to dispersion / pulverization by a ball mill process, the aluminum hydroxide is further pulverized into fine particles and reacted as shown in Chemical Formula 1 to generate aluminate ions.
이렇게 제조된 알루민산염은 비정질로서 결정질의 산화알루미늄에 비해 쉽게 용해가 되어 바인더를 제조에 용이하다.The aluminate prepared as described above is amorphous and easily dissolved in comparison with crystalline aluminum oxide, thereby making it easy to prepare a binder.
본 발명에 있어서, 상기 무기 바인더 조성물은 수산화알루미늄 10 ~ 40 중량%, 수산화나트륨 10 ~ 40 중량%, 및 물 20 ~ 80중량% 를 포함하는 것이 바람직하다. 상기 범위 내에서 무기 바인더 조성물이 도포하기에 용이하기 때문이다. 즉, 물이 20 중량% 미만으로 첨가되면 바인더 조성물의 점도가 상승하여 도포에 어려움이 있고, 물이 80 중량% 초과하면 바인더 조성물이 너무 묽어져서 흐름성이 좋아지 므로 역시 도포에 어려움이 있을 수 있고, 알루민산염을 충분히 포함하지 못하므로 바람직하지 않다. 화학반응을 고려하면, 수산화알루미늄에 대한 수산화나트륨의 양은 최소 1 이상인 것이 더 바람직하다. In the present invention, the inorganic binder composition preferably comprises 10 to 40% by weight of aluminum hydroxide, 10 to 40% by weight of sodium hydroxide, and 20 to 80% by weight of water. It is because an inorganic binder composition is easy to apply | coat within the said range. In other words, when the water is added less than 20% by weight, the viscosity of the binder composition is increased, which is difficult to apply, and when the water is more than 80% by weight, the binder composition is too diluted to improve flowability, which may also be difficult to apply. It is not preferable because it does not contain aluminate sufficiently. Considering the chemical reaction, the amount of sodium hydroxide relative to aluminum hydroxide is more preferably at least one.
특히, 본 발명에 있어서, 상기 수산화알루미늄은 폐수산화알루미늄을 사용할 수 있다. 폐수산화알루미늄은 알루미늄 표면의 이물질 제거를 위한 표면처리의 전처리 공정, 또는 배터리 제조를 위한 집전체의 에칭공정 등에서 발생한 일종의 화학 폐기물이다. 상기 무기 바인더 조성물이, 로에 도포되는 무기도료로서 사용되는 경우, 바인더 조성물 자체의 높은 순도를 요구하지 않으므로 폐수산화알루미늄에 같이 포함되어 있는 이물질을 그대로 여과없이 사용하여도 무방하다. In particular, in the present invention, the aluminum hydroxide can be used waste aluminum hydroxide. Waste aluminum hydroxide is a kind of chemical waste generated in the pretreatment process of surface treatment for removing foreign substances on the aluminum surface, or the etching process of a current collector for battery production. When the inorganic binder composition is used as the inorganic coating applied to the furnace, since the high purity of the binder composition itself is not required, the foreign matter contained in the waste aluminum hydroxide may be used as it is without filtration.
또한, 본 발명은,In addition, the present invention,
상기 본 발명의 무기 바인더 20 ~ 50 중량%, MnO2 10 ~ 40 중량%, 및 SnO2 10 ~ 40 중량%를 포함하는 것을 특징으로 하는 열방사성 무기도료에 관한 것이다. The inorganic binder of the present invention relates to a thermal radiation inorganic coating, characterized in that it comprises 20 to 50% by weight, MnO 2 10 to 40% by weight, and SnO 2 10 to 40% by weight.
MnO2, SnO2는 전이금속산화물로서, 밴드캡(전자구조에서 가전자대(valence band)와 전도대(conduction band)사이에 금지대(forbidden band)가 있으며 이 금지대를 밴드갭이라 한다) 폭에 대응하는 파장은 근적외선 영역이다. MnO 2 and SnO 2 are transition metal oxides that have a band cap (a forbidden band between the valence band and the conduction band in the electronic structure, called the band gap). The corresponding wavelength is in the near infrared region.
따라서, Mno2, SnO2는 근적외선 부근의 파장이 발생하여 공업로 내부의 내화물의 표면온도에서 목적하고자하는 파장에서 높은 방사율을 보이므로 본 발명의 열방사성 무기도료로 적합한 성분이다.Therefore, Mno 2 , SnO 2 is a component suitable for the heat-radiative inorganic coating of the present invention because a wavelength near the near infrared rays is generated and shows a high emissivity at a desired wavelength at the surface temperature of the refractory in the industrial furnace.
본 발명의 열방사성 무기도료는 상기 바인더에 MnO2 10 ~ 40 중량%, SnO2 10 ~ 40 중량%의 혼합비로 혼합되어 다시 볼밀로 분산시켜 제조될 수 있다.The heat-radiative inorganic coating of the present invention may be prepared by mixing the binder in a mixing ratio of 10 to 40 wt% of MnO 2 and 10 to 40 wt% of SnO 2 and dispersing it again in a ball mill.
또한, 본 발명은,In addition, the present invention,
알루미늄 에칭공정에 의해 발생한 폐수산화알루미늄을 수산화나트륨 수용액과 혼합한 후, 볼밀로 분산?분쇄한 것을 무기 바인더로서 사용함을 특징으로 하는 에칭공정에 의해 발생한 폐수산화알루미늄의 재활용 방법에 관한 것이다. The waste aluminum hydroxide produced by the aluminum etching process is mixed with an aqueous sodium hydroxide solution, and then dispersed and pulverized with a ball mill as an inorganic binder. The present invention relates to a method for recycling waste aluminum hydroxide produced by the etching process.
본 발명은 알루미늄 에칭공정에 의해 발생한 폐수산화알루미늄을 무기 바인더, 및 무기도료에 사용함으로서, 별도의 정제?처리비용없이 획기적으로 재활용할 수 있는 획기적인 방법인 것이다. According to the present invention, waste aluminum hydroxide produced by an aluminum etching process is used in an inorganic binder and an inorganic paint, and thus it is a breakthrough method that can be recycled remarkably without additional purification and processing costs.
본 발명의 상기목적과 도료 조성물의 특성 및 구체적인 작용효과는 아래의 실시예에 의해 보다 명확하게 이해될 것이며, 본 발명이 실시예는 발명의 상세한 설명을 위한 것일 뿐, 이에 의해 권리범위를 한정하려는 것은 아니다.The purpose and characteristics of the coating composition and specific effects of the present invention will be more clearly understood by the following examples, which are intended to limit the scope of the present invention by way of example only. It is not.
실시예Example
에칭공정 후 남은 폐수산화알루미늄 용액에서 침전된 알루미늄 슬러지를 걸러내었다. 걸러낸 알루미늄 슬러지 약 80g에 20중량% 수산화나트륨 수용액 약 200 g을 볼밀로 분쇄?혼합하여 무기 바인더를 제조하였다.The aluminum sludge precipitated from the waste aluminum hydroxide solution remaining after the etching process was filtered out. An inorganic binder was prepared by pulverizing and mixing about 200 g of a 20 wt% aqueous sodium hydroxide aqueous solution with about 80 g of the filtered aluminum sludge.
상기 무기 바인더 250g에 분말 MnO2 약 200 g, 및 분말 SnO2 약 200 g을 볼밀에 추가로 넣고 혼합하였다. 점착력 향상을 위한 기타 첨가제로 잔점토와 인산소다를 각각 0.1g 더 첨가하여 최종적으로 무기도료를 제조하였다. About 200 g of powder MnO 2 , and powder SnO 2 to 250 g of the inorganic binder. About 200 g was further added to the ball mill and mixed. As an additive for improving adhesion, 0.1 g of residual clay and sodium phosphate were further added to prepare an inorganic coating.
[[ 열방사율Thermal emissivity 측정실험] Measurement experiment]
상기 무기도료의 열방사율이 좋은지 여부를 테스트하기 위하여 아래와 같은 실험을 실시하였다.In order to test whether the thermal emissivity of the inorganic paint is good, the following experiment was performed.
상기 실시예의 무기도료를, 로내 온도가 1200 ~ 1300 ℃이며, 산화성 분위기가 형성된 공업용 로의 내벽 1m2에 약 1.5㎜ 두께로 도포하였다.The inorganic coating of the said Example was apply | coated to the inner wall 1m <2> of the industrial furnace in which the furnace temperature was 1200-1300 degreeC, and the oxidative atmosphere was formed in about 1.5 mm thickness.
한편, 본 발명 실시예의 무기도료와 그 특성 비교를 하기 위하여 일반적으로 사용되는 탄화규소계 열방사성 도료를 상기 공업용 로의 내벽 1m2에 약 1.5㎜ 두께로 도포하였다.On the other hand, the present invention embodiment inorganic coating material and was typically coated with a silicon carbide-based coating material is used as heat radiation to the inner wall thickness of about 1.5㎜ 1m 2 to the industrial water to the attribute comparison.
상기 두 도료 도포면을 완전히 건조시킨 후, 로를 가동하여 20시간 및 50시간 경과시점에서 광학 온도계로 상기 로 내벽의 각 부위별 온도를 측정하였으며, 그 결과는 하기 표 1과 같았다.After completely drying the two coating surfaces, the furnace was operated and the temperature of each part of the inner wall of the furnace was measured by an optical thermometer at 20 and 50 hours, and the results are shown in Table 1 below.
상기 표 1로부터 본 발명의 무기도료가 종래의 탄화규소계 도료 도포면에 비하여 열방사성이 우수한 것을 알 수 있으며, 로의 재가동 시간이 길어짐에 따라 본 발명 내화도료의 도포면과 도료 비도포면은 온도의 변화가 없는 것으로 측정되었으나 탄화규소계 도료가 도포된 면의 온도는 다소 떨어진 것으로 측정되었는 바, 이는 고온의 산화성 분위기에 노출된 탄화규소계 코팅층의 표면부에 있는 탄화규소가 산화되어 열방사율이 떨어지므로써 발생되는 현상으로 추정된다.It can be seen from Table 1 that the inorganic paint of the present invention is superior in thermal radiation property as compared with the conventional silicon carbide paint coating surface, and as the reactivation time of the furnace becomes longer, the coating surface and the non-paint coating surface of the fireproof coating of the present invention have a change in temperature. Although the temperature of the surface coated with the silicon carbide paint was slightly decreased, it was caused by the oxidation of silicon carbide in the surface portion of the silicon carbide coating layer exposed to the high temperature oxidizing atmosphere to decrease the thermal radiation rate. It is assumed to be a phenomenon.
또한, 이어서, 공업용 로의 가동을 정지하고 로 내부의 냉각이 이루어진 후 유관을 통해서 로 내벽의 각 부위를 관찰해 본 결과, 본 발명의 도료 코팅부위는 최초 도료 도포시 색상인 흑색 그대로를 유지하고 있었으나, 탄화규소계 도료 도포면은 원래의 색상에 비해 흑도가 상당히 떨어지고 표면부가 유리질화되어 있음이 확인되었다.Further, after stopping the operation of the industrial furnace and cooling the inside of the furnace, observing each part of the inner wall of the furnace through an oil pipe, the paint coating part of the present invention maintained the black color at the time of the first coating. In addition, it was confirmed that the surface of the silicon carbide paint coating surface was considerably less black than the original color, and the surface was vitrified.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090069084A KR101115023B1 (en) | 2009-07-28 | 2009-07-28 | Inorganic binder composition comprising aluminium-hydroxide sludge, and thermal-resistance inorganic pigments comprising the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090069084A KR101115023B1 (en) | 2009-07-28 | 2009-07-28 | Inorganic binder composition comprising aluminium-hydroxide sludge, and thermal-resistance inorganic pigments comprising the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110011436A KR20110011436A (en) | 2011-02-08 |
KR101115023B1 true KR101115023B1 (en) | 2012-03-06 |
Family
ID=43771643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090069084A KR101115023B1 (en) | 2009-07-28 | 2009-07-28 | Inorganic binder composition comprising aluminium-hydroxide sludge, and thermal-resistance inorganic pigments comprising the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101115023B1 (en) |
-
2009
- 2009-07-28 KR KR1020090069084A patent/KR101115023B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR20110011436A (en) | 2011-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101712816B (en) | Downconversion frequency shift infrared radiation enhanced coating and preparation method thereof | |
Hammad et al. | The effects of Bi 2 O 3 on optical, FTIR and thermal properties of SrO-B 2 O 3 glasses | |
Fu et al. | Hydrothermal synthesis of pollucite from metakaolin-based geopolymer for hazardous wastes storage | |
Han et al. | Ca 2+‐Doped LaCrO 3: A Novel Energy‐Saving Material with High Infrared Emissivity | |
CN103589201B (en) | High emissivity infrared energy-conserving radiation paint and preparation method thereof | |
Obeid | Crystallization of synthetic wollastonite prepared from local raw materials | |
CN102585571A (en) | Infrared energy-saving coating with anti-corrosion and anti-coking functions and preparation method thereof | |
Almeida et al. | Thermal study of calcium silicate material synthesized with solid wastes | |
Yang et al. | Near-infrared-shielding energy-saving borosilicate glass-ceramic window materials based on doping of defective tantalum tungsten oxide (Ta0. 3W0. 7O2. 85) nanocrystals | |
Luo et al. | Synergistic thermal insulation enhancement of an Al2O3/MnO2@ fumed silica composite thermal insulation coating with high-temperature resistance up to 1200° C | |
KR101115023B1 (en) | Inorganic binder composition comprising aluminium-hydroxide sludge, and thermal-resistance inorganic pigments comprising the same | |
Min et al. | Pressureless sintering of highly transparent aluminum oxynitride ceramic by precipitation-coating with sintering aid | |
KR100383101B1 (en) | Inorganic refractory paint having good heat emissivity | |
Malnieks et al. | Black enamel for concentrated solar-power receivers | |
Juthapakdeeprasert et al. | Reactions and emissivity of cerium oxide with phosphate binder coating on basic refractory brick | |
Imanieh et al. | Effect of alumina content and heat treatment on microstructure and upconversion emission of Er3+ ions in oxyfluoride glass-ceramics | |
US8470087B2 (en) | Production method for a lightweight construction material using asbestos waste | |
Yun et al. | Waste fluorescent glass and shell derived glass-ceramics | |
Wei et al. | Influence of Sintering Duration on Crystal Phase and Optical Band Gap of Mn 3+-Doped Willemite-Based Glass-Ceramics | |
Buasri et al. | Microwave heating for the production of red-emitting sintered waste glass containing rare-earth ions | |
GB1578583A (en) | Calcined porcelain | |
CN112079569A (en) | Rare earth white high-temperature high-pressure acid and alkali resistant porcelain glaze and preparation method thereof | |
Li et al. | Effects of Nd2O3 Doping Levels on the Sintering, Microstructures, and Dielectric Properties of MgO–Al2O3–SiO2 Glass‐Ceramics | |
JP2004225027A (en) | Heat radiating coating for use in industrial heating furnace and manufacturing method thereof | |
Çöpoğlu et al. | Barium borosilicate glass coatings based on biomass for steel surfaces: Use of rice husk ash |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
N231 | Notification of change of applicant | ||
FPAY | Annual fee payment |
Payment date: 20150202 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20160203 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170203 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |