KR101114425B1 - Nano particle complex having a uniform surface particle and method of manufacturing thereof - Google Patents

Nano particle complex having a uniform surface particle and method of manufacturing thereof Download PDF

Info

Publication number
KR101114425B1
KR101114425B1 KR1020090128729A KR20090128729A KR101114425B1 KR 101114425 B1 KR101114425 B1 KR 101114425B1 KR 1020090128729 A KR1020090128729 A KR 1020090128729A KR 20090128729 A KR20090128729 A KR 20090128729A KR 101114425 B1 KR101114425 B1 KR 101114425B1
Authority
KR
South Korea
Prior art keywords
nanoparticles
particles
particle
composite
dry composite
Prior art date
Application number
KR1020090128729A
Other languages
Korean (ko)
Other versions
KR20110071981A (en
Inventor
한철종
한정인
김원근
오민석
김영훈
권순형
남진호
김윤진
고창모
Original Assignee
엘에스전선 주식회사
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사, 전자부품연구원 filed Critical 엘에스전선 주식회사
Priority to KR1020090128729A priority Critical patent/KR101114425B1/en
Publication of KR20110071981A publication Critical patent/KR20110071981A/en
Application granted granted Critical
Publication of KR101114425B1 publication Critical patent/KR101114425B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

본 발명은 표면입자 뭉침이 제거된 나노복합 입자체 및 그 제조방법 에 관한 것으로, 보다 상세하게는 모입자인 고분자입자와 자입자인 나노입자를 포함하는 건식복합체에 있어서, 상기 건식복합체를 용액에 분산시켜 건식복합체의 표면에 뭉쳐 있는 나노입자를 용해시켜 제거하여 나노복합입자체를 제조하고, 상기 나노복합입자체에 나노입자를 추가로 투입하여 두 번째 건식복합체를 제조한 후, 다시 상기 두 번째 건식복합체를 용액에 분산시켜 두 번째 건식복합체의 표면에 뭉쳐 있는 나노입자를 용해시켜 제거한 고입자 분율을 가지는 것을 특징으로 하는 나노복합입자체에 관한 것이다. The present invention relates to a nanocomposite particle body and a method for producing the aggregated surface particles are removed, and more particularly to a dry composite comprising a polymer particle as a parent particle and a nanoparticle as a subparticle, wherein the dry complex is added to a solution. Dispersing and dissolving and removing the nanoparticles agglomerated on the surface of the dry composite to prepare a nanocomposite, and further adding nanoparticles to the nanocomposite to produce a second dry composite, followed by the second The present invention relates to a nanocomposite particle having a high particle fraction dispersed by dispersing the dry complex in a solution to dissolve the nanoparticles agglomerated on the surface of the second dry complex.

나노복합 입자체, 코어셀 Nanocomposite Particle, Core Cell

Description

표면입자 뭉침이 제거된 나노복합 입자체 및 그 제조방법{Nano particle complex having a uniform surface particle and method of manufacturing thereof}Nanocomposite particle having a uniform surface particle and method of manufacturing thereof

본 발명은 표면입자 뭉침이 제거된 나노입자 복합체 및 그 제조방법 에 관한 것으로, 건식 복합체가 제조된 이후, 상기 건식 복합체를 용액에 분산시켜 건식 복합체의 표면에 뭉쳐져 있는 나노입자를 용해시켜 제거하여 표면입자 뭉침이 제거된 나노입자복합체를 제조하는 기술에 관한 것이다.The present invention relates to a nanoparticle composite from which surface particle agglomeration has been removed, and a method of manufacturing the same. After the dry composite is prepared, the dry composite is dispersed in a solution to dissolve and remove the nanoparticles agglomerated on the surface of the dry composite surface. The present invention relates to a technique for producing a nanoparticle composite from which particle agglomeration is removed.

기존 고속회전장치를 이용하여 제조된 건식 나노복합 입자체는 단순한 충돌에 의해 복합입자가 제조되는 방식으로 이루어진다. 이 경우 자입자는 모입자와 충돌에 의해 외부에 들어박힌 이후, 추가적인 충돌에 의해 내부로 파고 들게 되는 방식으로 나노복합체 입자가 만들어진다.Dry nanocomposite particles produced using the existing high-speed rotating device is made in such a way that the composite particles are produced by a simple collision. In this case, the nanoparticles are made in such a way that the subparticles are externally entrapped by the collision with the parent particles and then dug inward by the additional collision.

도 1은 기존의 코어셀 나노복합체에 대한 확대도로서, 모입자 표면에 위치한 자입자가 모입자 내부로 깊숙이 박히기 위해서는 다른 자입자가 표면에서 기존 자 입자를 쳐주는 방식으로만 복합체 형성이 가능하다. 그러나, 이런 방식으로 복합체 입자가 제조되는 경우, 모입자 표면에 자입자 분포가 밀집되는 현상이 발생한다. 특히 상기 도 1에 나타난 것과 같이, 입자 최외각에는 자입자들로만 이루어진 층이 존재하게 되어 일종의 코어 셀(core-shell) 구조를 형성하게 된다. 이 경우 모입자와 자입자가 균일하게 분포하는 나노복합 입자체가 요구되는 경우, 표면에 뭉쳐져 있는 자입자들에 의해 전체 물성이 저하되는 특성을 나타내게 된다. FIG. 1 is an enlarged view of a conventional core cell nanocomposite, and in order for the magnetic particles located on the surface of the mother particle to be deeply embedded in the mother particle, the composite may be formed only in a manner in which other magnetic particles strike the existing magnetic particles from the surface. . However, when the composite particles are produced in this manner, a phenomenon occurs in which the magnetic particle distribution is concentrated on the mother particle surface. In particular, as shown in FIG. 1, the outermost layer of particles is provided with a layer of magnetic particles to form a core-shell structure. In this case, when a nanocomposite particle having a uniform distribution of the parent particles and the magnetic particles is required, the overall physical properties are degraded by the magnetic particles aggregated on the surface.

예로써 전도성 나노입자를 자입자로 사용하고 절연성 고분자를 모입자를 사용하는 경우, 제조되는 나노복합입자체는 전체적으로 절연성능을 지녀야 하나, 전도성 나노입자가 표면에 코팅되어 전체적인 전도체로 작용하는 경우 등을 들 수 있다. For example, when the conductive nanoparticles are used as the magnetic particles and the insulating polymer is used as the parent particles, the nanocomposite particles produced must have insulation performance as a whole, but the conductive nanoparticles are coated on the surface to act as an overall conductor. Can be mentioned.

도 2는 기존의 모입자 외부에 격벽을 형성한 나노입자들로 인해 추가적인 나노입자의 복합화가 어려운 점을 나타낸 확대도로서, 나노복합입자체 제조에 있어 고속회전장비를 이용한 건식 하이브리다이즈 공정을 사용하는 경우, core-shell 형태의 구조는 일단 형성되게 되면 모입자 외부에 격벽을 형성하여 추가적인 나노입자의 복합화를 저해하게 된다. 이 때문에 나노복합가 모입자에 복합화될 수 있는 양이 한정되어 고농도의 나노복합입자체를 제조시 문제점을 발생하게 된다. FIG. 2 is an enlarged view showing that it is difficult to complex additional nanoparticles due to nanoparticles having partition walls formed outside the existing parent particles, and a dry hybridization process using a high-speed rotating device in manufacturing nanocomposite particles. When used, the core-shell structure, once formed, forms a barrier on the outside of the parent particle, which inhibits the complexation of additional nanoparticles. For this reason, the amount of nanocomposites that can be complexed to the parent particles is limited, which causes problems in manufacturing high-concentration nanocomposites.

본 발명은 상기한 바와 같은 종래기술의 문제점을 해결하기 위한 것으로, 나노입자는 용해시키지만 고분자 입자는 용해시키지 않는 용액에 건식 복합체를 분산시켜, 복합체 표면에 뭉쳐있는 나노입자를 제거시킨 나노입자 복합체 및 그 제조방법을 제공한다.The present invention is to solve the problems of the prior art as described above, by dispersing the dry complex in a solution that dissolves the nanoparticles but not the polymer particles, the nanoparticle composite to remove the nanoparticles agglomerated on the surface of the composite and It provides a manufacturing method.

상기 목적을 달성하기 위하여 본 발명은,The present invention to achieve the above object,

모입자인 고분자입자와 자입자인 나노입자를 포함하는 건식복합체에 있어서, 상기 건식복합체의 표면에 뭉쳐 있는 나노입자가 용해되어 제거된 나노복합입자체를 제공하고, 또한 모입자인 고분자입자와 자입자인 나노입자를 포함하는 1차 건식복합체에 있어서, 상기 1차 건식복합체의 표면에 뭉쳐 있는 나노입자를 용해시켜 제거하여 나노복합입자체를 제조하고, 상기 나노복합입자체에 나노입자를 추가로 투입하여 2차 건식복합체를 제조한 후, 다시 상기 2차 건식복합체의 표면에 뭉쳐 있는 나노입자를 용해시켜 제거한 고입자 분율인 것을 특징으로 하는 나노복합입자체를 제공한다.In a dry composite comprising a polymer particle as a mother particle and a nanoparticle as a child particle, the present invention provides a nanocomposite body in which nanoparticles agglomerated on the surface of the dry compound are dissolved and removed. In the primary dry composite including nanoparticles as particles, the nanoparticles aggregated on the surface of the primary dry composite are dissolved and removed to prepare a nanocomposite particle, and the nanoparticles are further added to the nanocomposite particle. After supplying the secondary dry composite to prepare, the nanocomposite particle is characterized in that the high particle fraction removed by dissolving the nanoparticles agglomerated on the surface of the secondary dry composite again.

상기 모입자인 고분자입자는 구형 폴리에틸렌수지 또는 구형 PMMA 수지인 것을 특징으로 하며, 상기 자입자인 나노입자는 MgO 또는 Ag인 것을 특징으로 하는 나노복합입자체이다.The parent particle is a polymer particle is characterized in that the spherical polyethylene resin or a spherical PMMA resin, the nanoparticles are magnetic particles are nanocomposite particles characterized in that the MgO or Ag.

또한, 본 발명은 고속회전장비를 사용하여 모입자인 고분자입자에 자입자인 나노입자를 복합시켜 1차 건식복합체를 제조하는 단계; 및 상기 1차 건식복합체를 상기 나노입자만 용해시키는 용액에 분산시켜 상기 1차 건식복합체의 표면에 뭉쳐 있는 나노입자를 제거하는 단계를 포함하는 표면입자뭉침이 제거된 나노입자복합체 제조방법를 제공하고, 추가로 상기 표면에 뭉쳐 있는 나노입자가 제거된 1차 건식복합체에 고속회전장비를 사용하여 다시 나노입자를 복합시켜 2차 건식복합체를 제조하는 단계; 및 상기 2차 건식복합체를 상기 나노입자만 용해시키는 용액에 분산시켜 상기 2차 건식복합체의 표면에 뭉쳐 있는 나노입자를 제거시키는 단계를 포함하는 표면입자뭉침이 제거된 고입자 분율 나노입자복합체 제조방법를 제공한다.In addition, the present invention comprises the steps of preparing a primary dry composite by complexing the nanoparticles of the magnetic particles to the mother particles using the high-speed rotation equipment; And dispersing the primary dry composite in a solution in which only the nanoparticles are dissolved, thereby removing nanoparticles agglomerated on the surface of the primary dry composite. In addition, using the high-speed rotation equipment to the primary dry composite from which the nanoparticles agglomerates removed from the surface using a high-speed rotating equipment to prepare a secondary dry composite by nanoparticles; And dispersing the secondary dry composite in a solution in which only the nanoparticles are dissolved, thereby removing nanoparticles agglomerated on the surface of the secondary dry composite. to provide.

상기 모입자인 고분자입자는 구형 폴리에틸렌수지 또는 구형 PMMA 수지인 것이 바람직하고, 상기 자입자인 나노입자는 MgO 또는 Ag인 것이 바람직하다.It is preferable that the polymer particle which is the said parent particle is a spherical polyethylene resin or a spherical PMMA resin, and it is preferable that the nanoparticle which is the said magnetic particle is MgO or Ag.

본 발명에 따르면, 균일한 표면 농도를 가지는 나노입자 복합체를 통하여 추가적인 나노입자의 복합화를 기대할 수 있으며, 표면입자뭉침에 의한 문제점을 해결할 수 있어 나노입자 복합체의 본래의 특성을 발휘할 수 있을 뿐 아니라, 보다 높은 나노입자분율을 가지는 입자체를 제조할 수 있는 효과가 있다.According to the present invention, additional nanoparticles can be expected to be complexed through the nanoparticle composite having a uniform surface concentration, and the problems caused by surface particle aggregation can be solved, so that the original characteristics of the nanoparticle composite can be exhibited. There is an effect that can produce a particle body having a higher nanoparticle fraction.

본 발명은 모입자인 고분자입자와 자입자인 나노입자를 포함하는 건식복합체 에 있어서, 상기 건식복합체의 표면에 뭉쳐 있는 나노입자가 용해되어 제거된 나노복합입자체를 제공하고, 또한 모입자인 고분자입자와 자입자인 나노입자를 포함하는 1차 건식복합체에 있어서, 상기 1차 건식복합체의 표면에 뭉쳐 있는 나노입자를 용해시켜 제거하여 나노복합입자체를 제조하고, 상기 나노복합입자체에 나노입자를 추가로 투입하여 2차 건식복합체를 제조한 후, 다시 상기 2차 건식복합체의 표면에 뭉쳐 있는 나노입자를 용해시켜 제거한 고입자 분율인 것을 특징으로 하는 나노복합입자체를 제공한다.The present invention provides a nanocomposite particle in which a nanoparticle aggregated on the surface of the dry compound is dissolved and removed in a dry composite comprising a polymer particle as a mother particle and a nanoparticle as a child particle. In a primary dry composite comprising particles and nanoparticles as self particles, nanoparticles aggregated on the surface of the primary dry composite are dissolved and removed to prepare nanocomposite particles, and nanoparticles in the nanocomposite particles. After further adding to prepare a secondary dry composite, it provides a nano-composite particles, characterized in that the high particle fraction removed by dissolving the nanoparticles agglomerated again on the surface of the secondary dry composite.

상기 모입자인 고분자입자는 구형 폴리에틸렌수지 또는 구형 PMMA 수지인 것을 특징으로 하며, 상기 자입자인 나노입자는 MgO 또는 Ag인 것을 특징으로 하는 나노복합입자체이다.The parent particle is a polymer particle is characterized in that the spherical polyethylene resin or a spherical PMMA resin, the nanoparticles are magnetic particles are nanocomposite particles characterized in that the MgO or Ag.

본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention, and do not represent all of the technical idea of the present invention, which can be replaced at the time of the present application It should be understood that there may be various equivalents and variations.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기 로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명의 일 실시예에 따른 표면입자뭉침이 제거된 입자체를나타내는 단계도이다.Figure 3 is a step showing a particle body from which the surface particle agglomeration is removed according to an embodiment of the present invention.

나노복합입자체의 제조시 고속회전장비를 이용한 건식 하이브리다이즈 공정을 사용하는 경우, 처음 모입자인 고분자 입자의 표면에 자입자인 나노입자들이 고속회전장비를 통해 흡착된다. In the case of using a dry hybridization process using a high speed rotating device in the manufacture of the nanocomposite particles, the nanoparticles of the self particles are adsorbed through the high speed rotating device on the surface of the polymer particles, which are the first parent particles.

모입자 표면에 위치한 자입자가 모입자 내부로 깊숙이 박히기 위해서는 다른 자입자가 표면에서 기존 자입자를 쳐주는 방식으로만 복합체 형성이 가능하다. 그러나 상기 방식으로 복합체 입자가 제조되는 경우, 모입자 표면에 자입자 분포가 밀집되는 현상이 발생하여, 특히 입자 최외각에는 자입자들로만 이루어진 층이 존재하게 되어 일종의 코어-셀(core-shell) 구조의 1차 건식복합체가 생성된다.In order for the magnetic particles located on the surface of the mother particles to be embedded deeply inside the mother particles, the composites can be formed only by other magnetic particles hitting the existing particles on the surface. However, when the composite particles are manufactured in the above manner, a phenomenon in which the magnetic particle distribution is dense on the surface of the mother particle occurs, and in particular, the outermost layer of the particle contains only a layer of magnetic particles, thereby forming a kind of core-shell structure. The primary dry complex of is produced.

상기 모입자인 고분자입자의 재질로는 구형 폴리에틸렌수지 또는 구형 PMMA 수지를 사용하는 것이 바람직하고, 상기 자입자인 나노입자의 재질로는 MgO 또는 Ag를 사용한다. 또한, 상기 모입자인 고분자입자는 1~100㎛의 크기를 가지며, 상기 자입자인 나노입자는 1~900nm의 크기를 가지도록 한다.It is preferable to use spherical polyethylene resin or spherical PMMA resin as the material of the polymer particles which are the parent particles, and MgO or Ag is used as the material of the nanoparticles which are the magnetic particles. In addition, the parent particles have a particle size of 1 ~ 100㎛, the nanoparticles of the magnetic particles to have a size of 1 ~ 900nm.

상기 1차 건식복합체를 용액에 분산시켜 표면에 뭉치게 형성된 나노입자를 제거하는데, 상기 용액은 나노입자는 용해시키지만 모입자인 고분자 입자는 용해시키지 않는 용액으로 구성되며, 상기와 같은 용액으로는 산성 또는 염기성 용액을 사용하는 것이 바람직하다. 상기 용액에 분산된 1차 건식복합체에서 고분자 입자 내부로 들어가 있는 나노입자는 용해액으로부터 고분자에 의해 보호된다.The primary dry composite is dispersed in a solution to remove nanoparticles formed on the surface, the solution is composed of a solution that dissolves nanoparticles but does not dissolve the polymer particles of the parent particles, such as acid Or preference is given to using a basic solution. In the primary dry composite dispersed in the solution, the nanoparticles entering the polymer particles are protected by the polymer from the solution.

이와 같이, 표면에 뭉쳐지게 형성되어 있는 나노입자를 제거하여 나노복합입자체의 본래의 특성을 찾을 수 있는 효과가 있다. 예를 들어, 도 4는 소수성을 가지는 고분자입자와 친수성을 가지는 나노입자를 나타내는데, 제조된 나노복합체는 고분자입자의 특성에 따라 소수성을 가져야 함에도 표면에 친수성을 가지는 나노입자로 뭉쳐 있으면 전체 나노복합입자체가 친수성을 가지게 된다. 따라서, 상기와 같은 입자뭉침을 제거하면 나노복합입자체를 소수성 물질들에 분산시 효과적으로 작용할 수 있다.As such, there is an effect that the original characteristics of the nanocomposite particles can be found by removing the nanoparticles aggregated on the surface. For example, FIG. 4 shows hydrophobic polymer particles and hydrophilic nanoparticles, and the prepared nanocomposite should have hydrophobicity depending on the properties of the polymer particles, but if the surface is agglomerated with hydrophilic nanoparticles, the entire nanocomposite particle It becomes hydrophilic in itself. Therefore, removing the aggregated particles as described above can effectively work when the nanocomposite particles are dispersed in hydrophobic materials.

도 5는 본 발명의 일 실시예에 관한 것으로, 상기에서 설명한 표면입자 뭉침이 제거된 입자체로 추가로 나노입자를 흡착시켜 2차 건식복합체를 만들고, 이를 용해시켜 고입자 분율을 가지는 입자체를 제조하는 것을 나타내는 단계도이다.Figure 5 relates to an embodiment of the present invention, by adsorbing the nanoparticles further with a particle sieve remove the surface particle agglomeration described above to make a secondary dry composite, to dissolve it to produce a particle sieve having a high particle fraction It is a step diagram which shows doing.

모입자인 표면입자 뭉침이 제거된 입자체의 표면에 고속회전장치를 통하여 자입자인 나노입자를 흡착시킨다. 물론, 내부로 박히는 나노입자뿐 아니라 외부 표면에 뭉치는 나노입자들도 존재하는 2차 건식복합체가 만들어진다. The nanoparticles, which are the self particles, are adsorbed to the surface of the particle body from which the surface particles are collected as the parent particles through a high speed rotating device. Of course, secondary dry complexes are created, in which not only the nanoparticles that get stuck inside, but also nanoparticles that stick to the outer surface are present.

마찬가지의 방법으로, 상기 2차 건식복합체를 용액에 분산시켜 표면에 뭉치게 형성된 나노입자를 제거하는데, 상기 용액은 나노입자는 용해시키지만 모입자인 고분자 입자는 용해시키지 않는 용액으로 구성된다. 용액에 분산된 2차 건식복합체에서 고분자 입자 내부로 들어가 있는 나노입자는 용해액으로부터 고분자에 의해 보호된다. 따라서, 기존의 모입자인 표면입자뭉침이 제거된 입자체에 비해서 더욱 내부에 나노입자를 함유하고 있는 고입자 분율 입자체를 제조할 수 있다.In a similar manner, the secondary dry composite is dispersed in a solution to remove nanoparticles formed on the surface. The solution is composed of a solution which dissolves nanoparticles but does not dissolve polymer particles which are parent particles. In the secondary dry composite dispersed in the solution, the nanoparticles entering the inside of the polymer particles are protected by the polymer from the solution. Therefore, it is possible to produce a high particle fractional particle containing nanoparticles therein more than the particle body from which the surface particle agglomerates of the existing parent particles are removed.

이하 본 발명을 아래와 같은 실시 예에 의거하여 상세하게 설명하며 단 아래의 예는 본 발명을 예시하기 위한 것일 뿐, 이에 한정하지 않으며 본 발명의 실시 예 및 비교예에서 제조한 산물의 분석은 다음과 같은 방법으로 실시했다. Hereinafter, the present invention will be described in detail with reference to the following Examples, but the following examples are merely to illustrate the present invention, and the present invention is not limited thereto. Analysis of the products prepared in Examples and Comparative Examples of the present invention is as follows. In the same way.

실시예Example 1.  One.

5um 크기를 갖는 구형 폴리에틸렌 수지 입자 10 g과 50nm MgO (Aldrich)를 2g 정량하여 고속 회전이 가능한 hybridizer에 투입하고 10,000 rpm에서 5분간 처리한다. 수득한 MgO-PE 복합체 10 g 를 0.1N 염산 수용액 1000 mL에 분산시키고 15분간 반응 시킨다. 고형분 8g을 filter 하여 얻은 후 넓은 petridish에 분산 시키고 80℃ 오븐에서 12시간 가열하여, 표면 MgO 뭉침이 없어진 MgO-PE 복합입자체를 수득한다. 제조된 MgO-PE 복합입자체를 TGA 로 600℃까지 온도 상승시키며 남은 중량을 측정한다. 입자중에 포함된 MgO 분율 측정할 수 있으며, 측정결과 4.6%의 MgO 입자 분율을 확인할 수 있다. 10 g of spherical polyethylene resin particles having a size of 5 μm and 2 g of 50 nm MgO (Aldrich) were quantified and added to a hybridizer capable of high-speed rotation and treated at 10,000 rpm for 5 minutes. 10 g of the obtained MgO-PE complex is dispersed in 1000 mL of 0.1N hydrochloric acid aqueous solution and reacted for 15 minutes. 8 g of solid content was obtained by filtration, dispersed in a wide petridish, and heated in an oven at 80 ° C. for 12 hours to obtain MgO-PE composite particles without surface MgO aggregation. The MgO-PE composite particles thus prepared were heated to 600 ° C. with TGA and the remaining weight was measured. The MgO fraction contained in the particles can be measured, and the measurement result can confirm the MgO particle fraction of 4.6%.

실시예Example 2. 2.

실시예 1에서 제조된 입자체 5g 과 50nm MgO (Aldrich) 를 1g 정량하여 고속 회전이 가능한 hybridizer에 투입하고 10,000 rpm에서 5분간 처리한다. 수득한 MgO-PE 복합체 5 g를 0.1N 염산 수용액 1000 mL에 분산시키고 15분간 반응 시킨다. 고형분 4g을 filter 하여 얻은 후 넓은 petridish 에 분산 시키고 80℃ 오븐에서 12시간 가열한다. 표면 MgO 뭉침이 제거되고 고농도로 MgO 가 포함된 MgO-PE 복합입자체를 수득 한다. TGA 로 600℃까지 측정한 결과, MgO 분율이 9.3% 로 측정되었 다. 5 g and 50 nm MgO (Aldrich) particles 1g prepared in Example 1 was quantified and added to a hybridizer capable of high-speed rotation and treated at 10,000 rpm for 5 minutes. 5 g of the obtained MgO-PE complex is dispersed in 1000 mL of 0.1N aqueous hydrochloric acid solution and reacted for 15 minutes. Filter 4g solids, disperse in a wide petridish and heat in an oven at 80 ℃ for 12 hours. The surface MgO agglomeration is removed and a high concentration of MgO-PE composite particles are obtained. As measured by TGA up to 600 ° C., the MgO fraction was determined to be 9.3%.

실시예Example 3. 3.

10um 크기를 갖는 구형 PMMA 수지 입자 10g 과 80nm Ag 나노입자를 1g 정량하여 고속회전이 가능한 hybridizer에 투입하고 10,000 rpm에서 5분간 처리한다. 수득한 Ag-PMMA 복합체 10 g 를 1N 질산 100 mL에 분산시키고 60분간 반응 시킨다. 고형분 8g을 filter 하여 얻은 후 증류수로 wash 하여 넓은 petridish 에 분산 시키고 80℃ 오븐에서 12시간 가열한다. 표면 Ag 뭉침이 없어진 Ag-PMMA 복합입자체를 수득한다. 제조된 Ag-PMMA 복합입자체의 전기전도성을 측정한 결과 106 Ohm 이상의 절연저항을 확인한다. 10g of spherical PMMA resin particles having a size of 10um and 1g of 80nm Ag nanoparticles are quantified and placed in a hybridizer capable of high-speed rotation and treated at 10,000 rpm for 5 minutes. 10 g of the obtained Ag-PMMA complex is dispersed in 100 mL of 1N nitric acid and reacted for 60 minutes. Filter 8g of solids, wash with distilled water, disperse in wide petridish and heat in 80 ℃ oven for 12 hours. An Ag-PMMA composite particle having no surface Ag aggregation is obtained. As a result of measuring the electrical conductivity of the prepared Ag-PMMA composite particles, the insulation resistance is confirmed to be 10 6 Ohm or more.

본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다. Although the present invention has been described with reference to one embodiment shown in the accompanying drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Could be. Accordingly, the true scope of protection of the present invention should be determined only by the appended claims.

도 1은 기존의 코어셀 나노복합체에 대한 확대도이다.1 is an enlarged view of a conventional core cell nanocomposite.

도 2는 기존의 모입자 외부에 격벽을 형성한 나노입자들로 인해 추가적인 나노입자의 복합화가 어려운 점을 나타낸 확대도이다.FIG. 2 is an enlarged view showing that it is difficult to complex additional nanoparticles due to nanoparticles having partition walls formed outside the existing parent particles.

도 3은 본 발명의 일 실시예에 따른 표면입자뭉침이 제거된 입자체를나타내는 단계도이다.Figure 3 is a step showing a particle body from which the surface particle agglomeration is removed according to an embodiment of the present invention.

도 4는 소수성을 가지는 고분자입자와 친수성을 가지는 나노입자를 나타내는 확대도이다.4 is an enlarged view showing polymer particles having hydrophobicity and nanoparticles having hydrophilicity.

도 5는 본 발명의 일 실시예에 관한 것으로, 2차 건식복합체를 만들고, 이를 용해시켜 고입자 분율을 가지는 입자체를 제조하는 것을 나타내는 단계도이다.5 is a step diagram showing an embodiment of the present invention, making a secondary dry composite, and dissolving it to produce a particle body having a high particle fraction.

Claims (11)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 고속회전장비를 사용하여 모입자인 고분자입자에 자입자인 나노입자를 복합 시켜 1차 건식복합체를 제조하는 단계; 및Preparing a primary dry composite by combining nanoparticles as subparticles with polymer particles as mother particles using a high speed rotating device; And 상기 1차 건식복합체를 상기 나노입자만 용해시키는 용액에 분산시켜 상기 1차 건식복합체의 표면에 뭉쳐 있는 나노입자를 제거하는 단계를 포함하는 표면입자뭉침이 제거된 나노입자복합체 제조방법.Dispersing the primary dry composite in a solution for dissolving only the nanoparticles to remove the nanoparticles agglomerated on the surface of the primary dry composite, the nanoparticle composite is removed from the surface particles. 고속회전장비를 사용하여 모입자인 고분자입자에 자입자인 나노입자를 복합시켜 1차 건식복합체를 제조하는 단계; Manufacturing a primary dry composite by combining nanoparticles as subparticles with polymer particles as mother particles using a high speed rotating device; 상기 1차 건식복합체를 상기 나노입자만 용해시키는 용액에 분산시켜 상기 1차 건식복합체의 표면에 뭉쳐 있는 나노입자를 제거하는 단계;Dispersing the primary dry composite in a solution in which only the nanoparticles are dissolved to remove nanoparticles agglomerated on the surface of the primary dry composite; 상기 표면에 뭉쳐 있는 나노입자가 제거된 1차 건식복합체에 고속회전장비를 사용하여 다시 나노입자를 복합시켜 2차 건식복합체를 제조하는 단계; 및Preparing a secondary dry composite by complexing the nanoparticles again using a high speed rotating device to the primary dry composite from which the nanoparticles agglomerated on the surface are removed; And 상기 2차 건식복합체를 상기 나노입자만 용해시키는 용액에 분산시켜 상기 2차 건식복합체의 표면에 뭉쳐 있는 나노입자를 제거시키는 단계를 포함하는 표면입자뭉침이 제거된 고입자 분율 나노입자복합체 제조방법.Dispersing the secondary dry composite in a solution in which only the nanoparticles are dissolved, thereby removing nanoparticles agglomerated on the surface of the secondary dry composite. 청구항 8 또는 9에 있어서,The method according to claim 8 or 9, 상기 모입자인 고분자입자는 구형 폴리에틸렌수지 또는 구형 PMMA 수지인 것을 특징으로 하는 나노복합입자체 제조방법.The polymer particles as the mother particles are spherical polyethylene resin or spherical PMMA resin, characterized in that the nanocomposite particle production method. 청구항 8 또는 9에 있어서,The method according to claim 8 or 9, 상기 자입자인 나노입자는 MgO 또는 Ag인 것을 특징으로 하는 나노복합입자체 제조방법.The nanoparticles as the magnetic particles are nano-composite particle manufacturing method characterized in that the MgO or Ag.
KR1020090128729A 2009-12-22 2009-12-22 Nano particle complex having a uniform surface particle and method of manufacturing thereof KR101114425B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090128729A KR101114425B1 (en) 2009-12-22 2009-12-22 Nano particle complex having a uniform surface particle and method of manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090128729A KR101114425B1 (en) 2009-12-22 2009-12-22 Nano particle complex having a uniform surface particle and method of manufacturing thereof

Publications (2)

Publication Number Publication Date
KR20110071981A KR20110071981A (en) 2011-06-29
KR101114425B1 true KR101114425B1 (en) 2012-03-05

Family

ID=44402965

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090128729A KR101114425B1 (en) 2009-12-22 2009-12-22 Nano particle complex having a uniform surface particle and method of manufacturing thereof

Country Status (1)

Country Link
KR (1) KR101114425B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765363B1 (en) * 2005-10-31 2007-10-09 전자부품연구원 Method for fabricating conductive particle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765363B1 (en) * 2005-10-31 2007-10-09 전자부품연구원 Method for fabricating conductive particle

Also Published As

Publication number Publication date
KR20110071981A (en) 2011-06-29

Similar Documents

Publication Publication Date Title
Wang et al. Reduced graphene oxide hybridized with WS2 nanoflakes based heterojunctions for selective ammonia sensors at room temperature
Gelves et al. Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation
Gao et al. Superstructure silver micro-tube composites for ultrahigh electromagnetic wave shielding
Ji et al. Remarkable microwave absorption performance of ultralight graphene-polyethylene glycol composite aerogels with a very low loading ratio of graphene
Wang et al. Green synthesis of porous cocoon-like rGO for enhanced microwave-absorbing performances
Tung et al. Electromagnetic properties of Fe3O4‐functionalized graphene and its composites with a conducting polymer
Li et al. FDM printed MXene/MnFe2O4/MWCNTs reinforced TPU composites with 3D Voronoi structure for sensor and electromagnetic shielding applications
Lamiel et al. MXene in core–shell structures: research progress and future prospects
Ghosh et al. Enhanced supercapacitor performance and electromagnetic interference shielding effectiveness of CuS quantum dots grown on reduced graphene oxide sheets
US20110178210A1 (en) Gelled, freeze-dried capsules or agglomerates of nanoobjects or nanostructures, nanocomposite materials with polymer matrix comprising them, and methods for preparation thereof
EP2985370B1 (en) Polymer/filler/metal composite fiber and preparation method thereof
KR20120123108A (en) Dispersion and retrieval of de-bundled nanotubes
KR20200124307A (en) Diatomaceous earth energy storage device
CN103614098A (en) Functional graphene-doped epoxy resin conductive adhesive and preparation method thereof
CN103160049A (en) Preparation method for nano-silver/carbon nano-tube (CNT)/polyvinyl alcohol (PVA) composite electroconductive film
CN106128562B (en) Conducting particles and its manufacture method and conducting resinl and its manufacture method
Qin et al. Synthesis of Au and Au–CuO cubic microcages via an in situ sacrificial template approach
JP2013541640A (en) Silver particles and method for producing the same
KR20200063220A (en) Shielding formulations using carbon dioxide nanotubes with targeted oxidation levels and formulations thereof
KR101716256B1 (en) A process of preparing 3D graphene by using template etching, 3D graphene particles prepared thereby, and hybrid particles comprising the same
Yi et al. Effect of iron-deposited graphene oxides on the electromagnetic wave absorbing property of polymer composite films with Fe-based hollow magnetic fibers for near-field applications
Cho et al. Enhanced electrical conductivity of polymer microspheres by altering assembly sequence of two different shaped conductive fillers
Zecchi et al. A Comprehensive Review of Electromagnetic Interference Shielding Composite Materials
Wang et al. A bio-inspired MXene/quaternary chitosan membrane with a “brick-and-mortar” structure towards high-performance photothermal conversion
KR102455017B1 (en) Conductive Composites

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150223

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160222

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170220

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180220

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190220

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200220

Year of fee payment: 9