KR101108671B1 - Identification Test Method for Fire Resistive Coatings in Near-Infrared Spectroscopy - Google Patents

Identification Test Method for Fire Resistive Coatings in Near-Infrared Spectroscopy Download PDF

Info

Publication number
KR101108671B1
KR101108671B1 KR1020090122938A KR20090122938A KR101108671B1 KR 101108671 B1 KR101108671 B1 KR 101108671B1 KR 1020090122938 A KR1020090122938 A KR 1020090122938A KR 20090122938 A KR20090122938 A KR 20090122938A KR 101108671 B1 KR101108671 B1 KR 101108671B1
Authority
KR
South Korea
Prior art keywords
derivative
comparative
infrared spectroscopy
reference material
standard
Prior art date
Application number
KR1020090122938A
Other languages
Korean (ko)
Other versions
KR20110066328A (en
Inventor
조남욱
Original Assignee
한국건설기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원 filed Critical 한국건설기술연구원
Priority to KR1020090122938A priority Critical patent/KR101108671B1/en
Publication of KR20110066328A publication Critical patent/KR20110066328A/en
Application granted granted Critical
Publication of KR101108671B1 publication Critical patent/KR101108671B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • G01N21/3559Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content in sheets, e.g. in paper
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/36Textiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/36Textiles
    • G01N33/367Fabric or woven textiles

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

본 발명은 적외선분광법을 이용하여 건설현장에서 내화피복제의 품질을 확인하는 방법에 관한 것으로서, 내화시험을 통하여 성능이 확인된 인정내화피복제를 표준물질로 선정하고, 표준물질의 시료를 채취하여 근적외선분광분석기(100)를 이용하여 근적외선분광분석 스펙트럼을 얻는 제1단계; 표준물질의 스펙트럼에 대하여 1차 미분을 실시하여 표준물질의 1차 미분함수(y1)를 구하는 제2단계; 건설현장에 시공된 내화피복제를 비교물질로 선정하고, 비교물질의 시료를 채취하여 근적외선분광분석기(100)를 이용하여 근적외선분광분석 스펙트럼을 얻는 제3단계; 비교물질의 스펙트럼에 대하여 1차 미분을 실시하여 비교물질의 1차 미분함수(y2)를 구하는 제4단계; 및, 표준물질의 1차 미분함수(y1)과 비교물질의 1차 미분함수(y2)의 상관 관계로부터 비교물질과 표준물질의 일치성 여부를 판별하는 제5단계;로 구성되는 것을 특징으로 한다.The present invention relates to a method for confirming the quality of fireproof coating at a construction site using infrared spectroscopy, and to select a certified fireproof coating whose performance has been confirmed through a fireproof test as a reference material, and to collect a sample of the reference material to obtain near infrared spectroscopy. A first step of obtaining a near infrared spectroscopic analysis spectrum using the analyzer 100; Performing a first derivative on the spectrum of the standard to obtain a first derivative of the standard (y1); A third step of selecting a fireproof coating constructed at a construction site as a comparative material, taking a sample of the comparative material, and obtaining a near infrared spectroscopic analysis spectrum using a near infrared spectroscopy analyzer 100; Performing a first derivative on the spectrum of the comparative substance to obtain a first derivative function y 2 of the comparative substance; And a fifth step of determining whether the comparison material and the reference material are consistent from the correlation between the first derivative function y1 of the reference material and the first derivative function y2 of the comparative material. .

근적외선분광분석기, 1차미분, 스펙트럼, 상관계수 Near Infrared Spectroscopy, First-order Differential, Spectrum, Correlation Coefficient

Description

적외선분광법을 이용한 내화피복제 일치성 평가방법{Identification Test Method for Fire Resistive Coatings in Near-Infrared Spectroscopy}Identification Test Method for Fire Resistive Coatings in Near-Infrared Spectroscopy

본 발명은 적외선분광법을 이용한 내화피복제 일치성 평가방법에 관한 것으로서, 내화성능이 인정된 표준물질의 스펙트럼과 건설현장에서 채취한 비교물질의 스펙트럼 사이의 상관관계를 비교하여 표준물질과 비교물질의 일치성 여부를 판별하는 것을 특징으로 한다.The present invention relates to a method for evaluating the conformity of fireproof coatings using infrared spectroscopy, and compares the correlation between the spectrum of a reference material for which fire resistance is recognized and the spectrum of a comparative material taken at the construction site. It is characterized by determining the sex.

최근 건축물이 고층화되고 있고 건축물의 하중을 최소화하기 위해 기둥과 보의 시공에 철골구조를 많이 사용하고 있다. 그러나 철골은 불연성이지만 열에 노출되면 팽창한다. 일반적으로 철재는 섭씨 38도(화씨 100도)가 오를 때마다 약 0.06~0.07%씩 열팽창이 일어난다. 30 m의 철재는 섭씨 538도(화씨 1000도)로 가열되면 약 241 mm 늘어난다. 철재의 다른 문제점은 열을 전달한다는 것이다. 많은 화재에서 철재가 열을 전달하여 인접한 가연성 물질을 발화시킨 경우들이 있다. 철재의 또 다른 문제점은 내부 구조물 화재에서 상당히 흔한 온도에서도 강도를 잃는다는 것이다. 일부 연구에서 철재가 화씨 900~1100도(섭씨 482~593도)의 온도에서 40~50%의 강도를 잃는 것으로 확인되었다. 구조물에서의 철재의 붕괴는 건물 일부 또는 전체의 붕괴로 이어질 수 있다. 이러한 이유로 건축물의 뼈대가 되는 철골에는 내화피복재를 코팅하여 화재에 견딜 수 있는 구조로 시공한다. 내화구조의 시공으로 화재발생 시 건물의 붕괴 및 구획 간 연소 확대를 방지할 수 있으며 건축물 내 인명의 피난시간을 확보하고 소방 및 구조활동의 안전을 도모한다. 또한 주변 건축물로의 화재확산을 방지하기도 한다. 따라서 건축물의 내화구조 현장시공관리는 화재 상황에서 인명과 재산에 관계되는 안전관리이기도 하다.In recent years, buildings are becoming taller, and steel structures are often used in the construction of columns and beams to minimize the load on buildings. However, steel is incombustible but expands when exposed to heat. In general, for every 38 degrees Celsius (100 degrees Fahrenheit), steel is about 0.06 to 0.07% thermal expansion. The 30 m steel stretches about 241 mm when heated to 538 degrees Celsius (1000 degrees Fahrenheit). Another problem with steel is that it transfers heat. In many fires, steel transfers heat to ignite adjacent combustibles. Another problem with steel is that it loses strength even at temperatures that are quite common in internal structure fires. Some studies have found that iron loses 40 to 50 percent of strength at temperatures between 900 and 1100 degrees Fahrenheit (482 to 593 degrees Celsius). The collapse of steel in the structure can lead to the collapse of some or all of the building. For this reason, the steel frame, which is the skeleton of the building, is coated with a fireproof coating and constructed in a structure that can withstand fire. The construction of the fireproof structure prevents the collapse of buildings and the expansion of combustion between compartments in the event of a fire, secures the evacuation time of people in the building and promotes the safety of fire fighting and rescue activities. It also prevents the spread of fire to surrounding buildings. Therefore, fireproof construction site construction management of buildings is also safety management related to life and property in the event of fire.

내화구조의 성능은 내화시험을 통하여 확인될 수 있으나, 실제 규모와 가까운 내화시험의 특성으로 내화성능을 확인하기 위해서는 많은 시간과 비용이 필요하여 현장품질관리에 어려움이 있으며, 이러한 내화시험을 제외한 현장시험방법이 없다는 것이 오늘날의 현실이다.The performance of the fireproof structure can be confirmed through the fire resistance test, but it is difficult for the on-site quality control because it requires a lot of time and cost to check the fire performance due to the characteristics of the fire test close to the actual scale. There is no test method today.

상기한 문제점을 해결하기 위하여 창작된 본 발명은 적외선분광법을 통해 내화성능이 인정된 표준물질과 건설현장에 시공된 내화피복재(비교물질)의 스펙트럼 차이를 분석하고, 고유의 지문영역의 비교를 통하여 비교물질과 표준물질의 일치성 여부를 판별하는 새로운 방법을 제시함을 그 목적으로 한다.In order to solve the above problems, the present invention analyzes the spectral difference between a standard material whose fire resistance is recognized through infrared spectroscopy and a fireproof coating material (comparative material) constructed at the construction site, and compares the unique fingerprint area. The objective is to present a new method for determining the consistency of a reference with a reference.

상기한 목적을 달성하기 위하여 창작된 본 발명은 적외선분광법을 이용하여 건설현장에서 내화피복제의 품질을 확인하는 방법에 관한 것으로서, 내화시험을 통하여 성능이 확인된 인정내화피복제를 표준물질로 선정하고, 표준물질의 시료를 채취하여 근적외선분광분석기(100)를 이용하여 근적외선분광분석 스펙트럼을 얻는 제1단계; 표준물질의 스펙트럼에 대하여 1차 미분을 실시하여 표준물질의 1차 미분함수(y1)를 구하는 제2단계; 건설현장에 시공된 내화피복제를 비교물질로 선정하고, 비교물질의 시료를 채취하여 근적외선분광분석기(100)를 이용하여 근적외선분광분석 스펙트럼을 얻는 제3단계; 비교물질의 스펙트럼에 대하여 1차 미분을 실시하여 비교물질의 1차 미분함수(y2)를 구하는 제4단계; 및, 표준물질의 1차 미분함수(y1)과 비교물질의 1차 미분함수(y2)의 상관 관계로부터 비교물질과 표준물질의 일치성 여부를 판별하는 제5단계;로 구성되는 것을 특징으로 한다.The present invention created to achieve the above object relates to a method for confirming the quality of fireproof coating at a construction site by using an infrared spectroscopy method, selecting a certified fireproof coating whose performance is confirmed through a fireproof test as a standard material, A first step of obtaining a near infrared spectroscopic analysis spectrum by using a near infrared spectroscopy analyzer 100 by taking a sample of a standard material; Performing a first derivative on the spectrum of the standard to obtain a first derivative of the standard (y1); A third step of selecting a fireproof coating constructed at a construction site as a comparative material, taking a sample of the comparative material, and obtaining a near infrared spectroscopic analysis spectrum using a near infrared spectroscopy analyzer 100; Performing a first derivative on the spectrum of the comparative substance to obtain a first derivative function y 2 of the comparative substance; And a fifth step of determining whether the comparison material and the reference material are consistent from the correlation between the first derivative function y1 of the reference material and the first derivative function y2 of the comparative material. .

본 발명의 구성에 따른 기술적 효과는 다음과 같다.Technical effects of the configuration of the present invention are as follows.

첫째, 직접 내화시험을 수행하지 않더라도 건설현장에 시공된 내화피복제의 성능을 정확하게 예측할 수 있다.First, it is possible to accurately predict the performance of fireproof coatings constructed at the construction site without performing the fireproof test directly.

다시 말하면, 내화성이 인정된 표준물질과 건설현장에서 채취한 비교물질의 근적외선분광분석 스펙트럼의 상관계수를 이용하여 일치성 여부를 판단함으로써 최소 비용으로 정확한 판별이 가능하다.In other words, by using the correlation coefficient of the near infrared spectroscopic analysis spectrum of the standard material with fire resistance and the comparative material collected at the construction site, it is possible to make an accurate discrimination at the minimum cost by determining the correspondence.

둘째, 간단한 비교물질이 시료 채취와 근적외선분광분석만으로 건설현장에 시공된 내화피복제의 내화성능을 신속하게 판별할 수 있다. Second, it is possible to quickly determine the fire resistance performance of the fireproof coatings constructed at the construction site only by a simple comparative material sampling and near infrared spectroscopic analysis.

셋째, 표준물질과 비교물질의 일치성 정도가 통계적 기법에 따른 수치로 정확하게 산출됨으로써 정량적인 분석이 가능하다.Third, quantitative analysis is possible because the degree of correspondence between the reference material and the reference material is accurately calculated as numerical values according to statistical techniques.

이하에서는 본 발명의 구체적 실시예를 첨부도면을 참조하여 보다 상세히 설명한다.Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1에 도시된 바와 같이 적외선 영역의 스펙트럼은 약 12,800cm-1 내지 10cm-1 범위의 파수(wavenumber) 또는 0.78㎛ 내지 1000㎛ 의 파장(wavelength)을 갖는 복사선을 망라한다. 적외선 분광법은 정성 및 정량분석에 널리 응용되고 있으며 광학이성질체를 제외하고는 대부분의 경우 다른 화합물로부터 쉽게 구별할 수 있는 독특한 지문을 제공한다.As shown in FIG. 1, the spectrum of the infrared region covers a radiation number ranging from about 12,800 cm −1 to 10 cm −1 , or radiation having a wavelength ranging from 0.78 μm to 1000 μm. Infrared spectroscopy is widely used for qualitative and quantitative analysis and, except for the optical isomer, in most cases it provides a unique fingerprint that can be easily distinguished from other compounds.

적외선과 마이크로파 복사선은 가시광선에서처럼 전자 전이를 일으킬 정도로 충분히 큰 에너지를 갖지 못하지만 분자의 진동이나 회전운동으로 에너지의 변화를 일으킨다. 모든 분자화학종은 적외선으로 인한 여러 가지 진동과 회전 상태 사이에 작은 에너지 차이가 존재하게 한다. 이러한 에너지 차이는 독특한 적외선 흡수스펙트럼의 특징을 제공하여 특정 화합물의 정성 및 정량에 효과적으로 활용된다.Infrared and microwave radiation do not have enough energy to cause electron transitions as in visible light, but they cause energy to change due to molecular vibrations or rotational motion. All molecular species cause small energy differences between the various vibrations and rotations caused by infrared radiation. These energy differences provide unique infrared absorption spectra that are effectively utilized for the qualitative and quantitative determination of specific compounds.

분자에서 원자의 상대적 위치는 정확히 고정되어 있지 않고 여러 가지 종류의 진동 크기에 따라 연속적으로 요동하고 있다. 도2과 같이 진동은 (a)신축(stretching)과 (b)굽힘(bending)의 기본 범주로 구분된다. 신축진동(strenching vibrations)은 두 원자 사이의 결합축을 따라 원자 간 거리가 연속적으로 변화함을 말한다. 굽힘진동(bending vibrations)은 두 결합 사이의 각도 변화를 말하며, 4 가지 종류가 있다. 즉, 가위질진동(scissoring), 좌우흔듬진동(rocking), 앞뒤흔듬진동(wagging) 및 꼬임진동(twisting)이다.The relative position of atoms in a molecule is not exactly fixed, but fluctuates continuously with different kinds of vibrations. As shown in Fig. 2, vibration is divided into basic categories of (a) stretching and (b) bending. Stretching vibrations refer to the continual change of the distance between atoms along the bond axis between two atoms. Bending vibrations are angular changes between two bonds, and there are four types. That is, scissoring, rocking, wagging and twisting.

액체와 고체에서는 분자의 회전이 크게 제한되어 불연속적인 진동선 및 회전선들은 보이지 않고, 분자간의 충돌과 상호작용 때문에 넓게 펴진 봉우리들이 나타난다. 이러한 적외선 고유 흡수는 분석하고자 하는 유기물의 고유한 지문영역으로 작용하여 특정 제품의 일치성 분석에 활용할 수 있다.In liquids and solids, the rotation of molecules is greatly limited, so discontinuous vibration and rotation lines are invisible, and broad peaks appear due to intermolecular collisions and interactions. This infrared specific absorption acts as a unique fingerprint region of the organic material to be analyzed and can be utilized for analyzing the correspondence of a specific product.

본 발명의 구체적 실시예에서는 유기화합물의 정량 및 정성분석에 널리 응용되고 있는 적외선분광분석법을 이용한다. 적외선 스펙트럼 중 특히 근적외선스펙트 럼인 12,800 내지 4,000㎝-1영역에서 분석하였다. In a specific embodiment of the present invention, infrared spectroscopy is widely used for quantitative and qualitative analysis of organic compounds. The infrared spectra were analyzed in the region of 12,800 to 4,000 cm −1, which is the near infrared spectrum.

중적외선 영역에서 O-H, N-H, C-H 등의 관능기에 의한 기준 신축진동 및 굽힘진동의 배음(over tone), 결합(combination band) 흡수가 근적외선영역에서 일어나게 되어 일반적으로 중적외선보다 흡광도가 적지만 서로 다른 관능기의 중요한 적외선 흡수차이를 일치성 분석으로 활용할 수 있다.In the mid-infrared region, overtone and combination band absorption of reference stretching and bending vibrations by functional groups such as OH, NH, and CH occurs in the near-infrared region. Significant infrared absorption differences of functional groups can be used as concordance analysis.

본 발명의 구체적 실시예에서는 도3에 도시된 바와 같이 내화시험을 통하여 성능이 확인된 5가지의 인정내화피복재(표준물질)과 시중에서 유통되고 있는 3가지의 일반 유기도료(비교물질)을 대상으로 하였다. 각각의 시료는 철판(철골 구조물) 등에 도포하고 양생시킨 후 고형화된 제품을 링밀(Ring Mill)로 분쇄하여 파우더 상태로 시료를 채취하여 분석하였다. In a specific embodiment of the present invention, as shown in FIG. 3, five certified fire-resistant coating materials (standard materials) whose performances are confirmed through fire resistance tests and three general organic paints (comparative materials) distributed in the market are covered. It was made. Each sample was applied to an iron plate (steel structure) and cured, and the solidified product was pulverized with a ring mill to collect a sample in a powder state and analyzed.

이하에서는 각 단계별 과정을 설명한다.Hereinafter, each step process will be described.

<제1단계><Step 1>

내화시험을 통하여 성능이 확인된 인정내화피복제를 표준물질로 선정하고, 표준물질의 시료를 채취하여 근적외선분광분석기(100)를 이용하여 근적외선분광분석 스펙트럼을 얻는 단계이다.A step of obtaining a near-infrared spectroscopy spectrum by using a near infrared spectroscopy analyzer 100 by selecting a certified fire resistant coating whose performance has been confirmed through a fire test as a reference material and taking a sample of the standard material.

표준물질의 시료는 도9에 도시된 바와 같이 퓨리에 변환 근적외선분광분석기인 MPA(Germany, Bruker Optics GmbH)를 사용하여 측정하였다. 이번 실험에 적용한 근적외선분광분석기(MPA)는 중적외선에 비하여 시료의 용기(110)가 대용량이며 적외선 스캔 면적이 넓어 불균질한 건축재료(피복재)의 분석에 적당하다. 광원으로는 텅스텐 할로겐 램프를 사용하고, PbS 검출기를 사용하였다. 근적외선 영역인 12,800 cm-1~3,600 cm-1 에서 측정이 되고, 8 cm-1 간격으로 스펙트럼을 측정할 수 있도록 설정을 하였고, 128회 반복 측정하여 평균한 것을 하나의 스펙트럼으로 나타내도록 설정하여 측정을 하였는데, 금이 코팅된 적분구(130)를 이용하여 시료에 직접 빛을 주사하는 방식으로 측정하였다. 적분구(130)는 금으로 전체면이 코팅되어 있는 막힌 시스템으로 불균일한 시료 측정시 높은 재현성을 보인다. 내화도료의 불균질성에 대한 측정 재현성을 확보하기 위하여 분말상태의 시료를 적외선에 노출되는 면적을 극대화하기 위하여 대용량 시료 용기(110)를 사용하였으며, 시료가 담긴 용기(110)를 회전시켜 용기(110)의 회전축(중심축)에서 일측으로 치우친 프로브(120)가 용기(110)를 도넛 형태로 스캔하도록 한다. 용기(110)의 바닥면(하부면)은 적외선에 노출되도록 투명한 수정으로 제작된다. 이와 같은 방법으로 단면적이 1.1㎝2 프로브(120)를 이용하여 19.6㎝2 의 면적을 스캔하여 시료의 불균질성에서 유인하는 오차를 최소화한다. 스펙트럼의 수집은 OPUS Ver. 5.0(Bruker Optics GmbH)라는 장비운영소프트웨어로 실시하였으며, 도4에 도시된 표준물질 5가지에 대한 스펙트럼을 보면 4000~5000에서 결합(combination band)흡수가 일어났으며, 6000~7000과 8000~9000에서 배음(over tone)흡수가 일어남을 확인할 수 있다.Samples of the standards were measured using a Fourier transform near infrared spectrometer (MPA), Bruker Optics GmbH (Germany) as shown in FIG. Near-infrared spectroscopy (MPA) applied in this experiment is suitable for the analysis of heterogeneous building materials (covering material) because the container 110 of the sample is larger than the infrared and the infrared scanning area is larger. As a light source, a tungsten halogen lamp was used and a PbS detector was used. Measured in the near-infrared region of 12,800 cm -1 to 3,600 cm -1 and set to measure the spectrum at 8 cm -1 intervals, and set to display the average of one repeated 128 measurements as one spectrum It was measured, by using a gold-coated integrating sphere 130 was measured in a manner of directly injecting light into the sample. Integrating sphere 130 is a clogged system in which the entire surface is coated with gold and shows high reproducibility when measuring non-uniform samples. In order to maximize the area of the powdered sample exposed to infrared light in order to secure the measurement reproducibility of the heterogeneity of the refractory paint, a large-capacity sample container 110 was used. The probe 120 biased to one side from the axis of rotation (center axis) of the container 110 to scan in a donut shape. The bottom surface (bottom surface) of the container 110 is made of transparent crystal to be exposed to infrared light. In this way, an area of 19.6 cm 2 is scanned using a 1.1 cm 2 probe 120 to minimize errors induced by the heterogeneity of the sample. The collection of the spectrum is OPUS Ver. 5.0 (Bruker Optics GmbH) was carried out with the equipment operation software, and the spectrum of five standard materials shown in Fig. 4 showed that the absorption of binding bands occurred at 4000 to 5000, and 6000 to 7000 and 8000 to 9000. It can be seen that the over tone absorption occurs in the.

<제2단계><Step 2>

표준물질의 스펙트럼에 대하여 1차 미분을 실시하여 표준물질의 1차 미분함수(y1)를 구한다. 1차 미분함수도 스펙트럼의 수집에 사용된 OPUS Ver. 5.0(Bruker Optics GmbH)라는 장비운영소프트웨어로 구할 수 있다.Perform the first derivative on the spectrum of the standard to find the first derivative of the standard (y1). OPUS Ver. Used to collect the first derivative function spectrum. Available as instrument operating software 5.0 (Bruker Optics GmbH).

도5는 표준물질 스펙트럼에 대한 1차 미분 곡선으로, 이러한 미분을 통해 스펙트럼 변화의 추이를 보다 효과적으로 비교할 수 있는데, 상관계수를 구할 때는 1차 미분값을 적용한다. 도5를 보면 서로 다른 종류의 표준물질(인정내화피복제)이지만 거의 비슷한 파수에서 흡수가 일어나 표준물질의 구성이 서로 비슷하다는 것을 알 수 있다.5 is a first-order differential curve for a standard spectrum, and the derivative can more effectively compare the trend of spectral change. The first-order derivative is applied to obtain a correlation coefficient. 5, it can be seen that different types of standard materials (recognized refractory coatings) are absorbed at almost the same frequency, so that the composition of the standard materials is similar to each other.

<제3단계><Step 3>

건설현장에 시공된 내화피복제를 비교물질로 선정하고, 비교물질의 시료를 채취하여 근적외선분광분석기(100)를 이용하여 근적외선분광분석 스펙트럼을 얻는 단계로서 구체적인 내용은 표준물질의 스펙트럼을 얻는 단계와 동일하다.The refractory coating material constructed at the construction site is selected as a comparative material, and a sample of the comparative material is taken to obtain a near infrared spectroscopic analysis spectrum by using the near infrared spectroscopy analyzer (100). Do.

본 발명의 구체적 실시예에서는 내화피복제가 아닌 일반도료를 비교물질로 선정하였는데, 도6에 도시된 바와 같이 4000~5000에서 결합(combination band)흡수가 일어났으며, 6000 부근과 8000~9000에서 배음(over tone)흡수가 일어남을 알 수 있다. 3가지 일반도료는 도료의 구성재료(알키드, 아크릭, 염화고무)에 따라 상이한 형태의 흡수를 일으켰다.In a specific embodiment of the present invention, a non-fireproof coating was selected as a comparative material, and as shown in FIG. 6, absorption of binding bands occurred at 4000 to 5000, and harmonics at around 6000 and at 8000 to 9000. It can be seen that (over tone) absorption occurs. The three common paints produced different types of absorption depending on the paint's constituent materials (alkyd, aric, rubber chloride).

<제4단계><Step 4>

비교물질의 스펙트럼에 대하여 1차 미분을 실시하여 비교물질의 1차 미분함수(y2)를 구하는 단계로서 이를 통하여 도7에 도시된 바와 같이 스펙트럼 변화의 추이를 보다 효과적으로 비교할 수 있다. 도7을 도5와 비교해 보면 일반도료(비교물질)와 내화피복제(표준물질)의 스펙트럼은 매우 다른 형태의 흡수가 일어남을 알 수 있는데, 이를 통하여 일반도료와 내화피복제가 다른 성분으로 구성됨을 확인할 수 있다.The first derivative is performed on the spectra of the comparator to obtain the first derivative function y2 of the comparator. Through this, it is possible to more effectively compare the trend of spectral change as shown in FIG. Comparing FIG. 7 with FIG. 5, it can be seen that the spectrum of the general paint (comparative material) and the fireproof coating (standard material) is very different in form of absorption. Through this, the general paint and the fireproof coating are composed of different components. Can be.

<제5단계><Step 5>

표준물질의 1차 미분함수(y1)과 비교물질의 1차 미분함수(y2)의 상관 관계로부터 비교물질과 표준물질의 일치성 여부를 판별하는 단계이다.It is a step of determining whether the comparison material and the reference material are consistent from the correlation between the first derivative function y1 of the reference material and the first derivative function y2 of the comparative material.

보다 구체적으로는 표준물질의 1차 미분함수(y1)과 비교물질의 1차 미분함수(y2)의 공분산[Cov(y1(k), y2(k))]을 표준물질의 1차 미분함수(y1)의 표준편차(σ1)과 비교물질의 1차 미분함수(y2)의 표준편차(σ2)의 곱으로 나눈 상관계수(r)의 값에 따라 비교물질과 표준물질의 일치성 여부를 판별하는데, -1 < r < 0 인 경우 일치성을 0%로 판별하고, 0 < r < 1 인 경우 r의 값에 따라 비교물질과 표준물질의 일치성을 0% 내지 100% 로 판별하는 것이다. 예를 들어 r=0.23일 경우에는 일치성을 23%로 판별하게 된다.More specifically, the covariance [Cov (y1 (k), y2 (k)) of the first derivative of the reference material (y1) and the first derivative of the comparative material (y2) is calculated from the first derivative of the reference material (y1). The correspondence between the reference material and the reference material is determined according to the value of the correlation coefficient (r) divided by the product of the standard deviation (σ1) of y1) and the standard deviation (σ2) of the first derivative of the comparative material (y2). In the case of -1 <r <0, the consistency is determined as 0%, and in the case of 0 <r <1, the consistency between the reference material and the reference material is determined as 0% to 100%. For example, if r = 0.23, the consistency is determined as 23%.

이와 같은 통계학적인 계산도 스펙트럼의 수집에 사용된 OPUS Ver. 5.0(Bruker Optics GmbH)라는 장비운영소프트웨어를 이용하여 자동적으로 수행할 수 있다.These statistical calculations were also performed by the OPUS Ver. This can be done automatically using the instrument operating software 5.0 (Bruker Optics GmbH).

도8은 5가지 표준물질과 3가지 비교물질 사이의 상관관계를 백분율로 표시한 표인데, 비교물질과 표준물질 사이의 상관관계는 0% 내지 26%에 불과함을 알 수 있다. 즉 일반도료(비교물질)과 내화피복제(표준물질)의 구성 성분이 매우 달라 적외선 흡수영역이 상이하며 스펙트럼에 대한 정량적인 비교를 위한 통계적인 기법의 상관관계 결과도 상관성이 거의 없는 것으로 나타남을 알 수 있다.Figure 8 is a table showing the correlation between the five standards and three comparative materials in percentage, it can be seen that the correlation between the comparative material and the standard is only 0% to 26%. In other words, the composition of general paint (comparative material) and fireproof coating material (standard material) is very different, so the infrared absorption area is different, and the correlation result of statistical technique for quantitative comparison of the spectrum shows little correlation. Can be.

즉 이와 같은 방법을 통하여 건설현장에 시공된 내화피복제가 일반도료에 불과한 것인지 아니면 내화성능을 가지고 있는 것인지 쉽게 판별할 수 있는 것이다.In other words, through this method, it is easy to determine whether the fireproof coating constructed at the construction site is nothing more than a general paint or fireproof performance.

상기한 바와 같이 본 발명의 구체적 실시예를 첨부도면을 참조하여 보다 상세히 설명하였으나 본 발명의 보호범위가 반드시 이러한 실시예에만 한정되는 것은 아니며 본 발명의 기술적 요지를 변경하지 않는 범위 내에서 다양한 설계변경, 공지기술의 부가나 삭제, 단순한 수치한정 등의 경우에도 본 발명의 보호범위에 속함을 분명히 한다.Specific embodiments of the present invention as described above in more detail with reference to the accompanying drawings, but the scope of protection of the present invention is not necessarily limited to these embodiments and various design changes within the scope not changing the technical spirit of the present invention. In addition, the addition or deletion of well-known technology, and simple numerical limitations also make it clear that they belong to the protection scope of the present invention.

도1은 적외선을 영역에 따라 분류한 표로서, 근적외선, 중적외선 및 근적외선의 파장, 파수 및 진동수 범위를 보여준다.FIG. 1 is a table classifying infrared rays according to regions, and shows wavelengths, frequencies, and frequency ranges of near infrared rays, mid infrared rays, and near infrared rays.

도2는 분자 진동의 유형을 도시한다.2 shows a type of molecular vibration.

도3은 본 발명의 구체적 실시예에서 사용된 5가지의 표준물질(인정내화피복제)과 3가지의 비교물질(일반유기도료)을 보여주는 표이다.FIG. 3 is a table showing five standards (recognized refractory coatings) and three comparative materials (general organics) used in specific examples of the present invention.

도4는 5가지 표준물질에 대한 근적외선분광분석 스펙트럼을 도시한다.4 shows near infrared spectroscopy spectra for five standards.

도5는 5가지 표준물질 스펙트럼의 1차 미분함수를 도시한다.5 shows the first derivative of the five standard spectra.

도6은 3가지 비교물질에 대한 근적외선분광분석 스펙트럼을 도시한다.6 shows near infrared spectroscopy spectra for three comparative materials.

도7은 3가지 비교물질 스펙트럼의 1차 미분함수를 도시한다.7 shows the first derivative of the three comparator spectra.

도8은 5가지 표준물질과 3가지 비교물질 사이의 상관관계를 백분율로 표시한 표이다.8 is a table showing the correlation between the five standards and the three comparative materials in percentage.

도9은 적외선분광분석기의 주요 구성요소를 개략적으로 도시한 개념도이다.9 is a conceptual diagram schematically showing main components of an infrared spectrometer.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

100:근적외선분광분석기100: near infrared spectroscopy

110:용기110: container

120:프로브(probe)120: probe

130:적분구(gold-coated integrating sphere)130: gold-coated integrating sphere

140:디텍터(detector)140: a detector

11:근적외선(NIR beam)11: NIR beam

Claims (4)

적외선분광법을 이용하여 건설현장에서 내화피복제의 품질을 확인하는 방법에 관한 것으로서,Regarding the method of confirming the quality of fireproof coating at a construction site using infrared spectroscopy, 내화시험을 통하여 성능이 확인된 인정내화피복제를 표준물질로 선정하고, 표준물질의 시료를 채취하여 근적외선분광분석기(100)를 이용하여 근적외선분광분석 스펙트럼을 얻는 제1단계;A first step of selecting a certified fire resistant coating whose performance has been confirmed through a fire resistance test as a standard material, and taking a sample of the standard material to obtain a near infrared spectroscopic analysis spectrum using a near infrared spectroscopic analyzer (100); 표준물질의 스펙트럼에 대하여 1차 미분을 실시하여 표준물질의 1차 미분함수(y1)를 구하는 제2단계;Performing a first derivative on the spectrum of the standard to obtain a first derivative of the standard (y1); 건설현장에 시공된 내화피복제를 비교물질로 선정하고, 비교물질의 시료를 채취하여 근적외선분광분석기(100)를 이용하여 근적외선분광분석 스펙트럼을 얻는 제3단계;A third step of selecting a fireproof coating constructed at a construction site as a comparative material, taking a sample of the comparative material, and obtaining a near infrared spectroscopic analysis spectrum using a near infrared spectroscopy analyzer 100; 비교물질의 스펙트럼에 대하여 1차 미분을 실시하여 비교물질의 1차 미분함수(y2)를 구하는 제4단계; 및,Performing a first derivative on the spectrum of the comparative substance to obtain a first derivative function y 2 of the comparative substance; And, 표준물질의 1차 미분함수(y1)과 비교물질의 1차 미분함수(y2)의 상관 관계로부터 비교물질과 표준물질의 일치성 여부를 판별하는 제5단계;A fifth step of determining whether or not the comparison material and the reference material are consistent from the correlation between the first derivative function y1 of the reference material and the first derivative function y2 of the comparative material; 로 구성되고,Consisting of, 상기 제3단계는,The third step, 비교물질 시료을 하부면이 투명한 수정으로 만들어진 용기(110)에 담고, 용기(110) 하부면의 중심에서 일측으로 치우친 위치에 설치된 프로브(120)를 통하여 근적외선을 주사하면서 용기(110)를 회전시켜 프로브(120)의 주사 범위를 확대시키고 비교물질 시료의 불균일성으로 인한 오차를 감소시키는 것을 특징으로 하는 적외선분광법을 이용한 내화피복제 일치성 평가방법.The sample is placed in a container 110 made of a transparent crystal on a lower surface, and the container 110 is rotated while scanning near infrared rays through a probe 120 installed at a position oriented to one side from the center of the lower surface of the container 110. Refractory coating consistency evaluation method using an infrared spectroscopy, characterized in that to extend the scanning range of (120) and to reduce the error due to the non-uniformity of the comparative material sample. 제1항에서, 상기 제5단계는,The method of claim 1, wherein the fifth step, 표준물질의 1차 미분함수(y1)과 비교물질의 1차 미분함수(y2)의 공분산[Cov(y1(k), y2(k))]을 표준물질의 1차 미분함수(y1)의 표준편차(σ1)과 비교물질의 1차 미분함수(y2)의 표준편차(σ2)의 곱으로 나눈 상관계수(r)의 값에 따라 비교물질과 표준물질의 일치성 여부를 판별하되,Covariance [Cov (y1 (k), y2 (k)) of the first derivative of the reference material (y1) and the first derivative of the comparative material (y2) is the standard of the first derivative of the reference material (y1). The correspondence between the reference material and the reference material is determined based on the value of the correlation coefficient (r) divided by the product of the deviation (σ1) and the standard deviation (σ2) of the first derivative of the reference material (y2). -1 < r < 0 인 경우 일치성을 0%로 판별하고, 0 < r < 1 인 경우 r의 값에 따라 비교물질과 표준물질의 일치성을 0% 내지 100% 로 판별하는 것을 특징으로 하는 적외선분광법을 이용한 내화피복제 일치성 평가방법.When -1 <r <0, the consistency is determined as 0%, and when 0 <r <1, the consistency between the reference material and the reference material is determined as 0% to 100%. A method for evaluating the consistency of fire resistant coatings using infrared spectroscopy. 제1항 또는 제2항에서, 상기 제3단계는,The method of claim 1 or 2, wherein the third step, 철골 구조물의 표면에 도포되어 양생과정을 거치면서 고형화된 피복재를 링밀(ring mill)로 분쇄하여 파우더 상태의 비교물질 시료을 채취하는 것을 특징으로 하는 적외선분광법을 이용한 내화피복제 일치성 평가방법.A method of evaluating the conformity of fireproof coatings using infrared spectroscopy, characterized in that a powdered comparative material sample is taken by grinding a solidified coating material applied to the surface of a steel structure and undergoing a curing process in a ring mill. 삭제delete
KR1020090122938A 2009-12-11 2009-12-11 Identification Test Method for Fire Resistive Coatings in Near-Infrared Spectroscopy KR101108671B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090122938A KR101108671B1 (en) 2009-12-11 2009-12-11 Identification Test Method for Fire Resistive Coatings in Near-Infrared Spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090122938A KR101108671B1 (en) 2009-12-11 2009-12-11 Identification Test Method for Fire Resistive Coatings in Near-Infrared Spectroscopy

Publications (2)

Publication Number Publication Date
KR20110066328A KR20110066328A (en) 2011-06-17
KR101108671B1 true KR101108671B1 (en) 2012-01-25

Family

ID=44399180

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090122938A KR101108671B1 (en) 2009-12-11 2009-12-11 Identification Test Method for Fire Resistive Coatings in Near-Infrared Spectroscopy

Country Status (1)

Country Link
KR (1) KR101108671B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104198432B (en) * 2014-09-17 2016-06-22 公安部天津消防研究所 The method of application near-infrared spectrum technique Undamaged determination fire-resistant coating for steel structure brand
CN112986770B (en) * 2021-04-09 2024-01-30 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 Insulation paper detection method and device based on near infrared spectrum

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325135A (en) * 2003-04-22 2004-11-18 Hiroaki Ishizawa Residual agricultural chemical analysis method
JP2006126100A (en) * 2004-11-01 2006-05-18 Kao Corp Discrimination method using near-infrared spectrum

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325135A (en) * 2003-04-22 2004-11-18 Hiroaki Ishizawa Residual agricultural chemical analysis method
JP2006126100A (en) * 2004-11-01 2006-05-18 Kao Corp Discrimination method using near-infrared spectrum

Also Published As

Publication number Publication date
KR20110066328A (en) 2011-06-17

Similar Documents

Publication Publication Date Title
Fukunaga et al. Terahertz spectroscopy applied to the analysis of artists’ materials
O'Brien et al. Miniature near-infrared (NIR) spectrometer engine for handheld applications
Agresti et al. Surface investigation of photo-degraded wood by colour monitoring, infrared spectroscopy, and hyperspectral imaging
CA2757192C (en) Spectroscopy having correction for broadband distortion for analyzing multi-component samples
CN105319198B (en) Benzene content in gasoline Forecasting Methodology based on Raman spectrum analytic technique
CN1982872B (en) Near-infrared diffuse reflection spectral method for fastly inspecting drop water content
Berntsson et al. Estimation of effective sample size when analysing powders with diffuse reflectance near-infrared spectrometry
Chalmers Mid‐infrared spectroscopy: Anomalies, artifacts and common errors
Castro-Suarez et al. Active mode remote infrared spectroscopy detection of TNT and PETN on aluminum substrates
KR101108671B1 (en) Identification Test Method for Fire Resistive Coatings in Near-Infrared Spectroscopy
Algethami et al. Chemical fingerprinting and quantitative monitoring of the doping drugs bambuterol and terbutaline in human urine samples using ATR-FTIR coupled with a PLSR chemometric tool
Hu et al. Review of the characteristics and prospects of near infrared spectroscopy for rapid drug-screening systems in China
CN102262055B (en) Method for measuring residual quantity of acrylamide monomer in polyacrylamide substances
KR20140078597A (en) Method for measuring pH, water content and lactic acid content of Italian ryegrass silage using near infrared spectroscopy
Zhang et al. Brand identification of transparent intumescent fire retardant coatings using portable Raman spectroscopy and machine learning
Cozzolino Fourier transform spectroscopy
KR101229451B1 (en) System For Analyzing The Ingredient Of Fire Protection Coating Mounted In Vehicle
Baraldi et al. Molecular spectroscopy as an alternative for dating textiles
Sarraguça et al. A FT-NIR spectroscopy methodology to estimate firing distance based on the direct analysis of the bullet impact surface
Zhi-Na et al. Rapid measurement of diesel engine oil quality by near infrared spectroscopy (NIRS)
Sandak et al. Using Various Infrared Techniques for Assessing Timber Structures
Agresti et al. Colour modifications and hyperspectral imaging: non-invasive analysis of photo-degraded wood surfaces
KR20150039738A (en) Method for measuring content of crude protein, acid detergent fiber and neutral detergent fiber of Italian ryegrass silage using near infrared spectroscopy
Conforti et al. Monitoring soil organic carbon content using Vis-NIR spectroscopy: A case study in southern Italy
Changwen et al. Characterisation of loess soils using near infrared photoacoustic spectroscopy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee