KR101093030B1 - A fault location estimation technique using fault current ratio flowing catenary of the both sides between fault zone in ac feeding system and method - Google Patents

A fault location estimation technique using fault current ratio flowing catenary of the both sides between fault zone in ac feeding system and method Download PDF

Info

Publication number
KR101093030B1
KR101093030B1 KR1020100089281A KR20100089281A KR101093030B1 KR 101093030 B1 KR101093030 B1 KR 101093030B1 KR 1020100089281 A KR1020100089281 A KR 1020100089281A KR 20100089281 A KR20100089281 A KR 20100089281A KR 101093030 B1 KR101093030 B1 KR 101093030B1
Authority
KR
South Korea
Prior art keywords
fault
current
line
single winding
winding transformer
Prior art date
Application number
KR1020100089281A
Other languages
Korean (ko)
Inventor
정호성
박영
민명환
김형철
나희승
Original Assignee
한국철도기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국철도기술연구원 filed Critical 한국철도기술연구원
Priority to KR1020100089281A priority Critical patent/KR101093030B1/en
Application granted granted Critical
Publication of KR101093030B1 publication Critical patent/KR101093030B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/083Locating faults in cables, transmission lines, or networks according to type of conductors in cables, e.g. underground

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)

Abstract

PURPOSE: A fault point expression system which uses a fault ratio of a current flowing in a car-line of both fault section ends in an alternating current feed system and a method thereof are provided to arrange linearity between a fault current ratio and fault distance regardless of various fault conditions, thereby precisely determining the fault distance. CONSTITUTION: A fault current measurement module(100) measures a current of a car-line on a real time basis. The fault current measurement module measures a fault current of the car-line and generates fault current information when a short-circuit accident of the car-line is generated on a rail. The fault current of the car-line flows in both ends of two loops arranged in a transformer of both sides adjacent to an accident point. A current ratio measurement module(200) receives the fault current information from the fault current measurement module. The current ratio measurement module generates fault current ratio information by calculating a current ratio with respect to the fault current of the car-line. A fault point expression module(300) receives the fault current ration information from the current ratio measurement module.

Description

교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 시스템 및 그 방법{A FAULT LOCATION ESTIMATION TECHNIQUE USING FAULT CURRENT RATIO FLOWING CATENARY OF THE BOTH SIDES BETWEEN FAULT ZONE IN AC FEEDING SYSTEM AND METHOD}Fault point expression system and method using fault current ratio flowing through the tram line at both ends of breakdown section in AC feed system

본 발명은 교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 시스템 및 그 방법에 관한 것으로서, 더욱 상세하게는 전기철도의 교류(AC)급전에서 고장 시, 급전계통 보호를 위해 기존에 설치된 보호계전기를 통해 측정된 전류를 이용하여 고장 구간을 판단하고, 또한 양단의 흐르는 전차선의 전류비를 계산하여 고장 위치를 보다 정확하게 예측하는 기술에 관한 것이다.The present invention relates to a fault point expression system and a method using a fault current ratio flowing in a tram line at both ends of a fault section in an AC feed system, and more particularly, to protect a feed system when a fault occurs in an AC power supply of an electric railway. The present invention relates to a technology for more accurately predicting a fault location by determining a fault section by using a current measured through an existing protective relay, and also calculating a current ratio of a flowing catenary at both ends.

일반적으로, 단권변압기(AT: Auto-Transformer)급전회로에서 전차선과 레일간의 고장 발생시 고장점 양측의 AT 중성점으로 흡상되는 고장전류는 도 1에 도시된 바와 같이, 각각의 AT로부터 고장점까지의 거리에 거의 반비례한다.In general, when a fault occurs between a vehicle line and a rail in a single-circuit transformer (AT) feed circuit, the fault current drawn up to the AT neutral point on both sides of the fault point is the distance from each AT to the fault point, as shown in FIG. Almost inversely proportional to

도 1에 도시된 흡상전류비는

Figure 112010059199525-pat00001
이고,
Figure 112010059199525-pat00002
는 직선적인 관계에 있어, 아래의 [수학식1]을 만족한다.The absorption current ratio shown in FIG.
Figure 112010059199525-pat00001
ego,
Figure 112010059199525-pat00002
Is in a linear relationship, and satisfies Equation 1 below.

[수학식1][Equation 1]

Figure 112010059199525-pat00003
Figure 112010059199525-pat00003

여기서, [수학식1]의

Figure 112010059199525-pat00004
는 기점으로부터 고장점의 거리(km)이고,
Figure 112010059199525-pat00005
은 기점으로부터 n번째 AT의 거리(km)이며,
Figure 112010059199525-pat00006
Figure 112010059199525-pat00007
Figure 112010059199525-pat00008
간의 거리이고,
Figure 112010059199525-pat00009
Figure 112010059199525-pat00010
으로부터 고장점까지의 거리이다.Where [Equation 1]
Figure 112010059199525-pat00004
Is the distance from the origin to the point of failure, in kilometers,
Figure 112010059199525-pat00005
Is the distance (km) of the nth AT from the origin,
Figure 112010059199525-pat00006
Is
Figure 112010059199525-pat00007
and
Figure 112010059199525-pat00008
Distance between
Figure 112010059199525-pat00009
Is
Figure 112010059199525-pat00010
The distance from to the fault point.

이러한 급전회로에 고장이 발생한 경우, 당해 회선의 모든 AT 흡상전류를 별도의 계측장치로 자동적으로 계측해서 유지하고, 그 데이터를 별도의 통신장치를 사용하여 급전제어센터에 보낸다. 급전제어센터에서 별도의 분석장치를 이용하여 상기 [수학식1]에 따라 고장점의 거리(km)를 산출하게 된다.When a failure occurs in such a power supply circuit, all AT absorption currents of the line are automatically measured and maintained by a separate measuring device, and the data is sent to the power supply control center using a separate communication device. Using a separate analysis device in the power supply control center to calculate the distance (km) of the failure point according to [Equation 1].

즉, 도 2에 도시된 바와 같이 종래의 AT흡상전류비 방식은 AT 중성점에서 별도의 계측기를 통해 전류비를 측정하고, 그 비(ratio)를 비교하여 고장점을 표정하록 구성된다.That is, as shown in FIG. 2, the conventional AT absorption current ratio method is configured to measure the current ratio through a separate measuring instrument at the AT neutral point, and compare the ratios to express a failure point.

그러나, 이러한 AT흡상전류비 방식의 고장점표정방식은 기존의 보호계전기와 연동이 안 되기 때문에 별도의 추가적인 계측장치, 통신장치 및 분석장치를 필요로 하는바, 고장점 표정을 위한 기능을 위한 추가 비용이 발생되는 문제점이 있다.However, the AT point current fault type fault point determination method does not work with the existing protection relay, so it requires an additional additional measurement device, communication device, and analysis device. There is a problem of cost.

또한, AT흡상전류비 방식의 고장점표정은 복선계통 및 공통 접지망 등의 계통에서는 타선흡상현상으로 인해 일부 구간에서는 전류비와 거리의 관계가 비선형이 되어 정확한 고장지점을 표정할 수 없는 문제점이 있다.In addition, the fault point determination of the AT absorption current ratio method is a problem in that the relationship between the current ratio and the distance is nonlinear in some sections due to other line suction phenomena in a system such as a double-wire system and a common ground network. have.

또한, AT급전회로는 복잡한 구성이므로, 흡상전류비는 상하 AT의 흡상전류를 합성해서 비(比)를 구하고 있다. 따라서 상하선의 고장회선 결정은 상하 AT의 흡상전류 크기의 비교를 통해 결정할 수 없는 문제점이 있다.In addition, since the AT power supply circuit has a complicated configuration, the wicking current ratio is obtained by combining the wicking currents of the upper and lower ATs. Therefore, the fault line determination of the up and down line has a problem that can not be determined by comparing the magnitude of the wicking current of the up and down AT.

아울러, AT흡상전류비 방식에서는, 전차선(T)-급전선(F) 단락 고장 발생시에는 AT 중성점으로 흡상되는 전류가 발생하지 않기 때문에 고장점을 표정하지 못하는 단점이 있다.In addition, in the AT absorption current ratio method, when the catenary wire (T) -feed line (F) short-circuit occurs, the current drawn to the AT neutral point does not occur and thus there is a disadvantage in that the failure point is not expressed.

본 발명의 목적은, 전기철도의 교류(AC)급전에서 고장 시, 급전계통 보호를 위해 기존에 설치된 보호계전기를 통해 측정된 전류를 이용하여 고장 구간을 판단하고, 또한 양단의 흐르는 전차선의 전류비를 계산하여 고장 위치를 보다 정확하게 예측하는데 그 목적이 있다.An object of the present invention is to determine the failure section by using the current measured through the existing protective relay to protect the power supply system in case of failure in AC power supply of the electric railway, and also the current ratio of the flowing electric cable lines at both ends The purpose is to predict the failure location more accurately by calculating.

또한, 본 발명은 기존의 급전계통 보호를 위해 설치된 보호계전기를 사용함으로써 고장 위치를 추정하기 위한 추가적인 비용을 최소화할 수 있는 새로운 방식의 고장점 표정 시스템을 제공함에도 그 목적이 있다.In addition, an object of the present invention is to provide a new point of failure expression system that can minimize the additional cost for estimating the fault location by using a protective relay installed to protect the existing power supply system.

이러한 기술적 과제를 달성하기 위한 본 발명의 교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 시스템은, 전차선에 흐르는 전류를 실시간으로 측정하되, 전차선(T)이 레일(R) 위로 단락되는 사고 발생시, 사고 지점에 인접한 양측의 변압기에 형성된 두 개의 계통 루프(Loop)를 양단에 흐르는 전차선(T)의 고장전류를 측정하여 고장전류정보를 생성하는 고장전류 측정모듈; 고장전류 측정모듈로부터 고장전류정보를 인가받아 전차선(T)의 고장전류에 대한 전류비를 계산하여 고장전류 전류비정보를 생성하는 전류비 측정모듈; 및 전류비 측정모듈로부터 고장전류 전류비정보를 인가받고, 단권변압기(AT)들 사이의 두 지점에 대한 위치와 단권변압기(AT)들 사이의 두 지점에 대한 전류와 전철의 전류를 이용하여, 전류비(

Figure 112010059199525-pat00011
)와 고장지점(
Figure 112010059199525-pat00012
)의 관계를 도출하여 고장점을 표정하는 고장점 표정모듈;을 포함한다.
In the AC power supply system of the present invention for achieving the above technical problem, the fault point expression system using the fault current ratio flowing in the catenary lines at both ends of the fault section measures the electric current flowing in the catenary line in real time, but the catenary T is the rail (R). A fault current measurement module for generating fault current information by measuring fault currents of a catenary T flowing through two system loops formed at transformers on both sides adjacent to a fault point at both ends when a short circuit occurs; A current ratio measuring module configured to generate fault current current ratio information by receiving fault current information from the fault current measuring module and calculating a current ratio with respect to the fault current of the catenary T; And receiving fault current current ratio information from the current ratio measuring module, using the positions of two points between the single winding transformers and the currents of the two points between the single winding transformers and the current of the train. Current ratio
Figure 112010059199525-pat00011
) And the point of failure (
Figure 112010059199525-pat00012
It includes; fault point expression module for deriving a relationship between the expression point.

또한, 상술한 시스템을 기반으로 하는 본 발명의 전교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 방법은, 고장전류 측정모듈이 전차선의 전류를 실시간으로 측정하되, 전차선(T)이 레일(R) 위로 단락되는 사고 발생시, 사고 지점에 인접한 양측의 변압기에 형성된 두 개의 Loop를 양단에 흐르는 전차선(T)의 고장전류를 측정하여 고장전류정보를 생성하는 (a) 단계; 전류비 측정모듈이 고장전류 측정모듈로부터 고장전류정보를 인가받아 전차선(T)의 고장전류에 대한 전류비를 계산하여 고장전류 전류비정보를 생성하는 (b) 단계; 및 고장점 표정모듈이 전류비 측정모듈로부터 고장전류 전류비정보를 인가받고, 단권변압기(AT)들 사이의 두 지점에 대한 위치와 단권변압기(AT)들 사이의 두 지점에 대한 전류비와 전철의 전류를 이용하여, 전류비(

Figure 112010059199525-pat00013
)와 고장지점(
Figure 112010059199525-pat00014
)의 관계를 도출하여 고장점을 표정하는 (c) 단계;를 포함한다.In addition, the fault point expression method using the fault current ratio flowing in the tram line at both ends of the fault section in the trans-flow feed system of the present invention based on the above system, the fault current measurement module measures the current of the tram line in real time, In the event of an accident in which (T) is shorted over the rail (R), generating fault current information by measuring the fault current of the catenary T flowing through two loops formed at both transformers adjacent to the fault point. ; (B) generating a fault current current ratio information by receiving the fault current information from the fault current measuring module, calculating a current ratio with respect to the fault current of the catenary T; And the fault point expression module receives fault current current ratio information from the current ratio measuring module, the position of two points between the single winding transformers (AT) and the current ratios and the rails of the two points between the single winding transformers (AT). By using the current of
Figure 112010059199525-pat00013
) And the point of failure (
Figure 112010059199525-pat00014
And (c) expressing a failure point by deriving a relationship of a).

상기와 같은 본 발명에 따르면, 교류전기철도의 고장점 표정을 위해 기존의 급전계통 보호를 위해 설치되어 있는 보호계전기를 활용할 수 있어 기존의 보호계전기와 연동이 가능할 뿐만 아니라 고장점 표정을 위한 추가 설비비용을 절감할 수 있고, 다양한 고장조건 등에 무관하게 고장전류비와 고장거리가 선형성을 이루고 있기 때문에 고장거리를 보다 정확히 결정하는 효과가 있다.According to the present invention as described above, it is possible to utilize the protection relay installed for the protection of the existing power supply system for the expression of the fault point of the AC electric railway, it is possible to interwork with the existing protection relay as well as additional facilities for the fault point expression The cost can be reduced, and the fault current ratio and the fault distance are linear regardless of various fault conditions. Therefore, the fault distance can be more accurately determined.

또한, 고장구간의 양단에 흐르는 전차선(T)의 전류비를 이용하여 고장점을 표정함으로써, 고장 발생 시 모든 고장전류는 고장지점으로 흐르므로 다른 고장요소 및 시스템 구성 상황(복선 및 공통접지망 등)에 영향 받지 않는 장점이 있다.In addition, by expressing the fault point by using the current ratio of the tram line T flowing at both ends of the fault section, when the fault occurs, all fault currents flow to the fault point, and thus, other fault elements and system configuration situations (such as a double wire and a common ground network). ) Is not affected.

또한, 본 발명은 상하행선 고장 구분이 가능하고 전차선(T)과 급전선(F)의 단락 사고, 급전선(F)과 레일(R)의 사고도 구분하여 고장 위치를 결정할 수 있는 장점도 있다.In addition, the present invention is capable of distinguishing the up and down line failure, there is also an advantage that can determine the fault location by distinguishing the short circuit accident of the tram line (T) and the feed line (F), the accident of the feed line (F) and the rail (R).

도 1은 AT흡상전류비 방식의 표정거리의 원리를 설명한 도면.
도 2는 종래의 AT흡상전류비 방식을 설명한 도면.
도 3은 본 발명에 따른 교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 시스템을 도시한 구성도.
도 4는 본 발명에 따른 교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 시스템의 전차선 전류비 방식에서의 계측 전류 측정을 도시한 계통도.
도 5는 본 발명에 따른 교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 시스템의 전차선 전류비 방식을 도시한 계통도.
도 6은 본 발명의 교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 시스템에 따른 고장위치와 전차선 전류비를 그래프로 도시한 도면.
도 7은 본 발명에 따른 교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 시스템의 급전선-전차선 사고 시, 급전선의 전류를 측정하여 고장점을 표정하는 루프를 도시한 계통 예시도.
도 8은 본 발명에 따른 교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 시스템의 급전선-레일 사고 시, 급전선의 전류를 측정하여 고장점을 표정하는 루프를 도시한 계통 예시도.
도 9는 본 발명에 따른 교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 방법을 도시한 구성도.
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view for explaining the principle of the expression distance of the AT absorption current ratio method.
2 is a view for explaining a conventional AT absorption current ratio method.
Figure 3 is a block diagram showing a fault point expression system using a fault current ratio flowing in the tram line at both ends of the fault section in the AC power supply system according to the present invention.
4 is a schematic diagram illustrating measurement current measurement in a catenary current ratio method of a fault point expression system using a fault current ratio flowing in a catenary at both ends of a fault section in an AC feed system according to the present invention.
5 is a schematic diagram illustrating a catenary current ratio method of a fault point expression system using a fault current ratio flowing in a catenary at both ends of a fault section in an AC feed system according to the present invention;
6 is a graph showing a fault location and a catenary current ratio according to a fault point expression system using a fault current ratio flowing in a catenary at both ends of a fault section in the AC feed system of the present invention.
FIG. 7 is a system diagram illustrating a loop for expressing a fault point by measuring a current of a feed line when a feeder-car line accident of a fault point expression system using a fault current ratio flowing in a train line at both ends of a fault section in the AC feed system according to the present invention. Illustrated diagram.
FIG. 8 is a system diagram illustrating a loop for expressing a fault point by measuring a current of a feed line when a feeder-rail accident of a fault point expression system using a fault current ratio flowing through a train line at both ends of a fault section in the AC feed system according to the present invention. Illustrated diagram.
9 is a block diagram illustrating a method of expression of a fault point using a fault current ratio flowing in the tram line at both ends of the fault section in the AC power supply system according to the present invention.

본 발명의 구체적인 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 할 것이다. 또한, 본 발명에 관련된 공지 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 구체적인 설명을 생략하였음에 유의해야 할 것이다.Specific features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings. Prior to this, terms and words used in the present specification and claims are to be interpreted in accordance with the technical idea of the present invention based on the principle that the inventor can properly define the concept of the term in order to explain his invention in the best way. It should be interpreted in terms of meaning and concept. It is to be noted that the detailed description of known functions and constructions related to the present invention is omitted when it is determined that the gist of the present invention may be unnecessarily blurred.

도 3에 도시된 바와 같이 본 발명에 따른 교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정(故障點標定) 시스템을 도시한 구성도이고, 도 4는 본 발명에 따른 교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 시스템의 전차선 전류비 방식에서의 계측 전류 측정을 도시한 계통도이다.As shown in FIG. 3, the AC power supply system according to the present invention is a block diagram illustrating a fault point expression system using a fault current ratio flowing through a tram line at both ends of a fault section, and FIG. It is a system diagram showing measurement current measurement in the catenary current ratio method of the fault point expression system using the fault current ratio flowing in the catenary lines at both ends of the fault section in the AC feed system.

도 3 및 도 4를 참조하면, 본 발명에 따른 교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 시스템(S)은 고장전류 측정모듈(100), 전류비 측정모듈(200) 및 고장점 표정모듈(300)을 포함하여 구성된다.3 and 4, in the AC power supply system according to the present invention, the fault point expression system S using the fault current ratio flowing through the electric cable lines at both ends of the fault section includes a fault current measuring module 100 and a current ratio measuring module ( 200) and a failure point facial expression module 300 is configured.

일반적으로, 변전소(SS: Substaion) 사이에는 두 개의 병렬급전소(PP: parallel post)와 하나의 보조급전구분소(SP: Section post)로 구성되어 있고, 각 부분마다 단권변압기(AT: Auto transformer)가 설치되어 있으며, 각 부분마다 보호계전기가 설치되어, 전차선의 전류를 실시간으로 감시하고 있다.In general, there are two parallel feed stations (PP) and one sub feed section (SP) between substations (SS), and each section has a single auto transformer (AT). Each part is equipped with a protective relay, which monitors the electric current of the train line in real time.

구체적으로, 본 발명에 따른 고장전류 측정모듈(100)은 변압기에서 흘러나오는 전류를 실시간으로 측정하되, 전차선(T)이 레일(R) 위로 단락되는 사고 발생시, 사고 지점에 인접한 양측의 변압기에 형성된 두 개의 Loop를 양단에 흐르는 전차선(T)의 고장전류를 측정하여 고장전류정보를 생성한다.Specifically, the fault current measuring module 100 according to the present invention measures the current flowing out of the transformer in real time, when the accident occurs that the catenary T is shorted over the rail (R), formed in the transformer on both sides adjacent to the accident point Fault current information is generated by measuring the fault current of the catenary T flowing through two loops.

또한, 전류비 측정모듈(200)는 고장전류 측정모듈(100)로부터 고장전류정보를 인가받아 전차선(T)의 고장전류에 대한 전류비를 계산하여 고장전류 전류비정보를 생성한다.In addition, the current ratio measuring module 200 receives fault current information from the fault current measuring module 100 and calculates a current ratio with respect to the fault current of the catenary T to generate fault current current ratio information.

도 5를 참조하면, 전차선(T)을 통해 흐르는 총전류는

Figure 112010059199525-pat00015
Figure 112010059199525-pat00016
의 합인
Figure 112010059199525-pat00017
이고, 변전소에서 병렬급전소(PP1)까지의 거리를 D, 변전소에서 고장점까지의 거리를 d라고 한다면 두 거리의 비는 아래의 [수학식2]와 같이 총 사고전류와 고장점 우측 전류의 비로 표현할 수 있다.Referring to FIG. 5, the total current flowing through the catenary T is
Figure 112010059199525-pat00015
and
Figure 112010059199525-pat00016
Sum of
Figure 112010059199525-pat00017
If the distance from the substation to the parallel feeder (PP1) is D, and the distance from the substation to the fault point is d, the ratio of the two distances is the ratio of the total accident current and the current to the right of the fault point as shown in [Equation 2] below. I can express it.

[수학식2]&Quot; (2) "

Figure 112010059199525-pat00018
Figure 112010059199525-pat00018

또한, 병렬급전소(PP1)과 병렬급전소(PP2) 사이의 거리를 D1 이라하고, 그 사이의 고장지점을 d1이라 하면, 고장점의 전류비는 아래의 [수학식3]으로 도출할 수 있다.Further, if the distance between the parallel feed station PP1 and the parallel feed station PP2 is called D1 and the fault point between them is called d1, the current ratio of the fault point can be derived from Equation 3 below.

[수학식3]&Quot; (3) "

Figure 112010059199525-pat00019
Figure 112010059199525-pat00019

그리고, 병렬급전소(PP2)와 보조급전구분소(SP) 사이의 거리를 D2 라 하고, 그 사이의 고장지점을 d2 라 하면, 고장점의 전류비는 아래의 [수학식4]를 통해 도출할 수 있다.And, if the distance between the parallel feed station (PP2) and the auxiliary feed section (SP) is called D2, and the fault point between them is called d2, the current ratio of the fault point can be derived through Equation 4 below. Can be.

[수학식4]&Quot; (4) "

Figure 112010059199525-pat00020
Figure 112010059199525-pat00020

즉, 전류비 측정모듈(200)은 상기 [수학식2] 내지 [수학식4]를 통해 전차선(T)의 고장점에 대한 전류비를 계산하여 고장전류 전류비정보를 생성한다.That is, the current ratio measuring module 200 calculates the current ratio for the failure point of the catenary T through the above Equations 2 to 4 to generate fault current current ratio information.

한편, 상기 [수학식2] 내지 [수학식4]에서,

Figure 112010059199525-pat00021
은 상행선 변전소(SS)의 단권변압기(AT)에서 전차선(T)으로 흐르는 전류이고,
Figure 112010059199525-pat00022
는 하행성 변전소(SS)의 단권변압기(AT)에서 전차선(T)으로 흐르는 전류이며,
Figure 112010059199525-pat00023
은 상행성 병렬급전소(PP1)의 단권변압기(AT)에서 전차선(T)으로 흐르는 전류이고,
Figure 112010059199525-pat00024
는 하행성 병렬급전소(PP1)의 단권변압기(AT)에서 전차선(T)으로 흐르는 전류이며,
Figure 112010059199525-pat00025
은 상행선 병렬급전소(PP2)의 단권변압기(AT)에서 전차선(T)으로 흐르는 전류이고,
Figure 112010059199525-pat00026
는 하행선 병렬급전소(PP2)의 단권변압기(AT)에서 전차선(T)으로 흐르는 전류이며,
Figure 112010059199525-pat00027
은 상행선 보조급전구분소(SP)의 단권변압기(AT)에서 전차선(T)으로 흐르는 전류이고,
Figure 112010059199525-pat00028
는 하행선 보조급전구분소(SP)의 단권변압기(AT)에서 전차선(T)으로 흐르는 전류이다.On the other hand, in [Equation 2] to [Equation 4],
Figure 112010059199525-pat00021
Is a current flowing from the single winding transformer AT of the upstream substation SS to the tank line T,
Figure 112010059199525-pat00022
Is a current flowing from the single winding transformer (AT) of the descending substation (SS) to the tank line (T),
Figure 112010059199525-pat00023
Is the current flowing from the single winding transformer AT of the uphill parallel feed station PP1 to the catenary T,
Figure 112010059199525-pat00024
Is the current flowing from the single winding transformer AT of the descending parallel feed station PP1 to the catenary T,
Figure 112010059199525-pat00025
Is the current flowing from the single winding transformer (AT) of the upline parallel feeder (PP2) to the tank line (T),
Figure 112010059199525-pat00026
Is the current flowing from the single winding transformer (AT) of the downline parallel feeder (PP2) to the tank line (T),
Figure 112010059199525-pat00027
Is the current flowing from the single winding transformer (AT) of the upstream auxiliary feed section (SP) to the tank line (T),
Figure 112010059199525-pat00028
Is a current flowing from the single winding transformer AT of the downline auxiliary feed section SP to the tank line T.

또한,

Figure 112010059199525-pat00029
은 상행선 변전소(SS)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이고,
Figure 112010059199525-pat00030
는 하행선 변전소(SS)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이며,
Figure 112010059199525-pat00031
은 상행선 병렬급전소(PP1)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이고,
Figure 112010059199525-pat00032
는 하행선 병렬급전소(PP1)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이며,
Figure 112010059199525-pat00033
은 상행선 병렬급전소(PP2)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이고,
Figure 112010059199525-pat00034
는 하행선 병렬급전소(PP2)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이며,
Figure 112010059199525-pat00035
은 상행선 보조급전구분소(SP)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이고,
Figure 112010059199525-pat00036
는 하행선 보조급전구분소(SP)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이다.Also,
Figure 112010059199525-pat00029
Is a current flowing from the single winding transformer AT of the upstream substation SS to the feed line F,
Figure 112010059199525-pat00030
Is a current flowing from the single winding transformer (AT) of the downline substation (SS) to the feed line (F),
Figure 112010059199525-pat00031
Is the current flowing from the single winding transformer AT of the upward parallel feeder PP1 to the feeder line F,
Figure 112010059199525-pat00032
Is the current flowing from the single winding transformer AT of the downline parallel feed station PP1 to the feed line F,
Figure 112010059199525-pat00033
Is the current flowing from the single winding transformer AT of the upward parallel feeder PP2 to the feeder line F,
Figure 112010059199525-pat00034
Is the current flowing from the single winding transformer AT of the descending parallel feed station PP2 to the feed line F,
Figure 112010059199525-pat00035
Is the current flowing from the single winding transformer (AT) of the upstream auxiliary feed section (SP) to the feed line (F),
Figure 112010059199525-pat00036
Denotes a current flowing from the single winding transformer AT of the downline auxiliary feed section SP to the feed line F. FIG.

한편, 고장점 표정모듈(300)은 전류비 측정모듈(200)로부터 고장전류 전류비정보를 인가받고, 단권변압기(AT)들 사이의 두 지점에 대한 위치와 단권변압기(AT)들 사이의 두 지점에 대한 전류비와 전철의 전류를 이용하여, 전류비(

Figure 112010059199525-pat00037
)와 고장지점(
Figure 112010059199525-pat00038
)의 관계를 아래의 [수학식5]와 같이 도출하여 고장점을 표정한다.On the other hand, the fault point expression module 300 receives the fault current current ratio information from the current ratio measuring module 200, the position between the two points between the single winding transformer (AT) and the two between the single winding transformer (AT) By using the current ratio to the point and the current of the train, the current ratio (
Figure 112010059199525-pat00037
) And the point of failure (
Figure 112010059199525-pat00038
) Is expressed as shown in [Equation 5] below to express the fault point.

[수학식5][Equation 5]

Figure 112010059199525-pat00039
Figure 112010059199525-pat00039

이때,

Figure 112010059199525-pat00040
는 고장지점이고,
Figure 112010059199525-pat00041
는 전류비이며,
Figure 112010059199525-pat00042
은 첫 번째 고장 지점이고,
Figure 112010059199525-pat00043
는 두 번째 고장 지점이며,
Figure 112010059199525-pat00044
는 첫 번째 고장지점의 전류비로
Figure 112010059199525-pat00045
이고,
Figure 112010059199525-pat00046
는 두 번째 고장지점의 전류로 이다.At this time,
Figure 112010059199525-pat00040
Is the failure point,
Figure 112010059199525-pat00041
Is the current ratio,
Figure 112010059199525-pat00042
Is the first point of failure,
Figure 112010059199525-pat00043
Is the second point of failure,
Figure 112010059199525-pat00044
Is the current ratio of the first failure point
Figure 112010059199525-pat00045
ego,
Figure 112010059199525-pat00046
Is the current at the second failure point to be.

전술한바와 같이 [수학식5]를 통해 모든 구간의 기울기를 결정할 수 있고, 그것으로 사고 시 고장지점을 정확히 표정할 수 있으며, 상하행선 고장구분이 가능하다.As described above, it is possible to determine the slope of all sections through Equation (5), thereby accurately expressing the point of failure in case of an accident, and to distinguish the up and down lines.

도 6은 본 발명의 교류 급전계통에서 고장 구간 양단의 전차선(T)에 흐르는 고장전류비를 이용한 고장점 표정 시스템에 따른 고장위치와 전차선(T) 전류비를 그래프로 도시한 도면으로, 도시된 바와 같이 고장 구간 내에서는 고장위치와 전차선(T) 전류비간에는 선형적임을 알 수 있다.FIG. 6 is a graph illustrating a fault location and a catenary T current ratio according to a fault point expression system using a fault current ratio flowing through a catenary T at both ends of a fault section in the AC feed system of the present invention. As can be seen from the fault section, the linearity between the fault location and the catenary current (T) current ratio is seen.

또한, 급전선(F)-레일(R) 및 급전선(F)-전차선(T) 사고 시에도 전차선(T) 및 급전선(F)의 전류비와 고장지점의 관계가 선형적임에 따라 도 7에 도시된 바와 같은 급전선(F)-전차선(T) 사고 시에는 전차선(T)이나 급전선(F)의 전류를 측정하여 고장점을 표정하고, 도 8에 도시된 바와 같은 급전선(F)-레일(R) 사고 시에는 급전선(F)의 전류를 측정하여 고장점을 표정할 수 있다.
In addition, the relationship between the current ratio of the tram line T and the feed line F and the failure point is linear even in an accident of the feed line F, the rail R, and the feed line F, and the tram line T, as shown in FIG. 7. In the event of an accident of the feeder line F and the train line T as described above, the current of the tramline T or the feedline F is measured to express a failure point, and the feeder line F-rail R as shown in FIG. ) In case of an accident, the fault point can be expressed by measuring the current of the feed line (F).

그리고, 도 9를 참조하여 본 발명에 따른 교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 방법에 대해 살피면 아래와 같다.In addition, referring to FIG. 9, a failure point expression method using a fault current ratio flowing in a catenary at both ends of a fault section in the AC feed system according to the present invention will be described below.

고장전류 측정모듈(100)이 변압기에서 흘러나오는 전류를 실시간으로 측정하되, 전차선(T)이 레일(R) 위로 단락되는 사고 발생시, 사고 지점에 인접한 양측의 변압기에 형성된 두 개의 Loop를 양단에 흐르는 전차선(T)의 고장전류를 측정하여 고장전류정보를 생성한다(S100).The fault current measuring module 100 measures the current flowing out of the transformer in real time, and when an accident occurs in which the catenary T is shorted over the rail R, two loops formed in the transformers on both sides adjacent to the accident point flow through both ends. The fault current information is generated by measuring the fault current of the catenary T (S100).

이어서, 전류비 측정모듈(200)이 고장전류 측정모듈(100)로부터 고장전류정보를 인가받아 전차선(T)의 고장전류에 대한 전류비를 계산하여 고장전류 전류비정보를 생성한다(S200).Subsequently, the current ratio measuring module 200 receives fault current information from the fault current measuring module 100, calculates a current ratio for the fault current of the catenary T, and generates fault current current ratio information (S200).

그리고, 고장점 표정모듈(300)이 전류비 측정모듈(200)로부터 고장전류 전류비정보를 인가받고, 단권변압기(AT)사이의 두 지점의 위치와 두 지점의 전류비와 전철의 전류를 이용하여, 전류비(

Figure 112010059199525-pat00048
)와 고장지점(
Figure 112010059199525-pat00049
)의 관계를 도출하여 고장점을 표정한다(S300).Then, the fault point expression module 300 receives the fault current current ratio information from the current ratio measuring module 200, and uses the position of two points and the current ratio of the two points and the current of the train between the single winding transformers AT. Current ratio (
Figure 112010059199525-pat00048
) And the point of failure (
Figure 112010059199525-pat00049
Derivation of the relationship to express a failure point (S300).

이상으로 본 발명의 기술적 사상을 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 이와 같이 도시되고 설명된 그대로의 구성 및 작용에만 국한되는 것이 아니며, 기술적 사상의 범주를 일탈함이 없이 본 발명에 대해 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서 그러한 모든 적절한 변경 및 수정과 균등 물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.As described above and described with reference to a preferred embodiment for illustrating the technical idea of the present invention, the present invention is not limited to the configuration and operation as shown and described as described above, it is a deviation from the scope of the technical idea It will be understood by those skilled in the art that many modifications and variations can be made to the invention without departing from the scope of the invention. And all such modifications and changes as fall within the scope of the present invention are therefore to be regarded as being within the scope of the present invention.

S: 교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 시스템
100: 고장전류 측정모듈 200: 전류비 측정모듈
300: 고장점 표정모듈
S: Fault point expression system using fault current ratio flowing in the tram line at both ends of fault section in AC feed system
100: fault current measurement module 200: current ratio measurement module
300: fault expression module

Claims (6)

교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 시스템에 있어서,
전차선의 전류를 실시간으로 측정하되, 전차선이 레일 위로 단락되는 사고 발생시, 사고 지점에 인접한 양측의 변압기에 형성된 두 개의 Loop를 양단에 흐르는 전차선의 고장전류를 측정하여 고장전류정보를 생성하는 고장전류 측정모듈;
상기 고장전류 측정모듈로부터 고장전류정보를 인가받아 전차선의 고장전류에 대한 전류비를 계산하여 고장전류 전류비정보를 생성하는 전류비 측정모듈; 및
상기 전류비 측정모듈로부터 고장전류 전류비정보를 인가받고, 단권변압기(AT)들 사이의 두 지점에 대한 위치와 상기 단권변압기(AT)들 사이의 두 지점에 대한 전류비와 전철의 전류를 이용하여, 전류비(
Figure 112010059199525-pat00050
)와 고장지점(
Figure 112010059199525-pat00051
)의 관계를 도출하여 고장점을 표정하는 고장점 표정모듈;을 포함하는 것을 특징으로 하는 교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 시스템.
In the fault expression system using the fault current ratio flowing from the AC power supply system to the tram line at both ends of the fault section,
Measures the current of a train line in real time, but when an accident occurs in which the train line is shorted on the rail, fault current measurement is generated by measuring fault currents of the train lines flowing through two loops formed at both transformers adjacent to the accident point at both ends. module;
A current ratio measuring module configured to generate fault current current ratio information by receiving fault current information from the fault current measuring module and calculating a current ratio with respect to a fault current of a catenary; And
The fault current current ratio information is received from the current ratio measuring module, and the position of two points between the single winding transformers (AT) and the current ratio of the two points between the single winding transformers (AT) and the current of the train are used. Current ratio (
Figure 112010059199525-pat00050
) And the point of failure (
Figure 112010059199525-pat00051
Defect point expression system using a fault current ratio flowing in the tram line at both ends of the fault section in the AC power supply system, characterized in that it comprises a;
제 1 항에 있어서,
상기 전류비 측정모듈은,
전차선을 통해 흐르는 총전류가
Figure 112010059199525-pat00052
Figure 112010059199525-pat00053
의 합인
Figure 112010059199525-pat00054
이고, 변전소에서 병렬급전소(PP1)까지의 거리가 D이며, 상기 변전소에서 고장점까지의 거리가 d인 경우, 양자의 거리에 대한 비를 [수학식2]를 통해 도출하되,
Figure 112010059199525-pat00055
은 상행선 변전소(SS)의 단권변압기(AT)에서 전차선으로 흐르는 전류이고,
Figure 112010059199525-pat00056
는 하행성 변전소(SS)의 단권변압기(AT)에서 전차선으로 흐르는 전류이며,
Figure 112010059199525-pat00057
은 상행성 병렬급전소(PP1)의 단권변압기(AT)에서 전차선으로 흐르는 전류이고,
Figure 112010059199525-pat00058
는 하행성 병렬급전소(PP1)의 단권변압기(AT)에서 전차선으로 흐르는 전류이며,
Figure 112010059199525-pat00059
은 상행선 병렬급전소(PP2)의 단권변압기(AT)에서 전차선으로 흐르는 전류이고,
Figure 112010059199525-pat00060
는 하행선 병렬급전소(PP2)의 단권변압기(AT)에서 전차선으로 흐르는 전류이며,
Figure 112010059199525-pat00061
은 상행선 보조급전구분소(SP)의 단권변압기(AT)에서 전차선으로 흐르는 전류이고,
Figure 112010059199525-pat00062
는 하행선 보조급전구분소(SP)의 단권변압기(AT)에서 전차선으로 흐르는 전류이며,
Figure 112010059199525-pat00063
은 상행선 변전소(SS)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이고,
Figure 112010059199525-pat00064
는 하행선 변전소(SS)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이며,
Figure 112010059199525-pat00065
은 상행선 병렬급전소(PP1)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이고,
Figure 112010059199525-pat00066
는 하행선 병렬급전소(PP1)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이며,
Figure 112010059199525-pat00067
은 상행선 병렬급전소(PP2)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이고,
Figure 112010059199525-pat00068
는 하행선 병렬급전소(PP2)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이며,
Figure 112010059199525-pat00069
은 상행선 보조급전구분소(SP)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이고,
Figure 112010059199525-pat00070
는 하행선 보조급전구분소(SP)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류인 것을 특징으로 하는 교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 시스템.
[수학식2]
Figure 112010059199525-pat00071
The method of claim 1,
The current ratio measuring module,
The total current flowing through the tank line
Figure 112010059199525-pat00052
and
Figure 112010059199525-pat00053
Sum of
Figure 112010059199525-pat00054
When the distance from the substation to the parallel feeder (PP1) is D, and the distance from the substation to the fault point is d, the ratio to the distance between the two is derived through Equation 2,
Figure 112010059199525-pat00055
Is the current flowing from the single winding transformer (AT) of the upstream substation (SS) to the tram line,
Figure 112010059199525-pat00056
Is the current flowing from the single winding transformer (AT) of the descending substation (SS) to the catenary,
Figure 112010059199525-pat00057
Is the current flowing from the single winding transformer (AT) of the ascending parallel feeder (PP1) to the catenary,
Figure 112010059199525-pat00058
Is the current flowing from the single winding transformer (AT) of the descending parallel feed station (PP1) to the catenary,
Figure 112010059199525-pat00059
Is the current flowing from the single winding transformer (AT) of the upline parallel feeder (PP2) to the tram line,
Figure 112010059199525-pat00060
Is the current flowing from the single winding transformer (AT) of downline parallel feeder (PP2) to the tram line,
Figure 112010059199525-pat00061
Is the current flowing from the single winding transformer (AT) of the upstream auxiliary feeder section (SP) to the tram line,
Figure 112010059199525-pat00062
Is the current flowing from the single winding transformer (AT) of the downline auxiliary feed section (SP) to the tram line,
Figure 112010059199525-pat00063
Is a current flowing from the single winding transformer AT of the upstream substation SS to the feed line F,
Figure 112010059199525-pat00064
Is a current flowing from the single winding transformer (AT) of the downline substation (SS) to the feed line (F),
Figure 112010059199525-pat00065
Is the current flowing from the single winding transformer AT of the upward parallel feeder PP1 to the feeder line F,
Figure 112010059199525-pat00066
Is the current flowing from the single winding transformer AT of the downline parallel feed station PP1 to the feed line F,
Figure 112010059199525-pat00067
Is the current flowing from the single winding transformer AT of the upward parallel feeder PP2 to the feeder line F,
Figure 112010059199525-pat00068
Is the current flowing from the single winding transformer AT of the descending parallel feed station PP2 to the feed line F,
Figure 112010059199525-pat00069
Is the current flowing from the single winding transformer (AT) of the upstream auxiliary feed section (SP) to the feed line (F),
Figure 112010059199525-pat00070
Is a current flowing from the single winding transformer (AT) of the down line auxiliary feed section (SP) to the feed line (F), the fault point expression system using the fault current ratio flowing through the tram lines at both ends of the fault section.
&Quot; (2) "
Figure 112010059199525-pat00071
제 1 항에 있어서,
상기 전류비 측정모듈은,
전차선을 통해 흐르는 총전류가
Figure 112010059199525-pat00072
Figure 112010059199525-pat00073
의 합인
Figure 112010059199525-pat00074
이고, 병렬급전소(PP1)과 병렬급전소(PP2) 사이의 거리가 D1 이며, 상기 병렬급전소(PP1)과 병렬급전소(PP2) 사이의 고장지점이 d1인 경우, 양자의 거리에 대한 비를 [수학식3]를 통해 도출하되,
Figure 112010059199525-pat00075
은 상행선 변전소(SS)의 단권변압기(AT)에서 전차선으로 흐르는 전류이고,
Figure 112010059199525-pat00076
는 하행성 변전소(SS)의 단권변압기(AT)에서 전차선으로 흐르는 전류이며,
Figure 112010059199525-pat00077
은 상행성 병렬급전소(PP1)의 단권변압기(AT)에서 전차선으로 흐르는 전류이고,
Figure 112010059199525-pat00078
는 하행성 병렬급전소(PP1)의 단권변압기(AT)에서 전차선으로 흐르는 전류이며,
Figure 112010059199525-pat00079
은 상행선 병렬급전소(PP2)의 단권변압기(AT)에서 전차선으로 흐르는 전류이고,
Figure 112010059199525-pat00080
는 하행선 병렬급전소(PP2)의 단권변압기(AT)에서 전차선으로 흐르는 전류이며,
Figure 112010059199525-pat00081
은 상행선 보조급전구분소(SP)의 단권변압기(AT)에서 전차선으로 흐르는 전류이고,
Figure 112010059199525-pat00082
는 하행선 보조급전구분소(SP)의 단권변압기(AT)에서 전차선으로 흐르는 전류이며,
Figure 112010059199525-pat00083
은 상행선 변전소(SS)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이고,
Figure 112010059199525-pat00084
는 하행선 변전소(SS)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이며,
Figure 112010059199525-pat00085
은 상행선 병렬급전소(PP1)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이고,
Figure 112010059199525-pat00086
는 하행선 병렬급전소(PP1)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이며,
Figure 112010059199525-pat00087
은 상행선 병렬급전소(PP2)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이고,
Figure 112010059199525-pat00088
는 하행선 병렬급전소(PP2)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이며,
Figure 112010059199525-pat00089
은 상행선 보조급전구분소(SP)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이고,
Figure 112010059199525-pat00090
는 하행선 보조급전구분소(SP)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류인 것을 특징으로 하는 교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 시스템.
[수학식3]
Figure 112010059199525-pat00091
The method of claim 1,
The current ratio measuring module,
The total current flowing through the tank line
Figure 112010059199525-pat00072
and
Figure 112010059199525-pat00073
Sum of
Figure 112010059199525-pat00074
When the distance between the parallel feed station PP1 and the parallel feed station PP2 is D1 and the fault point between the parallel feed station PP1 and the parallel feed station PP2 is d1, the ratio of the distance between the two Derived through equation [3],
Figure 112010059199525-pat00075
Is the current flowing from the single winding transformer (AT) of the upstream substation (SS) to the tram line,
Figure 112010059199525-pat00076
Is the current flowing from the single winding transformer (AT) of the descending substation (SS) to the catenary,
Figure 112010059199525-pat00077
Is the current flowing from the single winding transformer (AT) of the ascending parallel feeder (PP1) to the catenary,
Figure 112010059199525-pat00078
Is the current flowing from the single winding transformer (AT) of the descending parallel feed station (PP1) to the catenary,
Figure 112010059199525-pat00079
Is the current flowing from the single winding transformer (AT) of the upline parallel feeder (PP2) to the tram line,
Figure 112010059199525-pat00080
Is the current flowing from the single winding transformer (AT) of downline parallel feeder (PP2) to the tram line,
Figure 112010059199525-pat00081
Is the current flowing from the single winding transformer (AT) of the upstream auxiliary feeder section (SP) to the tram line,
Figure 112010059199525-pat00082
Is the current flowing from the single winding transformer (AT) of the downline auxiliary feed section (SP) to the tram line,
Figure 112010059199525-pat00083
Is a current flowing from the single winding transformer AT of the upstream substation SS to the feed line F,
Figure 112010059199525-pat00084
Is a current flowing from the single winding transformer (AT) of the downline substation (SS) to the feed line (F),
Figure 112010059199525-pat00085
Is the current flowing from the single winding transformer AT of the upward parallel feeder PP1 to the feeder line F,
Figure 112010059199525-pat00086
Is the current flowing from the single winding transformer AT of the downline parallel feed station PP1 to the feed line F,
Figure 112010059199525-pat00087
Is the current flowing from the single winding transformer AT of the upward parallel feeder PP2 to the feeder line F,
Figure 112010059199525-pat00088
Is the current flowing from the single winding transformer AT of the descending parallel feed station PP2 to the feed line F,
Figure 112010059199525-pat00089
Is the current flowing from the single winding transformer (AT) of the upstream auxiliary feed section (SP) to the feed line (F),
Figure 112010059199525-pat00090
Is a current flowing from the single winding transformer (AT) of the down line auxiliary feed section (SP) to the feed line (F), characterized in that the fault point expression system using the fault current ratio flowing through the tram line at both ends of the fault section.
&Quot; (3) "
Figure 112010059199525-pat00091
제 1 항에 있어서,
상기 전류비 측정모듈은,
전차선을 통해 흐르는 총전류가
Figure 112010059199525-pat00092
Figure 112010059199525-pat00093
의 합인
Figure 112010059199525-pat00094
이고, 병렬급전소(PP2)와 보조급전구분소(SP) 사이의 거리가 D2 이며, 상기 병렬급전소(PP2)와 보조급전구분소(SP) 사이의 고장지점이 d2인 경우, 양자의 거리에 대한 비를 [수학식4]를 통해 도출하되,
Figure 112010059199525-pat00095
은 상행선 변전소(SS)의 단권변압기(AT)에서 전차선으로 흐르는 전류이고,
Figure 112010059199525-pat00096
는 하행성 변전소(SS)의 단권변압기(AT)에서 전차선으로 흐르는 전류이며,
Figure 112010059199525-pat00097
은 상행성 병렬급전소(PP1)의 단권변압기(AT)에서 전차선으로 흐르는 전류이고,
Figure 112010059199525-pat00098
는 하행성 병렬급전소(PP1)의 단권변압기(AT)에서 전차선으로 흐르는 전류이며,
Figure 112010059199525-pat00099
은 상행선 병렬급전소(PP2)의 단권변압기(AT)에서 전차선으로 흐르는 전류이고,
Figure 112010059199525-pat00100
는 하행선 병렬급전소(PP2)의 단권변압기(AT)에서 전차선으로 흐르는 전류이며,
Figure 112010059199525-pat00101
은 상행선 보조급전구분소(SP)의 단권변압기(AT)에서 전차선으로 흐르는 전류이고,
Figure 112010059199525-pat00102
는 하행선 보조급전구분소(SP)의 단권변압기(AT)에서 전차선으로 흐르는 전류이며,
Figure 112010059199525-pat00103
은 상행선 변전소(SS)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이고,
Figure 112010059199525-pat00104
는 하행선 변전소(SS)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이며,
Figure 112010059199525-pat00105
은 상행선 병렬급전소(PP1)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이고,
Figure 112010059199525-pat00106
는 하행선 병렬급전소(PP1)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이며,
Figure 112010059199525-pat00107
은 상행선 병렬급전소(PP2)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이고,
Figure 112010059199525-pat00108
는 하행선 병렬급전소(PP2)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이며,
Figure 112010059199525-pat00109
은 상행선 보조급전구분소(SP)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류이고,
Figure 112010059199525-pat00110
는 하행선 보조급전구분소(SP)의 단권변압기(AT)에서 급전선(F)으로 흐르는 전류인 것을 특징으로 하는 교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 시스템.
[수학식4]
Figure 112010059199525-pat00111
The method of claim 1,
The current ratio measuring module,
The total current flowing through the tank line
Figure 112010059199525-pat00092
and
Figure 112010059199525-pat00093
Sum of
Figure 112010059199525-pat00094
When the distance between the parallel feed station (PP2) and the auxiliary feed section (SP) is D2, and the failure point between the parallel feed station (PP2) and the auxiliary feed section (SP) is d2, To derive the ratio through [Equation 4],
Figure 112010059199525-pat00095
Is the current flowing from the single winding transformer (AT) of the upstream substation (SS) to the tram line,
Figure 112010059199525-pat00096
Is the current flowing from the single winding transformer (AT) of the descending substation (SS) to the catenary,
Figure 112010059199525-pat00097
Is the current flowing from the single winding transformer (AT) of the ascending parallel feeder (PP1) to the catenary,
Figure 112010059199525-pat00098
Is the current flowing from the single winding transformer (AT) of the descending parallel feed station (PP1) to the catenary,
Figure 112010059199525-pat00099
Is the current flowing from the single winding transformer (AT) of the upline parallel feeder (PP2) to the tram line,
Figure 112010059199525-pat00100
Is the current flowing from the single winding transformer (AT) of downline parallel feeder (PP2) to the tram line,
Figure 112010059199525-pat00101
Is the current flowing from the single winding transformer (AT) of the upstream auxiliary feeder section (SP) to the tram line,
Figure 112010059199525-pat00102
Is the current flowing from the single winding transformer (AT) of the downline auxiliary feed section (SP) to the tram line,
Figure 112010059199525-pat00103
Is a current flowing from the single winding transformer AT of the upstream substation SS to the feed line F,
Figure 112010059199525-pat00104
Is a current flowing from the single winding transformer (AT) of the downline substation (SS) to the feed line (F),
Figure 112010059199525-pat00105
Is the current flowing from the single winding transformer AT of the upward parallel feeder PP1 to the feeder line F,
Figure 112010059199525-pat00106
Is the current flowing from the single winding transformer AT of the downline parallel feed station PP1 to the feed line F,
Figure 112010059199525-pat00107
Is the current flowing from the single winding transformer AT of the upward parallel feeder PP2 to the feeder line F,
Figure 112010059199525-pat00108
Is the current flowing from the single winding transformer AT of the descending parallel feed station PP2 to the feed line F,
Figure 112010059199525-pat00109
Is the current flowing from the single winding transformer (AT) of the upstream auxiliary feed section (SP) to the feed line (F),
Figure 112010059199525-pat00110
Is a current flowing from the single winding transformer (AT) of the down line auxiliary feed section (SP) to the feed line (F), characterized in that the fault point expression system using the fault current ratio flowing through the tram line at both ends of the fault section.
[Equation 4]
Figure 112010059199525-pat00111
제 1 항에 있어서,
상기 고장점 표정모듈은,
상기 전류비(
Figure 112010059199525-pat00112
)와 고장지점(
Figure 112010059199525-pat00113
)의 관계를 [수학식5]를 통해 도출하여 고장점을 표정하되,
Figure 112010059199525-pat00114
는 고장지점이고,
Figure 112010059199525-pat00115
는 전류비이며,
Figure 112010059199525-pat00116
은 첫 번째 고장 지점이고,
Figure 112010059199525-pat00117
는 두 번째 고장 지점이며,
Figure 112010059199525-pat00118
는 첫 번째 고장지점의 전류비로
Figure 112010059199525-pat00119
이고,
Figure 112010059199525-pat00120
는 두 번째 고장지점의 전류비로
Figure 112010059199525-pat00121
인 것을 특징으로 하는 교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 시스템.
[수학식5]
Figure 112010059199525-pat00122
The method of claim 1,
The fault point facial expression module,
The current ratio (
Figure 112010059199525-pat00112
) And the point of failure (
Figure 112010059199525-pat00113
) To express the breakdown point through [Equation 5],
Figure 112010059199525-pat00114
Is the failure point,
Figure 112010059199525-pat00115
Is the current ratio,
Figure 112010059199525-pat00116
Is the first point of failure,
Figure 112010059199525-pat00117
Is the second point of failure,
Figure 112010059199525-pat00118
Is the current ratio of the first failure point
Figure 112010059199525-pat00119
ego,
Figure 112010059199525-pat00120
Is the current ratio of the second failure point
Figure 112010059199525-pat00121
In the AC power supply system, characterized in that the fault point expression system using the fault current ratio flowing through the tram line at both ends of the fault section.
[Equation 5]
Figure 112010059199525-pat00122
교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 방법에 있어서,
(a) 고장전류 측정모듈이 전차선의 전류를 실시간으로 측정하되, 전차선이 레일 위로 단락되는 사고 발생시, 사고 지점에 인접한 양측의 변압기에 형성된 두 개의 Loop를 양단에 흐르는 전차선의 고장전류를 측정하여 고장전류정보를 생성하는 단계;
(b) 전류비 측정모듈이 상기 고장전류 측정모듈로부터 고장전류정보를 인가받아 전차선의 고장전류에 대한 전류비를 계산하여 고장전류 전류비정보를 생성하는 단계; 및
(c) 고장점 표정모듈이 상기 전류비 측정모듈로부터 고장전류 전류비정보를 인가받고, 단권변압기(AT)들 사이의 두 지점에 대한 위치와 단권변압기(AT)들 사이의 두 지점에 대한 전류비와 전철의 전류를 이용하여, 전류비(
Figure 112010059199525-pat00123
)와 고장지점(
Figure 112010059199525-pat00124
)의 관계를 도출하여 고장점을 표정하는 단계;를 포함하는 것을 특징으로 하는 교류 급전계통에서 고장 구간 양단의 전차선에 흐르는 고장전류비를 이용한 고장점 표정 방법.
In the fault point expression method using the fault current ratio flowing from the AC power supply system to the tram line at both ends of the fault section,
(a) The fault current measuring module measures the current of the train line in real time, and in the event of an accident in which the train line is shorted on the rail, the fault current is measured by measuring the fault current of the train line flowing through the two loops formed at both transformers adjacent to the accident point. Generating current information;
(b) a current ratio measuring module receiving fault current information from the fault current measuring module to calculate a current ratio of a fault current of a catenary to generate fault current current ratio information; And
(c) The fault point expression module receives fault current current ratio information from the current ratio measuring module, and positions the two points between the single winding transformers and the currents for the two points between the single winding transformers. By using ratio and current of train,
Figure 112010059199525-pat00123
) And the point of failure (
Figure 112010059199525-pat00124
Deriving a relationship between the expression of the fault point; The fault point expression method using a fault current ratio flowing in the tram line at both ends of the fault section in the AC power supply system comprising a.
KR1020100089281A 2010-09-13 2010-09-13 A fault location estimation technique using fault current ratio flowing catenary of the both sides between fault zone in ac feeding system and method KR101093030B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100089281A KR101093030B1 (en) 2010-09-13 2010-09-13 A fault location estimation technique using fault current ratio flowing catenary of the both sides between fault zone in ac feeding system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100089281A KR101093030B1 (en) 2010-09-13 2010-09-13 A fault location estimation technique using fault current ratio flowing catenary of the both sides between fault zone in ac feeding system and method

Publications (1)

Publication Number Publication Date
KR101093030B1 true KR101093030B1 (en) 2011-12-13

Family

ID=45506146

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100089281A KR101093030B1 (en) 2010-09-13 2010-09-13 A fault location estimation technique using fault current ratio flowing catenary of the both sides between fault zone in ac feeding system and method

Country Status (1)

Country Link
KR (1) KR101093030B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103116114A (en) * 2013-01-23 2013-05-22 中国南方电网有限责任公司超高压输电公司检修试验中心 Fault location method and system under direct current deicing device earth wire deicing mode
CN104215879A (en) * 2014-08-13 2014-12-17 宁波海创天下信息科技有限公司 Method and system for locating short-circuit faults of power distribution networks
KR101628971B1 (en) * 2015-12-31 2016-06-13 한국철도공사 System and method for fault localization of protection relay with time synchronization in ac railway system
KR101653954B1 (en) * 2015-03-18 2016-09-06 한국철도공사 System and method for fault localization using current of trolly-feeder in at feeding system
KR101793712B1 (en) * 2016-01-08 2017-11-03 한국철도공사 Failure Analysis Method using Booster Current of Electric Vehicle Load
ES2699998A1 (en) * 2018-05-04 2019-02-13 Univ Madrid Politecnica SYSTEM AND METHOD OF LOCALIZATION OF LAND FAULTS IN ELECTRIC POWER SUPPLY LINES BIPHYSICAL RAILWAYS (Machine-translation by Google Translate, not legally binding)
CN115575767A (en) * 2022-10-31 2023-01-06 西南交通大学 Double-line traction network fault location system and method adopting bilateral direct power supply mode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003072431A (en) 2001-08-30 2003-03-12 Central Japan Railway Co Feeder circuit failure spotting device
JP2007076608A (en) 2005-09-16 2007-03-29 Toshiba Corp Failure detecting device of failure point standardizing device for alternating current at feeding circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003072431A (en) 2001-08-30 2003-03-12 Central Japan Railway Co Feeder circuit failure spotting device
JP2007076608A (en) 2005-09-16 2007-03-29 Toshiba Corp Failure detecting device of failure point standardizing device for alternating current at feeding circuit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103116114A (en) * 2013-01-23 2013-05-22 中国南方电网有限责任公司超高压输电公司检修试验中心 Fault location method and system under direct current deicing device earth wire deicing mode
CN104215879A (en) * 2014-08-13 2014-12-17 宁波海创天下信息科技有限公司 Method and system for locating short-circuit faults of power distribution networks
KR101653954B1 (en) * 2015-03-18 2016-09-06 한국철도공사 System and method for fault localization using current of trolly-feeder in at feeding system
KR101628971B1 (en) * 2015-12-31 2016-06-13 한국철도공사 System and method for fault localization of protection relay with time synchronization in ac railway system
KR101793712B1 (en) * 2016-01-08 2017-11-03 한국철도공사 Failure Analysis Method using Booster Current of Electric Vehicle Load
ES2699998A1 (en) * 2018-05-04 2019-02-13 Univ Madrid Politecnica SYSTEM AND METHOD OF LOCALIZATION OF LAND FAULTS IN ELECTRIC POWER SUPPLY LINES BIPHYSICAL RAILWAYS (Machine-translation by Google Translate, not legally binding)
CN115575767A (en) * 2022-10-31 2023-01-06 西南交通大学 Double-line traction network fault location system and method adopting bilateral direct power supply mode
CN115575767B (en) * 2022-10-31 2024-02-13 西南交通大学 Double-line traction network fault distance measurement system and method in double-side direct power supply mode

Similar Documents

Publication Publication Date Title
KR101093030B1 (en) A fault location estimation technique using fault current ratio flowing catenary of the both sides between fault zone in ac feeding system and method
KR101090957B1 (en) The return current ratio measurement system for real time leakage current monitoring on the dc railway system
CN102707190B (en) Direct-current-side short-circuit fault distance measuring device and method of metro tractive power supply system
KR101009996B1 (en) Fault position measuring method and system at electric railway of at type power supply system
CN107797027B (en) A kind of electric railway AT traction network fault positioning method
KR101844468B1 (en) Apparatus and method for high speed fault distinction and fault location estimation using the database based on inductive analysis in high speed ac railway feeding system
JP5319503B2 (en) AC AT feeder circuit protection device and method
JP4745000B2 (en) Fault detection device for fault location device for AC AT feeder circuit
KR101456819B1 (en) Real time monitoring system for common ground facility of the electric railway
JP5319504B2 (en) AC AT feeder circuit protection device and method
KR101653954B1 (en) System and method for fault localization using current of trolly-feeder in at feeding system
CN110959120B (en) Method and device for fault location along an energy supply line in a direct current system
KR101358441B1 (en) System And Apparatus, and Method For measuring error point in DC current environment
WO2006001566A1 (en) Ground overcurrent protection relay system for ungrounded dc power feed system and method of controlling the same
CN105699858B (en) A kind of aerial-cable hybrid line fault distance-finding method considering connection resistance
KR100755452B1 (en) Bus differential protective relaying system in ungrounded DC traction power supply system and control method thereof
KR101628971B1 (en) System and method for fault localization of protection relay with time synchronization in ac railway system
KR101793712B1 (en) Failure Analysis Method using Booster Current of Electric Vehicle Load
JP2019191021A (en) Failure point location device, failure point location system, and method for locating failure point
KR101470932B1 (en) System for estimating real time catenary impedance using the synchronized measuring power data between operation train and substation
JP2023078110A (en) Railway vehicle
JP2019090649A (en) Fault point locating system
CN105291895A (en) Direct power supply mode traction network distance protection setting calculation optimization method
Sandidzadeh et al. Controlling and simulation of stray currents in DC railway by considering the effects of collection mats
US11919550B2 (en) Rail breakage detection device and rail breakage result management system

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141202

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160602

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161206

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171114

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee