KR101084952B1 - Nano Metal Carbon Catalyst And Manufacturing Method Thereof - Google Patents

Nano Metal Carbon Catalyst And Manufacturing Method Thereof Download PDF

Info

Publication number
KR101084952B1
KR101084952B1 KR1020090062309A KR20090062309A KR101084952B1 KR 101084952 B1 KR101084952 B1 KR 101084952B1 KR 1020090062309 A KR1020090062309 A KR 1020090062309A KR 20090062309 A KR20090062309 A KR 20090062309A KR 101084952 B1 KR101084952 B1 KR 101084952B1
Authority
KR
South Korea
Prior art keywords
nano
solution
metal
reaction vessel
carbon
Prior art date
Application number
KR1020090062309A
Other languages
Korean (ko)
Other versions
KR20110004726A (en
Inventor
한재길
Original Assignee
재단법인 송도테크노파크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 송도테크노파크 filed Critical 재단법인 송도테크노파크
Priority to KR1020090062309A priority Critical patent/KR101084952B1/en
Publication of KR20110004726A publication Critical patent/KR20110004726A/en
Application granted granted Critical
Publication of KR101084952B1 publication Critical patent/KR101084952B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 나노 금속 카본 촉매에 관한 것이다. The present invention relates to a nano metal carbon catalyst.

본 발명은 일반적으로 나노 금속을 카본, 탄소 나노 튜브 등에 부착시켜 연료 전지 등에서 수소 발생을 촉진하는 역할을 하는 나노 금속 카본 촉매를 기존의 무정형의 나노 금속이 아닌 스퀘어형의 나노 금속으로 얻고자 하는 것으로, 카본, 탄소 나노 튜브 등에 Pd, Pt, Ag 등의 금속 용액을 소량의 알코올 또는 환원제와 함께 반응 용기에 넣고, 반응 용기를 고립계로 하고, 가압 및 승온 시킨 후, 마이크로웨이브를 조사하여 금속의 석출 및 부착을 빠른 시간 내에 이루며, 반응 용기를 가압하여 반응시켜 활성점을 다수 포함하는 스퀘어형의 나노 금속을 카본에 부착시킨다. In general, the present invention is to obtain a nano-metal carbon catalyst, which attaches nano-metals to carbon, carbon nanotubes, etc. and promotes hydrogen generation in fuel cells, as a square-type nanometal instead of an amorphous nanometal. A metal solution such as Pd, Pt, Ag, etc., in a carbon, carbon nanotube, or the like is placed in a reaction vessel together with a small amount of alcohol or a reducing agent. And the adhesion is made in a short time, the reaction vessel is pressurized to react to attach a square-shaped nano-metal including a large number of active sites to the carbon.

본 발명에 의하면, 활성점이 많은 나노 금속으로 인해, 촉매의 활성도가 높다는 장점이 있다.According to the present invention, due to the nano-metal having many active points, there is an advantage that the activity of the catalyst is high.

나노 금속 카본 촉매, PdC, PtC, AgC Nano Metal Carbon Catalyst, PdC, PtC, AgC

Description

나노 금속 카본 촉매 및 그 제조 방법{Nano Metal Carbon Catalyst And Manufacturing Method Thereof}Nano Metal Carbon Catalyst And Manufacturing Method Thereof}

본 발명은 나노 금속 카본 촉매에 관한 것으로, 보다 상세하게는 탈수소 반응 촉매, 수소 개질 촉매 또는 연료 전지에 사용되어 수소를 발생시키는 역할을 하는 나노 금속을 포함하는 촉매에 관한 것이다.The present invention relates to a nano metal carbon catalyst, and more particularly, to a catalyst including a nano metal used in a dehydrogenation catalyst, a hydrogen reforming catalyst, or a fuel cell to generate hydrogen.

본 발명은 Pd, Pt, Ag 등의 나노 금속을 포함한 촉매에 관한 것이다.The present invention relates to a catalyst comprising nano metals such as Pd, Pt, Ag and the like.

일반적으로 상기와 같은 나노 금속을 포함한 촉매의 종래의 제조 방법은 다음과 같다.In general, a conventional method for preparing a catalyst containing such a nano metal is as follows.

팔라듐 카본(PdC) 촉매의 경우, Pd 용액을 만들어, 여기에 환원제로서 하이드라진(hydrazine) 용액 또는 포름알데히드(formealdehyde) 용액을 첨가하여 카본 분말에 혼합한 다음, KOH 또는 NaOH 용액을 첨가하면, 카본 표면에 Pd(OH)2 침전이 발생한다. In the case of palladium carbon (PdC) catalyst, a Pd solution is made, mixed with carbon powder by adding a hydrazine solution or formaldehyde solution as a reducing agent, and then adding a KOH or NaOH solution. Precipitation of Pd (OH) 2 occurs.

이와 같이 하여, Pd+2 상태로부터 Pd0 상태로 환원된 나노 입자 수준의 팔라 듐 카본 촉매를 얻을 수 있다. In this way, a palladium carbon catalyst at the nanoparticle level reduced from the Pd +2 state to the Pd 0 state can be obtained.

그러나 상기한 바와 같은 종래 기술에서는 다음과 같은 문제점이 있다.However, the above-described conventional techniques have the following problems.

즉, 도 1(a) 내지 (e)에 도시된 바와 같이 상기한 종래 기술에 따른 PdC 촉매의 TEM 사진에는 형성된 Pd 입자가 4 nm, 8 nm, 20 nm, 또는 300 nm 등의 다양한 크기를 나타내고, 그 형태는 원만한 곡선 형태를 갖는 일정하지 않은 무정형으로 나타난다. 이러한 무정형의 Pd 나노 입자는 예리한 에지(edge)가 활성점이 되어 촉매로서의 기능이 우수하다는 점을 고려할 때, 그다지 활성이 우수하지 못하다는 문제점이 있다.That is, as shown in Figures 1 (a) to (e) in the TEM image of the PdC catalyst according to the prior art described above, the formed Pd particles exhibit various sizes such as 4 nm, 8 nm, 20 nm, or 300 nm. The shape appears to be non-uniform amorphous with a smooth curve. Such amorphous Pd nanoparticles have a problem that their activity is not very good considering that the sharp edge becomes an active point and is excellent as a catalyst.

이러한 현상은 PdC 촉매 뿐만 아니라, PtC 촉매, AgC 촉매에서도 동일하다.This phenomenon is the same in not only PdC catalyst but also PtC catalyst and AgC catalyst.

따라서 본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 활성이 우수한 나노 금속 카본 촉매를 제공하기 위한 것이다.Therefore, the present invention has been made to solve the above-mentioned conventional problems, an object of the present invention is to provide a nano metal carbon catalyst having excellent activity.

또한, 본 발명의 다른 목적은 상기 나노 금속 카본 촉매의 제조 방법을 제공하는 데에 있다.In addition, another object of the present invention is to provide a method for producing the nano-metal carbon catalyst.

상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 상기 나노 금속 카본 촉매의 제조 방법으로서, 반응 용기 안에 카본 고체, 탄소 나노 튜브 분말, 세라믹, 또는 금속 중 어느 하나를 넣는 단계;According to a feature of the present invention for achieving the above object, a method for producing the nano-metal carbon catalyst, comprising the steps of putting any one of carbon solids, carbon nanotube powder, ceramic, or metal in the reaction vessel;

Ag 용액, Pd 용액, 또는 Pt 용액 중 어느 하나의 용액과,A solution of any one of an Ag solution, a Pd solution, or a Pt solution,

알코올 또는 환원제로서 하이드라진(hydrazine) 용액 또는 포름알데히드(formealdehyde) 용액을 반응 용기에 여백을 두고 첨가하는 단계;Adding a hydrazine solution or formaldehyde solution as an alcohol or reducing agent with a margin to the reaction vessel;

상기 반응 용기를 300 내지 650 psi로 가압하여, 150 내지 350 ℃ 의 온도로승온할 때까지 가온하는 단계; 및Pressurizing the reaction vessel to 300 to 650 psi and warming to a temperature of 150 to 350 ° C .; And

상기 가압 승온된 반응 용기에 마이크로웨이브(microwave)를 30초 내지 3분간 조사하는 단계;를 포함하는 것을 특징으로 하는 나노 금속 카본 촉매의 제조 방법을 제공할 수 있다. Irradiating a microwave (microwave) to the pressurized heated reaction vessel for 30 seconds to 3 minutes; may provide a method for producing a nano-metal carbon catalyst comprising a.

또한, 본 발명은, 상기한 방법으로 제조되고, 상기 나노 금속의 형상이 활성점을 다수 갖는 스퀘어형으로 된 것을 특징으로 하는 나노 금속 카본 촉매를 제공할 수 있다.In addition, the present invention can provide a nano-metal carbon catalyst produced by the above-described method, characterized in that the shape of the nano-metal is a square having a large number of active points.

또한, 본 발명에 따르면, 나노 금속 카본 촉매의 제조 방법으로서, 반응 용기 안에 카본 고체, 탄소 나노 튜브 분말, 세라믹, 또는 금속 중 어느 하나를 넣는 단계;In addition, according to the present invention, a method for producing a nano-metal carbon catalyst, comprising the steps of putting any one of carbon solids, carbon nanotube powder, ceramic, or metal in the reaction vessel;

Ag 용액, Pd 용액, 또는 Pt 용액 중 어느 하나의 용액과,A solution of any one of an Ag solution, a Pd solution, or a Pt solution,

알코올 또는 환원제로서 하이드라진 용액 또는 포름알데히드 용액을 반응 용기에 여백을 둘 정도로 첨가하는 단계;Adding hydrazine solution or formaldehyde solution as an alcohol or reducing agent to the margin of the reaction vessel;

상기 반응 용기를 대기압 하에서 뚜껑을 개방하고 150 내지 350 ℃ 로 승온 할 때까지 가열하는 단계;Heating the reaction vessel until the lid is opened and the temperature is raised to 150 to 350 ° C. under atmospheric pressure;

상기 승온된 반응 용기에 마이크로웨이브를 30초 내지 3분간 조사하는 단계;를 포함하는 것을 특징으로 하는 나노 금속 카본 촉매의 제조 방법을 제공할 수 있다. Irradiating the microwave to the heated reaction vessel for 30 seconds to 3 minutes; may provide a method for producing a nano-metal carbon catalyst comprising a.

또한, 본 발명은, 상기 나노 금속 카본 촉매는 PdC, PtC, 또는 AgC 임을 특징으로 하는 나노 금속 카본 촉매를 제공할 수 있다.In addition, the present invention can provide a nano-metal carbon catalyst, characterized in that the nano-metal carbon catalyst is PdC, PtC, or AgC.

또한, 본 발명은, 상기 나노 금속의 입도가 5 내지 8 nm 인 것을 특징으로 하는 나노 금속 카본 촉매를 제공할 수 있다.In addition, the present invention can provide a nano-metal carbon catalyst, characterized in that the particle size of the nano-metal is 5 to 8 nm.

위에서 설명한 바와 같은 본 발명에 따르면, 종래 기술에 비해 활성점을 많이 갖는 스퀘어형의 나노 금속 카본 촉매를 제공할 수 있다. According to the present invention as described above, it is possible to provide a square nano-metal carbon catalyst having a larger active point than in the prior art.

따라서, 본 발명의 나노 금속 카본 촉매에 따르면, 연료 전지에서의 수소 발생 반응, 탈수소 반응, 수소 개질에 보다 우수한 활성을 나타낼 수 있다. Therefore, according to the nano-metal carbon catalyst of the present invention, it is possible to exhibit more excellent activity in the hydrogen generation reaction, dehydrogenation reaction, hydrogen reforming in the fuel cell.

실시예 1Example 1

이하에서는 상기한 바와 같은 본 발명에 의한 나노 금속 카본 촉매 제조 방법의 바람직한 실시예를 첨부된 도면을 참고로 하여 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings a preferred embodiment of the method for producing a nano-metal carbon catalyst according to the present invention as described above will be described in detail.

도 2는 본 발명에 사용되는 반응 용기 및 가압 승온 시스템을 나타내는 개략적인 분해 사시도이다. 도 3은 본 발명의 나노 금속 카본 촉매의 제조 방법의 흐름을 나타내는 순서도 이다. 2 is a schematic exploded perspective view showing a reaction vessel and a pressurized temperature raising system used in the present invention. Figure 3 is a flow chart showing the flow of the method for producing a nano-metal carbon catalyst of the present invention.

이들 도면에 도시된 바와 같이, 먼저 반응 용기(100)에 고체 활성 카본, 탄소 나노 튜브(CNT), 구리 등의 금속 또는 세라믹 분말을 넣는다. 이러한 반응물은 반응 용기(100) 높이의 약 1/3 정도가 되게끔 넣는 것이 바람직하다. As shown in these figures, first, a metal or ceramic powder such as solid activated carbon, carbon nanotubes (CNT), copper, or the like is put into the reaction vessel 100. This reactant is preferably added to about one third of the height of the reaction vessel 100.

다음, 반응용기(100)에 Pd 용액, Pt 용액, 또는 Ag 용액에 소량의 알코올을 첨가하거나, 아니면, 하이드라진 용액, 또는 포름알데히드 용액과 같은 환원제를 첨가한다. 본 실시예에서는 Pd 용액, Pt 용액, Ag 용액은 각각, PdCl2, PtCl2, AgNO3 용액으로 구성하였다.Next, a small amount of alcohol is added to the Pd solution, the Pt solution, or the Ag solution to the reaction vessel 100, or a reducing agent such as a hydrazine solution or a formaldehyde solution is added. In the present example, the Pd solution, Pt solution, and Ag solution were composed of PdCl 2 , PtCl 2 , and AgNO 3 solutions, respectively.

반응 용기(100)는 모든 반응물을 다 채웠을 때, 반드시 상단에 공백을 갖도록 반응물의 양을 조절하여야 한다. When the reaction vessel 100 is filled with all the reactants, the amount of reactants must be adjusted to have a space at the top.

상기 반응 용기(100)는 반응 용기 하우징(110)에 넣어져 고립계(isolated system)를 이루며, 도 2에서 보듯이, 상단에 테프론계 수지로 구성한 가압 수단인 가압용 덮개(120)를 구비하여, 약 300 내지 650 psi의 압력을 가할 수 있다. 본 실시예에서는 600 psi로 가압하였다. 상기 고립계의 가압 반응 용기는 가온 플레이트(300)에 얹혀져, 150 내지 350 ℃ 정도로 승온된다. 본 실시예에서는 320 ℃ 까지 승온 시켰다.The reaction vessel 100 is put into the reaction vessel housing 110 to form an isolated system (illustrated system), as shown in Figure 2, having a pressing cover 120 which is a pressing means composed of Teflon-based resin at the top, A pressure of about 300 to 650 psi can be applied. In this example it was pressurized to 600 psi. The pressure reaction vessel of the isolated system is mounted on the heating plate 300, and the temperature is raised to about 150 to 350 ° C. In this example, the temperature was raised to 320 ° C.

상기와 같은 승온으로 반응 용기 내부에서는 입자 운동 속도가 온도의 제곱근에 비례하여 빨라져(υ∝√T) 반응물들간에 충돌이 활발해지고, 또한 가압으로 인하여 물질의 녹는점과 끓는점이 모두 하강하므로 빠르게 기화하여 반응성이 매우 좋아짐에 따라 반응 시간을 단축할 수 있다. As the temperature rises above, the particle movement speed is increased in proportion to the square root of the temperature (υ∝√T), and the collision between the reactants becomes active, and the melting point and the boiling point of the material decrease due to the pressurization. As the reactivity becomes very good, the reaction time can be shortened.

반응 용기 내의 반응물질들의 상태는 어느 하나의 뚜렷한 상태로 있기 보다는 거의 임계 상태로 존재하게 된다. The state of the reactants in the reaction vessel is in a nearly critical state rather than in any one distinct state.

상기와 같은 상태의 반응 용기를 일반적인 전자레인지 안에 넣고 마이크로웨이브(microwave)를 조사한다. 조사 시간은 3 초 내지 3 분이 될 수 있으며, 본 실시예에서는 1 분간 조사하였다. The reaction vessel in the above state is placed in a general microwave oven and irradiated with microwaves. Irradiation time may be from 3 seconds to 3 minutes, in this embodiment was irradiated for 1 minute.

본 발명자가 상기와 같이 반응 용기에 마이크로웨이브를 조사하게 된 동기는 다음과 같다. The motivation for the inventors to irradiate the microwaves to the reaction vessel as described above is as follows.

본래 금속 및 탄소는 모두 전기전도성이 양호한 도전체로 마이크로웨이브의 조사에 의해 그들의 표면은 음전하를 띠게 된다. 또한, 금속은 본래 마이크로웨이브의 조사에 의해 스파크 반응을 나타내나, 용액 안에 있기 때문에 용액이 완충 작용을 하여 안전하게 반응 에너지를 얻을 수 있게 되어, 외부적으로 충격량을 가하게 된다. 따라서, 이는 전기 도금의 효과를 얻을 수 있게 되어, 금속 입자가 빠른 속도로 활성 카본 표면에 부착하게 되는 것이다.Originally, both metal and carbon are conductors with good electrical conductivity, and their surfaces are negatively charged by microwave irradiation. In addition, the metal originally exhibits a spark reaction by irradiation of microwaves, but since the metal is in the solution, the solution buffers and the reaction energy can be safely obtained, and the impact amount is externally applied. Thus, it is possible to obtain the effect of electroplating, so that the metal particles adhere to the activated carbon surface at a high speed.

상기와 같이 제조된 나노 금속 카본 촉매를 TEM으로 관찰한 결과를 도 4 (a) 내지 (f)에 나타내었다. The results of observing the nano-metal carbon catalyst prepared as above by TEM are shown in FIGS. 4 (a) to (f).

활성 카본에 부착된 금속(여기서는 Pt)의 크기는 5 내지 8 nm 또는 15 내지 22 nm 이며, 중요하게는 그 형상이 종래 기술에 따른 것과 달리, 스퀘어형이라는 점이다.The size of the metal (here Pt) attached to the activated carbon is 5 to 8 nm or 15 to 22 nm, and importantly, its shape is square, unlike the prior art.

이러한 금속 형상의 도출은 본 실시예의 제조 단계에서 가압 제조를 하였기 때문인 것으로 여겨지며, 스퀘어 형상의 장점은 여러 개의 에지(edge)와 꼭지점을 포함하여, 그러한 부분이 모두 활성점으로 작용하기 때문에 촉매로서 우수한 활성화 능력을 발휘한다는 것이다. The derivation of such a metal shape is believed to be due to the pressurized manufacturing in the manufacturing step of this embodiment, and the advantage of the square shape is that it is excellent as a catalyst because all such parts act as active points, including several edges and vertices. Is to activate the ability.

실시예 2Example 2

본 실시예는 실시예 1의 변형 실시예로, 반응물의 제작은 실시예 1과 같으나, 반응 용기의 가압을 해제하여 반응 용기 상부를 완전히 개방한 상태로 150 내지 350 ℃ 정도로 승온하고, 마이크로웨이브를 1 내지 5 분, 바람직하게는 3 분 정도 조사한다. 이러한 제조 공정은 실시예 1과 같은 스퀘어형의 나노 금속 구조를 생성하지는 않고 무정형의 구조를 생성하나, 종래 기술에 비해 매우 빠른 속도로 나노 금속 카본 촉매를 제조하여, 우수한 생산성을 나타낸다. This embodiment is a modified example of Example 1, the preparation of the reactant is the same as in Example 1, but the pressure of the reaction vessel is released to increase the temperature of about 150 to 350 ℃ with the top of the reaction vessel fully open, the microwave 1 to 5 minutes, preferably 3 minutes irradiation. This production process does not produce a square nano metal structure as in Example 1, but produces an amorphous structure, but produces a nano metal carbon catalyst at a very high speed compared to the prior art, showing excellent productivity.

본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.The rights of the present invention are not limited to the embodiments described above, but are defined by the claims, and a person skilled in the art can make various modifications and adaptations within the scope of the claims. It is self-evident.

도 1(a) 내지 (e)는 종래 기술에 따른 PdC 촉매의 TEM 사진.1 (a) to (e) is a TEM photograph of a PdC catalyst according to the prior art.

도 2는 본 발명에 사용되는 반응 용기 및 가압 승온 시스템을 나타내는 개략적인 분해 사시도. 2 is a schematic exploded perspective view showing a reaction vessel and a pressurized temperature raising system used in the present invention.

도 3은 본 발명의 나노 금속 카본 촉매의 제조 방법의 흐름을 나타내는 순서도. 3 is a flow chart showing the flow of the method for producing a nano-metal carbon catalyst of the present invention.

도 4(a) 내지 (f)는 본 발명에 따른 나노 금속 카본 촉매를 TEM으로 관찰한 결과.4 (a) to (f) is a result of observing the nano-metal carbon catalyst according to the present invention by TEM.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

100: 반응 용기 110: 반응 용기 하우징100: reaction vessel 110: reaction vessel housing

120: 가압용 덮개 130: 가온 플레이트120: pressure cover 130: heating plate

Claims (5)

나노 금속 카본 촉매의 제조 방법으로서, 반응 용기 안에 카본 고체, 탄소 나노 튜브 분말, 세라믹, 또는 금속 중 어느 하나를 넣는 단계;A method of producing a nano metal carbon catalyst, comprising the steps of: placing one of a carbon solid, carbon nano tube powder, ceramic, or metal in a reaction vessel; Ag 용액, Pd 용액, 또는 Pt 용액 중 어느 하나의 용액과,A solution of any one of an Ag solution, a Pd solution, or a Pt solution, 알코올 또는 환원제로서 하이드라진 용액 또는 포름 알데히드 용액을 반응 용기 상부에 여백을 두고 첨가하는 단계;Adding a hydrazine solution or formaldehyde solution as an alcohol or reducing agent with a margin on top of the reaction vessel; 상기 반응 용기를 300 내지 650 psi로 가압하여, 150 내지 350 ℃ 로 승온 할 때까지 가온하는 단계; 및Pressurizing the reaction vessel to 300 to 650 psi to warm up to 150 to 350 ° C .; And 상기 가압 승온된 반응 용기에 마이크로웨이브를 30초 내지 3분간 조사하는 단계;를 포함하는 것을 특징으로 하는 나노 금속 카본 촉매의 제조 방법.Irradiating the microwave to the pressurized heated reaction vessel for 30 seconds to 3 minutes; manufacturing method of a nano-metal carbon catalyst comprising a. 나노 금속 카본 촉매의 제조 방법으로서, 반응 용기 안에 카본 고체, 탄소 나노 튜브 분말, 세라믹, 또는 금속 중 어느 하나를 넣는 단계;A method of producing a nano metal carbon catalyst, comprising the steps of: placing one of a carbon solid, carbon nano tube powder, ceramic, or metal in a reaction vessel; Ag 용액, Pd 용액, 또는 Pt 용액 중 어느 하나의 용액과,A solution of any one of an Ag solution, a Pd solution, or a Pt solution, 알코올 또는 환원제로서 하이드라진 용액 또는 포름 알데히드 용액을 반응 용기에 여백을 두고 첨가하는 단계;Adding a hydrazine solution or formaldehyde solution as an alcohol or reducing agent with a margin in the reaction vessel; 상기 반응 용기를 대기압 하에서 뚜껑을 개방하고 150 내지 350 ℃ 로 승온 할 때까지 가온하는 단계; 및Warming the reaction vessel until the lid is opened and the temperature is raised to 150 to 350 ° C. under atmospheric pressure; And 상기 승온된 반응 용기에 마이크로웨이브를 30초 내지 3분간 조사하는 단계;를 포함하는 것을 특징으로 하는 나노 금속 카본 촉매의 제조 방법.Irradiating the microwave to the heated reaction vessel for 30 seconds to 3 minutes; method of producing a nano-metal carbon catalyst comprising a. 제1항의 방법으로 제조되고, 나노 금속의 형상이 활성점을 다수 갖는 스퀘어형으로 된 것을 특징으로 하는 나노 금속 카본 촉매.A nano metal carbon catalyst prepared by the method of claim 1, wherein the nano metal has a square shape having a large number of active points. 제3항에 있어서, 상기 나노 금속 카본 촉매는 PdC, PtC, 또는 AgC 임을 특징으로 하는 나노 금속 카본 촉매.The nano metal carbon catalyst of claim 3, wherein the nano metal carbon catalyst is PdC, PtC, or AgC. 제3 또는 4항에 있어서, 상기 나노 금속의 입도가 5 내지 8 nm 인 것을 특징으로 하는 나노 금속 카본 촉매. The nanometal carbon catalyst of claim 3 or 4, wherein the nano metal has a particle size of 5 to 8 nm.
KR1020090062309A 2009-07-08 2009-07-08 Nano Metal Carbon Catalyst And Manufacturing Method Thereof KR101084952B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090062309A KR101084952B1 (en) 2009-07-08 2009-07-08 Nano Metal Carbon Catalyst And Manufacturing Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090062309A KR101084952B1 (en) 2009-07-08 2009-07-08 Nano Metal Carbon Catalyst And Manufacturing Method Thereof

Publications (2)

Publication Number Publication Date
KR20110004726A KR20110004726A (en) 2011-01-14
KR101084952B1 true KR101084952B1 (en) 2011-11-17

Family

ID=43612151

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090062309A KR101084952B1 (en) 2009-07-08 2009-07-08 Nano Metal Carbon Catalyst And Manufacturing Method Thereof

Country Status (1)

Country Link
KR (1) KR101084952B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104549238B (en) * 2013-10-28 2017-09-15 中国石油化工股份有限公司 Hydrofining crude terephthalic acid catalyst and its preparation method
CN106607020A (en) * 2016-11-29 2017-05-03 南京东焱氢能源科技有限公司 Preparation method for high-activity palladium-carbon catalyst
KR102154198B1 (en) * 2019-01-29 2020-09-09 서울대학교산학협력단 Method of preparing metal alloy catalysts, method of reducing carbon dioxide using metal alloy catalysts, and reduction system of carbon dioxide
US11517884B2 (en) * 2019-02-04 2022-12-06 China Energy Investment Corporation Limited Metal carbide nanomaterial catalysts and production method thereof
CN115770606B (en) * 2022-12-14 2024-09-10 吉林大学 Supported palladium carbide catalyst and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064037A1 (en) 2002-01-31 2003-08-07 Hydrocarbon Technology, Inc. Catalysts having controlled (111) crystal face exposure
KR100681169B1 (en) 2005-07-19 2007-02-09 아주대학교산학협력단 Method for manufacturing nano-particles of platinum series for an electrode of a fuel cell and apparatus therefor
KR100831143B1 (en) 2004-06-10 2008-05-20 스미토모덴키고교가부시키가이샤 Metal catalyst and method for production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064037A1 (en) 2002-01-31 2003-08-07 Hydrocarbon Technology, Inc. Catalysts having controlled (111) crystal face exposure
KR100831143B1 (en) 2004-06-10 2008-05-20 스미토모덴키고교가부시키가이샤 Metal catalyst and method for production thereof
KR100681169B1 (en) 2005-07-19 2007-02-09 아주대학교산학협력단 Method for manufacturing nano-particles of platinum series for an electrode of a fuel cell and apparatus therefor

Also Published As

Publication number Publication date
KR20110004726A (en) 2011-01-14

Similar Documents

Publication Publication Date Title
Chen et al. Surface composition dominates the electrocatalytic reduction of CO2 on ultrafine CuPd nanoalloys
KR101084952B1 (en) Nano Metal Carbon Catalyst And Manufacturing Method Thereof
Gao et al. Shape-controlled synthesis of monodisperse PdCu nanocubes and their electrocatalytic properties.
Liu et al. Electronic effects determine the selectivity of planar Au–Cu bimetallic thin films for electrochemical CO2 reduction
Yang et al. Catalytically active bimetallic nanoparticles supported on porous carbon capsules derived from metal–organic framework composites
Shen et al. In situ assembly of ultrathin PtRh nanowires to graphene nanosheets as highly efficient electrocatalysts for the oxidation of ethanol
Abdelsayed et al. Microwave synthesis of bimetallic nanoalloys and CO oxidation on ceria-supported nanoalloys
Li et al. Carbon nanotubes supported mono-and bimetallic Pt and Ru catalysts for selective hydrogenation of phenylacetylene
JP6412485B2 (en) Fuel cell electrode material and method for producing the same
Lim et al. Synthesis of platinum cubes, polypods, cuboctahedrons, and raspberries assisted by cobalt nanocrystals
Yang et al. Ultrathin FeP nanosheets as an efficient catalyst for electrocatalytic water oxidation: promoted intermediates adsorption by surface defects
US9123965B2 (en) Method of preparing nano-sized catalyst on carbon support
Lu et al. Co3O4/CuMoO4 hybrid microflowers composed of nanorods with rich particle boundaries as a highly active catalyst for ammonia borane hydrolysis
Feng et al. Sea-urchin-like hollow CuMoO4–CoMoO4 hybrid microspheres, a noble-metal-like robust catalyst for the fast hydrogen production from ammonia borane
Şen et al. Silica-based monodisperse PdCo nanohybrids as highly efficient and stable nanocatalyst for hydrogen evolution reaction
US20120134631A1 (en) Molded Interconnect Device (MID) with Thermal Conductive Property and Method for Production Thereof
JP5833786B1 (en) ELECTRODE MATERIAL FOR FUEL CELL, ITS MANUFACTURING METHOD, AND FUEL CELL
Yang et al. Plasma-synthesized octahedral PtPd alloy/reduced graphene oxide nanocomposites with boosted electrocatalytic activity for methanol oxidation
Mehdi et al. Co-based nanoparticles fabricated on Ni foams for efficient hydrogen generation from ammonia borane
Yang et al. Non-noble metallic nanoparticles supported on titania spheres as catalysts for hydrogen generation from hydrolysis of ammonia borane under ultraviolet light irradiation
Santra et al. effective surface area tuning of noble metal-free CuBO2/rGO nanohybrid for efficient hydrogen production with “On–Off” switching
Kang et al. Formation mechanism and gram-scale production of PtNi hollow nanoparticles for oxygen electrocatalysis through in situ galvanic displacement reaction
Zhao et al. Microwave polyol synthesis of Pt/C catalysts with size-controlled Pt particles for methanol electrocatalytic oxidation
Martínez de Yuso et al. Facile and rapid one-pot microwave-assisted synthesis of Pd-Ni magnetic nanoalloys confined in mesoporous carbons
Song et al. Controlled synthesis of PtNi hexapods for enhanced oxygen reduction reaction

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141202

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160108

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171213

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181210

Year of fee payment: 8