KR101082030B1 - Method for preparing (-)-gamma-lactam and novel microbial strains for the same - Google Patents
Method for preparing (-)-gamma-lactam and novel microbial strains for the same Download PDFInfo
- Publication number
- KR101082030B1 KR101082030B1 KR1020040008763A KR20040008763A KR101082030B1 KR 101082030 B1 KR101082030 B1 KR 101082030B1 KR 1020040008763 A KR1020040008763 A KR 1020040008763A KR 20040008763 A KR20040008763 A KR 20040008763A KR 101082030 B1 KR101082030 B1 KR 101082030B1
- Authority
- KR
- South Korea
- Prior art keywords
- gamma
- lactam
- optical purity
- reaction
- strain
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H35/00—Baths for specific parts of the body
- A61H35/006—Baths for specific parts of the body for the feet
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H23/00—Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
- A61H23/02—Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive
- A61H23/0218—Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive with alternating magnetic fields producing a translating or oscillating movement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H23/00—Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
- A61H23/02—Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive
- A61H23/0254—Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive with rotary motor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/02—Characteristics of apparatus not provided for in the preceding codes heated or cooled
- A61H2201/0207—Characteristics of apparatus not provided for in the preceding codes heated or cooled heated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/02—Characteristics of apparatus not provided for in the preceding codes heated or cooled
- A61H2201/0221—Mechanism for heating or cooling
- A61H2201/0228—Mechanism for heating or cooling heated by an electric resistance element
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2205/00—Devices for specific parts of the body
- A61H2205/12—Feet
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Physical Education & Sports Medicine (AREA)
- Rehabilitation Therapy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
본 발명은 신규 미생물 균주 및 이를 이용한 (-)-감마-락탐((-)-2-아자비시클로[2.2.1]헵트-5-엔-3-온)의 제조방법에 관한 것으로, 좀 더 상세하게는 상기 신규 미생물 균주와 라세믹 감마-락탐을 반응시켜 이중에서 (+)-감마-락탐만을 선택적으로 가수분해 함으로써 최종적으로 99 % ee 이상의 매우 높은 광학순도를 갖는 (-)-감마-락탐 을 제조하는 방법에 관한 것이다. 본 발명에서 사용된 미생물 균주는 선행 기술에서 언급되지 않은 새로운 미생물들이며, 생장 및 배양이 용이하고, 단시간 내에 높은 수율로 높은 광학순도를 갖는 (-)-감마-락탐을 생산할 수 있어 산업적으로 매우 유용하다.
감마 락탐, (-)-2-아자비시클로[2.2.1]헵트-5-엔-3-온, 로도코쿠스, 슈도모나스, 아우레오박테리움
The present invention relates to a novel microbial strain and a method for preparing (-)-gamma-lactam ((-)-2-azabicyclo [2.2.1] hept-5-en-3-one) using the same. Preferably, the novel microbial strain is reacted with racemic gamma-lactam to selectively hydrolyze only (+)-gamma-lactam, thereby producing (-)-gamma-lactam having a very high optical purity of 99% ee or more. It relates to a manufacturing method. The microbial strains used in the present invention are new microorganisms not mentioned in the prior art, and are very useful industrially because they are easy to grow and cultivate and can produce (-)-gamma-lactam having high optical purity with high yield in a short time. Do.
Gamma lactam, (-)-2-azabicyclo [2.2.1] hept-5-en-3-one, Rhodococcus, Pseudomonas, Aureobacterium
Description
도 1은 본 발명의 분리된 균주 아크로모박터 자일로스옥시던스 아종. 자일로스옥시던스 SKM01(Achromobacter xylosoxidans subsp. Xylosoxidans SKM01 (KCCM-10547))의 동정결과 밝혀진 분류학적 맵을 나타낸 것이다.1 is an isolated strain Acromobacter xylose oxidase subspecies of the present invention. Xylosoxidance SKM01 ( Achromobacter xylosoxidans subsp. Xylosoxidans SKM01 (KCCM-10547)) shows the identification of the taxonomic map.
도 2는 본 발명의 분리된 균주 파라코쿠스 아미노보란스 SKM02(Paracoccus aminovorans SKM02 (KCCM-10548))의 동정결과 밝혀진 분류학적 맵을 나타낸 것이다.Figure 2 shows the taxonomic map found as a result of the identification of the isolated strain paracoccus aminoborans SKM02 (KCCM-10548) of the present invention.
도 3은 본 발명의 분리된 균주 슈도모나스 아에루지노사 SKM07(Pseudomonas aeruginosa SKM07 (KCCM-10549))의 동정결과 밝혀진 분류학적 맵을 나타낸 것이다.Figure 3 shows the taxonomic map found by the identification of the isolated strain Pseudomonas aeruginosa SKM07 (KCCM-10549) of the present invention.
본 발명은 신규 미생물 균주와 이를 이용한 광학활성의 (-)-2-아자비시클로[2.2.1]헵트-5-엔-3-온((-)-2-azabicyclo[2,2,1]hept-5-en-3-one, 이하 '(-)-감마-락탐'이라 함(화학식 1))의 제조방법에 관한 것으로, 좀 더 상세하게는 신규한 미생물 균주를 이용하여 라세믹체의 감마-락탐에서 (+)-감마-락 탐만을 광학선택적으로 가수분해하여 99 % 이상의 매우 높은 광학순도를 갖는 (-)-감마-락탐을 제조하는 방법에 관한 것이다. The present invention provides a novel microbial strain and an optically active (-)-2-azabicyclo [2.2.1] hept-5-en-3-one ((-)-2-azabicyclo [2,2,1] hept -5-en-3-one, hereinafter referred to as '(-)-gamma-lactam' (Formula 1)), more specifically gamma of racemic body using a novel microbial strain- The present invention relates to a method of optically hydrolyzing only (+)-gamma-lactam in lactam to produce (-)-gamma-lactam having very high optical purity of 99% or more.
본 발명에서 언급하는 (-)-감마-락탐은 에이즈 등 바이러스성 질환의 치료제로 사용되는 Abacavir, Carbovir 등과 같은 카보시클릭 뉴클레오시드(carbocyclic nucleoside)의 합성에 필요한 중간체로 사용되고 있다. 현재 광학활성의 감마-락탐에 대한 수요가 지속적으로 증가하고 있어 상기 화합물을 효과적으로 제조하려는 시도가 많이 이루어졌는데 주로 효소를 이용한 광학분할(enzymatic resolution) 방법이 많이 연구되었으며, 이 중 상업화에 성공한 사례는 영국 Chiroscience 사에서 개발한 락타마제(lactamase) 생성 미생물을 이용한 감마-락탐의 효소적 광학분할 방법이다. (-)-Gamma-lactam referred to in the present invention is used as an intermediate required for the synthesis of carbocyclic nucleosides such as Abacavir, Carbovir, etc., which are used as a therapeutic agent for viral diseases such as AIDS. As the demand for gamma-lactam of optical activity is continuously increasing, many attempts have been made to prepare the compound effectively. An enzymatic resolution method mainly using enzymes has been studied. Enzymatic optical splitting of gamma-lactam using lactamase-producing microorganisms developed by Chiroscience, UK.
1990년 Chiroscience 사의 전신인 Enzymatix 사는 락타마제라는 효소를 생성하는 새로운 미생물 2종을 이용하여 감마-락탐을 광학분할하는 방법을 발표하였다. 이 방법에서 2종의 미생물 중 로도코쿠스종(Rhodococcus sp.) ENZA-1 (NCIMB 40213)은 (-)-감마-락탐을 가수분해하여 최종적으로 (+)-감마-락탐과 (-)-아미노산을 만들어낸다. 또한 다른 미생물인 슈도모나스 솔라나세럼(Pseudomonas solanacearum) ENZA-20(NCIMB 40249)는 반대로 (+)-감마-락탐을 가수분해하여 최종적으로 (-)-감마-락탐과 (+)-아미노산을 만들어낸다. 그러나 이 방법은 효소 반응에 약 14일의 기간이 소요될 뿐만 아니라, 특히 ENZA-1 의 경우에는 효소반응 생성물인 (-)-아미노산의 광학순도가 81% ee 이므로 상업적으로 적용하기 어려운 단점이 있다(EP 0424064, USP 5284769, USP 5498625).In 1990, Enzymatix, the forerunner of Chiroscience, announced a method of optically splitting gamma-lactams using two new microbes that produce an enzyme called lactamase. In this method, Rhodococcus sp. ENZA-1 (NCIMB 40213) hydrolyzes (-)-gamma-lactam and finally (+)-gamma-lactam and (-)- Produce amino acids In addition, other microorganisms, Pseudomonas solanacearum ENZA-20 (NCIMB 40249), on the other hand, hydrolyze (+)-gamma-lactams, resulting in (-)-gamma-lactams and (+)-amino acids. . However, this method takes about 14 days to enzymatic reaction, and in particular, ENZA-1 has a disadvantage of being difficult to apply commercially since the optical purity of the enzymatic reaction product (-)-amino acid is 81% ee. EP 0424064, USP 5284769, USP 5498625).
1993년 Chiroscience 사와 Exter University 는 공동으로 상기 특허에서 언급된 미생물과는 다른 새로운 2종의 미생물을 이용한 감마-락탐의 광학분할법을 발표하였다. 이 방법에서 사용된 미생물은 슈도모나스 플루오로센(Pseudomonas fluorescens) ENZA-22 와 아우레오박테리움 종(Aureobacterium sp.) ENZA-25 인데, 전자의 경우는 (+)-감마-락탐을 가수분해하여 최종적으로 (-)-감마-락탐과 (+)-아미노산을 만들어내고 후자의 경우는 (-)-감마-락탐을 가수분해하여 최종적으로 (+)-감마-락탐과 (-)-아미노산을 만들어낸다. 그러나 이 경우에도 원하는 광학활성 화합물의 광학순도가 각각 93%, 91% ee 로 낮은 단점이 있으며, 또한 슈도모나스 솔라나세럼 ENZA-22 의 경우는 효소가 매우 불안정한 단점이 있다(Tetrahedron: Asymmetry Vol.4, No.6, pp.1117-1128, 1993).In 1993 Chiroscience and Exter University jointly published an optical splitting method of gamma-lactam using two new microorganisms different from the microorganisms mentioned in the patent. The microorganisms used in this method are Pseudomonas fluorescens ENZA-22 and Aureobacterium sp. ENZA-25 . In the former case, (+)-gamma-lactam is hydrolyzed to give final results. With (-)-gamma-lactam and (+)-amino acid. In the latter case, hydrolysis of (-)-gamma-lactam results in (+)-gamma-lactam and (-)-amino acid. . Even in this case, and the optical purity of the desired optically active compound with low downside 93%, 91% ee, respectively, there is also a case of Pseudomonas Solana serum ENZA-22 is a very unstable enzyme disadvantages (Tetrahedron: Asymmetry Vol.4 , No. 6, pp. 1117-1128, 1993).
1998년 Chiroscience 사는 국제 공개 특허 WO 98/10075 호에서 이전의 미생물에 비해 열 안정성 및 기질 안정성이 향상된 새로운 미생물을 이용한 감마-락탐 의 광학분할 방법을 발표하였다. 이 때 사용된 미생물은 코마모나스 아시도보란스( Comamonas acidovorans)(NCIMB 40827)로서 (+)-감마-락탐을 가수분해하여 최종적으로 (-)-감마-락탐과 (+)-아미노산을 만들어낸다. 발효를 통해 얻은 상기 미생물 균주를 이용하여 라세믹 감마-락탐을 광학분할한 결과 24시간 반응 후 광학순도 99% ee 이상의 (-)-감마-락탐을 약 44% 수율로 얻었으며, 동사는 상기 미생물을 이용하여 (-)-감마-락탐 생산 공정을 상업화하는데 성공하였다. In 1998 Chiroscience published an optical splitting method of gamma-lactam using new microorganisms with improved thermal and substrate stability compared to previous microorganisms in WO 98/10075. The microorganism used at this time is Comamonas acidovorans (NCIMB 40827), which hydrolyzes (+)-gamma-lactam to finally produce (-)-gamma-lactam and (+)-amino acid. Optical microfractionation of racemic gamma-lactam using the microbial strain obtained through fermentation resulted in about 44% yield of (-)-gamma-lactam with an optical purity of 99% ee or more after 24 hours reaction. It was successfully used to commercialize the (-)-gamma-lactam production process.
상기에 언급한 방법과 달리 감마-락탐의 아미드기에 히드록시메틸기 또는 아세틸기 등을 도입한 후 가수분해 효소를 이용하여 선택적으로 가수분해함으로써 광학활성의 (-)-감마-락탐을 만드는 방법들도 보고된 바가 있다. 1996년 나가노 (Hiroto Nakano) 등은 감마-락탐 의 N-히드록시메틸 유도체를 아마노(Amano) 사의 리파아제 PS 라는 가수분해 효소를 이용하여 광학분할하는 방법을 발표한 바 있다. 그러나 이 방법에서는 광학순도 99% ee 이상의 순수한 (-)-감마-락탐 을 얻기 위하여 두 번의 효소 반응을 포함한 총 4단계의 반응을 수행하여야 하고 또한 전체 수율이 약 14% 정도로 매우 낮아 상업적으로 사용하기 어려운 단점이 있다(Tetrahedron: Asymmetry, Vol. 7, No. 8, pp. 2381-2386, 1996).Unlike the above-mentioned method, the method of making optically active (-)-gamma-lactam by selectively hydrolyzing by using a hydrolysis enzyme after introducing hydroxymethyl group or acetyl group into amide group of gamma-lactam It has been reported. In 1996, Hiroto Nakano et al. Published a method for optically dividing N-hydroxymethyl derivatives of gamma-lactams using a hydrolase called lipase PS from Amano. However, this method requires a total of four steps including two enzymatic reactions in order to obtain pure (-)-gamma-lactam with an optical purity of 99% ee or more, and the overall yield is very low, about 14%. There are difficult drawbacks (Tetrahedron: Asymmetry, Vol. 7, No. 8, pp. 2381-2386, 1996).
2002년 SmithKline Beecham 에서는 라세믹 t-부틸 3-옥소-2-아자비시클로[2.2.1]헵트-5-엔-카르복실레이트 또는 라세믹 시스-2-아세틸-2-아자비시클로[2.2.1]헵트-5-엔-3-온 유도체를 노보(Novo) 사의 사비나제(Savinase) 라는 가수분해 효소를 이용하여 광학분할하는 방법을 발표한 바 있다(USP 6340787). 이 방법에서는 효소를 이용하여 광학순도 99% ee 이상의 (-)-감마-락탐 유도체를 만들 수 있으나, 기질에 비해 효소의 사용량이 많고 효소 반응 시간이 이틀정도로 길 뿐만 아니라, 광학활성의 (-)-감마-락탐을 만들기 위해서 총 3단계의 반응을 거치는 동안 전체 수율이 20% 대로 떨어지므로 역시 상업화하기 에는 어려운 단점이 있다. In 2002, SmithKline Beecham reported that racemic t-butyl 3-oxo-2-azabicyclo [2.2.1] hept-5-ene-carboxylate or racemic cis-2-acetyl-2-azabicyclo [2.2.1] A method of optically dividing a hept-5-en-3-one derivative using a hydrolase called Savinase from Novo (USP 6340787) has been published. In this method, (-)-gamma-lactam derivatives having an optical purity of 99% ee or more can be prepared using enzymes. However, the amount of enzyme used is large and the reaction time is about two days longer than that of the substrate. The total yield drops to 20% during the three-step reaction to make gamma-lactam, which is also difficult to commercialize.
상기와 같이 선행 기술들을 검토한 결과 바이러스성 질환치료제로 사용되는 카르복시클릭 뉴클레오시드의 합성에 유용한 (-)-감마-락탐 제조 방법을 가장 용이하게 상업화하기 위해서는, 미생물 또는 효소를 이용하여 감마-락탐 자체를 직접 가수분해하는 방법이 필요한 것으로 여겨진다.
As a result of examining the prior arts as described above, in order to commercialize the method of preparing (-)-gamma-lactam useful for the synthesis of carboxynucleosides used as a therapeutic agent for viral diseases, it is possible to use gamma- using microorganisms or enzymes. It is believed that a method of directly hydrolyzing the lactam itself is necessary.
본 발명의 목적은 이러한 신규 미생물 균주를 이용하여 99 % 이상의 매우 높은 광학순도를 갖는 (-)-감마-락탐 을 제조하는 새로운 방법을 제공하는데 있다.
It is an object of the present invention to provide a new method for producing (-)-gamma-lactam having a very high optical purity of 99% or more using this novel microbial strain.
상기 목적을 달성하기 위한 본 발명의 방법은 인산 나트륨 완충용액에 라세믹 감마-락탐을 첨가하고 본 발명에서 발견한 신규한 미생물을 이용하여 선택적 가수분해 반응을 실시함으로써 광학순도 99 % ee 이상의 (-)-감마-락탐을 제조하는 방법으로 구성된다.In order to achieve the above object, the method of the present invention adds racemic gamma-lactam to sodium phosphate buffer solution and performs a selective hydrolysis reaction using a novel microorganism found in the present invention. ) -Gamma-lactam.
본 발명자들은 (+)-감마-락탐 만을 선택적으로 가수분해하는 미생물들을 찾아내기 위하여 주위 환경에서 직접 미생물들을 채취하였으며, 채취된 미생물들을 대상으로 가수분해 반응을 실시한 결과 우수한 성능을 보유한 3종의 미생물을 찾아낼 수 있었다. 새로 발견한 미생물들을 한국 미생물 보존센터(KCCM, Korean Culture Center of Microorganisms)를 통해 동정한 결과 3종류의 미생물은 모두 선행 기술 에서 언급되지 않은 새로운 미생물이라는 것이 확인되었다. 따라서 본 발명자들은 자체적으로 발견한 신규 미생물을 이용하여 라세믹 감마-락탐 중 (+)-감마-락탐 만을 선택적으로 가수분해함으로써 최종적으로 광학 활성의 (-)-감마-락탐을 제조하는 방법을 개발하였으며, 본 발명은 이에 기초하여 완성되었다.
The present inventors collected microorganisms directly from the surrounding environment to find microorganisms that selectively hydrolyze only (+)-gamma-lactam, and the three microorganisms having excellent performance as a result of performing a hydrolysis reaction on the collected microorganisms Could find. The newly discovered microorganisms were identified through the Korean Culture Center of Microorganisms (KCCM) and all three microorganisms were identified as new microorganisms not mentioned in the prior art. Therefore, the present inventors have developed a method for finally producing optically active (-)-gamma-lactam by selectively hydrolyzing only (+)-gamma-lactam in racemic gamma-lactam using a novel microorganism found by itself. The present invention has been completed based on this.
이하, 본 발명을 좀 더 구체적으로 설명하면 다음과 같다.
Hereinafter, the present invention will be described in more detail.
본 발명은 미생물 균주를 이용한 (-)-감마-락탐의 제조 방법에 관한 것으로, 아직까지 선행 기술에서 언급되지 않은 새로운 미생물들인 아크로모박터 자일로스옥시던스 아종. 자일로스옥시던스(Achromobacter xylosoxidans subsp. Xylosoxidans), 파라코쿠스 아미노보란스(Paracoccus aminovorans), 슈도모나스 아에루지노사(Pseudomonas aeruginosa) 등의 균주를 이용하여 (+)-감마-락탐 만을 광학선택적으로 가수분해 함으로써 99 % ee 이상의 매우 높은 광학순도를 갖는 (-)-감마-락탐을 제공한다.The present invention relates to a method for preparing (-)-gamma-lactam using a microbial strain, which is a new microorganism not yet mentioned in the prior art Acromobacter xylose oxidase subspecies. Optical selection of (+)-gamma-lactam only using strains such as Achromobacter xylosoxidans subsp.Xylosoxidans , Paracoccus aminovorans and Pseudomonas aeruginosa Decomposition provides (-)-gamma-lactam with very high optical purity of 99% ee or more.
본 발명에 따른 선택적 가수분해 공정은 다음과 같다.
The selective hydrolysis process according to the invention is as follows.
(1): 2-아자비시클로[2.2.1]헵트-5-엔-3-온(감마-락탐)(1): 2-azabicyclo [2.2.1] hept-5-en-3-one (gamma-lactam)
(2): 4-아미노-시클로펜트-2-엔 카르복실산
(2): 4-amino-cyclopent-2-ene carboxylic acid
본 발명에 있어서, 효소 반응 온도는 20-50℃가 바람직하며, 특히 40℃ 이상의 온도에서도 효소 활성을 유지하고 있어 온도 안정성이 뛰어난 것으로 나타났다. 또한 효소 반응시의 pH는 pH 4-10 의 범위가 적정한 것으로 나타났는데, pH의 변화에 따라서도 활성의 저하가 거의 없어 pH 안정성도 매우 뛰어난 우수한 미생물들로 판명되었다.
In the present invention, the enzyme reaction temperature is preferably 20-50 ° C., particularly, the enzyme activity is maintained even at a temperature of 40 ° C. or higher, and thus, the temperature stability was excellent. In addition, the pH of the enzyme reaction was found to be in the proper range of pH 4-10, it was found to be excellent microorganisms with excellent pH stability as there is almost no decrease in activity even with the change of pH.
이하 실시예를 통하여 본 발명을 좀 더 구체적으로 설명하지만 하기 예에 본 발명이 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.
실시예 1(미생물 균주의 확보)Example 1 (Secure Microbial Strains)
(+)-감마-락탐 만을 선택적으로 가수분해하는 미생물 균주를 확보하기 위해 갑천(대전, 대한민국)변의 토양과 폐수로부터 여러 곳에서 시료를 채취하였다. 채 취한 시료에 완충용액 PBS(Phosphate-buffered saline)를 첨가하여 교반한 뒤 정치시켰다. 침전이 완료된 후 상등액을, 유일한 탄소원으로 N-아세틸-L-페닐알라닌(N-acetyl-L-phenylalanine)만을 포함하는 고체배지에 도말한 뒤 30℃ 항온기에서 7일간 배양하였다. 7일 후 생장을 보이는 균주를 확보하여 이를 각각 영양 배지에서 생장시켜 균체를 획득하였다. 획득한 균체에 1%(W/V)의 라세믹 감마-락탐을 포함하는 100mM 인산완충용액(pH7.0)을 첨가하여 3일간 반응을 수행하고 반응이 완료된 뒤 원심분리기를 이용하여 균주를 분리시킨 후, 상등액을 동량의 초산 에틸(Ethyl acetate)을 사용하여 3회 추출하였다. 추출물을 감압 증류하여 초산 에틸을 제거하고 감마-락탐 생성물을 확보하였다. 확보된 생성물은 액체 크로마토그래피를 이용하여 분석하였다.In order to obtain a microbial strain that selectively hydrolyzes only (+)-gamma-lactam, samples were collected from soil and wastewater of Gapcheon (Daejeon, South Korea). After adding the buffer solution PBS (Phosphate-buffered saline) to the sample was stirred and left to stand. After the precipitation was completed, the supernatant was plated on a solid medium containing only N-acetyl-L-phenylalanine as the only carbon source and incubated for 7 days at 30 ° C. After 7 days to obtain a strain showing the growth it was grown in each nutrient medium to obtain the cells. 100 mM phosphate buffer solution (pH7.0) containing 1% (W / V) racemic gamma-lactam was added to the obtained cells to carry out the reaction for 3 days, and after completion of the reaction, the strain was separated using a centrifuge. After the supernatant was extracted three times using the same amount of ethyl acetate. The extract was distilled under reduced pressure to remove ethyl acetate to obtain a gamma-lactam product. The secured product was analyzed using liquid chromatography.
액체 크로마토그래피의 분석조건은 다음과 같다.The analysis conditions of the liquid chromatography are as follows.
컬럼으로는 셀룰로오스 카바메이트(Cellulose carbamate) 유도체로 이루어진 키랄셀 OD-H(chiralcel OD-H, Daicel사)를 사용하였고, 용리액으로는 헥산, 이소프로판올 및 트리플루오르 아세트산이 95:5:0.1의 비율로 혼합된 혼합용액을 사용하여 분당 1ml의 속도로 흘려주었으며, 반응생성물은 UV 205nm에서 검출하였다. 상기 반응의 반응물 및 생성물인 (+)-감마-락탐은 13.6분, (-)-감마-락탐은 21.0분에서 검출되기 때문에 쉽게 구별할 수 있다.As a column, chiralcel OD-H made of cellulose carbamate derivative (chiralcel OD-H, Daicel Co., Ltd.) was used. As eluent, hexane, isopropanol and trifluoroacetic acid were used at a ratio of 95: 5: 0.1. The mixed solution was flowed at a rate of 1 ml per minute, and the reaction product was detected at UV 205 nm. The reactants and products of the reaction, (+)-gamma-lactams, are readily distinguishable since they are detected at 13.6 minutes and (-)-gamma-lactams at 21.0 minutes.
상기와 같은 과정을 반복하여 (+)-감마-락탐 만을 선택적으로 가수분해하여 최종적으로 (-)-감마-락탐을 남기는 균주를 3종 확보하였고, 3종의 동정을 실시하였다. The above process was repeated to selectively hydrolyze only (+)-gamma-lactam to secure three strains that finally leave (-)-gamma-lactam, and three species were identified.
실시예 2(미생물 균주의 동정)Example 2 (Identification of Microbial Strains)
실시예 1에서 분리된 3개의 균주를 각각 SKM01, SKM02, SKM07 이라 명명하고 한국 미생물 보존센터(KCCM, Korean Culture Center of Microorganisms)에 의뢰하여 동정하였다. 참고로 상기 SKM01, SKM02, SKM07 균주의 16S rDNA 서열 분석 결과를 서열 목록 1 - 3에 나타내었으며, 생리학적 분석 결과를 하기 표 1에 나타내었다. 또한, 그에 따른 동정결과 밝혀진 분류학적 맵을 각각 도 1, 도 2 및 도 3에 나타내었다. 동정한 결과, SKM01은 아크로모박터 자일로스옥시던스 아종. 자일로스옥시던스(Achromobacter xylosoxidans subsp. Xylosoxidans), SKM02는 파라코쿠스 아미노보란스(Paracoccus aminovorans), SKM07은 슈도모나스 아에루지노사(Pseudomonas aeruginosa) 로 판명되어 세 균주 모두 기존의 문헌에서 언급된 균주와는 다른 새로운 균주로 판명되었다. 이들 균주를 2003년 12월 3일자로 한국 미생물 보존센터에 기탁하였고, 이들의 기탁번호는 각각 KCCM-10547, KCCM-10548, KCCM-10549 이다. Three strains isolated in Example 1 were named SKM01, SKM02, and SKM07, respectively, and were identified by requesting them to the Korean Culture Center of Microorganisms (KCCM). For reference, 16S rDNA sequence analysis results of the SKM01, SKM02, and SKM07 strains are shown in SEQ ID NOs: 1 to 3, and the physiological analysis results are shown in Table 1 below. In addition, the taxonomic maps identified as a result of the identification are shown in FIGS. 1, 2, and 3, respectively. As a result, SKM01 is acromobacter xylose redox subspecies. Achromobacter xylosoxidans subsp.Xylosoxidans , SKM02 for Paracoccus aminovorans and SKM07 for Pseudomonas aeruginosa, all three strains have been identified in the literature Turned out to be another new strain. These strains were deposited to the Korea microbial conservation center as of December 3, 2003, and their accession numbers are KCCM-10547, KCCM-10548, and KCCM-10549, respectively.
실시예 3(미생물 균주를 이용한 라세믹 감마-락탐의 분할)Example 3 (Segmentation of Racemic Gamma-lactams Using Microbial Strains)
반응기에 실시예 2의 미생물 균주 SKM01 0.5g과 라세믹 감마-락탐 0.2g을 정량하여 첨가한 뒤 100mM 인산 완충용액(pH7.0)을 첨가하여 최종부피가 10ml가 되도록 조정한 다음 30℃ 에서 반응을 수행하였다. 반응 후 일정시간마다 일정량의 내용물을 회수하여 실시예 1과 같은 방법으로 (-)-감마-락탐을 얻었다. 이와 같이 제조된 (-)-감마-락탐의 광학순도는 실시예 1과 같은 방법으로 액체 크로마토그래피를 이용하여 분석하였다.0.5 g of the microorganism strain SKM01 of Example 2 and 0.2 g of racemic gamma-lactam were quantitatively added to the reactor, followed by addition of 100 mM phosphate buffer solution (pH7.0) to adjust the final volume to 10 ml, followed by reaction at 30 ° C. Was performed. After the reaction, a certain amount of contents were collected at a predetermined time to obtain (-)-gamma-lactam in the same manner as in Example 1. The optical purity of the thus prepared (-)-gamma-lactam was analyzed using liquid chromatography in the same manner as in Example 1.
분석결과는 수율[%]과 광학순도[%e.e.]로 나타내었으며 (-)-감마-락탐의 수율 은 하기 수학식 1을 사용하여 계산하였고, (-)-감마-락탐의 광학순도는 수학식 2를 사용하여 계산하였다.The results of the analysis were expressed as yield [%] and optical purity [% ee]. The yield of (-)-gamma-lactam was calculated using Equation 1 below, and the optical purity of (-)-gamma-lactam was Calculated using 2.
상기 조건으로 반응시간에 따른 (-)-감마-락탐의 광학순도[%e.e.]를 측정하여 하기 표 2에 나타내었다.
The optical purity [% ee] of the (-)-gamma-lactam according to the reaction time under the above conditions is shown in Table 2 below.
20 시간 후 반응을 중지하고 분별깔때기로 옮긴 뒤, 초산 에틸 10 mL로 3회 추출하고, 유기 용매 층을 따로 분리하여 감압증류로 용매를 제거한 결과 0.0798g의 (-)-감마-락탐을 회수하였고, 이를 액체 크로마토그래피를 이용하여 분석하였 다. 이때 (-)-감마-락탐의 수율은 39.9%, 광학순도는 99.9%e.e.이었다.
After 20 hours, the reaction was stopped, transferred to a separatory funnel, extracted three times with 10 mL of ethyl acetate, and the organic solvent layer was separated and the solvent was removed by distillation under reduced pressure to recover 0.0798 g of (-)-gamma-lactam. This was analyzed using liquid chromatography. At this time, the yield of (-)-gamma-lactam was 39.9%, the optical purity was 99.9% ee.
실시예 4~6Examples 4-6
실시예 3의 조건 중 균주량, 완충용액의 pH, 반응온도는 실시예 3과 동일한 조건하에서 기질량을 0.1, 0.5, 1g으로 변화시켜 20시간 동안 반응시킨 후, 실시예 3과 같은 방법으로 반응물을 회수하고 분석한 결과를 표 3에 나타내었다.
In Example 3, the strain amount, pH of the buffer solution, and the reaction temperature were changed to 0.1, 0.5, and 1 g of the mass under the same conditions as in Example 3, followed by reaction for 20 hours, and then the reactants were prepared in the same manner as in Example 3. The recovered and analyzed results are shown in Table 3.
실시예 7~8Examples 7-8
실시예 3의 조건 중 기질량, 완충용액의 pH, 반응온도는 실시예 3과 동일한 조건하에서 균주량을 0.05, 0.1, 0.2g으로 변화시켜 20시간 동안 반응시킨 후, 실시예 3와 같은 방법으로 반응물을 회수하고 분석한 결과를 표 4에 나타내었다.
Among the conditions of Example 3, the mass, the pH of the buffer solution, and the reaction temperature were changed to 0.05, 0.1, and 0.2 g of the strain under the same conditions as in Example 3, and then reacted for 20 hours, in the same manner as in Example 3. The results of the recovery and analysis of the reactants are shown in Table 4.
실시예 9~14Examples 9-14
실시예 3의 조건 중 기질 및 균주의 양, 반응온도, 완충용액의 부피는 실시예 3과 동일한 조건하에서, 완충용액의 pH를 4, 5, 6, 8, 9, 10 으로 다양하게 변화시켜 20시간 동안 반응시킨 후, 실시예 3와 같은 방법으로 반응물을 회수하고 분석한 결과를 표 5에 나타내었다.
The amount of substrate and strain, the reaction temperature, and the volume of the buffer solution in the conditions of Example 3 were varied by changing the pH of the buffer solution to 4, 5, 6, 8, 9, 10 under the same conditions as in Example 3. After the reaction for a time, the reaction was recovered and analyzed in the same manner as in Example 3 is shown in Table 5.
실시예 15~19Examples 15-19
실시예 3의 조건 중 기질 및 균주의 양, 완충용액의 pH 및 부피는 실시예 3과 동일한 조건하에서 반응온도를 25, 35, 40, 45, 50℃로 다양하게 변화시켜 20시간 동안 반응시킨 후, 실시예 3과 같은 방법으로 반응물을 회수하고 분석한 결과를 표 6에 나타내었다. In the conditions of Example 3, the amount of substrate and strain, pH and volume of the buffer solution were changed for 25 hours to 25, 35, 40, 45, and 50 ° C under the same conditions as in Example 3, followed by reaction for 20 hours. In Table 6, the reaction was recovered and analyzed in the same manner as in Example 3.
실시예 20~21Examples 20-21
실시예 3의 조건 중 완충용액의 pH 및 부피, 기질량, 반응온도는 실시예 3과 동일한 조건하에서 미생물 균주의 종류를 SKM02, SKM07로 변화시킨 뒤 3일 동안 반응시킨 후, 실시예 3과 같은 방법으로 반응물을 회수하고 분석한 결과를 표 7에 나타내었다. PH, volume, base mass, and reaction temperature of the buffer solution in Example 3 were changed to the types of microbial strains SKM02 and SKM07 under the same conditions as in Example 3, followed by reaction for 3 days, and then the same as in Example 3. The reaction was recovered and analyzed by the method shown in Table 7.
상기 실시예를 통해 알 수 있듯이, 본 발명에서 사용한 미생물 균주는 선행 기술에서 언급되지 않은 새로운 미생물들이며, 이들 미생물을 사용하여 (-)-감마-락탐을 생산할 경우 99% ee 이상의 높은 광학순도를 가진 락탐 화합물을 제조할 수 있고, 특히 SKM01 균주를 이용할 경우에는 40%이상의 높은 수율을 달성할 수 있어 상업적으로 유용하다. 또한 상온 상압에서 반응이 진행되므로 추가적인 장치가 필요 없고 미생물의 배양이 용이하여 대량생산에 적합한 공정의 개발이 가능한 장점이 있다. As can be seen from the above examples, the microbial strains used in the present invention are new microorganisms not mentioned in the prior art, and when these microorganisms are used to produce (-)-gamma-lactam, they have a high optical purity of 99% ee or more. The lactam compound can be prepared, and especially when SKM01 strain is used, a high yield of 40% or more can be achieved, which is commercially useful. In addition, since the reaction proceeds at room temperature and normal pressure, there is no need for an additional device, and there is an advantage in that a process suitable for mass production can be developed due to easy cultivation of microorganisms.
<110> SK CORPORATION <120> Method for preparing (-)-gamma-lactam using novel microbial strains <160> 3 <170> KopatentIn 1.71 <210> 1 <211> 1440 <212> DNA <213> Achromobacter xylosoxidans subsp. xylosoxidans <400> 1 tgacgctagc gggatgcctt acacatgcaa gtcgaacggc agcacggaac ttcggtctgg 60 tggcgagtgg cgaacgggtg agtaatgtat cggaacgtgc ccagtagcgg gggataacta 120 cgcgaaagcg tagctaatac cgcatacgcc ctacggggga aagcagggga tcgcaagacc 180 ttgcactatt ggagcggccg atatcggatt agctagttgg tggggtaacg gctcaccaag 240 gcgacgatcc gtagctggtt tgagaggacg accagccaca ctgggactgn agnacacggc 300 ccagactcct acgggaggca gcagtgggga attttggaca atgggggaaa ccctgatcca 360 gccatcccgc gtgtgcgatg aaggccttcg ggttgtaaag cacttttggc aggaaagaaa 420 cgtcgcgggt taataccccg cggaactgac ggtacctgca gaataagcac cggctaacta 480 cgtgccagca gccgcggtaa tacgtagggt gcaagcgtta atcggaatta ctgggcgtaa 540 agcgtgcgca ggcggttcgg aaagaaagat gtgaaatccc agagcttaac tttggaactg 600 catttttaac taccgggcta gagtgtgtca gagggaggtg gaattccgcg tgtagcagtg 660 aaatgcgtag atatgcggag gaacaccgat ggcgaaggca gcctcctggg ataacacgac 720 gctcatgcac gaaagcgtgg ggagcaaaca ggattagata ccctggtagt ccacgcccta 780 aacgatgtca actagctgtt ggggtcttcg gaccttggta gcgcagctaa cgcgtgaagt 840 tgaccgcctg gggagtacgg tcgcaagatt aaaactcaaa ggaattgacg gggacccgca 900 caagcggtgg atgatgtgga ttaattcgat gcaacgcgaa aaaccttacc tacccttgac 960 atgtctggaa tgccgaagag atttggcagt gctcgcaaga gaactggaac acaggtgctg 1020 catggctgtc gtcagctcgt gtcgtgagat gttgggttaa gtcccgcaac gagcgcaacc 1080 cttgtcatta gttgctacga aagggcactc taatgagact gccggtgaca aaccggagga 1140 aggtggggat gacgtcaagt cctcatggcc cttatgggta gggcttcaca cgtcatacaa 1200 tggtcgggac agagggtcgc caacccgcga gggggagcca atcccagaaa cccgatcgta 1260 gtccggatcg cagtctgcaa ctcgactgcg tgaagtcgga atcgctagta atcgcggatc 1320 agcatgtcgc ggtgaatacg ttcccgggtc ttgtacacac cgcccgtcac accatgggag 1380 tgggttttac cagaagtagt tagcctaacc gcaagggggg cgattaccac ggtaggattc 1440 1440 <210> 2 <211> 1372 <212> DNA <213> Paracoccus aminovorans <400> 2 gctggcggca ggcctaacac atggcaagtc gagcgagatc ttcggatcta gcggcggacg 60 ggtgagtaac gcgtgggaat atgcccttct ctacggaata gcctcgggaa actgggagta 120 ataccgtata cgcccttagg gggaaagatt tatcggagaa ggattagccc gcgttggatt 180 aggtagttgg tggggtaatg gcctaccaag ccgacgatcc atagctggtt tgagaggatg 240 atcagccaca ctgggactga gacacggccc agactcctac gggaggcagc agtggggaat 300 cttagacaat gggggcaacc ctgatctagc catgccgcgt gagtgatgaa ggccttaggg 360 ttgtaaagct ctttcagctg ggaagataat gacggtacca gcagaagaag ccccggctaa 420 ctccgtgcca gcagccgcgg taatacggag ggggctagcg ttgttcggaa ttactgggcg 480 taaagcgcac gtaggcggac cagaaagttg gaggtgaaat cccagggctc aaccttggaa 540 ctgccttcaa aactattggt ctggagttcg agagaggtga gtggaattcc gagtgtagag 600 gtgaaattcg tagatattcg gaggaacacc agtggcgaag gcggctcact ggctcgatac 660 tgacgctgag gtgcgaaagc gtggggagca aacaggatta gataccctgg tagtccacgc 720 cgtaaacgat gaatgccagt cgtcgggtag catgctattc ggtgacacac ctaacggatt 780 aagcattccg cctggggagt acggtcgcaa gattaaaact caaaggaatt gacgggggcc 840 cgcacaagcg gtggagcatg tggtttaatt cgaagcaacg cgcagaacct taccaaccct 900 tgacattaca ggacatcccc agagatgggg ctttcacttc ggtgacctgt ggacaggtgc 960 tgcatggctg tcgtcagctc gtgtcgtgag atgttcggtt aagtccggca acgagcgcaa 1020 cccacactct tagttgccag cattcagttg ggcactctaa gagaactgcc gatgataagt 1080 cggaggaagg tgtggatgac gtcaagtcct catggccctt acgggttggg ctacacacgt 1140 gctacaatgg tggtgacagt gggttaatcc ccaaaagcca tctcagttcg gattggggtc 1200 tgcaactcga ccccatgaag ttggaatcgc tagtaatcgc ggaacagcat gccgcggtga 1260 atacgttccc gggccttgta cacaccgccc gtcacaccat gggagttggt tctacccgac 1320 ggccgtgcgc taaccagcaa tggaggcagc ggaccacggt aggatcagcg ac 1372 <210> 3 <211> 1447 <212> DNA <213> Pseudomonas aeruginosa <400> 3 tgacgctggc ggcaggccta acacatgcaa gtcgagcgga tgaagggagc ttgctcctgg 60 attcagcggc ggacgggtga gtaatgccta ggaatctgcc tggtagtggg ggataacgtc 120 cggaaacggg cgctaatacc gcatacgtcc tgagggagaa agtgggggat cttcggacct 180 cacgctatca gatgagccta ggtcggatta gctagttggt ggggtaaagg cctaccaagg 240 cgacgatccg taactggtct gagaggatga tcagtcacac tggaactgag acacggtcca 300 gactcctacg ggaggcagca gtggggaata ttggacaatg ggcgaaagcc tgatccagcc 360 atgccgcgtg tgtgaagaag gtcttcggat tgtaaagcac tttaagttgg gaggaagggc 420 agtaagttaa taccttgctg ttttgacgtt accaacagaa taagcaccgg ctaacttcgt 480 gccagcagcc gcggtaatac gaagggtgca agcgttaatc ggaattactg ggcgtaaagc 540 gcgcgtaggt ggttcagcaa gttggatgtg aaatccccgg gctcaacctg ggaactgcat 600 ccaaaactac tgagctagag tacggtagag ggtggtggaa tttcctgtgt agcggtgaaa 660 tgcgtagata taggaaggaa caccagtggc gaaggcgacc acctggactg atactgacac 720 tgaggtgcga aagcgtgggg agcaaacagg attagatacc ctggtagtcc acgccgtaaa 780 cgatgtcgac tagccgttgg gatccttgag atcttagtgg cgcagctaac gcgataagtc 840 gaccgcctgg ggagtacggc cgcaaggtta aaactcaaat gaattgacgg gggcccgcac 900 aagcggtgga gcatgtggtt taattcgaag caacgcgaag aaccttacct ggccttgaca 960 tgctgagaac tttccagaga tggattggtg ccttcgggaa ctcanacaca ggtgctgcat 1020 ggctgtcgtc agctcgtgtc gtgagatgtt gggttaagtc ccgtaacgag cgcaaccctt 1080 gtccttagtt accagcacct cgggtgggca ctctaaggag actgccggtg acaaaccgga 1140 ggaaggtggg gatgacgtca agtcatcatg gcccttacgg ccagggctac acacgtgcta 1200 caatggtcgg tacaaagggt tgccaagccg cgaggtggag ctaatcccat aaaaccgatc 1260 gtagtccgga tcgcagtctg caactcgact gcgtgaagtc ggaatcgcta gtaatcgtga 1320 atcagaatgt cacggtgaat acgttcccgg gccttgtaca caccgcccgt cacaccatgg 1380 gagtgggttg ctccagaagt agctagtcta accgcaaggg ggacggttac cacggagtga 1440 ttcagac 1447 <110> SK CORPORATION <120> Method for preparing (-)-gamma-lactam using novel microbial strains <160> 3 <170> KopatentIn 1.71 <210> 1 <211> 1440 <212> DNA <213> Achromobacter xylosoxidans subsp. xylosoxidans <400> 1 tgacgctagc gggatgcctt acacatgcaa gtcgaacggc agcacggaac ttcggtctgg 60 tggcgagtgg cgaacgggtg agtaatgtat cggaacgtgc ccagtagcgg gggataacta 120 cgcgaaagcg tagctaatac cgcatacgcc ctacggggga aagcagggga tcgcaagacc 180 ttgcactatt ggagcggccg atatcggatt agctagttgg tggggtaacg gctcaccaag 240 gcgacgatcc gtagctggtt tgagaggacg accagccaca ctgggactgn agnacacggc 300 ccagactcct acgggaggca gcagtgggga attttggaca atgggggaaa ccctgatcca 360 gccatcccgc gtgtgcgatg aaggccttcg ggttgtaaag cacttttggc aggaaagaaa 420 cgtcgcgggt taataccccg cggaactgac ggtacctgca gaataagcac cggctaacta 480 cgtgccagca gccgcggtaa tacgtagggt gcaagcgtta atcggaatta ctgggcgtaa 540 agcgtgcgca ggcggttcgg aaagaaagat gtgaaatccc agagcttaac tttggaactg 600 catttttaac taccgggcta gagtgtgtca gagggaggtg gaattccgcg tgtagcagtg 660 aaatgcgtag atatgcggag gaacaccgat ggcgaaggca gcctcctggg ataacacgac 720 gctcatgcac gaaagcgtgg ggagcaaaca ggattagata ccctggtagt ccacgcccta 780 aacgatgtca actagctgtt ggggtcttcg gaccttggta gcgcagctaa cgcgtgaagt 840 tgaccgcctg gggagtacgg tcgcaagatt aaaactcaaa ggaattgacg gggacccgca 900 caagcggtgg atgatgtgga ttaattcgat gcaacgcgaa aaaccttacc tacccttgac 960 atgtctggaa tgccgaagag atttggcagt gctcgcaaga gaactggaac acaggtgctg 1020 catggctgtc gtcagctcgt gtcgtgagat gttgggttaa gtcccgcaac gagcgcaacc 1080 cttgtcatta gttgctacga aagggcactc taatgagact gccggtgaca aaccggagga 1140 aggtggggat gacgtcaagt cctcatggcc cttatgggta gggcttcaca cgtcatacaa 1200 tggtcgggac agagggtcgc caacccgcga gggggagcca atcccagaaa cccgatcgta 1260 gtccggatcg cagtctgcaa ctcgactgcg tgaagtcgga atcgctagta atcgcggatc 1320 agcatgtcgc ggtgaatacg ttcccgggtc ttgtacacac cgcccgtcac accatgggag 1380 tgggttttac cagaagtagt tagcctaacc gcaagggggg cgattaccac ggtaggattc 1440 1440 <210> 2 <211> 1372 <212> DNA <213> Paracoccus aminovorans <400> 2 gctggcggca ggcctaacac atggcaagtc gagcgagatc ttcggatcta gcggcggacg 60 ggtgagtaac gcgtgggaat atgcccttct ctacggaata gcctcgggaa actgggagta 120 ataccgtata cgcccttagg gggaaagatt tatcggagaa ggattagccc gcgttggatt 180 aggtagttgg tggggtaatg gcctaccaag ccgacgatcc atagctggtt tgagaggatg 240 atcagccaca ctgggactga gacacggccc agactcctac gggaggcagc agtggggaat 300 cttagacaat gggggcaacc ctgatctagc catgccgcgt gagtgatgaa ggccttaggg 360 ttgtaaagct ctttcagctg ggaagataat gacggtacca gcagaagaag ccccggctaa 420 ctccgtgcca gcagccgcgg taatacggag ggggctagcg ttgttcggaa ttactgggcg 480 taaagcgcac gtaggcggac cagaaagttg gaggtgaaat cccagggctc aaccttggaa 540 ctgccttcaa aactattggt ctggagttcg agagaggtga gtggaattcc gagtgtagag 600 gtgaaattcg tagatattcg gaggaacacc agtggcgaag gcggctcact ggctcgatac 660 tgacgctgag gtgcgaaagc gtggggagca aacaggatta gataccctgg tagtccacgc 720 cgtaaacgat gaatgccagt cgtcgggtag catgctattc ggtgacacac ctaacggatt 780 aagcattccg cctggggagt acggtcgcaa gattaaaact caaaggaatt gacgggggcc 840 cgcacaagcg gtggagcatg tggtttaatt cgaagcaacg cgcagaacct taccaaccct 900 tgacattaca ggacatcccc agagatgggg ctttcacttc ggtgacctgt ggacaggtgc 960 tgcatggctg tcgtcagctc gtgtcgtgag atgttcggtt aagtccggca acgagcgcaa 1020 cccacactct tagttgccag cattcagttg ggcactctaa gagaactgcc gatgataagt 1080 cggaggaagg tgtggatgac gtcaagtcct catggccctt acgggttggg ctacacacgt 1140 gctacaatgg tggtgacagt gggttaatcc ccaaaagcca tctcagttcg gattggggtc 1200 tgcaactcga ccccatgaag ttggaatcgc tagtaatcgc ggaacagcat gccgcggtga 1260 atacgttccc gggccttgta cacaccgccc gtcacaccat gggagttggt tctacccgac 1320 ggccgtgcgc taaccagcaa tggaggcagc ggaccacggt aggatcagcg ac 1372 <210> 3 <211> 1447 <212> DNA <213> Pseudomonas aeruginosa <400> 3 tgacgctggc ggcaggccta acacatgcaa gtcgagcgga tgaagggagc ttgctcctgg 60 attcagcggc ggacgggtga gtaatgccta ggaatctgcc tggtagtggg ggataacgtc 120 cggaaacggg cgctaatacc gcatacgtcc tgagggagaa agtgggggat cttcggacct 180 cacgctatca gatgagccta ggtcggatta gctagttggt ggggtaaagg cctaccaagg 240 cgacgatccg taactggtct gagaggatga tcagtcacac tggaactgag acacggtcca 300 gactcctacg ggaggcagca gtggggaata ttggacaatg ggcgaaagcc tgatccagcc 360 atgccgcgtg tgtgaagaag gtcttcggat tgtaaagcac tttaagttgg gaggaagggc 420 agtaagttaa taccttgctg ttttgacgtt accaacagaa taagcaccgg ctaacttcgt 480 gccagcagcc gcggtaatac gaagggtgca agcgttaatc ggaattactg ggcgtaaagc 540 gcgcgtaggt ggttcagcaa gttggatgtg aaatccccgg gctcaacctg ggaactgcat 600 ccaaaactac tgagctagag tacggtagag ggtggtggaa tttcctgtgt agcggtgaaa 660 tgcgtagata taggaaggaa caccagtggc gaaggcgacc acctggactg atactgacac 720 tgaggtgcga aagcgtgggg agcaaacagg attagatacc ctggtagtcc acgccgtaaa 780 cgatgtcgac tagccgttgg gatccttgag atcttagtgg cgcagctaac gcgataagtc 840 gaccgcctgg ggagtacggc cgcaaggtta aaactcaaat gaattgacgg gggcccgcac 900 aagcggtgga gcatgtggtt taattcgaag caacgcgaag aaccttacct ggccttgaca 960 tgctgagaac tttccagaga tggattggtg ccttcgggaa ctcanacaca ggtgctgcat 1020 ggctgtcgtc agctcgtgtc gtgagatgtt gggttaagtc ccgtaacgag cgcaaccctt 1080 gtccttagtt accagcacct cgggtgggca ctctaaggag actgccggtg acaaaccgga 1140 ggaaggtggg gatgacgtca agtcatcatg gcccttacgg ccagggctac acacgtgcta 1200 caatggtcgg tacaaagggt tgccaagccg cgaggtggag ctaatcccat aaaaccgatc 1260 gtagtccgga tcgcagtctg caactcgact gcgtgaagtc ggaatcgcta gtaatcgtga 1320 atcagaatgt cacggtgaat acgttcccgg gccttgtaca caccgcccgt cacaccatgg 1380 gagtgggttg ctccagaagt agctagtcta accgcaaggg ggacggttac cacggagtga 1440 ttcagac 1447
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040008763A KR101082030B1 (en) | 2004-02-10 | 2004-02-10 | Method for preparing (-)-gamma-lactam and novel microbial strains for the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040008763A KR101082030B1 (en) | 2004-02-10 | 2004-02-10 | Method for preparing (-)-gamma-lactam and novel microbial strains for the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050080663A KR20050080663A (en) | 2005-08-17 |
KR101082030B1 true KR101082030B1 (en) | 2011-11-10 |
Family
ID=37267420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040008763A KR101082030B1 (en) | 2004-02-10 | 2004-02-10 | Method for preparing (-)-gamma-lactam and novel microbial strains for the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101082030B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110004081B (en) * | 2019-03-25 | 2022-09-13 | 江西省科学院微生物研究所 | Pantoea ananatis capable of resolving (+/-) gamma-lactam to obtain (+) gamma-lactam and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6423522B1 (en) * | 1996-09-03 | 2002-07-23 | Chirotech Technology, Ltd. | Microorganism lactamase enzyme obtained therefrom and their use |
-
2004
- 2004-02-10 KR KR1020040008763A patent/KR101082030B1/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6423522B1 (en) * | 1996-09-03 | 2002-07-23 | Chirotech Technology, Ltd. | Microorganism lactamase enzyme obtained therefrom and their use |
Also Published As
Publication number | Publication date |
---|---|
KR20050080663A (en) | 2005-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6048850B2 (en) | D-succinylase and method for producing D-amino acid using the same | |
EP0255390B1 (en) | Rhodococcus bacterium for the production of aryl acylamidase | |
EP0938584B1 (en) | Method of preparing (s) - or (r) -3,3,3-trifluoro-2-hydroxy-2- methylpropionic acid | |
KR101082030B1 (en) | Method for preparing (-)-gamma-lactam and novel microbial strains for the same | |
US8227234B2 (en) | Process for preparing 2-hydroxy-4-substituted pyridines | |
JPH0576391A (en) | Biological engineering method for preparing s-(+)-2,2-dimethylcyclopropanecarboxamide | |
KR100652186B1 (en) | -53 Novel Bacillus Subtilis Subsp. Subtilis A-53 and Method for Preparing Cellulase Using the Same | |
JP2995870B2 (en) | New microorganism | |
KR100352192B1 (en) | A New thermophilic bacterium Brevibacillus borstelensis BCS-1 and A thermostable D-stereospecific amino acid amidase produced therefrom | |
US7341857B2 (en) | Production of beta-hydroxypalmitate methyl esterase from Ideonella sp.0-0013 (FERM BP-08660) | |
JP6269076B2 (en) | Method for producing (S) -1-benzyl-3-aminopiperidine | |
KR100345847B1 (en) | Process for preparing cefazolin by using immobilized enzyme | |
CN101440387B (en) | Shaking culture medium and method for improving catalysis ability of glucose oxidation bacilli | |
US7091016B2 (en) | Carbonyl reductase of Kluyveromyces marxianus and its isolation and purification method | |
JP6201120B2 (en) | Process for producing optically active 3,3,3-trifluoro-2-hydroxy-2-methylpropionic acid | |
JP2003525604A (en) | A method for searching for a novel obligately symbiotic thermophilic bacterium Symbiobacterium shrimp SC-1 that produces thermostable L-tyrosine phenol lyase and L-tryptophan indole lyase and related microorganisms. | |
JPH07227276A (en) | Lipase, microorganism producing the same lipase and method for obtaining the same microorganism | |
JPH05339222A (en) | Production of amide compound | |
KR100345848B1 (en) | Process for preparing cefazolin by using immobilized microorganism | |
CN110699390A (en) | Application of extracellular protease of bacillus DL-1 in catalytic resolution of styryl acetate | |
JP2001120290A (en) | Method for producing carboxylic acids with microorganism | |
Alpula et al. | Isolation, Molecular identification, and Characterization of Thermophilic Bacteria from Ushnagundala hot springs of Telangana State: Bacillus sp. ANRPSA3 as Potential Thermostable lipase producer | |
JP2004254647A (en) | Method for producing l-penicillamine | |
JP2001120259A (en) | Method for producing carboxylic acid amides with microorganism | |
JP2000217592A (en) | Biological production of 3-carbamyl picolinic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
N231 | Notification of change of applicant | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |