KR101076328B1 - A method for producing silver(Ag) nanoparticle using proton beam irradiation - Google Patents

A method for producing silver(Ag) nanoparticle using proton beam irradiation Download PDF

Info

Publication number
KR101076328B1
KR101076328B1 KR1020080135947A KR20080135947A KR101076328B1 KR 101076328 B1 KR101076328 B1 KR 101076328B1 KR 1020080135947 A KR1020080135947 A KR 1020080135947A KR 20080135947 A KR20080135947 A KR 20080135947A KR 101076328 B1 KR101076328 B1 KR 101076328B1
Authority
KR
South Korea
Prior art keywords
silver
proton beam
silver nanoparticles
irradiation
nanoparticles
Prior art date
Application number
KR1020080135947A
Other languages
Korean (ko)
Other versions
KR20100077874A (en
Inventor
송재희
김영준
김계령
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Priority to KR1020080135947A priority Critical patent/KR101076328B1/en
Publication of KR20100077874A publication Critical patent/KR20100077874A/en
Application granted granted Critical
Publication of KR101076328B1 publication Critical patent/KR101076328B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G5/00Compounds of silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/11Use of irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/054Particle size between 1 and 100 nm

Abstract

본 발명은 양성자 빔 조사를 통한 은 나노입자의 합성 방법에 관한 것으로서, 더욱 상세하게는 은이온의 농도와 조사되는 양성자 빔의 조사시간을 조절함으로써 합성되는 은 나노입자 크기의 제어가 가능하며, 별도의 고온반응 장치와 계면활성제를 사용하지 않고도 순수한 은 나노입자를 합성할 수 있는 양성자 빔 조사를 통한 은 나노입자의 합성 방법에 관한 것이다.The present invention relates to a method for synthesizing silver nanoparticles by proton beam irradiation, and more specifically, it is possible to control the size of the silver nanoparticles synthesized by adjusting the concentration of silver ions and the irradiation time of the proton beam to be irradiated. The present invention relates to a method for synthesizing silver nanoparticles by proton beam irradiation which can synthesize pure silver nanoparticles without using a high temperature reaction device and a surfactant.

본 발명은, 은염, 폴리비닐알코올 및 이소프로필 알코올을 혼합한 수용액에 양성자빔을 조사함으로써 은 나노입자를 합성하는 것을 특징으로 하는 양성자 빔 조사를 통한 은 나노입자 합성 방법을 제공한다.The present invention provides a method for synthesizing silver nanoparticles through proton beam irradiation, wherein the nanoparticles are synthesized by irradiating a proton beam to an aqueous solution containing silver salt, polyvinyl alcohol, and isopropyl alcohol.

은 나노입자 합성, 은 나노입자, 양성자 빔, 은이온 농도, 크기 제어Silver Nanoparticle Synthesis, Silver Nanoparticles, Proton Beam, Silver Ion Concentration, Size Control

Description

양성자 빔 조사를 통한 은 나노입자 합성 방법{A method for producing silver(Ag) nanoparticle using proton beam irradiation}A method for producing silver (Ag) nanoparticle using proton beam irradiation}

본 발명은 양성자 빔 조사를 통한 은 나노입자의 합성 방법에 관한 것으로서, 더욱 상세하게는 은이온의 농도와 조사되는 양성자 빔의 조사시간을 조절함으로써 합성되는 은 나노입자 크기의 제어가 가능하며, 별도의 고온반응 장치와 계면활성제를 사용하지 않고도 순수한 은 나노입자를 합성할 수 있는 양성자 빔 조사를 통한 은 나노입자의 합성 방법에 관한 것이다.The present invention relates to a method for synthesizing silver nanoparticles by proton beam irradiation, and more specifically, it is possible to control the size of the silver nanoparticles synthesized by adjusting the concentration of silver ions and the irradiation time of the proton beam to be irradiated. The present invention relates to a method for synthesizing silver nanoparticles by proton beam irradiation which can synthesize pure silver nanoparticles without using a high temperature reaction device and a surfactant.

은 나노를 포함한 금속 나노 입자들은 전도성잉크, 항균제, 살균제, 탈취제, 전자파 차폐제 등 다양한 분야에 걸쳐 널리 사용되고 있는데, 이러한 나노 금속은 크게 탑-다운(top-down)방식과 바텀-업(bottom-up)방식으로 제조된다. 종래에는 탑-다운(top-down)방식이 주를 이루었으나, 탑-다운(top-down)방식으로는 1마이크론 이하의 입자를 만들기가 어려워짐에 따라 바텀-업(bottom-up)방식을 이용한 제조방법에 대한 관심과 연구가 활발히 이루어지고 있다.Metal nanoparticles including silver nanoparticles are widely used in various fields such as conductive ink, antimicrobial agent, fungicide, deodorant, electromagnetic wave shielding agent, and these nano metals are largely top-down and bottom-up. It is manufactured by the method. Conventionally, the top-down method has been mainly used, but as the top-down method becomes difficult to produce particles of 1 micron or less, the bottom-up method is used. Interest and research on the manufacturing method used is being actively made.

바텀-업(bottom-up)방식은 기상법과 같은 물리적 방법과, 액상반응을 이용한 화학적인 방법이 널리 사용되고 있는데, 물리적인 방법은 화학적 방법에 비하여 제 조단가가 높다는 단점이 있어 근래 들어 화학적인 액상법이 주로 사용되고 있다. In the bottom-up method, physical methods such as gas phase method and chemical method using liquid phase reaction are widely used. Mainly used.

이러한 액상법은 나노 입자의 성장을 억제하고 응집을 방지할 목적으로 대부분 적당한 계면활성제를 사용하여 제조하고 있는데, 계면활성제를 이용하여 금속 나노 입자를 제조하면 금속 나노 입자의 크기가 작아질수록 입자의 성장과 응집을 방지하기 위해 사용되는 계면활성제의 양이 급격하게 증가하게 되므로, 단순히 계면활성제를 사용하는 방법만으로는 금속 나노입자의 농도를 일정 농도 이상으로 조절할 수 없다는 문제점이 있다.Most of these liquid phase methods are prepared using a suitable surfactant to suppress the growth of the nanoparticles and prevent agglomeration. When the metal nanoparticles are prepared using the surfactant, the smaller the size of the metal nanoparticles, the more the particles grow. Since the amount of the surfactant used to prevent the aggregation is rapidly increased, there is a problem that the concentration of the metal nanoparticles cannot be adjusted to a predetermined concentration or more simply by using a surfactant.

이러한 문제점을 해소하기 위하여 금속염 용액 중의 금속이온을 적당한 환원제로 환원시키는 방법이 제시된 바있다. 이러한 기술들은 금속염 수용액에 계면활성제를 첨가한 후 pH를 보정한 다음 소정의 환원제로 처리하여 금속입자가 응집 또는 침강하지 않으면서 미세하고 균일한 크기의 고농도 금속 콜로이드 용액을 제조하는 방법에 관한 것이다.In order to solve this problem, a method of reducing metal ions in a metal salt solution with a suitable reducing agent has been proposed. These techniques relate to a method of preparing a highly concentrated metal colloidal solution of fine and uniform size without adding a surfactant to a metal salt aqueous solution, correcting pH, and then treating with a predetermined reducing agent to prevent agglomeration or sedimentation of the metal particles.

그러나, 이러한 기술들로 나노 금속 중에서 나노 은을 제조하는 경우 고농도의 나노 은 콜로이드 용액의 제조가 어려우며, 특히 40℃ 이상의 고온에서 반응이 일어나므로 대량 생산시 제조공정에서 열 효율성에 의한 비용 절감 효과가 없을 뿐만 아니라 고온에 의한 나노 은의 자기반응성의 증가로 응집 현상에 의해 나노 입자의 균일성이 떨어지며, 나노 입자의 제어가 곤란하여 원하는 크기의 나노 입자를 제조하는 것이 어렵다는 문제점이 있다.However, the production of nano silver colloidal solution in nano metals with these techniques is difficult to produce a high concentration of nano silver colloidal solution, especially because the reaction occurs at a high temperature of more than 40 ℃ cost reduction effect due to thermal efficiency in the manufacturing process during mass production In addition, there is a problem in that the uniformity of the nanoparticles is reduced due to the aggregation phenomenon due to the increase in the self-reactivity of the nanosilver due to the high temperature, and it is difficult to control the nanoparticles, thus making it difficult to manufacture nanoparticles of a desired size.

본 발명은 상기한 종래 기술에 따른 문제점을 해결하기 위한 것이다. 즉, 본 발명의 목적은, 은이온의 농도와 조사되는 양성자 빔의 조사시간을 조절함으로써 합성되는 은 나노입자 크기의 제어가 가능하며, 별도의 고온반응 장치와 계면활성제를 사용하지 않고도 순수한 은 나노입자를 합성할 수 있는 양성자 빔 조사를 통한 은 나노입자의 합성 방법을 제공한다.The present invention is to solve the above problems according to the prior art. That is, an object of the present invention is to control the size of the silver nanoparticles synthesized by adjusting the concentration of silver ions and the irradiation time of the irradiated proton beam, and pure silver nano without using a separate high temperature reaction device and a surfactant. Provided is a method for synthesizing silver nanoparticles through proton beam irradiation capable of synthesizing particles.

상기의 목적을 달성하기 위한 기술적 사상으로서 본 발명은, 은염, 폴리비닐알코올 및 이소프로필 알코올을 혼합한 수용액에 양성자빔을 조사함으로써 은 나노입자를 합성하는 것을 특징으로 하는 양성자 빔 조사를 통한 은 나노입자 합성 방법을 제공한다.As a technical idea for achieving the above object, the present invention, silver nano-particles through proton beam irradiation, characterized in that the synthesis of silver nanoparticles by irradiating a proton beam to an aqueous solution mixed with silver salt, polyvinyl alcohol and isopropyl alcohol Provided are particle synthesis methods.

본 발명에 따른 양성자 빔 조사를 통한 은 나노입자의 합성 방법은, 은 이온의 농도와 조사되는 양성자 빔의 조사시간을 조절함으로써 합성되는 은 나노입자 크기의 제어가 가능하며, 계면활성제를 사용하지 않아 환경 친화적이고, 실온에서의 반응으로 별도의 고온반응 장치가 필요하지 않아 공정효율이 우수하다.The method for synthesizing silver nanoparticles by proton beam irradiation according to the present invention can control the size of silver nanoparticles synthesized by adjusting the concentration of silver ions and the irradiation time of the proton beam to be irradiated, and do not use a surfactant. It is environmentally friendly and does not require a separate high temperature reaction device at room temperature, so it has excellent process efficiency.

이하, 본 발명의 바람직한 실시예를 첨부 도면에 의거하여 상세하게 설명하기로 한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은, 은이온의 농도를 조절한 혼합 수용액에 양성자 빔의 조사시간을 변화시키는 것에 의하여 원하는 크기로 제어된 은 나노입자를 형성할 수 있는 방법으로, 5nm~30nm의 입경을 가지는 은나노 입자를 제조할 수 있다. 특히, 양성자 빔의 조사율과 조사시간을 고정시키고 혼합 수용액의 은이온의 농도만을 변화시킴으로써 은 나노입자의 크기제어가 가능하며, 수용액의 은이온의 농도와 양성자 빔의 조사율을 고정시키고 양성자 빔의 조사시간만을 변화시킴으로서 은나노 입자의 크기제어가 가능하므로 실제 공정에 적용시 공정효율을 향상시킬 수 있는 장점을 가진다.The present invention provides a method for forming silver nanoparticles controlled to a desired size by varying the irradiation time of a proton beam in a mixed aqueous solution in which the concentration of silver ions is adjusted. Silver nanoparticles having a particle size of 5 nm to 30 nm are obtained. It can manufacture. In particular, it is possible to control the size of silver nanoparticles by fixing the irradiation rate and irradiation time of the proton beam and changing only the concentration of silver ions in the mixed aqueous solution, fixing the concentration of silver ions in the aqueous solution and the irradiation rate of the proton beam, It is possible to control the size of the silver nanoparticles by changing only the irradiation time of has the advantage of improving the process efficiency when applied to the actual process.

양성자 빔의 조사는 한국원자력의학원(Korea Institute of Radiological and Medical Sciences, KIRAMS)에 있는 MC-50 사이클로트론에 양성자 빔 라인을 설치하여 수행하였으며, 상기 빔 라인은 1×107~1×1010protons/cm2의 양성자 밀도를 갖도록 설계되었다. 상술한 빔 라인에서 얻어지는 양성자 빔의 에너지는 10MeV~38MeV의 범위이며, 본 실시예들에서는 24MeV의 양성자빔을 사용하였다.Proton beam irradiation was carried out by installing a proton beam line at MC-50 cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS), which beam line is 1 × 10 7 ~ 1 × 10 10 protons. It was designed to have a proton density of / cm 2 . The energy of the proton beam obtained from the above-described beam line is in the range of 10 MeV to 38 MeV, and in this embodiment, a proton beam of 24 MeV was used.

그러나, 본 발명에서 사용 가능한 양성자 빔의 에너지가 이들 범위에 한정되는 것은 아니며, 수MeV~수십MeV의 범위 즉, 1MeV~100MeV의 에너지 범위 내의 모든 양성자 빔이 적용 가능하다.However, the energy of the proton beam usable in the present invention is not limited to these ranges, and any proton beam in the range of several MeV to several ten MeV, that is, an energy range of 1 MeV to 100 MeV is applicable.

이하의 실시예들에서는, 1Gy/sec~4Gy/sec의 조사율을 갖는 양성자 빔으로 5내지 30분 동안 상기 혼합 수용액을 조사하여 평균입경 5nm~30nm의 은 나노 입자를 제조하는 단계를 포함하는데, 본 발명에서 조사시간은 양성자 빔의 총 조사량을 결정짓는 변수이며, 고정된 조사율에서 조사시간이 길어질수록 은 나노입자의 크기가 증가된다.In the following embodiments, the method comprises irradiating the mixed aqueous solution for 5 to 30 minutes with a proton beam having an irradiation rate of 1 Gy / sec to 4 Gy / sec to prepare silver nanoparticles having an average particle diameter of 5 nm to 30 nm. In the present invention, the irradiation time is a variable that determines the total irradiation amount of the proton beam, and the size of the silver nanoparticles increases as the irradiation time increases at a fixed irradiation rate.

다만, 상술한 조사율 및 조사시간은 실험실 규모의 조사에 맞추어 적용된 조사량으로서, 실제 생산라인에 적용되는 경우 양성자 빔의 조사량은 실험실 규모보다 수백~수만배 정도로 증가할 수 있다.However, the irradiation rate and irradiation time described above are irradiation doses adapted to laboratory-scale irradiation, and when applied to an actual production line, the irradiation amount of the proton beam may be increased by several hundred to tens of thousands of times than the laboratory scale.

본 발명의 혼합 수용액은 은염과, 폴리비닐알코올(poly(vinyl alcohol)) 및 이소프로필 알코올((CH3)2CHOH)을 혼합하여 제조된다. 은염은 당업계에서 통상적으로 사용되는 것인 한 특별히 제한되지 아니하며 예를 들어, 질산은(AgNO3), 과염소산은(AgClO4), 염소산은(AgClO3), 탄산은(Ag2CO3), 황산은(Ag2SO4)으로 이루어진 군으로부터 선택된 어느 하나일 수 있다. 상기 혼합 수용액은 2%~10%의 폴리비닐 알코올 수용액 10㎖ 당 0.1g~0.5g의 이소프로필 알코올이 혼합된 용액에 미량의 5mM~20mM 농도 은염 수용액을 혼합하여 제조된다.The mixed aqueous solution of the present invention is prepared by mixing a silver salt with poly (vinyl alcohol) and isopropyl alcohol ((CH 3 ) 2 CHOH). The silver salt is not particularly limited as long as it is commonly used in the art, for example, silver nitrate (AgNO 3 ), silver perchlorate (AgClO 4 ), silver chlorate (AgClO 3 ), silver carbonate (Ag 2 CO 3 ), sulfuric acid It may be any one selected from the group consisting of silver (Ag 2 SO 4 ). The mixed aqueous solution is prepared by mixing a small amount of 5mM to 20mM concentration silver salt aqueous solution in a solution of 0.1g to 0.5g of isopropyl alcohol per 10ml of 2% to 10% polyvinyl alcohol aqueous solution.

상술한 바와 같이, 본 발명에서는 10mL 5.0% 폴리비닐알코올 수용액에, 미량의 5mM~20mM 농도의 질산은(AgNO3) 수용액과, 0.18g 이소프로필알코올을 바이알에 혼합하고 2분동안 교반한 뒤, 상기 혼합 수용액에 양성자 빔을 조사하여 평균입경 10nm~22nm의 은 나노 입자를 제조하는 단계를 포함하는데, 혼합 수용액의 질산은의 농도가 커질수록 생성되어진 은 나노입자의 크기가 증가된다.As described above, in the present invention, 10 mL 5.0% polyvinyl alcohol aqueous solution, a small amount of 5 mM to 20 mM concentration of silver nitrate (AgNO 3 ) and 0.18 g isopropyl alcohol are mixed in a vial, followed by stirring for 2 minutes. Irradiating a proton beam to the mixed aqueous solution to produce silver nanoparticles having an average particle diameter of 10 nm to 22 nm, wherein the size of the silver nanoparticles produced increases as the concentration of silver nitrate in the mixed aqueous solution increases.

또한, 질산은 수용액, 폴리비닐알코올 수용액 및 이소프로필알코올이 혼합된 혼합 수용액의 색은 투명하지만 양성자 빔을 조사함에 따라 노란색 또는 짙은 황토색으로 변하게 된다.In addition, the color of the mixed solution of silver nitrate solution, polyvinyl alcohol solution and isopropyl alcohol is transparent but becomes yellow or dark ocher color as the proton beam is irradiated.

이하, 본 발명을 바람직한 실시예에 의거하여 더욱 상세히 설명하면 다음과 같으며, 하기의 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the preferred embodiments as follows, and the following examples are only for explaining the present invention more specifically, but the scope of the present invention is not limited to these examples.

실시예 1Example 1

10mM 질산은 수용액 50μL, 10mL 5.0% 폴리비닐알코올 수용액, 0.18g 이소프로필알코올을 바이알에 혼합하고 2분동안 교반하였다. 다음으로 상기 혼합액 0.6mL를 PCR튜브에 옮겨 담고 양성자 빔을 조사하였다.50 μL of 10 mM silver nitrate solution, 10 mL 5.0% polyvinyl alcohol aqueous solution, 0.18 g isopropyl alcohol were mixed into the vial and stirred for 2 minutes. Next, 0.6 mL of the mixed solution was transferred to a PCR tube and irradiated with a proton beam.

양성자 빔의 조사는 한국원자력의학원에 있는 MC-50 사이클로트론에 양성자 빔라인을 설치하여 수행하였으며, 상기 빔라인은 1×107~1×1010proton/cm2의 양성자 밀도를 갖도록 설계되었다. 한편, 양성자 빔의 에너지는 24MeV로 고정하여 실험하였으며, 양성자 빔의 조사량은 1.09Gy/sec였고 조사시간은 5분이였다.Proton beam irradiation was carried out by installing a proton beamline in MC-50 cyclotron at the Korea Atomic Energy Research Institute, and the beamline was designed to have a proton density of 1 × 10 7 ~ 1 × 10 10 proton / cm 2 . On the other hand, the energy of the proton beam was fixed at 24MeV, and the proton beam irradiation amount was 1.09 Gy / sec and the irradiation time was 5 minutes.

실시예 2Example 2

10mM 질산은 수용액 50μL, 10mL 5.0% 폴리비닐알코올 수용액, 0.18g 이소프로필알코올을 바이알에 혼합하고 2분동안 교반하였다. 다음으로 상기 혼합액 0.6mL를 PCR튜브에 옮겨 담고 양성자 빔을 조사하였다.50 μL of 10 mM silver nitrate solution, 10 mL 5.0% polyvinyl alcohol aqueous solution, 0.18 g isopropyl alcohol were mixed into the vial and stirred for 2 minutes. Next, 0.6 mL of the mixed solution was transferred to a PCR tube and irradiated with a proton beam.

양성자 빔의 조사는 한국원자력의학원에 있는 MC-50 사이클로트론에 양성자 빔라인을 설치하여 수행하였으며, 상기 빔라인은 1×107~1×1010proton/cm2의 양성자 밀도를 갖도록 설계되었다. 한편, 양성자 빔의 에너지는 24MeV로 고정하여 실험하였으며, 양성자 빔의 조사량은 1.09Gy/sec였고 조사시간은 15분이였다.Proton beam irradiation was carried out by installing a proton beamline in MC-50 cyclotron at the Korea Atomic Energy Research Institute, and the beamline was designed to have a proton density of 1 × 10 7 ~ 1 × 10 10 proton / cm 2 . On the other hand, the energy of the proton beam was fixed at 24MeV, and the irradiation amount of the proton beam was 1.09 Gy / sec and the irradiation time was 15 minutes.

실시예 3Example 3

10mM 질산은 수용액 50μL, 10mL 5.0% 폴리비닐알코올 수용액, 0.18g 이소프로필알코올을 바이알에 혼합하고 2분동안 교반하였다. 다음으로 상기 혼합액 0.6mL를 PCR튜브에 옮겨 담고 양성자 빔을 조사하였다.50 μL of 10 mM silver nitrate solution, 10 mL 5.0% polyvinyl alcohol aqueous solution, 0.18 g isopropyl alcohol were mixed into the vial and stirred for 2 minutes. Next, 0.6 mL of the mixed solution was transferred to a PCR tube and irradiated with a proton beam.

양성자 빔의 조사는 한국원자력의학원에 있는 MC-50 사이클로트론에 양성자 빔라인을 설치하여 수행하였으며, 상기 빔라인은 1×107~1×1010proton/cm2의 양성자 밀도를 갖도록 설계되었다. 한편, 양성자 빔의 에너지는 24MeV로 고정하여 실험하였으며, 양성자 빔의 조사량은 1.09Gy/sec였고 조사시간은 30분이였다.Proton beam irradiation was carried out by installing a proton beamline in MC-50 cyclotron at the Korea Atomic Energy Research Institute, and the beamline was designed to have a proton density of 1 × 10 7 ~ 1 × 10 10 proton / cm 2 . On the other hand, the energy of the proton beam was fixed at 24MeV, and the irradiation amount of the proton beam was 1.09 Gy / sec and the irradiation time was 30 minutes.

비교예 1Comparative Example 1

10mM 질산은 수용액 50μL, 10mL 5.0% 폴리비닐알코올 수용액, 0.18g 이소프로필알코올을 바이알에 혼합하고 2분동안 교반하였으나, 양성자 빔은 조사하지 않았다.50 μL of 10 mM silver nitrate solution, 10 mL 5.0% polyvinyl alcohol solution and 0.18 g isopropyl alcohol were mixed into the vial and stirred for 2 minutes, but no proton beam was irradiated.

시험예 1Test Example 1

UV-Vis 흡수 스펙트럼의 측정Measurement of the UV-Vis Absorption Spectrum

실시예 1~3 및 비교예 1에 의해 준비된 은 나노입자 분산용액에 대하여 UV-2550 스펙트로포토미터를 이용하여 흡수 스펙트럼을 측정하고 그 결과를 도 1에 도시하였다. The silver nanoparticle dispersion solution prepared in Examples 1 to 3 and Comparative Example 1 was measured for absorption spectra using a UV-2550 spectrophotometer and the results are shown in FIG. 1.

도 1은 실시예 1 내지 3 및 비교예 1에 대한 UV-Vis 흡수 스펙트럼이다.1 is a UV-Vis absorption spectrum for Examples 1 to 3 and Comparative Example 1.

도 1에 도시된 바와 같이, 양성자 빔을 조사하지 않은 비교예 1과 양성자 빔을 5분 동안 조사한 실시예 1의 경우 흡수밴드가 나타나지 않는다. 그러나 양성자 빔을 15분 동안 조사한 실시예 2의 경우 415nm 근방에 최대 흡수밴드가 나타난다. 상기 흡수밴드는 은나노결정의 표면 플라즈몬 흡수밴드에 해당한다. As shown in FIG. 1, absorption bands do not appear in Comparative Example 1 which does not irradiate the proton beam and Example 1 which irradiates the proton beam for 5 minutes. However, in Example 2, where the proton beam was irradiated for 15 minutes, the maximum absorption band appeared near 415 nm. The absorption band corresponds to the surface plasmon absorption band of the silver nanocrystal.

한편, 실시예 3의 경우에는 조사시간이 15분에서 30분으로서 두배가 됨에 따라 흡수 밴드가 430nm 근방으로 장파장 이동하게 되며, 장파장 이동은 생성되는 은 나노입자의 크기가 커졌다는 것을 의미한다. 따라서 양성자 빔의 조사가 증가되는 만큼 광학 밀도가 증가되었음을 확인할 수 있고, 이는 은 나노입자의 크기가 증가하였음을 나타낸다.On the other hand, in the case of Example 3, as the irradiation time is doubled from 15 minutes to 30 minutes, the absorption band shifts the long wavelength near 430 nm, and the long wavelength shift means that the size of the silver nanoparticles generated is increased. Therefore, it can be seen that the optical density increased as the irradiation of the proton beam increased, indicating that the size of the silver nanoparticles increased.

시험예 2Test Example 2

TEM 사진 측정TEM photo measurement

실시예 1~3 및 비교예 1에 의해 준비된 은 나노입자 분산용액에 대하여 JEM-2100F를 이용하여 TEM 사진을 측정하고 그 결과를 도 2에 도시하였다.TEM photographs were measured using JEM-2100F with respect to the silver nanoparticle dispersion solution prepared in Examples 1 to 3 and Comparative Example 1, and the results are shown in FIG. 2.

도 2에 도시된 바와 같이, (a)는 실시예 1에 대한 사진으로서 양성자 빔의 조사량을 1.09Gy/sec으로 하고 조사시간을 5분으로 하였을 때, 평균입경이 13nm인 구형 은 나노입자만이 형성되었다는 것을 확인할 수 있다.As shown in FIG. 2, (a) is a photograph for Example 1, when only a spherical silver nanoparticle having an average particle diameter of 13 nm is obtained when the irradiation amount of the proton beam is 1.09 Gy / sec and the irradiation time is 5 minutes. It can be confirmed that it was formed.

다음으로 실시예 2에 대한 사진 (b)를 참조하면 양성자 빔의 조사량을 1.09Gy/sec으로 하고 조사시간을 15분으로 하였을 때 평균입경이 19nm인 구형 은 나노입자만이 형성되었음을 확인할 수 있으며, 실시예 3에 대한 사진 (c)를 참조하면 양성자 빔의 조사량을 1.09Gy/sec으로 하고 조사시간을 30분으로 하였을 때 입경이 5nm~30nm인 다양한 크기의 은 나노입자가 형성되었음을 확인할 수 있다. 따라서, 양성자 빔의 조사시간이 증가되는 만큼, 평균 입자 크기는 일반적으로 증가되었으며, 이는 양성자 빔의 방사선 조사량이 증가되는 만큼 생성되었던 은 나노입자들이 서로 응집되는 경향이 있어 더 큰 크기의 은 나노입자들이 생성되었음을 의미한다.Next, referring to the photograph (b) of Example 2, it can be seen that only spherical silver nanoparticles having an average particle diameter of 19 nm were formed when the irradiation amount of the proton beam was 1.09 Gy / sec and the irradiation time was 15 minutes. Referring to the photograph (c) of Example 3, when the irradiation amount of the proton beam was 1.09 Gy / sec and the irradiation time was 30 minutes, it can be confirmed that silver nanoparticles having various sizes having a particle size of 5 nm to 30 nm were formed. Therefore, as the irradiation time of the proton beam was increased, the average particle size was generally increased, which means that the silver nanoparticles that were generated tend to aggregate with each other as the radiation dose of the proton beam is increased, so that the larger size of the nanoparticles Means they were created.

상기 시험예 1 및 2에서 확인된 바와 같이, 본 발명에 따른 은 나노입자의 크기 제어방법은 상기 양성자 빔의 조사율을 1.09Gy/sec로 고정시키고 조사시간을 5분~30분으로 하여 입경 5nm~30nm의 은 나노입자를 제조할 수 있다. 즉, 양성자 빔의 조사율을 소정의 값으로 고정시키고 조사시간을 변화시키는 것에 의하여 은 나노입자의 크기를 제어할 수 있으므로 간단하게 은 나노입자를 필요에 따라 제조할 수 있으며, 단순히 조사시간을 조절하면 되기 때문에 공정효율이 우수하다는 장점이 있다.As confirmed in Test Examples 1 and 2, the method for controlling the size of the silver nanoparticles according to the present invention fixed the irradiation rate of the proton beam to 1.09 Gy / sec, and the irradiation time was 5 minutes to 30 minutes, the particle diameter of 5nm Silver nanoparticles of ˜30 nm can be prepared. That is, since the size of the silver nanoparticles can be controlled by fixing the irradiation rate of the proton beam to a predetermined value and changing the irradiation time, the silver nanoparticles can be manufactured simply as needed, and simply adjusting the irradiation time. This is because the process efficiency is excellent.

또한, 본 발명은 양성자 빔의 고정된 조사량에 조사시간만을 변경함에 따라 은 나노입자의 크기를 제어할 수도 있지만, 양성자 빔의 조사량과 조사시간을 고정시키고, 은이온, 폴리비닐알코올 수용액, 이소프로필알코올을 혼합한 수용액에서 상기 은이온의 농도만을 조절함으로써 은 나노입자의 크기를 조절할 수 있다. 이하, 실시예 4 내지 6과 시험예 3 내지 4를 통해 은이온의 농도 조절을 이용한 은 나노입자의 크기 제어 방법을 구체적으로 설명하기로 한다.In addition, the present invention can control the size of the silver nanoparticles by changing only the irradiation time to the fixed irradiation amount of the proton beam, but fixed the irradiation amount and irradiation time of the proton beam, silver ions, polyvinyl alcohol aqueous solution, isopropyl The size of the silver nanoparticles can be controlled by adjusting only the concentration of the silver ions in the aqueous solution mixed with alcohol. Hereinafter, the method for controlling the size of silver nanoparticles using the concentration control of silver ions through Examples 4 to 6 and Test Examples 3 to 4 will be described in detail.

실시예 4Example 4

5mM 질산은 수용액 50μL, 10mL 5.0% 폴리비닐알코올 수용액, 0.18g 이소프로필알코올을 바이알에 혼합하고 2분동안 교반하였다. 다음으로 상기 혼합액 0.6mL를 PCR튜브에 옮겨 담고 양성자 빔을 조사하였다.50 μL of 5 mM silver nitrate solution, 10 mL 5.0% polyvinyl alcohol aqueous solution, 0.18 g isopropyl alcohol was mixed into the vial and stirred for 2 minutes. Next, 0.6 mL of the mixed solution was transferred to a PCR tube and irradiated with a proton beam.

양성자 빔의 조사는 한국원자력의학원에 있는 MC-50 사이클로트론에 양성자 빔라인을 설치하여 수행하였으며, 상기 빔라인은 1×107~1×1010proton/cm2의 양성자 밀도를 갖도록 설계되었다. 한편, 양성자 빔의 에너지는 24MeV로 고정하여 실험하였으며, 양성자 빔의 조사량은 1.09Gy/sec였고 조사시간은 15분이였다.Proton beam irradiation was carried out by installing a proton beamline in MC-50 cyclotron at the Korea Atomic Energy Research Institute, and the beamline was designed to have a proton density of 1 × 10 7 ~ 1 × 10 10 proton / cm 2 . On the other hand, the energy of the proton beam was fixed at 24MeV, and the irradiation amount of the proton beam was 1.09 Gy / sec and the irradiation time was 15 minutes.

실시예 5Example 5

10mM 질산은 수용액 50μL, 10mL 5.0% 폴리비닐알코올 수용액, 0.18g 이소프로필알코올을 바이알에 혼합하고 2분동안 교반하였다. 다음으로 상기 혼합액 0.6mL를 PCR튜브에 옮겨 담고 양성자 빔을 조사하였다.50 μL of 10 mM silver nitrate solution, 10 mL 5.0% polyvinyl alcohol aqueous solution, 0.18 g isopropyl alcohol were mixed into the vial and stirred for 2 minutes. Next, 0.6 mL of the mixed solution was transferred to a PCR tube and irradiated with a proton beam.

양성자 빔의 조사는 한국원자력의학원에 있는 MC-50 사이클로트론에 양성자 빔라인을 설치하여 수행하였으며, 상기 빔라인은 1×107~1×1010proton/cm2의 양성자 밀도를 갖도록 설계되었다. 한편, 양성자 빔의 에너지는 24MeV로 고정하여 실험하였으며, 양성자 빔의 조사량은 1.09Gy/sec였고 조사시간은 15분이였다.Proton beam irradiation was carried out by installing a proton beamline in MC-50 cyclotron at the Korea Atomic Energy Research Institute, and the beamline was designed to have a proton density of 1 × 10 7 ~ 1 × 10 10 proton / cm 2 . On the other hand, the energy of the proton beam was fixed at 24MeV, and the irradiation amount of the proton beam was 1.09 Gy / sec and the irradiation time was 15 minutes.

실시예 6Example 6

20mM 질산은 수용액 50μL, 10mL 5.0% 폴리비닐알코올 수용액, 0.18g 이소프로필알코올을 바이알에 혼합하고 2분동안 교반하였다. 다음으로 상기 혼합액 0.6mL를 PCR튜브에 옮겨 담고 양성자 빔을 조사하였다.50 μL of 20 mM silver nitrate aqueous solution, 10 mL 5.0% polyvinyl alcohol aqueous solution, 0.18 g isopropyl alcohol were mixed into the vial and stirred for 2 minutes. Next, 0.6 mL of the mixed solution was transferred to a PCR tube and irradiated with a proton beam.

양성자 빔의 조사는 한국원자력의학원에 있는 MC-50 사이클로트론에 양성자 빔라인을 설치하여 수행하였으며, 상기 빔라인은 1×107~1×1010proton/cm2의 양성자 밀도를 갖도록 설계되었다. 한편, 양성자 빔의 에너지는 24MeV로 고정하여 실험하였으며, 양성자 빔의 조사량은 1.09Gy/sec였고 조사시간은 15분이였다.Proton beam irradiation was carried out by installing a proton beamline in MC-50 cyclotron at the Korea Atomic Energy Research Institute, and the beamline was designed to have a proton density of 1 × 10 7 ~ 1 × 10 10 proton / cm 2 . On the other hand, the energy of the proton beam was fixed at 24MeV, and the irradiation amount of the proton beam was 1.09 Gy / sec and the irradiation time was 15 minutes.

시험예 3Test Example 3

UV-Vis 흡수 스펙트럼의 측정Measurement of the UV-Vis Absorption Spectrum

실시예 4 내지 6에 의해 준비된 은나노입자 분산용액에 대하여 UV-2550 스펙트로포토미터를 이용하여 흡수 스펙트럼을 측정하고 그 결과를 도 3에 도시하였다. 도 3은 실시예 4 내지 6에 대한 UV-Vis 흡수 스펙트럼이다.The silver nanoparticle dispersion solutions prepared in Examples 4 to 6 were measured for absorption spectra using a UV-2550 spectrophotometer and the results are shown in FIG. 3. 3 is a UV-Vis absorption spectrum for Examples 4-6.

도 3을 참조하면, 실시예 4와 같이 5mM 질산은 수용액 50μL, 10mL 5.0% 폴리비닐알코올 수용액, 0.18g 이소프로필알코올을 바이알에 혼합한 수용액에 1.09Gy/sec 조사량의 양성자 빔을 15분동안 조사하였을 경우에는 422nm 근방에 은 나노결정의 표면 플라즈몬 흡수 밴드가 나타난다.Referring to FIG. 3, as shown in Example 4, a proton beam of 1.09 Gy / sec irradiation amount was irradiated for 15 minutes in an aqueous solution containing 50 μL of 5 mM silver nitrate solution, 10 mL 5.0% polyvinyl alcohol solution, and 0.18 g isopropyl alcohol in a vial. In this case, surface plasmon absorption bands of silver nanocrystals appear near 422 nm.

실시예 5의 경우에는 질산은의 농도가 5mM에서 10mM으로 두배가 됨에 따라 은 나노결정의 표면 플라즈몬 흡수 밴드가 415nm 근방으로 단파장 이동함을 관찰하였다.In the case of Example 5, as the concentration of silver nitrate doubled from 5 mM to 10 mM, it was observed that the surface plasmon absorption band of the silver nanocrystals shifted short wavelength near 415 nm.

한편, 실시예 6의 경우에는 질산은의 농도가 20mM으로 실시예 4보다는 은염의 농도가 4배, 실시예 5보다는 2배가 증가되었으나, 은 나노결정의 표면 플라즈몬 흡수 밴드는 433nm 근방으로 장파장 이동함으로써 생성되는 은 나노입자의 크기가 증가하였다는 것을 확인할수 있다. 따라서, 혼합 수용액의 질산은의 농도가 증가되는 만큼 흡수 농도가 일반적으로 증가되었으며, 이는 은이온의 농도가 증가되는 만큼 은 나노입자의 크기가 증가됨을 의미한다.On the other hand, in the case of Example 6, the concentration of silver nitrate was 20 mM and the concentration of silver salt was 4 times higher than that of Example 4, and 2 times higher than that of Example 5, but the surface plasmon absorption band of silver nanocrystals was generated by shifting the long wavelength near 433 nm. It can be seen that the size of the silver nanoparticles is increased. Therefore, the absorption concentration generally increased as the concentration of silver nitrate in the mixed aqueous solution increased, which means that the size of the silver nanoparticles increased as the concentration of silver ions increased.

시험예 4Test Example 4

TEM 사진 측정TEM photo measurement

실시예 4 내지 6에 의해 준비된 은 나노입자 분산용액에 대하여 JEM-2100F를 이용하여 TEM 사진을 측정하고 그 결과를 도 4에 도시하였다.The TEM photograph was measured using the JEM-2100F with respect to the silver nanoparticle dispersion solution prepared in Examples 4 to 6 and the results are shown in FIG. 4.

도 4에 도시된 바와 같이, (a)는 실시예 4에 대한 사진으로서 5mM 질산은 수용액 50μL를 10mL 5.0% 폴리비닐알코올 수용액과 0.18g 이소프로필알코올을 바이알에 혼합한 수용액에 1.09Gy/sec 조사량의 양성자 빔을 15분동안 조사하였을 때, 평균입경이 10nm인 구형 은 나노입자만이 형성되었음을 확인할 수 있다.As shown in FIG. 4, (a) is a photograph for Example 4, in which an aqueous solution obtained by mixing 50 μL of a 5 mM silver nitrate aqueous solution with a 10 mL 5.0% polyvinyl alcohol aqueous solution and 0.18 g isopropyl alcohol in a vial of 1.09 Gy / sec was applied. When the proton beam was irradiated for 15 minutes, it can be seen that only spherical silver nanoparticles having an average particle diameter of 10 nm were formed.

다음으로 실시예 5에 대한 사진 (b)를 참조하면 10mM 질산은 수용액 50μL를 10mL 5.0% 폴리비닐알코올 수용액과 0.18g 이소프로필알코올을 바이알에 혼합한 수용액에 1.09Gy/sec 조사량의 양성자 빔을 15분동안 조사하였을 경우 평균입경이 19nm인 구형 은 나노입자만이 형성되었음을 확인할 수 있으며, 실시예 6에 대한 사진 (c)를 참조하면, 20mM 질산은 수용액 50μL를 10mL 5.0% 폴리비닐알코올 수용액과 0.18g 이소프로필알코올을 바이알에 혼합한 수용액에 1.09Gy/sec 조사량의 양성자 빔을 15분동안 조사하였을 경우 평균입경이 22nm인 구형 은 나노입자만이 형성되었음을 확인할 수 있다. 따라서, 혼합 수용액의 질산은의 농도가 커질수록 생성되어진 은 나노입자의 크기가 증가되었음을 확인할 수 있다.Next, referring to the photograph (b) of Example 5, a proton beam of 1.09 Gy / sec dose was added to an aqueous solution obtained by mixing 50 μL of a 10 mM silver nitrate solution with a 10 mL 5.0% polyvinyl alcohol solution and 0.18 g isopropyl alcohol in a vial for 15 minutes. When irradiated for a while, it can be seen that only spherical silver nanoparticles having an average particle diameter of 19 nm were formed. Referring to the photograph (c) of Example 6, 50 μL of a 20 mM silver nitrate aqueous solution was dissolved in 10 mL 5.0% polyvinyl alcohol solution and 0.18 g isoform. When the proton beam of 1.09 Gy / sec dose was irradiated for 15 minutes to the aqueous solution mixed with propyl alcohol, it was confirmed that only spherical silver nanoparticles having an average particle diameter of 22 nm were formed. Therefore, it can be confirmed that as the concentration of silver nitrate in the mixed aqueous solution increases, the size of the generated silver nanoparticles increases.

상기 시험예 3 및 4에서 확인된 바와 같이, 본 발명에 따른 은 나노입자 합성방법은 상기 양성자 빔의 조사율을 1.09Gy/sec, 조사시간을 15분으로 고정시키고, 은염의 농도를 5mM~20mM으로 조절함으로써 입경 10nm~22nm의 은 나노입자를 제조할 수 있다. 즉, 양성자 빔의 조사율과 조사시간을 고정시키고 혼합 수용액의 은염의 농도를 조절하는 것에 의하여 은 나노입자의 크기를 제어할 수 있으므로 간단하게 은 나노입자를 필요에 따라 제조할 수 있으며, 단순히 은염의 농도를 조절하면 되기 때문에 공정효율이 우수하다는 장점이 있다.As confirmed in Test Examples 3 and 4, the method for synthesizing silver nanoparticles according to the present invention fixes the irradiation rate of the proton beam to 1.09 Gy / sec, the irradiation time to 15 minutes, and the concentration of the silver salt to 5 mM to 20 mM. By adjusting to, silver nanoparticles having a particle diameter of 10 nm to 22 nm can be produced. That is, since the size of the silver nanoparticles can be controlled by fixing the irradiation rate and the irradiation time of the proton beam and adjusting the concentration of the silver salt in the mixed aqueous solution, the silver nanoparticles can be simply produced as needed. The process efficiency is excellent because the concentration of is controlled.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것은 아니며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백하다 할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes are possible in the art without departing from the technical spirit of the present invention. It will be clear to those of ordinary knowledge.

도 1은 실시예 1 내지 3 및 비교예 1에 대한 UV-Vis 흡수 스펙트럼이다.1 is a UV-Vis absorption spectrum for Examples 1 to 3 and Comparative Example 1.

도 2는 실시예 1 내지 3 및 비교예 1에 대한 TEM 사진이다.2 is a TEM photograph for Examples 1 to 3 and Comparative Example 1.

도 3은 실시예 4 내지 6에 대한 UV-Vis 흡수 스펙트럼이다.3 is a UV-Vis absorption spectrum for Examples 4-6.

도 4는 실시예 4 내지 6에 대한 TEM 사진이다.4 is a TEM photograph for Examples 4 to 6.

Claims (6)

은 나노입자를 합성하는 방법에 있어서,In the method of synthesizing silver nanoparticles, 은염, 폴리비닐알코올 및 이소프로필 알코올을 혼합한 수용액에 양성자빔을 조사함으로써 은 나노입자를 합성하는 것을 특징으로 하는 양성자 빔 조사를 통한 은 나노입자 합성 방법.A method for synthesizing silver nanoparticles by proton beam irradiation, comprising synthesizing silver nanoparticles by irradiating a proton beam to an aqueous solution mixed with silver salt, polyvinyl alcohol and isopropyl alcohol. 제 1항에 있어서,The method of claim 1, 상기 수용액에 조사되는 양성자 빔의 총 조사량에 따라 합성되는 은 나노입자의 크기를 제어하는 것을 특징으로 하는 양성자 빔 조사를 통한 은 나노입자 합성 방법.The method for synthesizing silver nanoparticles by proton beam irradiation, characterized in that to control the size of the silver nanoparticles synthesized according to the total amount of the proton beam irradiated to the aqueous solution. 제 1항에 있어서,The method of claim 1, 상기 수용액에 포함된 은염의 농도를 조절함에 따라 합성되는 은 나노입자의 크기를 제어하는 것을 특징으로 하는 양성자 빔 조사를 통한 은 나노입자 합성 방법.Method of synthesizing silver nanoparticles through proton beam irradiation, characterized in that for controlling the size of the silver nanoparticles synthesized by adjusting the concentration of the silver salt contained in the aqueous solution. 제 1항에 있어서,The method of claim 1, 상기 혼합 수용액은,The mixed aqueous solution, 2%~10%의 폴리비닐 알코올 수용액 10㎖ 당 0.1g~0.5g의 이소프로필 알코올이 혼합된 용액에 5mM~20mM 농도의 은염 수용액이 혼합되어 있는 것을 특징으로 하는 양성자 빔 조사를 통한 은 나노입자 합성 방법.Silver nanoparticles through proton beam irradiation, characterized in that a silver salt solution of 5mM to 20mM concentration is mixed in a solution of 0.1g to 0.5g isopropyl alcohol per 10ml of 2% to 10% polyvinyl alcohol solution Synthetic method. 제 1항에 있어서,The method of claim 1, 상기 양성자 빔의 조사는,Irradiation of the proton beam, 1MeV~100MeV의 에너지를 갖는 양성자빔을 조사하는 것을 특징으로 하는 양성자 빔 조사를 통한 은 나노입자 합성 방법.A method for synthesizing silver nanoparticles through proton beam irradiation, comprising irradiating a proton beam having an energy of 1MeV to 100MeV. 제 1항에 있어서,The method of claim 1, 상기 은염은 질산은(AgNO3), 과염소산은(AgClO4), 염소산은(AgClO3), 탄산은(Ag2CO3), 황산은(Ag2SO4)으로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 양성자 빔 조사를 통한 은 나노입자 합성 방법.The silver salt is any one selected from the group consisting of silver nitrate (AgNO 3 ), silver perchlorate (AgClO 4 ), silver chlorate (AgClO 3 ), silver carbonate (Ag 2 CO 3 ), silver sulfate (Ag 2 SO 4 ). Silver nanoparticle synthesis method by proton beam irradiation.
KR1020080135947A 2008-12-29 2008-12-29 A method for producing silver(Ag) nanoparticle using proton beam irradiation KR101076328B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080135947A KR101076328B1 (en) 2008-12-29 2008-12-29 A method for producing silver(Ag) nanoparticle using proton beam irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080135947A KR101076328B1 (en) 2008-12-29 2008-12-29 A method for producing silver(Ag) nanoparticle using proton beam irradiation

Publications (2)

Publication Number Publication Date
KR20100077874A KR20100077874A (en) 2010-07-08
KR101076328B1 true KR101076328B1 (en) 2011-10-26

Family

ID=42639170

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080135947A KR101076328B1 (en) 2008-12-29 2008-12-29 A method for producing silver(Ag) nanoparticle using proton beam irradiation

Country Status (1)

Country Link
KR (1) KR101076328B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101264836B1 (en) 2010-10-22 2013-05-15 한국원자력연구원 Nano particle manufacturing apparatus and nano particle manufacturing method
US9803065B2 (en) 2015-03-12 2017-10-31 King Abdulaziz University Microwave shielding effectiveness based on polyvinyl alcohol/silver hybrid nanocomposites

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100763036B1 (en) 2006-10-23 2007-10-04 (주)바이오니아 A method for preparation of silver nano colloid controlling particle size

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100763036B1 (en) 2006-10-23 2007-10-04 (주)바이오니아 A method for preparation of silver nano colloid controlling particle size

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101264836B1 (en) 2010-10-22 2013-05-15 한국원자력연구원 Nano particle manufacturing apparatus and nano particle manufacturing method
US9803065B2 (en) 2015-03-12 2017-10-31 King Abdulaziz University Microwave shielding effectiveness based on polyvinyl alcohol/silver hybrid nanocomposites

Also Published As

Publication number Publication date
KR20100077874A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
Ranoszek-Soliwoda et al. The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles
Pourmortazavi et al. Facile chemical synthesis and characterization of copper tungstate nanoparticles
Kumar et al. Facile synthesis of size-tunable copper and copper oxide nanoparticles using reverse microemulsions
JP4636454B2 (en) Manufacturing method and use of metal nanorods
Yang et al. Synchrotron X-ray synthesis of colloidal gold particles for drug delivery
US20100248297A1 (en) Particles and manufacturing methods thereof
Rooydell et al. Cu doped ZnO nanorods with controllable Cu content by using single metal organic precursors and their photocatalytic and luminescence properties
Lesnichaya et al. Relation between excitation dependent luminescence and particle size distributions for the selenium nanoparticles in κ-carrageenan shell
KR100873176B1 (en) Sythesis of Gold Nanoparticles of Various Crystal Shapes Using Halide Ion
Biswal et al. Short aspect ratio gold nanorods prepared using gamma radiation in the presence of cetyltrimethyl ammonium bromide (CTAB) as a directing agent
Wang et al. Structural properties ofnaked'gold nanoparticles formed by synchrotron X-ray irradiation
Ni et al. One-pot preparation of pomegranate-like polydopamine stabilized small gold nanoparticles with superior stability for recyclable nanocatalysts
Pradyasti et al. Synthesis and applications of porous triangular Au-Ag-Ag2S bimetal-semiconductor hybrid nanostructures
KR101076328B1 (en) A method for producing silver(Ag) nanoparticle using proton beam irradiation
Abargues et al. Scalable heterogeneous synthesis of metallic nanoparticles and aggregates with polyvinyl alcohol
KR100838295B1 (en) Method for manufacturing metal composite nanoparticles
Pawlik et al. Silver Nanocubes: From Serendipity to Mechanistic Understanding, Rational Synthesis, and Niche Applications
KR101568087B1 (en) Method of manufacturing highly uniform and homogeneous noble metal nano-powders
Hong et al. Kinetically Controlled Growth of Gold Nanoplates and Nanorods via a One-Step Seed-Mediated Method.
Soltani et al. Effect of growth condition on structure and optical properties of hybrid Ag-CuO nanomaterials
Williams et al. Rapid synthesis of high purity gold nanorods via microwave irradiation
KR101384088B1 (en) Method for Manufacturing Au Nano-particles Being Capped by Biocompatible Polymer
Bharti et al. Real-time synthesis and detection of plasmonic metal (Au, Ag) nanoparticles under monochromatic X-ray nano-tomography
Bakhtiari et al. The effect of applied electric field on the micromorphology of Pt nanoparticles synthesized by laser ablation
Filipczak et al. Sodium citrate stabilized Ag NPs under thermal treatment, electron-beam and laser irradiations

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141008

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171017

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181005

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190919

Year of fee payment: 9