KR101075258B1 - Porous Adamantane -Based Polymers and the Method for Preparing the Same - Google Patents

Porous Adamantane -Based Polymers and the Method for Preparing the Same Download PDF

Info

Publication number
KR101075258B1
KR101075258B1 KR1020090039877A KR20090039877A KR101075258B1 KR 101075258 B1 KR101075258 B1 KR 101075258B1 KR 1020090039877 A KR1020090039877 A KR 1020090039877A KR 20090039877 A KR20090039877 A KR 20090039877A KR 101075258 B1 KR101075258 B1 KR 101075258B1
Authority
KR
South Korea
Prior art keywords
porous
formula
compound
adamantane
prepared
Prior art date
Application number
KR1020090039877A
Other languages
Korean (ko)
Other versions
KR20100120968A (en
Inventor
장지영
임호
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020090039877A priority Critical patent/KR101075258B1/en
Publication of KR20100120968A publication Critical patent/KR20100120968A/en
Application granted granted Critical
Publication of KR101075258B1 publication Critical patent/KR101075258B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/605Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings with a bridged ring system
    • C07C13/615Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings with a bridged ring system with an adamantane ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/38Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of dienes or alkynes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with noble metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

본 발명은 다공성 아다만테인계 화합물과 중합체 그리고 이들의 제조방법에 관한 것이다. 상세하게는 1-브로모아다만테인과 페닐할라이드를 개질하여 다공성 고분자의 빌딩블록을 제조하고, 이들을 팔라듐(Ⅱ)(Pd(II))과 요오드화구리(CuI) 촉매 하에서 반응시켜 제조하는 마이크로포러스(micro porous)한 다공성 화합물과, 아다만테인 유도체와 보론산 유도체를 Pd(II) 촉매 하에서 반응시켜 제조하는 다공성 화합물 및 그 제조방법에 관한 것이다. 이 물질로부터 제조된 다공성 화합물은 높은 비표면적과 작은 기공크기를 갖는다.The present invention relates to porous adamantane-based compounds and polymers and methods for their preparation. Specifically, 1-bromo adamantane and phenyl halide are modified to prepare a building block of porous polymer, and microporous is prepared by reacting them under a palladium (II) (Pd (II)) and a copper iodide (CuI) catalyst. The present invention relates to a porous compound prepared by reacting a microporous porous compound, an adamantane derivative, and a boronic acid derivative under a Pd (II) catalyst. Porous compounds prepared from this material have high specific surface areas and small pore sizes.

다공성물질, 극대비표면적, 아다만테인, 마이크로포러스, 가스저장, 오염물 흡착 Porous material, extreme surface area, adamantane, microporous, gas storage, pollutant adsorption

Description

다공성 아다만테인계 화합물 및 이들의 제조방법{Porous Adamantane -Based Polymers and the Method for Preparing the Same}Porous Adamantane-Based Compounds and Methods for Preparing the Same {Porous Adamantane -Based Polymers and the Method for Preparing the Same}

본 발명은 아다만테인계 화합물의 합성 및 이들의 중합체 제조에 관한 것으로, 상세하게는 1-브로모아다만테인(1-bromoadamantane)과 페닐할라이드(phenyl halide)를 개질하여 다공성 고분자의 빌딩블록을 제조하고, 이들을 팔라듐(Ⅱ)(Pd(II))과 요오드화구리(CuI) 촉매 하에서 반응시켜 제조하는 마이크로포러스(micro porous)한 다공성 화합물과, 아다만테인 유도체와 보론산(boronic acid) 유도체를 팔라듐(Ⅱ)(Pd(II)) 촉매 하에서 반응시켜 제조하는 다공성 화합물 및 그 제조방법에 관한 것이다. 이때 비표면적과 기공의 크기는 페닐할라이드(phenyl halide), 보론산유도체를 바꿈으로써 조절할 수 있다. 이렇게 제조된 다공성 화합물은 수소, 이산화탄소, 메탄 등의 기체의 흡착 및 오염물의 제거에 이용될 수 있다. The present invention relates to the synthesis of adamantane-based compounds and to the preparation of polymers thereof. Specifically, 1-bromoadamantane (1-bromoadamantane) and phenyl halide (modified phenyl halide) to prepare a building block of a porous polymer And palladium, a microporous porous compound prepared by reacting these under a palladium (II) (Pd (II)) and a copper iodide (CuI) catalyst, an adamantane derivative and a boronic acid derivative. The present invention relates to a porous compound prepared by reacting under a (II) (Pd (II)) catalyst and a method for producing the same. The specific surface area and pore size can be controlled by changing the phenyl halide and boronic acid derivatives. The porous compound thus prepared may be used for adsorption of gases such as hydrogen, carbon dioxide, and methane and removal of contaminants.

산업화에 의한 환경오염과 에너지 고갈 문제가 크게 대두되면서 오염물질의 정화와 가스연료 저장에 다공성 재료를 사용하는 것이 주목받고 있다. 오염물질을 제거하는 방법은 오염물질을 기공에 흡착시켜 분리하거나 촉매반응을 이용하여 오 염물질을 제거할 수 있다. 다공성 재료는 높은 비표면적으로 인하여 물질을 많이 흡착할 수 있으며 흡착물질과 기공 내벽의 상호 인력을 조절하여 화합물의 저장, 분리를 제어할 수 있다. As the environmental pollution and energy depletion caused by industrialization have emerged, the use of porous materials for the purification of pollutants and the storage of gas fuel has been attracting attention. Contaminants can be removed by adsorbing the contaminants into the pores or removing the contaminants by catalytic reaction. Porous materials can adsorb a lot of materials due to their high specific surface area, and can control the storage and separation of compounds by controlling mutual attraction of the adsorbents and the inner wall of the pores.

화석연료의 고갈로 인한 고유가로 인해 차세대 친환경 대체 에너지의 개발은 우리 인류의 생존에 필수불가결의 사항이다. 또한 이산화탄소와 같은 온실가스로 인해 지구의 온난화가 빠른 속도로 진행 중이며, 이를 해결하기 위해서는 온실가스의 방출이 없는 새로운 에너지가 필요하다. 그 후보 중 가장 주목을 받고 있는 물질이 수소가스이다. 하지만 수소는 액화를 위해서 매우 낮은 온도 또는 매우 높은 압력이 필요하다. 이러한 액화 조건은 수소를 저장하여 에너지로 사용함에 있어서 큰 걸림돌이다. 특히 자동차와 같은 운송수단에서는 안정성이 그 무엇보다 중요하다. 이를 위해 수소저장 매체는 상온, 상압에서 높은 수소저장 능력을 가져야 한다. 이를 위해 미국 UCLA의 Yaghi 등은 금속염을 메탈소스로 사용하고 리간드이온의 치환반응으로 구조체를 제조하였다. 이렇게 제조된 금속-유기 구조체(metal-organic framwork)는 400~4500 m2/g의 높은 비표면적과 0.6~2 nm의 작은 기공크기를 갖는다[Andrew R. Millward, Omar M. Yaghi, J. AM. CHEM. SOC. 2005, 127, 17998-17999]. 하지만 금속-유기 구조체는 금속과 유기리간드 사이에 배위결합이 수분이나 산에 의해서 쉽게 파괴되기 때문에 이를 극복하는 것이 큰 과제로 남아있다. 영국 Manchester 대학의 Budd 등은 유기고분자를 가교시켜 나노크기의 기공을 갖는 다공성 고분자를 제조하여 이의 수소저장 능력을 측정하였다[Peter M. Budd, Neil B. McKeownb and Detlev Fritsch, J. Mater. Chem., 2005, 15, 1977.1986]. 이렇게 제조된 다공성 고분자는 금속-유기 구조체의 단점인 구조의 불안정성을 극복하였지만 금속-유기 구조체에 비해 낮은 비표면적과 수소저장 능력을 나타내었다. 이에 본 발명자들은 높은 비표면적, 높은 가스저장 능력 및 구조적 안정성을 갖는 다공성 물질을 제조하기 위해 노력하였고, 이를 위해 다공체의 빌딩블록으로 쓰일 수 있는 아다만테인과 여러 가지 페닐할라이드를 개질하였다. 이렇게 제조된 빌딩블록을 Pd(II)와 CuI 또는 Pd(II)와 K2CO3 존재 하에서 중합하여 다공성 화합물을 제조함으로써 본 발명을 완성하였다.Due to high oil prices due to the depletion of fossil fuels, the development of next-generation green alternative energy is indispensable for the survival of humanity. In addition, global warming is progressing rapidly due to greenhouse gases such as carbon dioxide. To solve this problem, new energy without greenhouse gas emission is needed. Among the candidates, hydrogen gas is the most attracting substance. However, hydrogen requires very low temperatures or very high pressures for liquefaction. This liquefaction condition is a big obstacle in storing and using hydrogen as energy. Especially in vehicles such as cars, stability is of paramount importance. To this end, the hydrogen storage medium should have high hydrogen storage capacity at room temperature and atmospheric pressure. To this end, Yaghi et al., UCLA, USA, prepared a structure using a metal salt as a metal source and substitution reaction of ligand ions. The metal-organic framwork thus prepared has a high specific surface area of 400-4500 m 2 / g and a small pore size of 0.6-2 nm [Andrew R. Millward, Omar M. Yaghi, J. AM. . CHEM. SOC. 2005, 127, 17998-17999]. However, in the metal-organic structure, overcoming the coordination bond between the metal and the organic ligand is easily broken by water or acid, which remains a big challenge. Budd et al. Of Manchester University, England, prepared a porous polymer having nano-sized pores by crosslinking organic polymers and measured their hydrogen storage ability [Peter M. Budd, Neil B. McKeownb and Detlev Fritsch, J. Mater. Chem., 2005, 15, 1977.1986]. The porous polymer thus prepared overcomes the instability of the structure, which is a disadvantage of the metal-organic structure, but exhibits a lower specific surface area and hydrogen storage ability than the metal-organic structure. Therefore, the present inventors have tried to prepare a porous material having a high specific surface area, high gas storage capacity and structural stability, and for this purpose, modified mann halide and various phenyl halides, which can be used as a building block of a porous body. The present invention was completed by polymerizing the building blocks thus prepared in the presence of Pd (II) and CuI or Pd (II) and K 2 CO 3 to prepare a porous compound.

본 발명은 아다만테인과 페닐할라이드를 개질하여 제조된 빌딩블록을 이용하여 높은 가스저장능력 및 구조적 안정성을 가진 다공성 화합물을 제공하고자 한다.The present invention is to provide a porous compound having a high gas storage capacity and structural stability using a building block prepared by modifying adamantane and phenyl halide.

상기한 과제를 해결하기 위하여, 본 발명의 적절한 실시 형태에 따르면, 하기 화학식 Ⅰ의 구조를 갖는 다공성 화합물을 제공한다.In order to solve the above problems, according to a preferred embodiment of the present invention, there is provided a porous compound having a structure of formula (I).

[화학식 Ⅰ](I)

Figure 112009027512820-pat00001
Figure 112009027512820-pat00001

상기 화학식 Ⅰ에서 R1은 1,4-페닐렌, 4,4-바이페닐렌으로 이루어진 그룹에서 선택된 1종이고 R2는 1,4-페닐렌, 4,4-바이페닐렌, 2,6-나프탈렌으로 이루어진 그룹에서 선택된 1종이다.In Formula I, R 1 is one selected from the group consisting of 1,4-phenylene and 4,4-biphenylene and R 2 is 1,4-phenylene, 4,4-biphenylene, 2,6 It is 1 type selected from the group which consists of naphthalene.

본 발명의 다른 적절한 실시 형태에 따르면, 하기 화학식 Ⅱ의 화합물을 팔라듐(Ⅱ)(Pd(Ⅱ))과 요오드화구리(CuI) 존재 하에서 하기 화학식 Ⅲ과 반응시켜서 청구항 1의 다공성 화합물을 제조하는 방법을 제공한다.According to another suitable embodiment of the present invention, there is provided a process for preparing the porous compound of claim 1 by reacting a compound of formula II with palladium (II) (Pd (II)) and copper iodide (CuI) in the presence of to provide.

[화학식 Ⅱ][Formula II]

Figure 112009027512820-pat00002
Figure 112009027512820-pat00002

상기 화학식 Ⅱ에서 R3는 4-요오드페닐, 4-브로모페닐, 4-요오드바이페닐, 4-브로모바이페닐로 이루어진 그룹에서 선택된 1종이다.R 3 in Formula II is one selected from the group consisting of 4-iodinephenyl, 4-bromophenyl, 4-iodinebiphenyl, 4-bromobiphenyl.

[화학식 Ⅲ][Formula III]

Figure 112009027512820-pat00003
Figure 112009027512820-pat00003

상기 화학식 Ⅲ에서 R2는 1,4-페닐렌, 4,4-바이페닐렌, 2,6-나프탈렌으로 이루어진 그룹으로부터 선택된 1종이고 n은 2이다.R 2 in Formula III is one selected from the group consisting of 1,4-phenylene, 4,4-biphenylene and 2,6-naphthalene and n is 2.

본 발명의 또 다른 적절한 실시 형태에 따르면, 하기 화학식 Ⅳ의 구조를 갖는 다공성 화합물을 제공한다.According to another suitable embodiment of the present invention, a porous compound having the structure of formula IV is provided.

[화학식 Ⅳ][Formula IV]

Figure 112009027512820-pat00004
Figure 112009027512820-pat00004

상기 화학식 Ⅳ에서 R1은 1,4-페닐렌, 4,4-바이페닐렌으로 이루어진 그룹에서 선택된 1종이고, R4는 1,4-페닐렌, 4,4-바이페닐렌, 2,6-나프탈렌으로 이루어진 그룹에서 선택된 1종이다. R 1 in Chemical Formula IV is one selected from the group consisting of 1,4-phenylene and 4,4-biphenylene, R 4 is 1 type selected from the group consisting of 1,4-phenylene, 4,4-biphenylene and 2,6-naphthalene.

본 발명의 또 다른 적절한 실시 형태에 따르면, 상기 화학식 Ⅱ의 화합물을 팔라듐(Ⅱ)(Pd(Ⅱ))과 탄산칼륨(K2CO3) 존재 하에서 하기 화학식 Ⅴ의 화합물과 반응시켜서 청구항 3의 다공성 화합물을 제조하는 방법을 제공한다.According to another suitable embodiment of the invention, the compound of formula II is reacted with the compound of formula V in the presence of palladium (II) (Pd (II)) and potassium carbonate (K 2 CO 3 ) to Provided are methods for preparing the compounds.

[화학식 Ⅴ][Formula Ⅴ]

Figure 112009027512820-pat00005
Figure 112009027512820-pat00005

상기 화학식 Ⅴ에서 n은 2이며, R4은 1,4-페닐렌, 4,4-바이페닐렌, 2,6-나프탈렌으로 이루어진 그룹으로부터 선택된 1종이다.In Formula V, n is 2, and R 4 is 1 type selected from the group consisting of 1,4-phenylene, 4,4-biphenylene and 2,6-naphthalene.

본 발명이 제공하는 다공성 화합물은 높은 비표면적과, 작은 기공크기로 인해 가스의 저장, 오염물질의 정화 또는 촉매의 담지 등으로 이용될 수 있으며, 가 교체가 화학적, 열적 안정성이 큰 공유결합으로 이루어져있어서 높은 내구성을 제공할 수 있다.The porous compound provided by the present invention can be used for storing gas, purifying pollutants or supporting catalyst due to high specific surface area and small pore size, and replacement is made of covalent bonds having high chemical and thermal stability. Thus, high durability can be provided.

본 발명은 1-브로모아다만테인에 4개의 페닐기를 도입한 후 할로겐(halogen)으로 개질하였으며, 여러 가지 페닐할라이드에 아세틸렌기를 도입하여 다공체의 빌딩블록을 합성하였다. 이렇게 제조된 빌딩블록을 Pd(II)와 CuI 또는 Pd(II)와 보론산유도체 존재하에서 중합하여 다공체를 제조하였으며, 다공체의 비표면적과 기공크기는 아세틸렌이 도입된 페닐기 또는 보론산유도체의 모양과 크기를 바꿈으로써 조절하였다. In the present invention, four phenyl groups were introduced into 1-bromoadamantane and then modified with halogen, and acetylene groups were introduced into various phenyl halides to synthesize porous building blocks. Thus prepared building blocks were polymerized in the presence of Pd (II) and CuI or Pd (II) and boronic acid derivatives, and the specific surface area and pore size of the porous bodies were similar to those of phenylene or boronic acid derivatives with acetylene. Adjustment was made by changing the size.

본 발명은 크게 아다만테인과 페닐할라이드를 개질하여 다공체의 빌딩블록을 합성하는 것과 이들 빌딩블록을 중합하여 다공성 고분자 화합물을 제조하는 것으로 이루어지는데, 아래에서 보다 상세히 설명한다.The present invention largely consists of synthesizing a building block of a porous body by modifying adamantane and phenyl halide and preparing a porous polymer compound by polymerizing these building blocks, which will be described in more detail below.

본 발명의 방향족으로 치환된 아다만테인유도체는 다음 화학식(Ⅱ)의 구조를 갖는다.The adamantane derivatives substituted with aromatics of the present invention have the structure of formula (II).

[화학식 Ⅱ][Formula II]

Figure 112009027512820-pat00006
Figure 112009027512820-pat00006

상기 화학식 Ⅱ에서 R3는 4-요오드페닐, 4-브로모페닐, 4-요오드바이페닐, 4-브로모바이페닐로 이루어진 그룹에서 선택된 1종이다.R 3 in Formula II is one selected from the group consisting of 4-iodinephenyl, 4-bromophenyl, 4-iodinebiphenyl, 4-bromobiphenyl.

또한 아세틸렌이 도입된 페닐유도체는 다음 화학식 Ⅲ의 구조를 갖는다.In addition, the phenyl derivative in which acetylene is introduced has a structure of Formula III.

[화학식 Ⅲ][Formula III]

Figure 112009027512820-pat00007
Figure 112009027512820-pat00007

상기 화학식 Ⅲ에서 R2는 1,4-페닐렌, 4,4-바이페닐렌 및 2,6-나프탈렌으로 이루어진 그룹으로부터 선택된 1종이고, n은 2이다.R 2 in Formula III is one selected from the group consisting of 1,4-phenylene, 4,4-biphenylene and 2,6-naphthalene, and n is 2.

또한 보론산유도체는 다음 화학식 Ⅴ의 구조를 갖는다.In addition, the boronic acid derivative has the structure of Formula (V).

[화학식 Ⅴ][Formula Ⅴ]

Figure 112009027512820-pat00008
Figure 112009027512820-pat00008

상기 화학식 Ⅴ에서 n은 2이며, R4은 1,4-페닐렌, 4,4-바이페닐렌 및 2,6-나프탈렌으로 이루어진 그룹으로부터 선택된 1종이다. In Formula V, n is 2, and R 4 is one selected from the group consisting of 1,4-phenylene, 4,4-biphenylene and 2,6-naphthalene.

또한 본 발명에서 다공성 중합체의 구조는 화학식 Ⅰ 또는 화학식 Ⅳ와 같은 구조를 갖는다.In addition, the structure of the porous polymer in the present invention has a structure such as formula (I) or (IV).

[화학식 Ⅰ](I)

Figure 112009027512820-pat00009
Figure 112009027512820-pat00009

[화학식 IV][Formula IV]

Figure 112009027512820-pat00010
Figure 112009027512820-pat00010

상기 화학식에서 R1 , R2 R4 은 상기 정의한 바와 같다.In the above formula R 1 , R 2 Wow R 4 Is as defined above.

상기 화학식 Ⅱ의 화합물들은 다음 방법에 의해 제조될 수 있다.The compounds of Formula II may be prepared by the following method.

1) 유기용매에 녹인 벤젠(benzene) 또는 바이페닐(biphenyl)을 루이스산(lewis acid) 존재 하에서 1-브로모아다만테인과 반응시켜서 아다만테인유도체를 제조하는 단계: 1) preparing an adamantane derivative by reacting benzene or biphenyl dissolved in an organic solvent with 1-bromoadamantane in the presence of lewis acid:

2) 상기 1)단계에서 얻어진 아다만테인유도체를 분리시키는 단계:2) separating the adamantane derivative obtained in step 1):

3) 상기 2)단계에서 얻어진 화합물을 유기용매에 녹여 비스트리플루오르아세톡시아이오도벤젠((bis(trifluoroacetoxy)iodo)benzene) 존재 하에서 요오드(I2) 또는 브롬(Br2)과 반응시키는 단계:3) dissolving the compound obtained in step 2) in an organic solvent and reacting with iodine (I 2 ) or bromine (Br 2 ) in the presence of bis (trifluoroacetoxy) iodo (benzene):

4) 상기 3)단계에서 얻어진 아다만테인유도체를 분리시키는 단계를 포함한다.4) separating the adamantane derivative obtained in step 3).

상기 화학식 Ⅰ의 화합물들은 다음 제조방법에 의해 제조될 수 있다.The compounds of Formula I may be prepared by the following preparation method.

1) 화학식 Ⅱ의 화합물을 팔라듐(Ⅱ)(Pd(Ⅱ))과 요오드화구리(CuI) 존재 하에서 화학식 Ⅲ의 화합물과 반응시켜서 다공성 가교체를 제조하는 단계:2) 상기 1)단계에서 얻어진 다공성 가교체를 분리 정제하는 단계를 포함한다.1) reacting a compound of formula (II) with a compound of formula (III) in the presence of palladium (II) (Pd (II)) and copper iodide (CuI) to prepare a porous crosslink: 2) porous crosslinking obtained in step 1) Separating and purifying the sieve.

상기 화학식 Ⅳ의 화합물들은 다음 제조방법에 의해 제조될 수 있다.The compounds of formula IV may be prepared by the following preparation method.

1) 화학식 Ⅱ의 화합물을 팔라듐(Ⅱ)(Pd(Ⅱ)), K2CO3 존재 하에서 화학식 Ⅴ의 화합물과 반응시켜서 다공성 가교체를 제조하는 단계:2) 상기 1)단계에서 얻어진 다공성 가교체를 분리 정제하는 단계를 포함한다.1) reacting a compound of formula (II) with a compound of formula (V) in the presence of palladium (II) (Pd (II)), K 2 CO 3 to produce a porous crosslinked product: 2) the porous crosslinked product obtained in step 1) Separating and purifying.

하기에서는 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명의 범위는 이들 실시예에 의해 제한되는 것은 아니다.In the following, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited by these examples.

본 발명의 화합물에 대한 1H 및 13C NMR 스펙트럼 분석은 BRUKER Avance DPX-300 및 Avance 500 spectrometer를 사용하여 측정하였고, 다공성 물질의 비표면적 및 기공크기 분석은 BEL-Japan의 BELSORP-max를 사용하여 측정하였으며, 수소흡착 능력은 Rubothrm GmbH의 MSB ISOSORP을 이용하여 측정하였고, 또한 다공성체의 형태는 JEOL JEMF-6330F을 이용하여 관찰하였다. 1 H and 13 C NMR spectral analyzes of the compounds of the present invention were measured using a BRUKER Avance DPX-300 and Avance 500 spectrometer, and specific surface area and pore size analysis of porous materials were performed using BELSORP-max from BEL-Japan. Hydrogen adsorption capacity was measured using MSB ISOSORP of Rubothrm GmbH, and the shape of the porous body was observed using JEOL JEMF-6330F.

[[ 실시예Example 1] 1,4-다이트리메틸실릴에티닐벤젠(1,4-di ( 1] 1,4-ditrimethylsilylethynylbenzene (1,4-di ( trimethylsillylethynyltrimethylsillylethynyl )) benzenebenzene )의 합성) Synthesis

1,4-다이아이오도벤젠(1,4-diiodobenzene) 3 g을 트리에틸아(triethylamine) 50ml에 녹인 용액에 다이클로로비스트리페닐포스핀팔라듐 (dichlorobis (triphenylphosphine)palladium) 0.54 g과 요오드화구리(copper iodine) 0.0067 g을 넣고 30분간 상온에서 교반한 후 트리메틸실릴아세틸렌 (trimethylsillyacethylene) 2.68 g을 넣는다. 24 시간 동안 상온에서 교반한 후 여과하여 염을 제거한다. 용매를 제거하여 농축한 후 화합물을 컬럼크로마토그래피(column chromatography)를 통하여 분리한다. In a solution of 3 g of 1,4-diiodobenzene (3 g) in 50 ml of triethylamine, 0.54 g of dichlorobis (triphenylphosphine) palladium and copper iodide ( Add 0.0067 g of copper iodine), stir at room temperature for 30 minutes, and then add 2.68 g of trimethylsillyacethylene. After stirring at room temperature for 24 hours, the salt is removed by filtration. After the solvent is removed and concentrated, the compound is separated by column chromatography.

1H NMR(CDCl3): δ =7.43 (s, C6H4, 4H), 0.80 (s, -Si(CH3)3, 18H). 1 H NMR (CDCl 3 ): δ = 7.43 (s, C 6 H 4 , 4H), 0.80 (s, -Si (CH 3 ) 3 , 18H).

[[ 실시예Example 2] 1,4- 2] 1,4- 다이에티닐벤젠(1,4-diethynylbenzene)의Of diethynylbenzene (1,4-diethynylbenzene) 합성 synthesis

1,4-다이트리메틸실릴에티닐벤젠(1,4-ditrimethylsillylethynylbenzene) 3.3 g을 테트라하이드로퓨란(tetrahydrofuran)/메탄올(methanol) (1:1) 50 ml에 녹인 용액에 KOH 0.83 g을 넣고 상온에서 5 시간 동안 교반 후 여과하여 염을 제거한다. 용매를 제거한 후 화합물을 메탄올을 이용하여 재결정하여 분리한다.3.3 g of 1,4-ditrimethylsilylethynylbenzene was dissolved in 50 ml of tetrahydrofuran / methanol (1: 1), and 0.83 g of KOH was added at room temperature. After stirring for hours, the salts are removed by filtration. After removing the solvent, the compound is separated by recrystallization with methanol.

1H NMR(CDCl3): δ = 7.43 (s, C6H4, 4H), 3.48 (s, ≡CH, 2H). 1 H NMR (CDCl 3 ): δ = 7.43 (s, C 6 H 4 , 4H), 3.48 (s, ≡CH, 2H).

[[ 실시예Example 3] 4,4-다이트리메틸실릴에티닐바이페닐(4,4- 3] 4,4-ditrimethylsilylethynylbiphenyl (4,4- didi (trimethylsillylethynyl)biphenyl)의 합성 Synthesis of (trimethylsillylethynyl) biphenyl)

4,4-다이아이오도바이페닐(4,4-diiodobiphenyl) 2 g을 트리에틸아민(triethylamine) 50 ml에 녹인 용액에 다이클로로비스트리페닐포스핀팔라듐(dichlorobis(triphenylphosphine)palladium) 0.14 g 과 요오드화구리(copper iodine) 0.02 g을 넣고 30분간 상온에서 교반한 후 트리메틸실릴아세틸렌(trimethylsillyacethylene) 1.18 g을 넣는다. 24 시간 동안 상온에서 교반한 후 여과하여 염을 제거한다. 용매를 제거하여 농축한 후 화합물을 컬럼크로마토그래피(column chromatography)를 통하여 분리한다. 0.14 g of dichlorobis (triphenylphosphine) palladium and copper iodide in a solution of 2 g of 4,4-diiodobiphenyl (4,4-diiodobiphenyl) in 50 ml of triethylamine. 0.02 g of copper iodine) was added thereto, stirred at room temperature for 30 minutes, and then 1.18 g of trimethylsillyacethylene was added thereto. After stirring at room temperature for 24 hours, the salt is removed by filtration. After the solvent is removed and concentrated, the compound is separated by column chromatography.

1H NMR(CDCl3): δ = 7.63 (d, C6H4, 4H), 7.63 (d, C6H4, 4H), 0.80 (s, -Si(CH3)3, 18H). 1 H NMR (CDCl 3 ): δ = 7.63 (d, C 6 H 4 , 4H), 7.63 (d, C 6 H 4 , 4H), 0.80 (s, -Si (CH 3 ) 3 , 18H).

[[ 실시예Example 4] 4,4-다이에티닐바이페닐(4,4- 4] 4,4-diethynylbiphenyl (4,4- diethynylbiphenyldiethynylbiphenyl )의 합성) Synthesis

4,4-다이트리메틸실릴에티닐바이페닐(4,4-di(trimethylsillylethynyl)biphenyl) 1.4 g을 테트라하이드로퓨란/메탄올 (1:1) 50 ml에 녹인 용액에 KOH 0.70 g을 넣고 상온에서 5 시간 동안 교반한 후 여과하여 염을 제거한다. 용매를 제거하여 농축한 후 화합물을 메탄올을 이용하여 재결정하여 분리한다.1.4 g of 4,4-ditrimethylsilylethynylbiphenyl (4,4-di (trimethylsillylethynyl) biphenyl) dissolved in 50 ml of tetrahydrofuran / methanol (1: 1) was added 0.70 g of KOH to room temperature for 5 hours. Stir for and filter to remove salt. After concentration by removing the solvent, the compound is separated by recrystallization with methanol.

1H NMR(CDCl3): δ = 7.63 (d, C6H4, 4H), 7.63 (d, C6H4, 4H), 3.48 (s, ≡CH, 2H). 1 H NMR (CDCl 3 ): δ = 7.63 (d, C 6 H 4 , 4H), 7.63 (d, C 6 H 4 , 4H), 3.48 (s, ≡CH, 2H).

[[ 실시예Example 5] 2,6-다이트리메틸실릴에티닐나프탈렌(2,6- 5] 2,6-ditrimethylsilylethynylnaphthalene (2,6- didi (trimethylsillylethynyl)napthalene)의 합성 Synthesis of (trimethylsillylethynyl) napthalene)

2,6-다이아이오도나프탈렌(2,6-diiodonapthalene) 2g을 트리에틸아민 (triethylamine) 50ml에 녹인 용액에 다이클로로비스트리페닐포스핀팔라듐(dichlorobis(triphenylphosphine)palladium) 0.35g 과 요오드화구리(copper iodine) 0.05g를 넣고 30분간 상온에서 교반한 후 트리메틸실릴아세틸렌(trimethylsillyacethylene) 1.24g을 넣는다. 24 시간 동안 상온에서 교반한 후 여과하여 염을 제거한다. 용매를 제거하여 농축한 후 화합물을 컬럼크로마토그래피(column chromatography)를 통하여 분리한다. In a solution of 2 g of 2,6-diiodonapthalene in 50 ml of triethylamine, 0.35 g of dichlorobis (triphenylphosphine) palladium and 0.38 g of copper iodide (copper) iodine) 0.05g was added and stirred at room temperature for 30 minutes, followed by adding 1.24g of trimethylsillyacethylene. After stirring at room temperature for 24 hours, the salt is removed by filtration. After the solvent is removed and concentrated, the compound is separated by column chromatography.

1H NMR(CDCl3): δ = 8.29 (d, C6H4, 2H), 7.78 (d, C6H4, 2H), 7.53 (d, C6H4, 2H) 0.80 (s, -Si(CH3)3, 18H). 1 H NMR (CDCl 3 ): δ = 8.29 (d, C 6 H 4 , 2H), 7.78 (d, C 6 H 4 , 2H), 7.53 (d, C 6 H 4 , 2H) 0.80 (s,- Si (CH 3 ) 3 , 18H).

[[ 실시예Example 6] 2,6-다이에티닐나프탈렌(2,6- 6] 2,6-diethynyl naphthalene (2,6- diethynylnapthalenediethynylnapthalene )의 합성) Synthesis

2,6-다이트리메틸실릴에티닐나프탈렌( 2,6-di (trimethylsillylethynyl) napthalene) 1.5g을 테트라하이드로퓨란/메탄올 (1:1) 50ml에 녹인 용액에 KOH 0.80g을 넣고 상온에서 5 시간 동안 교반한 후 여과하여 염을 제거한다. 용매를 제거하여 농축한 후 화합물을 메탄올을 이용하여 재결정하여 분리한다. 0.80 g of 2,6-ditrimethylsilylethynylnaphthalene (2,6-di (trimethylsillylethynyl) napthalene) was dissolved in 50 ml of tetrahydrofuran / methanol (1: 1), and KOH 0.80 g was stirred at room temperature for 5 hours. And then filtered to remove salts. After concentration by removing the solvent, the compound is separated by recrystallization with methanol.

1H NMR(CDCl3): δ = 8.29 (d, C6H4, 2H), 7.78 (d, C6H4, 2H), 7.53 (d, C6H4, 2H) 3.48 (s, ≡CH, 2H). 1 H NMR (CDCl 3 ): δ = 8.29 (d, C 6 H 4 , 2H), 7.78 (d, C 6 H 4 , 2H), 7.53 (d, C 6 H 4 , 2H) 3.48 (s, ≡ CH, 2H).

[[ 실시예Example 7] 1,3,5,7- 7] 1,3,5,7- 테트라키스(4-요오드페닐)아다만테인Tetrakis (4-iodinephenyl) adamantane (1,3,5,7-(1,3,5,7- tetrakistetrakis (4-iodophenyl)adamantane)의 합성 Synthesis of (4-iodophenyl) adamantane)

상기 화합물은 보고된 문헌의 방법에 따라 제조한다.[Veronica R. Reichert and Lon J. Mathias, Macromolecules, 1994, 27, 7015-70 23].The compounds are prepared according to the methods of the reported literature. Veronica R. Reichert and Lon J. Mathias, Macromolecules, 1994, 27, 7015-70 23.

[[ 제조예Manufacturing example 1] 다공성 중합체의 제조 및 후처리 1] Preparation and Post-treatment of Porous Polymer

상기의 실시예 2, 4 및 6에 의해 제조된 화합물을 메틸피롤리돈(N-methylpyrrolidone)과 트리에틸아민(triethylamine)에 녹인 후 Pd(II)와 CuI을 첨가하고 실시예 7에 의해 제조된 화합물과 반응시켜서 중합체를 제조한다. 이때, 엔 메틸피롤리돈과 트리에틸아민의 부피비를 2:8 내지 8:2에서 변화시키고, 반응온도는 상온에서 100℃로 변화시키면서 중합체를 제조한다. 여과하여 분리한 화합물을 테트라하이드로퓨란에 넣고 48시간 동안 교반하여 기공내의 잔류 물질을 제거한 후 진공, 150℃에서 48 시간 동안 건조하여 기공내의 용매를 제거한다. The compounds prepared in Examples 2, 4, and 6 were dissolved in methylpyrrolidone (N-methylpyrrolidone) and triethylamine, and then Pd (II) and CuI were added thereto, Reaction with the compound produces a polymer. At this time, the volume ratio of en methylpyrrolidone and triethylamine is changed at 2: 8 to 8: 2, and the polymer is prepared while the reaction temperature is changed from room temperature to 100 ° C. The filtered compound was added to tetrahydrofuran and stirred for 48 hours to remove residual material in the pores, followed by drying in vacuum at 150 ° C. for 48 hours to remove the solvent in the pores.

[[ 제조예Manufacturing example 2] 다공성 중합체의 제조 및 후처리 2] Preparation and Post-treatment of Porous Polymer

상기의 실시예 7에 의해 제조된 화합물을 1,4-다이옥산(1,4-dioxane)에 녹인 후 Pd(II)와 K2CO3을 첨가하고 화학식 Ⅴ의 화합물과 반응시켜서 중합체를 제조한다. 이때, 반응온도는 상온에서 100℃까지 변화시키면서 반응시켰다. 여과하여 분리한 화합물을 테트라하이드로퓨란에 넣고 48시간 동안 교반하여 기공내의 잔류 물질을 제거한 후 진공, 150℃에서 48 시간 동안 건조하여 기공내의 용매를 제거한다. The compound prepared in Example 7 was dissolved in 1,4-dioxane (1,4-dioxane), and then Pd (II) and K 2 CO 3 were added and reacted with the compound of Formula V to prepare a polymer. At this time, the reaction temperature was reacted while changing from room temperature to 100 ℃. The filtered compound was added to tetrahydrofuran and stirred for 48 hours to remove residual material in the pores, followed by drying in vacuum at 150 ° C. for 48 hours to remove the solvent in the pores.

[[ 시험예Test Example 1] 본 발명에 의해 제조된 다공체의  1] of the porous body produced by the present invention 비표면적Specific surface area 및 기공크기 분석시험 And pore size analysis test

상기의 제조예 1 및 2에 의해 제조된 다공성 화합물의 비표면적 및 기공크기를 실험하기 위하여 질소 흡탈착 실험을 하였다. 실험결과, 화학식 Ⅰ 중 R1이 페닐이고, R2이 페닐인 중합체의 비표면적은 900 m2/g 을 나타내었으며, 기공의 평균크기는 3.77 nm 을 나타내었다. 그 결과를 도 1~2에 나타내었다. 또한 화학식 Ⅳ 중 R1이 페닐이고, R3이 페닐인 중합체의 비표면적은 700 m2/g 을 나타내었으며, 기공의 평균크기는 각각 2.35 nm 을 나타내었다. 그 결과를 도 3~4에 나타내었다. Nitrogen adsorption and desorption experiments were conducted to test the specific surface area and pore size of the porous compounds prepared in Preparation Examples 1 and 2. As a result, the specific surface area of the polymer of Formula I in which R 1 is phenyl and R 2 is phenyl was 900 m 2 / g, and the average pore size was 3.77 nm. The results are shown in Figs. In the formula (IV), the specific surface area of the polymer wherein R 1 is phenyl and R 3 is phenyl was 700 m 2 / g, and the average size of the pores was 2.35 nm, respectively. The results are shown in Figures 3-4.

[[ 시험예Test Example 2] 본 발명에 의해 제조된 다공체의 형태제어실험 2] shape control experiment of porous body produced by the present invention

상기 [제조예 1]에서 유기용매의 부피비와 온도를 바꿈으로써 다공성 고분자의 형태를 조절 할 수 있다. 조절된 고분자의 형태를 도 5, 6에 나타내었다. In [Production Example 1] it is possible to control the form of the porous polymer by changing the volume ratio and temperature of the organic solvent. The morphology of the controlled polymer is shown in FIGS. 5 and 6.

본 발명이 제공하는 다공성 소재는 높은 비표면적과, 작은 기공크기를 갖는다. 그 결과, 상기의 소재는 수소, 메탄 등의 가스의 저장매체 또는 이산화탄소, 환경호르몬과 같은 오염물질의 흡착제로써 사용될 수 있다. 또한 빌딩블록의 크기를 제어함으로써 비표면적 및 기공크기를 제어할 수 있어 특정 물질의 선택적 흡착제로써의 응용도 가능하다. The porous material provided by the present invention has a high specific surface area and a small pore size. As a result, the material can be used as a storage medium for gases such as hydrogen and methane or as an adsorbent for pollutants such as carbon dioxide and environmental hormones. In addition, the specific surface area and pore size can be controlled by controlling the size of the building block, thereby enabling the application of a specific material as a selective adsorbent.

도 1은 본 발명에 따른 화학식 Ⅰ 중 R1이 1,4-페닐렌이고, R2이 1,4-페닐렌인 중합체의 질소 흡착(a)탈착(b) 그래프이다.1 is a graph of nitrogen adsorption (a) desorption (b) of a polymer of formula I according to the present invention wherein R 1 is 1,4-phenylene and R 2 is 1,4-phenylene.

도 2는 본 발명에 따른 화학식 Ⅰ 중 R1이 1,4-페닐렌이고, R2이 1,4-페닐렌인 중합체의 HK (Horvath-Kawazoe) plot이다.2 is a HK (Horvath-Kawazoe) plot of a polymer in which R 1 is 1,4-phenylene and R 2 is 1,4-phenylene in formula (I) according to the present invention.

도 3는 본 발명에 따른 화학식 Ⅳ 중 R1이 1,4-페닐렌이고, R4이 1,4-페닐렌인 중합체의 흡착(a)탈착(b) 그래프이다.3 is a graph of adsorption (a) desorption (b) of a polymer in which R 1 is 1,4-phenylene and R 4 is 1,4-phenylene in formula (IV) according to the present invention.

도 4는 본 발명에 따른 화학식 Ⅳ 중 R1이 1,4-페닐렌이고, R4이 1,4-페닐렌인 중합체의 HK (Horvath-Kawazoe) plot이다.4 is a HK (Horvath-Kawazoe) plot of a polymer in which R 1 is 1,4-phenylene and R 4 is 1,4-phenylene in formula (IV) according to the present invention.

도 5는 본 발명에 따른 화학식 Ⅰ 중 R1이 1,4-페닐렌이고, R2이 1,4-페닐렌인 중합체를 25℃에서 제조한 중합체의 주사전자현미경(FE-SEM, Field Emission Scanning Electron Microscope) 사진이다. 5 is a scanning electron microscope (FE-SEM, Field Emission) of a polymer prepared in a polymer of formula I according to the invention R 1 is 1,4-phenylene, R 2 is 1,4-phenylene at 25 ℃ Scanning Electron Microscope).

도 6은 본 발명에 따른 화학식 Ⅳ 중 R1이 1,4-페닐렌이고, R4이 1,4-페닐렌인 중합체를 100 ℃에서 제조한 중합체의 주사전자현미경 사진이다. 6 is a scanning electron micrograph of a polymer prepared at 100 ° C. in a polymer of Formula IV according to the present invention, wherein R 1 is 1,4-phenylene and R 4 is 1,4-phenylene.

Claims (4)

하기 화학식 I의 구조를 갖는 다공성 화합물.A porous compound having the structure of formula (I) [화학식 Ⅰ](I)
Figure 112011020151432-pat00011
Figure 112011020151432-pat00011
(상기 화학식에서 R1은 1,4-페닐렌 및 4,4-바이페닐렌으로 이루어진 그룹에서 선택된 1종이고 R2는 1,4-페닐렌, 4,4-바이페닐렌 및 2,6-나프탈렌으로 이루어진 그룹에서 선택된 1종이다.)(In the above formula, R 1 is one selected from the group consisting of 1,4-phenylene and 4,4-biphenylene and R 2 is 1,4-phenylene, 4,4-biphenylene and 2,6 It is one selected from the group consisting of naphthalene.)
하기 화학식 Ⅱ의 화합물을 팔라듐(Ⅱ)(Pd(Ⅱ))과 요오드화구리(CuI) 존재 하에서 하기 화학식 Ⅲ와 반응시켜서 청구항 1의 다공성 화합물을 제조하는 방법. A process for preparing the porous compound of claim 1 by reacting a compound of formula II with the following formula III in the presence of palladium (II) (Pd (II)) and copper iodide (CuI). [화학식 Ⅱ][Formula II]
Figure 112011020151432-pat00012
Figure 112011020151432-pat00012
(상기 화학식에서 R3는 4-요오드페닐, 4-브로모페닐, 4-요오드바이페닐, 4-브로모바이페닐로 이루어진 그룹에서 선택된 1종이다.)(In the above formula, R 3 is one selected from the group consisting of 4-iodinephenyl, 4-bromophenyl, 4-iodinebiphenyl, 4-bromobiphenyl.) [화학식 Ⅲ][Formula III]
Figure 112011020151432-pat00013
Figure 112011020151432-pat00013
(상기 화학식에서 R2는 1,4-바이페닐, 4,4-바이페닐렌 및 2,6-나프탈렌으로 이루어진 그룹으로부터 선택된 1종이고 n은 2이다.)(In the above formula, R 2 is one selected from the group consisting of 1,4-biphenyl, 4,4-biphenylene and 2,6-naphthalene and n is 2.)
하기 화학식 Ⅳ의 구조를 갖는 다공성 화합물.A porous compound having the structure of formula IV. [화학식 Ⅳ][Formula IV]
Figure 112011020151432-pat00014
Figure 112011020151432-pat00014
(상기 화학식에서 R1은 1,4-페닐렌 및 4,4-바이페닐렌으로 이루어진 그룹에서 선택된 1종이고, R4는 1,4-페닐렌, 1,4-바이페닐렌 및 2,6-나프탈렌으로 이루어진 그룹에서 선택된 1종이다.)(In the above formula, R 1 is one selected from the group consisting of 1,4-phenylene and 4,4-biphenylene, R 4 is one selected from the group consisting of 1,4-phenylene, 1,4-biphenylene and 2,6-naphthalene.)
하기 화학식 Ⅱ의 화합물을 팔라듐(Ⅱ)(Pd(Ⅱ))과 탄산칼륨(K2CO3) 존재 하에서 하기 화학식 Ⅴ의 화합물과 반응시켜서 청구항 3의 다공성 화합물을 제조하는 방법.A process for preparing the porous compound of claim 3 by reacting a compound of formula II with a compound of formula V in the presence of palladium (II) (Pd (II)) and potassium carbonate (K 2 CO 3 ). [화학식 Ⅱ][Formula II]
Figure 112011020151432-pat00022
Figure 112011020151432-pat00022
(상기 화학식에서 R3는 4-요오드페닐, 4-브로모페닐, 4-요오드바이페닐 및 4-브로모바이페닐로 이루어진 그룹에서 선택된 1종이다.)(In the above formula, R 3 is one selected from the group consisting of 4-iodinephenyl, 4-bromophenyl, 4-iodinebiphenyl and 4-bromobiphenyl.) [화학식 Ⅴ][Formula Ⅴ]
Figure 112011020151432-pat00015
Figure 112011020151432-pat00015
(상기 화학식에서 n은 2이며, R4은 1,4-페닐렌, 4,4-바이페닐렌 및 2,6-나프탈렌으로 이루어진 그룹으로부터 선택된 1종이다.)(In the above formula, n is 2, and R 4 is one selected from the group consisting of 1,4-phenylene, 4,4-biphenylene and 2,6-naphthalene.)
KR1020090039877A 2009-05-07 2009-05-07 Porous Adamantane -Based Polymers and the Method for Preparing the Same KR101075258B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090039877A KR101075258B1 (en) 2009-05-07 2009-05-07 Porous Adamantane -Based Polymers and the Method for Preparing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090039877A KR101075258B1 (en) 2009-05-07 2009-05-07 Porous Adamantane -Based Polymers and the Method for Preparing the Same

Publications (2)

Publication Number Publication Date
KR20100120968A KR20100120968A (en) 2010-11-17
KR101075258B1 true KR101075258B1 (en) 2011-10-20

Family

ID=43406386

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090039877A KR101075258B1 (en) 2009-05-07 2009-05-07 Porous Adamantane -Based Polymers and the Method for Preparing the Same

Country Status (1)

Country Link
KR (1) KR101075258B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101694854B1 (en) * 2015-01-28 2017-01-10 서울대학교 산학협력단 Microporous polymers and fabrication methods of the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Andrew R. Millward, Omar M. Yaghi, J. AM. CHEM. SOC. 2005, 127, 17998-17999
Peter M. Budd, Neil B. McKeownb and Detlev Fritsch, J. Mater. Chem., 2005, 15, 1977.1986

Also Published As

Publication number Publication date
KR20100120968A (en) 2010-11-17

Similar Documents

Publication Publication Date Title
Jiang et al. A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance
Islamoglu et al. Systematic postsynthetic modification of nanoporous organic frameworks for enhanced CO2 capture from flue gas and landfill gas
Yuan et al. Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecules
Mao et al. Mixed-matrix membranes incorporated with porous shape-persistent organic cages for gas separation
US10150096B2 (en) Heteroatom rich organic polymers with ultra-small pore apertures for carbon dioxide separation and/or conversion
Jing et al. Targeted synthesis of micro–mesoporous hybrid material derived from octaphenylsilsesquioxane building units
US8814982B2 (en) Tetrazole functionalized polymer membranes
JP6278964B2 (en) Metal complex, adsorbent, separating material and method for separating 1,3-butadiene
JP5705010B2 (en) Metal complex and separation material comprising the same
WO2014045967A1 (en) 1, 3-butadiene-separating material, and separation method using said separating material
US11235306B2 (en) Phenothiazine based crosslinked polymer and methods thereof
CN108689408B (en) Method for preparing high-nitrogen porous carbon polymer precursor by solvent-free method
Chen et al. Microwave-assisted synthesis of bimetallic NiCo-MOF-74 with enhanced open metal site for efficient CO2 capture
JP5955135B2 (en) Gas separation material containing metal complex of oxocarbonic acid and method for separating hydrocarbon gas
US20110160511A1 (en) Gas adsorption and gas mixture separations using porous organic polymer
KR101075258B1 (en) Porous Adamantane -Based Polymers and the Method for Preparing the Same
Luo et al. Polyfunctional conjugated microporous polymers for applications in direct CH arylation of unactivated arenes and aqueous adsorption of aromatic amines
KR100792038B1 (en) Synthesis method of porous coordination polymer, porous coordination polymer and uses thereof
CN115558120B (en) Metal organic framework material for trace BTEX adsorption and preparation method thereof
KR101546888B1 (en) Covalent Organic Polymers with Troeger's Base Functionalities and Adsorbent of Carbon Dioxide Comprising the Same
Xu et al. Microporous organic polymers: synthesis, types, and applications
Manoranjan et al. Synthesis of azo linked polymers by a diazotization-coupling reaction and its application for CO 2 capture
CN115651203A (en) Supermolecular crystal framework material based on BN coordination bond and preparation method and application thereof
KR101057370B1 (en) Porous phosphazene compounds and preparation methods thereof
JP5980091B2 (en) Method for separating 1,3-butadiene and separation membrane

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140929

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160217

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170925

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181002

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191001

Year of fee payment: 9