KR101075069B1 - The porous adsorbent media and the preparation methodthereof - Google Patents

The porous adsorbent media and the preparation methodthereof Download PDF

Info

Publication number
KR101075069B1
KR101075069B1 KR1020110039331A KR20110039331A KR101075069B1 KR 101075069 B1 KR101075069 B1 KR 101075069B1 KR 1020110039331 A KR1020110039331 A KR 1020110039331A KR 20110039331 A KR20110039331 A KR 20110039331A KR 101075069 B1 KR101075069 B1 KR 101075069B1
Authority
KR
South Korea
Prior art keywords
sewage
mixing
crushing
firing
media
Prior art date
Application number
KR1020110039331A
Other languages
Korean (ko)
Inventor
이융
Original Assignee
이융
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이융 filed Critical 이융
Priority to KR1020110039331A priority Critical patent/KR101075069B1/en
Application granted granted Critical
Publication of KR101075069B1 publication Critical patent/KR101075069B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/107Inorganic materials, e.g. sand, silicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

본 발명은 유리를 이용한 하·폐수처리용 다공성 부상여재 제조방법 및 상기 제조방법에 의해 제조된 다공성 부상여재에 관한 것이다.
이에 본 발명의 기술적 요지는 하천수, 하수, 폐수 및 우수와 함께 유입되는 다양한 오염물질, 예컨데 생물학적 산소요구량(BOD), 화학적산소요구량(COD), 부유물질(SS), 총질소(T-N), 총인(T-P) 등을 저감시킬 수 있는 상·하수 고도처리장치에 사용되는 부상여재의 제조방법에 관한 것으로, 이는 하·폐수 종말처리장의 생물반응조 내부에 수용된 부상식 미생물 담체와 최종침전지 후단에 설치되는 여과공정에 사용되는 다공성 여재를 제조함에 있어 제품에 사용되는 원료의 분쇄, 혼합방법, 발포, 냉각 방법 및 수처리의 용도에 따라 입경별로 제품을 선별하는 단계를 일련의 자동화 라인으로 구성하여 제조시의 생산성과 양산공정에 따른 작업 편의성을 제공함에 그 특징이 있다.
The present invention relates to a method for producing porous flotation media for sewage and wastewater treatment using glass and a porous flotation media produced by the production method.
Therefore, the technical gist of the present invention is a variety of pollutants introduced with river water, sewage, waste water and rainwater, for example, biological oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (TN), total phosphorus The present invention relates to a method for manufacturing flotation media used in high water and sewage treatment systems capable of reducing (TP) and the like, which is installed at the rear of a floating microorganism carrier and final settler, which are accommodated in a bioreactor in a sewage and wastewater treatment plant. In manufacturing the porous media used in the filtration process, a series of automated lines are organized into a series of automated lines in which the products are sorted by particle size according to the grinding, mixing method, foaming, cooling method, and water treatment of raw materials used in the product. Its characteristics are that it provides the convenience of productivity and mass production process.

Description

유리를 이용한 하·폐수처리용 다공성 부상여재 제조방법 및 상기 제조방법에 의해 제조된 다공성 부상여재{THE POROUS ADSORBENT MEDIA AND THE PREPARATION METHODTHEREOF} Method for preparing porous flotation media for sewage and wastewater treatment using glass and porous flotation media manufactured by the above method {TH POROUS ADSORBENT MEDIA AND THE PREPARATION METHODTHEREOF}

본 발명은 하천수, 하수, 폐수 및 우수와 함께 유입되는 다양한 오염물질, 예컨데 생물학적 산소요구량(BOD), 화학적산소요구량(COD), 부유물질(SS), 총질소(T-N), 총인(T-P) 등을 저감시킬 수 있는 상·하수 고도처리장치에 사용되는 부상여재의 제조방법에 관한 것으로, 이는 하·폐수 종말처리장의 생물반응조 내부에 수용된 부상식 미생물 담체와 최종침전지 후단에 설치되는 여과공정에 사용되는 다공성 여재를 제조함에 있어 제품에 사용되는 원료의 분쇄, 혼합방법, 발포, 냉각 방법 및 수처리의 용도에 따라 입경별로 제품을 선별하는 단계를 일련의 자동화 라인으로 구성하여 제조시의 생산성과 양산공정에 따른 작업 편의성을 제공하기 위한 유리를 이용한 하·폐수처리용 다공성 부상여재 제조방법 및 상기 제조방법에 의해 제조된 다공성 부상여재에 관한 것이다.
The present invention provides a variety of pollutants introduced with river water, sewage, wastewater and rainwater, for example, biological oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (TN), total phosphorus (TP), etc. The method relates to a method for manufacturing flotation media used in high water and sewage advanced treatment equipment, which can reduce the wastewater, and is used in the filtration process installed at the rear of the final settler and the floating microbial carrier contained in the bioreactor of the sewage and wastewater treatment plant. In the production of porous media, the product's productivity and mass production process is composed of a series of automated lines that select products by particle size according to the grinding, mixing method, foaming, cooling method and water treatment of raw materials used in the product. Method for manufacturing porous flotation media for sewage and wastewater treatment using glass to provide convenience for work and pipes for porous flotation media produced by the production method It is.

일반적으로 하천수, 하수, 폐수 및 우수에는 다양한 유기물질, 부유물질, 질소, 인 등을 함유하고 있어, 이러한 하·폐수를 적정하게 처리하지 않고 방류 수역으로 방류할 경우에 하천의 수질오염을 야기시키고 수서생태계에 악영향을 미치게 된다.In general, river water, sewage, wastewater and rainwater contain various organic materials, suspended matter, nitrogen, phosphorus, etc., and if the sewage and wastewater are discharged into the discharged water without proper treatment, they cause water pollution of the river. It will adversely affect the aquatic ecosystem.

이러한 수질오염을 막고 각종 오폐수의 처리를 위해, 미생물 오니를 오폐수에 투입하여 부유 미생물을 증식시키는 활성 오니법이나 생물막에 미생물을 고착시켜 유기물을 처리하는 고착형 생물처리법 등의 생물학적 처리 공법이 널리 이용되었고, 응집처리법 또는 사여과 등과 같은 물리, 화학적 처리 방법도 많이 이용되어 왔다.In order to prevent such water pollution and to treat various wastewaters, biological treatment methods such as active sludge method in which microorganism sludge is introduced into wastewater and multiply floating microorganisms or fixed biotreatment method in which organic matter is fixed by attaching microorganisms to a biofilm are widely used. Physical and chemical treatment methods such as flocculation or filtration have been widely used.

그러나, 이와 같은 방법들은 질소, 인 및 부유물질을 완벽히 처리하는데 한계가 있고, 따라서 안정적인 처리를 위해 공정의 후단에 여과기를 설치하여 사용하고 있는 실정이다.However, these methods are limited in the complete treatment of nitrogen, phosphorus and suspended solids, and therefore, the situation is to use a filter installed at the end of the process for a stable treatment.

현재 이에 사용되는 접촉 여재로서 활성탄, 제올라이트, 모래, 자갈, 기타 다양한 종류의 합성 세라믹 여재 등이 있다.Currently, contact media used therein include activated carbon, zeolites, sand, gravel, and various other kinds of synthetic ceramic media.

상기 활성탄, 제올라이트 등은 흡착 능력은 우수하지만, 고가의 제품으로 경제적 부담이 크다는 문제가 있고, 또한 그 제조과정에서 발생하는 부산물과 폐여재의 최종 처리 곤란등으로 인하여 2차 오염의 환경적 문제를 야기한다는 단점이 있다.The activated carbon, zeolite and the like have excellent adsorption ability, but there is a problem that the economic burden is high as an expensive product, and also environmental problems of secondary pollution due to difficulty in final processing of by-products and waste materials generated during the manufacturing process. It has the disadvantage of causing.

또한, 상기 모래, 자갈은 오염 물질의 흡착 능력이 떨어지고, 주로 여과 작용에 의존하므로 그 처리효율이 제한적이라는 단점이 있다.In addition, the sand, gravel has a disadvantage in that the adsorption capacity of the contaminants is poor, and mainly processing efficiency is limited because it depends on the filtration action.

그 밖에 폐비닐, 폐타이어, 폐콘크리트 등 폐기물을 재활용하는 방법이나, 섬모상이나 부직포등을 적용하는 방법도 있는데, 이 방법들은 경제성 및 유지 관리 측면, 2차 환경오염을 유발하는 측면등으로부터 그 실질적인 적용은 어렵다.In addition, there are methods of recycling waste such as waste vinyl, waste tires and waste concrete, or applying ciliated or nonwoven fabrics. These methods are practical from the aspects of economics and maintenance, and the causes of secondary environmental pollution. Application is difficult.

한편, 자갈을 이용하는 방법 중 특히 자갈층 접촉 산화법이 있는데, 이는 자갈 충전층을 설치하고, 이에 부착된 생물막의 작용을 통해 유기물질의 산화 분해 및 부유물질의 포집을 가능하게 하여 오염 하천수를 정화하는 방법으로, 이 방법을 적용할 경우 하천에서 자연적으로 발생되는 침전, 흡착, 분해등의 정화 기능을 인위적으로 증가시킬 수 있다.On the other hand, among the methods of using gravel, there is a gravel layer contact oxidation method, which is a method of installing a gravel-filled layer and purifying polluted river water by enabling the oxidative decomposition of organic matter and the collection of suspended matter through the action of a biofilm attached thereto. By applying this method, it is possible to artificially increase the purification functions such as sedimentation, adsorption, and decomposition that occur naturally in rivers.

그러나, 자갈을 여재로 사용하는 방법은, 생물막의 형성에 비교적 긴 시간이 필요하고, 환경변화에 의한 부착 미생물의 탈리 현상 발생이 빈번하며, 오염물질에 대한 흡착 능력도 낮다는 문제점이 있다.However, the method of using gravel as a media has a problem that it takes a relatively long time to form a biofilm, the detachment phenomenon of adherent microorganisms frequently occurs due to environmental changes, and the adsorption capacity to contaminants is also low.

이와 같은 자갈을 여재로 사용하는 경우, 예를 들어 1m2/sec의 물을 처리하는데, 하천부지 면적 약 6,000m2, 시설비 약160억원 정도가 소요되므로, 그 규모나 단가등에서 개선이 필요하다.In the case of using such gravel as a filter medium, for example, to treat water of 1m 2 / sec, it requires about 6,000m 2 of riverbed area, about 16 billion won of facility cost, it is necessary to improve in size and unit price.

따라서, 종래 흡착 여재, 특히 활성탄이나 제올라이트와 달리, 원재료, 설비, 제조 과정등 경제적 측면에서 저렴하고 효율적이며, 또한 부산물과 폐여재 후처리 곤란등 2차 환경 오염 문제를 야기하지 않고, 동시에 흡착 능력이 우수하며, 더욱이 생물막의 작용에 의한 정화를 수행할 수 있으면서, 자갈을 이용하는 경우와는 달리, 생물막 형성에 장시간이 소요되는 문제, 미생물의 탈리 문제 등이 적은, 흡착 여재가 요구되어 왔다.Therefore, unlike conventional adsorption media, especially activated carbon or zeolite, it is inexpensive and efficient in terms of economics such as raw materials, equipment, manufacturing process, and also does not cause secondary environmental pollution problems such as by-products and post-treatment post-treatment problems, and at the same time has a high adsorption capacity. It is excellent, and furthermore, unlike the case of using gravel, it is possible to perform purification by the action of the biofilm, and there has been a demand for adsorption media, which requires a long time for forming the biofilm, and a problem of desorption of microorganisms.

다시 말해, 기존의 하·폐수 종말처리장치에서 생물반응조는 유기물질, 질소, 인 등을 제거하기 위하여 하수의 체류시간을 일반적으로 8~9시간을 유지하는 규모로 설치하고 있어 부지면적이 크고, 하수처리에 적당한 미생물을 확보, 유지하기 위한 산소공급량이 과다하게 소요되는 한계점이 있고, 하·폐수종말처리장의 방류수 수질기준이 지속적으로 강화됨에 따라서 최종침전지 후단에 여과처리공정이 도입되고 있어 동 처리시설의 단위면적 당 오염물질 제거효율 향상을 위해서는 부상여재를 메디아로 사용하여 미생물의 생육 조건을 개선 시킬 수 있는 기술에 필요한 부상여재의 제조방법에 대한 기술개발이 절실히 요구되고 있다.
In other words, in the existing sewage and wastewater treatment equipment, the bioreactor is installed with a scale of 8 to 9 hours in order to remove organic matter, nitrogen, phosphorus, etc. There is a limitation that excessive oxygen supply is required to secure and maintain microorganisms suitable for sewage treatment. As the discharged water quality standards of sewage and wastewater treatment facilities are continuously strengthened, a filtration treatment process is introduced at the end of the final settling process. In order to improve the efficiency of removing pollutants per unit area of the facility, there is an urgent need for technological development of the method of manufacturing the flotation media required for the technology that can improve the growth conditions of microorganisms by using the flotation media as media.

본 발명은 상술한 문제점을 해결하기 위한 것으로, 그 기술적 요지는 기존의 하·폐수종말처리장에서 생물반응조 및 최종침전지 후단의 여과공정을 다공성 부상여재 및/또는 다공성 여재를 매개로 하여 하·폐수 속에 함유된 유기물질, 부유물질, 총질소, 총인 등 오염물질의 처리효율 및 처리속도를 향상시켜 시설 부지면적당 처리 능력을 향상시킬 수 있는 처리기술에 사용되는 인공여재를 개발하되, 상기 여재의 제조방법은 일련의 자동화공정을 통해 생산성이 향상되는 것을 제공함에 그 목적이 있다.
The present invention is to solve the above problems, the technical gist of the present invention in the sewage and wastewater through the porous flotation filter and / or porous media through the filtration process of the rear end of the bioreactor and the final settling in the sewage wastewater treatment plant Development of artificial media used in the treatment technology to improve the treatment efficiency and processing speed of the contaminants such as organic matter, suspended matter, total nitrogen, total phosphorus, etc. Aims to provide increased productivity through a series of automated processes.

이러한 목적을 달성하기 위해 본 발명의 제조방법은 저장시설에서 유출되는 유리를 파쇄장치(100)를 이용하여 3~5mm 까지 파쇄하도록 하는 파쇄단계(S100)와; 상기 파쇄장치(100)에서 파쇄된 유리를 분쇄장치(200)로 하여금 150~400㎛의 입자크기로 미세하게 연속적으로 분쇄하도록 하는 분쇄단계(S200)와; 상기 분쇄장치(200)에서 분쇄된 미세유리 분말을 소석회 또는 탄산칼슘 등의 발포제와 강도 조절을 위하여 첨가하는 첨가제를 혼합교반장치(300)로 하여금 균질하게 혼합하도록 하는 혼합교반단계(S300)와; 상기 혼합교반장치(300)에서 혼합된 혼합재를 단열장치가 구비된 소성로(400)에 투입한 후 이동성 콘베이어를 통해 연속적으로 이송시켜 600~1100℃ 까지 소성시키는 소성단계(S400)와; 상기 소성로(400)에서 소성된 다공성 여재의 강도 및 공극률 조절을 위하여 냉각장치(500)로 서서히 냉각시키는 냉각단계(S500)와; 상기 냉각장치(500)에서 냉각된 다공성 여재를 일정한 크기로 분쇄한 후 분쇄 선별장치(600)로 하여금 입경별로 분쇄 선별하는 분쇄 선별단계(S600)가; 구성되어 이루어진다.In order to achieve this object, the manufacturing method of the present invention comprises a shredding step (S100) to shred the glass outflowing from the storage facility to 3 ~ 5mm using the shredding device (100); A grinding step (S200) of grinding the glass crushed by the crushing device (100) to continuously crush finely into a particle size of 150 ~ 400㎛; A mixing and stirring step (S300) of allowing the mixing and stirring device (300) to homogeneously mix the fine glass powder pulverized in the grinding device (200) and an additive added for controlling the strength with a blowing agent such as slaked lime or calcium carbonate; A firing step (S400) of injecting the mixed material mixed in the mixing and stirring apparatus 300 into a firing furnace 400 equipped with a thermal insulation device and then continuously transferring the mixed material through a mobile conveyor to fire up to 600 to 1100 ° C .; A cooling step (S500) of gradually cooling the cooling apparatus (500) to control the strength and porosity of the porous media fired in the firing furnace (400); A pulverization sorting step (S600) of pulverizing and sorting the pulverized porous media cooled by the cooling apparatus 500 to a predetermined size and then pulverizing the pulverization sorting apparatus 600 by particle diameter; .

이때, 상기 파쇄단계(S100)는 파쇄시 발생되는 유리의 분진을 집진하도록 파쇄장치 일측에 집진기가 더 부설되도록 형성되는 것이 바람직하다.At this time, the shredding step (S100) is preferably formed to further install a dust collector on one side of the shredding device to collect the dust of the glass generated during the shredding.

또한, 상기 분쇄단계(S200)는 파쇄된 유리 분말이 진행되는 방향으로 분쇄 직경이 점차 협소해지는 다단식 분쇄날이 형성되어 분쇄 과부하를 방지하도록 형성되는 것이 바람직하다.In addition, the crushing step (S200) is preferably formed to prevent the crushing overload is formed by forming a multi-stage grinding blade gradually narrowing the grinding diameter in the direction of the crushed glass powder.

이에, 상기 혼합교반단계(S300)는 분쇄된 유리 분발 95 중량%와, 발포제 3중량%와, 기계적 물성 개선 첨가제 2중량%를 혼합하도록 형성되되, 혼합 후 혼합교반장치는 분당 10℃로 승온시켜 1100℃에서 발포시키도록 하는 것이 바람직하다.Thus, the mixing and stirring step (S300) is formed to mix 95% by weight of the pulverized glass powder, 3% by weight of blowing agent, and 2% by weight of mechanical properties improving additives, the mixing and stirring device after the mixing is heated to 10 ℃ per minute It is preferred to foam at 1100 ° C.

또한, 상기 소성단계(S400)는 600℃에서는 4시간, 1100℃에서는 2시간 동안 소성시키도록 하는 것이 바람직하다.In addition, the firing step (S400) is preferably to be fired for 4 hours at 600 ℃, 2 hours at 1100 ℃.

아울러, 상기 냉각단계(S500)는 이송 중인 여재를 소성과정에서 남아있는 예열을 이용하여 서서히 냉각시켜 직경은 50~100mm 로 형성되고, 용적밀도는 0.3~0.7g/c㎤이며, 수분포화시 용적밀도는 1.2~1.8g/c㎤이고, 공극률은 60~85%이며, 기상률은 70%인 것이 바람직하다.In addition, the cooling step (S500) is gradually cooled by using the preheating remaining in the conveying medium during the conveying process to form a diameter of 50 ~ 100mm, the volume density is 0.3 ~ 0.7g / ccm, volume during water saturation It is preferable that the density is 1.2 to 1.8 g / ccm 3, the porosity is 60 to 85%, and the gas phase rate is 70%.

한편, 본 발명의 다공성 여재는 상술한 제조방법을 통해 제조되는 것이 바람직하다.
On the other hand, the porous media of the present invention is preferably produced through the above-described manufacturing method.

이와 같이, 본 발명은 하수의 생물반응조 용량을 최소화시키고 여과처리속도 및 여과처리 효율을 향상시키는데 핵심적인 역할을 수행할 다공성 여재 제조방법을 개발함으로서 기존 하·폐수종말처리장에 비해서 시설 설치면적을 줄이고 시공단가를 낮추는 경제적인 효과를 창출하게 된다.
As such, the present invention reduces the installation area of the facility compared to the existing sewage and wastewater treatment plants by developing a porous filter manufacturing method that will play a key role in minimizing the bioreactor capacity of sewage and improving the filtration rate and filtration efficiency. The economic effect of lowering the construction cost will be created.

도 1은 본 발명에 따른 다공성 부상여재의 제조방법을 나타낸 일 공정 예시도,
도 2는 본 발명에 따른 제조 공정을 나타낸 블럭도이다.
1 is an exemplary process showing a method of manufacturing a porous flotation material according to the present invention;
2 is a block diagram showing a manufacturing process according to the present invention.

다음은 첨부된 도면을 참조하며 본 발명을 보다 자세히 설명하겠다.The following describes the invention in more detail with reference to the accompanying drawings.

먼저, 도 1 내지 도 2에서 보는 바와 같이, 본 발명은 일련의 자동화 라인으로 형성되는 것으로, 파쇄단계, 분쇄단계, 혼합교반단계, 소성단계, 냉각단계 및 분쇄 선별단계로 크게 구성된다.First, as shown in Figures 1 to 2, the present invention is formed of a series of automated lines, largely composed of a crushing step, grinding step, mixing stirring step, firing step, cooling step and crushing step.

이에, 상기 파쇄단계(S100)는 저장시설에서 유출되는 유리를 파쇄장치(100)를 이용하여 3~5mm 까지 파쇄하도록 형성된다.Thus, the crushing step (S100) is formed to crush the glass outflowed from the storage facility to 3 ~ 5mm by using the crusher 100.

이때, 상기 파쇄단계(S100)는 파쇄시 발생되는 유리의 분진을 집진하도록 파쇄장치 일측에 집진기가 더 부설되도록 형성되는 것이 바람직하다.At this time, the shredding step (S100) is preferably formed to further install a dust collector on one side of the shredding device to collect the dust of the glass generated during the shredding.

즉, 상기 파쇄단계는 폐유리 등을 일정한 크기로 잘게 파쇄하는 단계로서, 후술되는 분쇄단계 이전에 유리재를 분말화 시키도록 하는 공정이다.That is, the crushing step is a step of finely crushing the waste glass to a predetermined size, it is a process to powder the glass material before the crushing step to be described later.

이때, 상기 분쇄단계(S200)는 상기 파쇄장치(100)에서 파쇄된 유리를 분쇄장치(200)로 하여금 150~400㎛의 입자크기로 미세하게 연속적으로 분쇄하도록 형성된다.At this time, the crushing step (S200) is formed to crush the glass crushed in the crushing device 100 to continuously crushed to a particle size of 150 ~ 400㎛ fine.

이에, 상기 분쇄단계(S200)는 파쇄된 유리 분말이 진행되는 방향으로 분쇄 직경이 점차 협소해지는 다단식 분쇄날이 형성되어 분쇄 과부하를 방지하도록 형성되는 것이 바람직하다.Thus, the crushing step (S200) is preferably formed to prevent the crushing overload is formed by forming a multi-stage grinding blade gradually narrowing the grinding diameter in the direction in which the crushed glass powder proceeds.

즉, 서로 대향되어 반대방향으로 회전하는 두개의 축에는 분쇄날이 형성되되, 서로 이웃한 복수의 분쇄날 간격은 유리 분말이 최초 3~5mm로 형성되는 바, 2.5mm 정도의 간격을 유지하고, 이후 진행되는 유리분말의 직경보다 점차적으로 좁은 간격으로 다단의 분쇄날이 마이크로단위에 맞는 간격으로 형성됨으로써, 상기 입자크기로 분쇄하도록 형성된다.That is, the grinding blades are formed on the two shafts opposed to each other and rotate in the opposite direction, the plurality of neighboring grinding blade spacing is formed by the first 3 ~ 5mm glass powder bar, to maintain the interval of about 2.5mm, Thereafter, the multi-stage grinding blades are formed at intervals corresponding to micro units at intervals gradually narrower than the diameter of the glass powder, and are formed to be pulverized to the particle size.

이때, 상기 분쇄장치 일측에는 파쇄장치의 집진기와 같은 집진기가 부설되는 것이 바람직하다. 이는 작업현장의 분진을 제거하도록 하기 위함이다.At this time, it is preferable that a dust collector such as a dust collector of the crusher is installed at one side of the crusher. This is to remove dust from the shop floor.

또한, 상기 혼합교반단계(S300)는 상기 분쇄장치(200)에서 분쇄된 미세유리 분말을 소석회 또는 탄산칼슘 등의 발포제와 강도 조절을 위하여 첨가하는 첨가제를 혼합교반장치(300)로 하여금 균질하게 혼합하도록 형성된다.In addition, in the mixing and stirring step (S300), the mixing and stirring device 300 homogeneously mixes the fine glass powder pulverized in the grinding device 200 and an additive for controlling the strength with a blowing agent such as slaked lime or calcium carbonate. It is formed to.

이때, 상기 혼합교반단계(S300)는 분쇄된 유리 분발 95 중량%와, 발포제 3중량%와, 기계적 물성 개선 첨가제 2중량%를 혼합하도록 형성되되, 혼합 후 혼합교반장치는 분당 10℃로 승온시켜 1100℃에서 발포시키도록 하는 것이 바람직하다. 이때, 상기 첨가제는 일반적인 기계적 물성 개선용 첨가제를 사용하는 것이 바람직하다.At this time, the mixing and stirring step (S300) is formed to mix 95% by weight of the pulverized glass powder, 3% by weight of the blowing agent, and 2% by weight of mechanical properties improving additives, after mixing the mixing stirrer is heated to 10 ℃ per minute It is preferred to foam at 1100 ° C. In this case, it is preferable to use an additive for improving general mechanical properties.

또한, 상기 소성단계(S400)는 상기 혼합교반장치(300)에서 혼합된 혼합재를 단열장치가 구비된 소성로(400)에 투입한 후 이동성 콘베이어를 통해 연속적으로 이송시켜 600~1100℃ 까지 소성시키도록 형성된다.In addition, the firing step (S400) is to put the mixed material mixed in the mixing stirrer 300 to the firing furnace 400 equipped with a thermal insulation device and then continuously transferred through a mobile conveyor to be fired to 600 ~ 1100 ℃. Is formed.

이때, 상기 소성단계(S400)는 600℃에서는 4시간, 1100℃에서는 2시간 동안 소성시키도록 하는 것이 바람직하다.At this time, the firing step (S400) is preferably to be fired for 4 hours at 600 ℃, 2 hours at 1100 ℃.

즉, 낮은 온도에서는 소성시간을 길게하여 제품의 안정화를 도모하고, 높은 온도에서는 소성시간을 짧게 하여 제품의 안정화와 공정시간을 단축시켜 생산성을 향상시키도록 하기 위함이다.In other words, to lower the firing time at a lower temperature to stabilize the product, and at a high temperature to shorten the firing time to stabilize the product and shorten the process time to improve productivity.

상기 소성로(400)에서 소성된 다공성 여재의 강도 및 공극률 조절을 위하여 냉각장치(500)로 서서히 냉각시키는 냉각단계(S500)와; A cooling step (S500) of gradually cooling the cooling apparatus (500) to control the strength and porosity of the porous media fired in the firing furnace (400);

한편, 상기 분쇄 선별단계(S600)는 상기 냉각장치(500)에서 냉각된 다공성 여재를 일정한 크기로 분쇄한 후 분쇄 선별장치(600)로 하여금 입경별로 분쇄 선별하도록 형성된다.On the other hand, the pulverization screening step (S600) is formed to pulverize and sort by the pulverization screening device 600 by the particle size after pulverizing the porous media cooled in the cooling device 500 to a predetermined size.

즉, 상기 분쇄 선별장치는 작업자가 일일이 여재 크기에 따라 수작업으로 분류하는 것이 아니라, 선택된 메쉬 또는 배출공에 따라 설정된 크기를 지난 것은 일측으로 분류되고, 선택된 메쉬 또는 배출공의 설정된 통공을 지나지 못한 것은 별도의 수거 핑거에 의해 타측으로 분류되어 자동화에 의한 작업자의 공수를 절감하도록 형성된다.That is, the pulverization sorting device is not manually sorted by the operator manually according to the size of the media, the past the set size according to the selected mesh or the discharge hole is classified as one side, and not passed through the set through the selected mesh or discharge hole It is classified to the other side by a separate collection finger is formed to reduce the labor of the operator by automation.

아울러, 상기 냉각단계(S500)는 이송 중인 여재를 소성과정에서 남아있는 예열을 이용하여 서서히 냉각시켜 직경은 50~100mm 로 형성되고, 용적밀도는 0.3~0.7g/c㎤이며, 수분포화시 용적밀도는 1.2~1.8g/c㎤이고, 공극률은 60~85%이며, 기상률은 70%인 것이 바람직하다.In addition, the cooling step (S500) is gradually cooled by using the preheating remaining in the conveying medium during the conveying process to form a diameter of 50 ~ 100mm, the volume density is 0.3 ~ 0.7g / ccm, volume during water saturation It is preferable that the density is 1.2 to 1.8 g / ccm 3, the porosity is 60 to 85%, and the gas phase rate is 70%.

한편, 본 발명의 다공성 여재는 상술한 제조방법을 통해 제조되는 것이 바람직하다.On the other hand, the porous media of the present invention is preferably produced through the above-described manufacturing method.

즉, 본 발명의 다공성 여재는 상기 냉각단계를 거쳐 형성된 것으로, 직경은 50~100mm 로 형성되고, 용적밀도는 0.3~0.7g/c㎤이며, 수분포화시 용적밀도는 1.2~1.8g/c㎤이고, 공극률은 60~85%이며, 기상률은 70%인 것이 바람직하다.
That is, the porous media of the present invention is formed through the cooling step, the diameter is formed of 50 ~ 100mm, the bulk density is 0.3 ~ 0.7g / ccm, the volume density during water saturation is 1.2 ~ 1.8g / ccm It is preferable that the porosity is 60 to 85% and the gas phase is 70%.

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 고안이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.
It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the appended claims and their equivalents. Of course, such modifications are within the scope of the claims.

S100 ... 파쇄단계 S200 ... 분쇄단계
S300 ... 혼합교반단계 S400 ... 소성단계
S500 ... 냉각단계 S600 ... 분쇄 선별단계
S100 ... crushing step S200 ... crushing step
S300 ... Mixed stirring step S400 ... Firing step
S500 ... cooling step S600 ... grinding screening step

Claims (7)

유리를 이용한 하,폐수처리용 다공성 부상여재 제조방법에 있어서,
저장시설에서 유출되는 유리를 파쇄장치(100)를 이용하여 3~5mm 까지 파쇄하도록 하는 파쇄단계(S100)와;
상기 파쇄장치(100)에서 파쇄된 유리를 분쇄장치(200)로 입자크기를 150~400㎛로 미세하게 연속적으로 분쇄하도록 하는 분쇄단계(S200)와;
상기 분쇄장치(200)에서 분쇄된 미세유리 분말 95중량%, 소석회 또는 탄산칼슘의 발포제 3중량%, 강도 조절을 위하여 첨가하는 첨가제 2중량%를 혼합교반장치(300)로 균질하게 혼합하는 혼합교반단계(S300)와;
상기 혼합교반장치(300)에서 혼합된 혼합재를 단열장치가 구비된 소성로(400)에 투입한 후 이동성 콘베이어를 통해 연속적으로 이송시켜 소성시간을 낮은 온도에서는 길게, 높은 온도에서는 짧게하여 혼합재를 소성시키는 소성단계(S400)와;
상기 소성로(400)에서 소성된 다공성 여재를 냉각장치(500)로 이송하여 서서히 냉각시켜 상기 다공성 여재의 직경이 50~100mm, 용적밀도 0.3~0.7g/c㎤, 수분포화시 용적밀도는 1.2~1.8g/c㎤, 공극률 60~85%, 기상률 70%로 조절하는 냉각단계(S500)와;
상기 냉각장치(500)에서 냉각된 다공성 여재를 일정한 크기로 분쇄한 후 분쇄 선별장치(600)로 하여금 입경별로 분쇄 선별하는 분쇄 선별단계(S600)로; 형성된 단계별 구성에 있어서,
상기 분쇄단계(S200)에서 상기 분쇄장치(200)의 분쇄날은 진행방향으로 2.5mm의 간격을 유지하여 점차 협소하게 하여 분쇄의 과부하를 방지하는 다단식 분쇄날이고,
상기 혼합교반단계(S300)에서 상기 혼합교반장치(300)는 미세유리 분말, 발포제, 첨가제를 혼합하여 발포시키는 온도와 시간은 분당 10℃마다 승온시켜 1100℃에서 발포시키며,
상기 소성단계(S400)에서 혼합재를 소성시키는 온도와 시간의 관계는 600℃~1100℃에서 4시간~2시간 동안 소성시키는 것을 특징으로 하는 유리를 이용한 하·폐수처리용 다공성 부상여재 제조방법.
In the method of manufacturing porous flotation media for sewage and wastewater treatment using glass,
A crushing step (S100) for crushing the glass flowing out of the storage facility to 3 to 5 mm using the crushing device (100);
A crushing step (S200) for crushing the glass crushed by the crushing apparatus 100 to a pulverizing apparatus 200 to continuously crush finely to a particle size of 150 ~ 400㎛;
95% by weight of the fine glass powder pulverized in the crusher 200, 3% by weight of the blowing agent of calcium hydroxide or calcium carbonate, and 2% by weight of the additive added to adjust the strength, the mixing and stirring homogeneously mixing mixing device 300 Step S300;
The mixed material mixed in the mixing and stirring device 300 is put into a firing furnace 400 equipped with a heat insulating device and then continuously transferred through a mobile conveyor to fire the mixed material by making the firing time long at a low temperature and short at a high temperature. Firing step (S400);
The porous media fired in the firing furnace 400 is transferred to the cooling device 500 and gradually cooled to have a diameter of the porous media 50 to 100 mm, a volume density of 0.3 to 0.7 g / ccm, and a volume density of 1.2 to 0.7 when saturated with water. A cooling step (S500) of adjusting 1.8 g / ccm 3, porosity 60 to 85%, and gas phase rate 70%;
After pulverizing the porous media cooled in the cooling device 500 to a predetermined size to the pulverization screening step (S600) for the pulverization screening device 600 to pulverize by the particle diameter; In the stepwise configuration formed,
The grinding blade of the grinding device 200 in the grinding step (S200) is a multi-stage grinding blade to prevent the overload of the grinding by gradually narrowing by maintaining a gap of 2.5mm in the advancing direction,
In the mixing and stirring step (S300), the mixing and stirring apparatus 300 mixes and foams the fine glass powder, the blowing agent, and the additive, and foams the foam at 1100 ° C. by raising the temperature and time every 10 ° C. per minute.
The relationship between the temperature and time for firing the mixed material in the firing step (S400) is a method of producing porous flotation media for sewage and wastewater treatment using glass, characterized in that the firing for 4 hours to 2 hours at 600 ℃ ~ 1100 ℃.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020110039331A 2011-04-27 2011-04-27 The porous adsorbent media and the preparation methodthereof KR101075069B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110039331A KR101075069B1 (en) 2011-04-27 2011-04-27 The porous adsorbent media and the preparation methodthereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110039331A KR101075069B1 (en) 2011-04-27 2011-04-27 The porous adsorbent media and the preparation methodthereof

Publications (1)

Publication Number Publication Date
KR101075069B1 true KR101075069B1 (en) 2011-10-19

Family

ID=45033073

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110039331A KR101075069B1 (en) 2011-04-27 2011-04-27 The porous adsorbent media and the preparation methodthereof

Country Status (1)

Country Link
KR (1) KR101075069B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101547821B1 (en) * 2015-04-27 2015-08-27 최성필 The manufacture method of artificial filter medium using waste glass and waste LCD and artificial filter medium Manufactured by Method
KR101559417B1 (en) * 2015-04-27 2015-10-13 최성필 The manufacture method of artificial filter medium using waste glass and artificial filter medium Manufactured by Method
US10052623B2 (en) 2015-06-29 2018-08-21 Industrial Technology Research Institute Inorganic material for removing harmful substance from wastewater and method of preparing the same, and method for wastewater treatment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097065A (en) * 2003-09-26 2005-04-14 Soil Engineering Co Ltd Recycling system of phosphorus using glass foamed body
KR100828018B1 (en) * 2006-11-20 2008-05-08 레인보우스케이프주식회사 Filter media for water purification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097065A (en) * 2003-09-26 2005-04-14 Soil Engineering Co Ltd Recycling system of phosphorus using glass foamed body
KR100828018B1 (en) * 2006-11-20 2008-05-08 레인보우스케이프주식회사 Filter media for water purification

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101547821B1 (en) * 2015-04-27 2015-08-27 최성필 The manufacture method of artificial filter medium using waste glass and waste LCD and artificial filter medium Manufactured by Method
KR101559417B1 (en) * 2015-04-27 2015-10-13 최성필 The manufacture method of artificial filter medium using waste glass and artificial filter medium Manufactured by Method
WO2016175456A1 (en) * 2015-04-27 2016-11-03 최성필 Method for manufacturing expandable artificial media for water treatment by recycling waste lcd glass and waste bottle glass generated from waste electric and electronic products
CN107530608A (en) * 2015-04-27 2018-01-02 崔盛弼 The manufacture method of the water process foaming artificial filtrate recycled to give up waste liquid crystal display screen glass and useless bottle glass caused by electrical and electronic product
JP2018515337A (en) * 2015-04-27 2018-06-14 チェ・ソン・ピルChoi Sung Pil Manufacturing method of foamable artificial filter medium for water treatment by recycling waste LCD glass and waste bottle glass generated from waste electrical and electronic products
CN107530608B (en) * 2015-04-27 2019-09-24 崔盛弼 To the manufacturing method for the water process foaming artificial filtrate that waste liquid crystal display screen glass and useless bottle glass are recycled
US10449475B2 (en) 2015-04-27 2019-10-22 Seong Pil CHOI Method for manufacturing expandable artificial media for water treatment by recycling waste LCD glass and waste bottle glass generated from waste electric and electronic products
US10052623B2 (en) 2015-06-29 2018-08-21 Industrial Technology Research Institute Inorganic material for removing harmful substance from wastewater and method of preparing the same, and method for wastewater treatment

Similar Documents

Publication Publication Date Title
Han et al. Effect of sludge-fly ash ceramic particles (SFCP) on synthetic wastewater treatment in an A/O combined biological aerated filter
Wu et al. Preparation of ultra-lightweight sludge ceramics (ULSC) and application for pharmaceutical advanced wastewater treatment in a biological aerobic filter (BAF)
Hongjiang et al. Three-stage aged refuse biofilter for the treatment of landfill leachate
Li et al. Performance of blast furnace dust clay sodium silicate ceramic particles (BCSCP) for brewery wastewater treatment in a biological aerated filter
KR101378539B1 (en) Apparatus and for Method Treating Concetrating Water Reverse Osmosis
KR101075069B1 (en) The porous adsorbent media and the preparation methodthereof
CN111233285A (en) Integrated sewage purification and upgrading process
CN111547839A (en) Composite sulfur-based porous filler
KR20030002221A (en) Porous ceramic media for wastewater treatment using wastes and manufacturing process of the same
CN106167393A (en) High efficiency composition ceramic grain filter and its preparation method and application
KR100614253B1 (en) Porous adsorbent media and the preparation method thereof
Feng et al. Performance of water quenched slag particles (WQSP) for municipal wastewater treatment in a biological aerated filter (BAF)
CN211419896U (en) Urban sewage treatment system
CN100369835C (en) Treatment process for making sewage as recirculating cooling water
CN102531485B (en) Biological aerated filter packing prepared from silt of Yellow River and preparation method for biological aerated filter packing
CN111995306A (en) Non-fired ceramsite based on urban river sludge and regenerated garbage and preparation method thereof
CN101767980A (en) Process for preparing bio-ceramsite with fly ashes
JP2014217806A (en) Water purification method and apparatus
CN210340711U (en) Ceramsite raw material mixing matched equipment set adopting mud waste
JPH07284749A (en) General waste treatment plant
KR200268697Y1 (en) Biological fixedbed for purification of dirty water and waste water and sewage and rivers
Moondra et al. Impact of Microalgae in Domestic Wastewater Treatment: A Lab-Scale Experimental Study
JP2002248498A (en) Excess sludge treatment method
CN104326566A (en) Nano-filler purification device of vertical flow artificial wetland and proportioning method of nano-filler layer
KR100918587B1 (en) Method for manufacturing porous biological film microbic carrier containing yellow ocher, and carrier produced thereby

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140917

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150805

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160829

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170804

Year of fee payment: 7