KR101073998B1 - Conductive polymeric nanocomposite with excellent mechanical and electrical properties - Google Patents

Conductive polymeric nanocomposite with excellent mechanical and electrical properties Download PDF

Info

Publication number
KR101073998B1
KR101073998B1 KR1020090027136A KR20090027136A KR101073998B1 KR 101073998 B1 KR101073998 B1 KR 101073998B1 KR 1020090027136 A KR1020090027136 A KR 1020090027136A KR 20090027136 A KR20090027136 A KR 20090027136A KR 101073998 B1 KR101073998 B1 KR 101073998B1
Authority
KR
South Korea
Prior art keywords
graphene
cnt
temperature
heat
minutes
Prior art date
Application number
KR1020090027136A
Other languages
Korean (ko)
Other versions
KR20100108868A (en
Inventor
박수진
김병주
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020090027136A priority Critical patent/KR101073998B1/en
Publication of KR20100108868A publication Critical patent/KR20100108868A/en
Application granted granted Critical
Publication of KR101073998B1 publication Critical patent/KR101073998B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 기계적 및 전기적 특성이 향상된 전도성 고분자 복합재료에 관한 것으로, 더욱 상세하게는 전도성 필러로 탄소나노튜브(CNT)와 그래핀을 동시에 사용하여 상기 물질이 가지는 구조상 단점을 극복하고 강화된 기계적 강도와 전기 전도성을 갖는 전도성 고분자 복합재료에 관한 것이다. The present invention relates to a conductive polymer composite with improved mechanical and electrical properties, and more particularly, by using carbon nanotubes (CNT) and graphene simultaneously as conductive fillers to overcome the structural disadvantages of the material and enhanced mechanical strength And to a conductive polymer composite having electrical conductivity.

본 발명의 전도성 고분자 복합재료는 고분자 수지 내에 전도성 보강재인 CNT와 흑연을 구조적으로 제어한 그래핀을 동시에 소량 첨가하여 매트릭스 내의 네트워킹 시스템을 높임으로써 우수한 전기전도성 및 기계적 특성이 구현될 수 있다. In the conductive polymer composite material of the present invention, excellent electrical conductivity and mechanical properties can be realized by increasing a networking system in a matrix by simultaneously adding a small amount of CNT, which is a conductive reinforcing material, and structurally controlled graphene in the polymer resin.

탄소나노튜브, 그래핀, 기계적 강도, 전기 전도성, 전도성 고분자 복합재료 Carbon nanotubes, graphene, mechanical strength, electrical conductivity, conductive polymer composites

Description

기계적 및 전기적 특성이 향상된 전도성 고분자 복합재료{Conductive polymeric nanocomposite with excellent mechanical and electrical properties}Conductive polymeric nanocomposite with excellent mechanical and electrical properties

본 발명은 기계적 및 전기적 특성이 향상된 전도성 고분자 복합재료에 관한 것으로, 더욱 상세하게는 전도성 필러로 탄소나노튜브(CNT)와 그래핀을 동시에 사용하여 상기 물질이 가지는 구조상 단점을 극복하고 강화된 기계적 강도와 전기 전도성을 갖는 전도성 고분자 복합재료에 관한 것이다. The present invention relates to a conductive polymer composite with improved mechanical and electrical properties, and more particularly, by using carbon nanotubes (CNT) and graphene simultaneously as conductive fillers to overcome the structural disadvantages of the material and enhanced mechanical strength And to a conductive polymer composite having electrical conductivity.

산업이 고도화됨에 따라 기존의 고분자 복합소재가 가지는 일반적인 물리 화학적 특성을 크게 상회하는 특수 기능성 복합소재에 대한 요구가 커지고 있다.As the industry is advanced, there is a growing demand for special functional composites that greatly exceed the general physicochemical properties of existing polymer composites.

특히, 극저온 및 고온에서 사용가능한 고내열성 소재에 대한 요구와, 기존의 기계적 물성을 크게 상회하는 범용 고분자 복합소재에 대한 요구, 무엇보다 전기전자재료로서 활용이 가능한 고전도성 고분자 소재에 대한 요구는 급격하게 증대되고 있는데, 이 중에서도 각종 PTC 센서, 웨이퍼 케이스, 저온 히터, 각종 전극제 등 그 범위 또한 넓어지고 있는 전도성을 가진 고분자 복합소재에 대한 시장의 요구가 두드러진다.In particular, the demand for high heat-resistant materials that can be used at cryogenic temperatures and high temperatures, the demand for general-purpose polymer composite materials that greatly exceed existing mechanical properties, and above all, the demand for high-conductivity polymer materials that can be used as electrical and electronic materials Among them, the market demand for conductive polymer composites having a wider range of PTC sensors, wafer cases, low temperature heaters, various electrode materials, etc., is increasing.

이러한 시장의 요구에 부응하기 위해서 높은 물성을 가지면서 동시에 전도성 의 제어가 가능한 기술이 많이 연구되었으며, 전통적으로 카본블랙과 같은 전도성 보강재의 함량을 제어하는 기술들이 다수이다. 더불어 최근에는 탄소나노튜브(CNT), 플러렌(Fullerene), 및 그래핀(Graphene) 등 미량으로 높은 전도성의 부여가 가능한 고부가가치 필러 소재의 응용이 매우 활발하다.In order to meet the demand of the market, a lot of technologies that can control the conductivity while having high physical properties have been studied. There are many techniques for controlling the content of conductive reinforcing materials such as carbon black. In addition, in recent years, the application of high value-added filler material capable of imparting a small amount of high conductivity such as carbon nanotubes (CNT), fullerenes, and graphenes is very active.

CNT와 그래핀은 모두 흑연구조를 갖고 있으며, 높은 전도성을 보이는 유망한 소재로, 대량 합성기술이 개발되어 상업화 가능한 수준까지 가격이 하락될 경우, 다양한 분야에서 응용이 가능할 것으로 판단된다. Both CNT and graphene have a graphite structure, and are a promising material with high conductivity. If the price is lowered to a commercially available level due to the development of mass synthesis technology, it is expected to be applicable to various fields.

일면, 전도성 고분자 복합소재 기술에서 상기와 같은 보강재(필러)의 소재도 매우 중요하지만 이러한 분말형 필러 소재를 고분자 수지 내에서 얼마나 잘 분산시켜 전기적 네트워크를 형성하는가도 매우 중요한 문제이다. In one aspect, the material of the reinforcing material (filler) as described above in the conductive polymer composite material technology is very important, but how well dispersed such a powder-like filler material in the polymer resin to form an electrical network is also a very important problem.

잘 알려진 바와 같이, CNT와 같은 물질은 고분자 내에서 고분산이 매우 어렵기 때문에 많은 연구자들이 고분산 기술을 연구 중에 있으나 아직까지 상업화 가능한 수분에 도달한 기술의 거의 보고된 바 없다. 따라서, 두 가지 핵심사항 즉, 고전도성 필러 소재 선정과 높은 분산 유도가 선결되어야 각 산업에서 요구하는 높은 기계적 물성과 전기전도성 제어가 동시에 가능한 소재의 개발이 이루어질 수 있다.As is well known, materials such as CNTs are highly difficult to disperse in polymers, so many researchers are studying high dispersion techniques, but few reports have yet been reached of commercially available moisture. Therefore, two key points, namely, selection of highly conductive filler material and high dispersion induction, should be made in advance so that high mechanical properties and electrical conductivity control required by each industry can be developed at the same time.

전도성 필러를 사용한 전도성 고분자 복합소재의 개발에 있어서, 카본블랙, 흑연, 탄소섬유 등을 단순 혼합하여 복합체를 제작하는 전통적인 방법은 고분자 수지 내에서 필러의 분산이 용이하지 않기 때문에 충분한 전도성을 부여하기 위해서는 다량의 필러를 사용해야 하며, 이는 원가 상승으로 이어져왔다. 또한, 과량의 필러가 함유될 경우에는 복합소재 자체가 딱딱해져 탄력성이 없는 문제가 발생하 며, 충격강도 등이 매우 약해지는 단점이 있다.In the development of a conductive polymer composite material using a conductive filler, the conventional method of producing a composite by simply mixing carbon black, graphite, carbon fiber, etc. is not easy to disperse the filler in the polymer resin, A large amount of filler must be used, which has led to higher costs. In addition, when an excessive amount of filler is contained, the composite material itself becomes hard and there is a problem of no elasticity, and the impact strength is very weak.

결국, 이러한 문제를 해결하기 위해서는 최소량의 필러는 고분산하는 기술이 필수적이다. 하지만 대부분의 전도성 필러들은 고분자 수지 내에서 분산에 어려움이 있으며, CNT와 그래핀은 재료 자체의 엉김현상 때문에 분산문제가 더욱 문제가 되었다. After all, in order to solve this problem, a technique of dispersing a minimum amount of fillers is essential. However, most of the conductive fillers are difficult to disperse in the polymer resin, and CNT and graphene are more problematic due to the entanglement of the material itself.

이에 본 발명은 상기와 같은 문제점을 해결하고자 안출된 것으로, 본 발명의 주된 목적은 탄소나노튜브(CNT)와 그래핀을 전도성 필러로 동시에 사용하여 강화된 기계적 강도와 전기 전도성을 갖는 전도성 고분자 복합재료 및 낮은 분산율 때문에 다량의 CNT 또는 그래핀을 첨가하여야 했던 종래의 고분자 복합재료 제조방법과 다른 신규한 제조하는 방법을 제공하는데 있다.Accordingly, the present invention has been made to solve the above problems, the main object of the present invention is to strengthen the carbon nanotubes (CNT) and using the graphene as a conductive filler at the same time To provide a conductive polymer composite having mechanical strength and electrical conductivity, and a novel manufacturing method different from the conventional polymer composite manufacturing method that had to add a large amount of CNT or graphene due to the low dispersion rate.

상기 목적을 달성하기 위해, 본 발명은 고분자 수지 내에 탄소나노튜브(CNT)와 그래핀이 동시에 분산된 전도성 고분자 복합재료 및 상기 고분자 복합재료를 제조하는 방법을 제공한다. In order to achieve the above object, the present invention provides a conductive polymer composite material in which carbon nanotubes (CNT) and graphene are simultaneously dispersed in a polymer resin and a method of manufacturing the polymer composite material.

본 발명에 있어서, 상기 CNT는 단층, 두층 및 다층까지 나노직경의 섬유상을 가진 어떠한 형태의 탄소튜브, 탄소섬유 및 탄소뿔 등을 모두 포함할 수 있다.In the present invention, the CNT may include all types of carbon tubes, carbon fibers, and carbon pyramids having a nanofiber diameter up to a single layer, two layers, and multiple layers.

또한, 상기 그래핀은 흑연을 산, 열, 및 화학적 환원 처리하여 제조하는 것을 특징으로 하며, 상기 흑연은 분말형, 플레이크(flake)형, 및 천연, 인조 흑연 등 어떠한 종류도 사용 가능하다.In addition, the graphene is characterized in that the graphite is produced by acid, heat, and chemical reduction treatment, the graphite can be used in any kind, such as powder, flake (flake), natural, artificial graphite.

본 발명의 고분자 수지 내에 탄소나노튜브(CNT)와 그래핀이 동시에 분산된 전도성 고분자 복합재료는 고분자 수지 내에 전도성 보강재인 CNT와 흑연을 구조적으로 제어한 그래핀을 동시에 소량을 첨가하여 매트릭스 내의 네트워킹 시스템을 높임으로써 우수한 전기 전도성 및 기계적 특성이 구현될 수 있다.The conductive polymer composite material in which carbon nanotubes (CNT) and graphene are simultaneously dispersed in the polymer resin of the present invention is a networking system in a matrix by adding a small amount of conductive reinforcement CNT and graphene structurally controlled at the same time. By increasing the excellent electrical conductivity and mechanical properties can be realized.

따라서, 본 발명에 따른 전도성 고분자 복합재료는 고전도성이 요구되는 전기전자 분야에 유용하게 이용될 수 있으며, 동시에 기계적 강도가 요구되는 센서, 발열체 등에도 적용이 가능하다. Therefore, the conductive polymer composite material according to the present invention may be usefully used in the field of electrical and electronic fields requiring high conductivity, and at the same time, it may be applied to a sensor, a heating element, and the like that require mechanical strength.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 고분자 수지 내에 탄소나노튜브(CNT)와 그래핀이 동시에 분산된 전도성 고분자 복합재료 및 상기 고분자 복합재료를 제조하는 방법을 제공한다. The present invention provides a conductive polymer composite material in which carbon nanotubes (CNT) and graphene are simultaneously dispersed in a polymer resin, and a method of manufacturing the polymer composite material.

본 발명에 있어서, 상기 CNT는 단층, 두층 또는 다층까지 나노직경의 섬유상을 가지는 어떠한 형태의 탄소튜브, 탄소섬유 및 탄소뿔 등을 포함할 수 있다.In the present invention, the CNT may include any type of carbon tube, carbon fiber, carbon pyramid, etc. having a fiber diameter of nano diameter up to a single layer, two layers or multiple layers.

또한, 상기 그래핀은 흑연을 산처리 후 열처리와 화학적 환원을 거쳐 제조한 것이 바람직하며, 상기 흑연은 분말형, 플레이크형, 및 천연, 인조 흑연 등 어떠한 종류도 사용이 가능하다.In addition, the graphene is preferably prepared by heat treatment and chemical reduction after the acid treatment of graphite, the graphite may be used in any kind, such as powder, flake, natural, artificial graphite.

바람직하게는, 상기 CNT는 상용 다중벽 CNT를 200~500℃의 온도에서 산소분위기로 열처리한 것을 질산원액에 침적시켜 금속성 촉매 물질을 완전히 제거한 다 음 증류수로 세척한 후 n-헥산(hexane)에 침적 처리한 것을 건조하여 사용하는 것이 좋으며, 상기 그래핀은 흑연을 질산과 과산화수소의 혼합용액에 침적시켜 산처리 한 것을 700~900℃ 온도 범위의 산소분위기에서 열처리 한 다음 열처리된 것을 증류수로 세척하여 300~600℃의 온도에서 H2/Ar 혼합가스 분위기(H2 : Ar = 1 : 99 내지 10 : 90%) 상태로 환원처리를 거쳐 사용하는 것이 좋다. Preferably, the CNT is a heat treatment of commercial multi-walled CNT in an oxygen atmosphere at a temperature of 200 ~ 500 ℃ immersed in the nitric acid solution to completely remove the metallic catalyst material and then washed with distilled water and then in n-hexane (hexane) It is preferable to use the dried one after immersion treatment, and the graphene is immersed in a mixed solution of nitric acid and hydrogen peroxide, and the acid treatment is heat treated in an oxygen atmosphere at a temperature range of 700 to 900 ° C., followed by washing with distilled water. It is good to use after the reduction treatment in a H 2 / Ar mixed gas atmosphere (H 2 : Ar = 1: 99 to 10: 90%) at a temperature of 300 ~ 600 ℃.

또한, 상기 CNT는 고분자 수지 총 중량에 대해 0.01~5wt%를 사용하는 것이 바람직하며, 더욱 바람직하게는 0.1~1wt%를 사용하는 것이 좋다. 상기 범위보다 적게 사용하면 전기적 네트워크의 형성이 용이하지 못하고, 상기 범위를 초과할 경우에는 함량이 증가하여도 전기적 특성의 강화에 더 이상 영향을 미치지 않기 때문이다.In addition, the CNTs are preferably used in an amount of 0.01 to 5 wt%, more preferably 0.1 to 1 wt%, based on the total weight of the polymer resin. If it is less than the above range, it is not easy to form an electrical network, and if it exceeds the above range, even if the content is increased, it will no longer affect the enhancement of the electrical properties.

또한, 상기 그래핀은 고분자 수지 총 중량에 대해 0.01~20wt%를 사용하는 것이 바람직하며, 더욱 바람직하게는 0.1~2wt%가 좋다. 상기 범위보다 적게 사용하면 전기적 네트워크의 형성이 용이하지 못하고, 상기 범위를 초과할 경우에는 제조된 복합재료가 경직화에 의해 기계적 물성의 감소가 유도되기 때문이다.In addition, the graphene is preferably used 0.01 to 20wt% based on the total weight of the polymer resin, more preferably 0.1 to 2wt%. If it is less than the above range it is not easy to form an electrical network, and if it exceeds the above range, the composite material produced is reduced by mechanical rigidity is induced.

또한, 상기 고분자 수지는 열가소성 또는 열경화성, 어떤 것이든 무방하며, 본 발명의 실시예에서는 높은 결정성을 가지는 고밀도폴리에틸렌(HDPE)을 사용하였으나 본 발명에 있어서 고분자 수지의 종류는 특별히 제한되는 것은 아니다.In addition, the polymer resin may be any thermoplastic or thermosetting, and in the embodiment of the present invention, high density polyethylene (HDPE) having high crystallinity is used, but the type of the polymer resin is not particularly limited.

일반적으로, CNT와 그래핀은 높은 전도성을 갖는 보강재이기 때문에 일정량이 첨가될 경우 고분자 복합재료는 전도성을 갖게 되지만 고분자 수지 내부에서 전 도성 보강재의 분산의 어려움으로 전도성의 확보가 용이하지 않다.In general, since CNT and graphene are reinforcement materials having high conductivity, the polymer composite material has conductivity when a certain amount is added, but the conductivity is not easily secured due to the difficulty of dispersing the conductive reinforcement in the polymer resin.

그러나, 본 발명에서는 섬유상인 CNT와 판상의 그래핀을 동시에 전도성 보강재로 고분자 수지 내에 첨가하였기 때문에 한 가지 종류의 보강재를 사용하여 기계적 물성과 전기적 전도성 중에서 한쪽의 물성이 상대적으로 떨어지는 경향을 나타내었던 종래 복합재료와 비교하여 소량으로도 월등하게 우수한 전기적 및 기계적 특성의 향상이 유도된다.However, in the present invention, since the fibrous CNT and the plate-like graphene were simultaneously added into the polymer resin as the conductive reinforcing material, one of the reinforcing materials used showed a tendency of relatively inferior physical properties between mechanical and electrical conductivity. Compared with the composite material, even small amounts of excellent electrical and mechanical properties are improved.

이렇듯 물리적 특성이 향상되는 이유는, 그래핀 층 사이로 고분자 수지가 들어가서 층상형 복합재료를 형성하기 때문에 높은 기계적 물성이 유도되나, 그래핀 층 사이에 전기적인 네트워크의 형성이 어려워 전기적인 특성은 높아지지 않는다. 이를 해결하기 위해 CNT를 일부 첨가할 경우 섬유상의 CNT가 각 그래핀 층 사이를 연결해 주는 역할을 하게 되어 전기적 네트워크가 형성되고, 높은 전기적 특성을 발현하게 된다.The reason why the physical properties are improved is that high mechanical properties are induced because the polymer resin enters the graphene layers to form a layered composite material, but the electrical properties are increased due to the difficulty in forming an electrical network between the graphene layers. Do not. In order to solve this problem, when some CNTs are added, the fibrous CNTs serve to connect the graphene layers, thereby forming an electrical network and expressing high electrical properties.

더욱이, CNT만을 단독으로 사용했을 때에는 분산의 어려움으로 기계적 및 전기적 특성이 좋지 못하지만 판상의 그래핀과 동시에 사용함으로써 상대적으로 물리적 크기의 큰 판상의 그래핀이 강제적으로 CNT를 고분자 수지 내에서의 분산을 유도하기 때문에 최종 복합재료이 기계적 강도는 큰 폭으로 증가하게 된다.Moreover, when only CNT is used alone, the mechanical and electrical properties are poor due to the difficulty of dispersion. However, when the CNT is used simultaneously with the plate-like graphene, the large plate-like graphene of relatively physical size is forced to disperse the CNT in the polymer resin. Because of the induction, the mechanical strength of the final composite material is greatly increased.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the examples.

실시예 1.Example 1.

흑연 10 g을 질산/과산화수소가 90 : 10의 비율(v/v)로 혼합된 용액 1 ℓ에 1시간 동안 침적시킨 다음 700℃의 온도, 1 ℓ/분의 산소 조건에서 열처리하였다. 열처리된 흑연은 수차례 증류수에서 세척하여 300℃의 온도 H2/Ar의 분위기(H2 : Ar = 5 : 95%)에서 환원처리 하여 그래핀을 제조하였다.10 g of graphite was immersed in 1 L of a solution in which nitric acid / hydrogen peroxide was mixed at a ratio of 90:10 (v / v) for 1 hour and then heat-treated at a temperature of 700 ° C. and oxygen of 1 L / min. Heat-treated graphite was washed several times in distilled water and reduced in an atmosphere of H 2 / Ar at a temperature of 300 ° C. (H 2 : Ar = 5: 95%) to prepare graphene.

상기와 같이 제조된 그래핀과 상용 다중벽 CNT를 300℃의 온도에서 산소분위기로 30분 동안 열처리한 뒤 질산원액에 10분 동안 침적시켜 금속성 촉매 물질을 완전히 제거한 다음 증류수로 5회 이상 세척한 후 n-헥산(hexane)에 30분 동안 침적 처리한 것을 건조시켜 미리 제조해 놓은 탄소나노튜브(CNT)를 고밀도프로필렌(HDPE) 고분자와 섞어 복합 재료를 제조하되, 이때 그래핀과 CNT는 각각 0.1wt%씩 첨가하였다.After heat-treating the graphene and commercial multi-walled CNT prepared as described above for 30 minutes in an oxygen atmosphere at a temperature of 300 ° C., they were immersed in a nitric acid solution for 10 minutes to completely remove the metallic catalyst material, and then washed five times with distilled water. 30 minutes of immersion in n-hexane (hexane) was dried to prepare a composite material by mixing the carbon nanotube (CNT) prepared in advance with a high density propylene (HDPE) polymer, where graphene and CNT each 0.1wt Add in%.

실시예 2.Example 2.

흑연 10 g을 질산/과산화수소가 80 : 20의 비율(v/v)로 혼합된 용액 1 ℓ에 1시간 동안 침적시킨 다음 800℃의 온도, 1 ℓ/분의 산소 조건에서 열처리하였다. 열처리된 흑연은 수차례 증류수에서 세척하여 300℃의 온도 H2/Ar의 분위기(H2 : Ar = 5 : 95%)에서 환원처리 하여 그래핀을 제조하였다.10 g of graphite was immersed in 1 L of a solution in which nitric acid / hydrogen peroxide was mixed at a ratio of 80:20 (v / v) for 1 hour, and then heat-treated at an oxygen temperature of 800 ° C. at 1 L / min. Heat-treated graphite was washed several times in distilled water and reduced in an atmosphere of H 2 / Ar at a temperature of 300 ° C. (H 2 : Ar = 5: 95%) to prepare graphene.

상기와 같이 제조된 그래핀과 상용 다중벽 CNT를 300℃의 온도에서 산소분위 기로 30분 동안 열처리한 뒤 질산원액에 10분 동안 침적시켜 금속성 촉매 물질을 완전히 제거한 다음 증류수로 5회 이상 세척한 후 n-헥산(hexane)에 30분 동안 침적 처리한 것을 건조시켜 미리 제조해 놓은 CNT를 고밀도프로필렌 고분자와 섞어 복합 재료를 제조하되, 이때 그래핀과 CNT는 각각 0.1wt%씩 첨가하였다.After heat-treating the graphene and commercial multi-walled CNT prepared as described above for 30 minutes in an oxygen atmosphere at a temperature of 300 ° C., they were immersed in a nitric acid solution for 10 minutes to completely remove the metallic catalyst material, and then washed five times with distilled water. 30 minutes of immersion in n-hexane (hexane) was dried to prepare a composite material by mixing the CNT prepared in advance with a high-density propylene polymer, where graphene and CNT were each added 0.1wt%.

실시예 3.Example 3.

흑연 10 g을 질산/과산화수소가 60 : 40의 비율(v/v)로 혼합된 용액 1 ℓ에 1시간 동안 침적시킨 다음 900℃의 온도, 1 ℓ/분의 산소 조건에서 열처리하였다. 열처리된 흑연은 수차례 증류수에서 세척하여 300℃의 온도 H2/Ar의 분위기(H2 : Ar = 5 : 95%)에서 환원처리 하여 그래핀을 제조하였다.10 g of graphite was immersed in 1 L of a solution mixed with nitric acid / hydrogen peroxide at a ratio of 60:40 (v / v) for 1 hour and then heat-treated at a temperature of 900 ° C. and oxygen at 1 L / min. Heat-treated graphite was washed several times in distilled water and reduced in an atmosphere of H 2 / Ar at a temperature of 300 ° C. (H 2 : Ar = 5: 95%) to prepare graphene.

상기와 같이 제조된 그래핀과 상용 다중벽 CNT를 300℃의 온도에서 산소분위기로 30분 동안 열처리한 뒤 질산원액에 10분 동안 침적시켜 금속성 촉매 물질을 완전히 제거한 다음 증류수로 5회 이상 세척한 후 n-헥산(hexane)에 30분 동안 침적 처리한 것을 건조시켜 미리 제조해 놓은 CNT를 고밀도프로필렌 고분자와 섞어 복합 재료를 제조하되, 이때 그래핀과 CNT는 각각 0.1wt%씩 첨가하였다.After heat-treating the graphene and commercial multi-walled CNT prepared as described above for 30 minutes in an oxygen atmosphere at a temperature of 300 ° C., they were immersed in a nitric acid solution for 10 minutes to completely remove the metallic catalyst material, and then washed five times with distilled water. 30 minutes of immersion in n-hexane (hexane) was dried to prepare a composite material by mixing the CNT prepared in advance with a high-density propylene polymer, where graphene and CNT were each added 0.1wt%.

실시예 4.Example 4.

흑연 10 g을 질산/과산화수소가 80 : 20의 비율(v/v)로 혼합된 용액 1 ℓ에 1시간 동안 침적시킨 다음 800℃의 온도, 1 ℓ/분의 산소 조건에서 열처리하였다. 열처리된 흑연은 수차례 증류수에서 세척하여 400℃의 온도 H2/Ar의 분위기(H2 : Ar = 5 : 95%)에서 환원처리 하여 그래핀을 제조하였다.10 g of graphite was immersed in 1 L of a solution in which nitric acid / hydrogen peroxide was mixed at a ratio of 80:20 (v / v) for 1 hour, and then heat-treated at an oxygen temperature of 800 ° C. at 1 L / min. The heat-treated graphite was washed several times in distilled water and reduced in an atmosphere of H 2 / Ar (H 2 : Ar = 5: 95%) at a temperature of 400 ° C. to prepare graphene.

상기와 같이 제조된 그래핀과 상용 다중벽 CNT를 300℃의 온도에서 산소분위기로 30분 동안 열처리한 뒤 질산원액에 10분 동안 침적시켜 금속성 촉매 물질을 완전히 제거한 다음 증류수로 5회 이상 세척한 후 n-헥산(hexane)에 30분 동안 침적 처리한 것을 건조시켜 미리 제조해 놓은 CNT를 고밀도프로필렌 고분자와 섞어 복합 재료를 제조하되, 이때 그래핀과 CNT는 각각 0.1wt%씩 첨가하였다.After heat-treating the graphene and commercial multi-walled CNT prepared as described above for 30 minutes in an oxygen atmosphere at a temperature of 300 ° C., they were immersed in a nitric acid solution for 10 minutes to completely remove the metallic catalyst material, and then washed five times with distilled water. 30 minutes of immersion in n-hexane (hexane) was dried to prepare a composite material by mixing the CNT prepared in advance with a high-density propylene polymer, where graphene and CNT were each added 0.1wt%.

실시예 5.Example 5.

흑연 10 g을 질산/과산화수소가 80 : 20의 비율(v/v)로 혼합된 용액 1 ℓ에 1시간 동안 침적시킨 다음 800℃의 온도, 1 ℓ/분의 산소 조건에서 열처리하였다. 열처리된 흑연은 수차례 증류수에서 세척하여 600℃의 온도 H2/Ar의 분위기(H2 : Ar = 5 : 95%)에서 환원처리 하여 그래핀을 제조하였다.10 g of graphite was immersed in 1 L of a solution in which nitric acid / hydrogen peroxide was mixed at a ratio of 80:20 (v / v) for 1 hour, and then heat-treated at an oxygen temperature of 800 ° C. at 1 L / min. Heat-treated graphite was washed several times in distilled water and reduced in an atmosphere of H 2 / Ar (H 2 : Ar = 5: 95%) at a temperature of 600 ℃ to prepare a graphene.

상기와 같이 제조된 그래핀과 상용 다중벽 CNT를 300℃의 온도에서 산소분위기로 30분 동안 열처리한 뒤 질산원액에 10분 동안 침적시켜 금속성 촉매 물질을 완전히 제거한 다음 증류수로 5회 이상 세척한 후 n-헥산(hexane)에 30분 동안 침적 처리한 것을 건조시켜 미리 제조해 놓은 CNT를 고밀도프로필렌 고분자와 섞어 복합 재료를 제조하되, 이때 그래핀과 CNT는 각각 0.1wt%씩 첨가하였다.After heat-treating the graphene and commercial multi-walled CNT prepared as described above for 30 minutes in an oxygen atmosphere at a temperature of 300 ° C., they were immersed in a nitric acid solution for 10 minutes to completely remove the metallic catalyst material, and then washed five times with distilled water. 30 minutes of immersion in n-hexane (hexane) was dried to prepare a composite material by mixing the CNT prepared in advance with a high-density propylene polymer, where graphene and CNT were each added 0.1wt%.

실시예 6.Example 6.

흑연 10 g을 질산/과산화수소가 80 : 20의 비율(v/v)로 혼합된 용액 1 ℓ에 1시간 동안 침적시킨 다음 800℃의 온도, 1 ℓ/분의 산소 조건에서 열처리하였다. 열처리된 흑연은 수차례 증류수에서 세척하여 400℃의 온도 H2/Ar의 분위기(H2 : Ar = 1 : 99%)에서 환원처리 하여 그래핀을 제조하였다.10 g of graphite was immersed in 1 L of a solution in which nitric acid / hydrogen peroxide was mixed at a ratio of 80:20 (v / v) for 1 hour, and then heat-treated at an oxygen temperature of 800 ° C. at 1 L / min. The heat-treated graphite was washed several times in distilled water and reduced in an atmosphere of H 2 / Ar at a temperature of 400 ° C. (H 2 : Ar = 1: 99%) to prepare graphene.

상기와 같이 제조된 그래핀과 상용 다중벽 CNT를 300℃의 온도에서 산소분위기로 30분 동안 열처리한 뒤 질산원액에 10분 동안 침적시켜 금속성 촉매 물질을 완전히 제거한 다음 증류수로 5회 이상 세척한 후 n-헥산(hexane)에 30분 동안 침적 처리한 것을 건조시켜 미리 제조해 놓은 CNT를 고밀도프로필렌 고분자와 섞어 복합 재료를 제조하되, 이때 그래핀과 CNT는 각각 0.1wt%씩 첨가하였다.After heat-treating the graphene and commercial multi-walled CNT prepared as described above for 30 minutes in an oxygen atmosphere at a temperature of 300 ° C., they were immersed in a nitric acid solution for 10 minutes to completely remove the metallic catalyst material, and then washed five times with distilled water. 30 minutes of immersion in n-hexane (hexane) was dried to prepare a composite material by mixing the CNT prepared in advance with a high-density propylene polymer, where graphene and CNT were each added 0.1wt%.

실시예 7.Example 7.

흑연 10 g을 질산/과산화수소가 80 : 20의 비율(v/v)로 혼합된 용액 1 ℓ에 1시간 동안 침적시킨 다음 800℃의 온도, 1 ℓ/분의 산소 조건에서 열처리하였다. 열처리된 흑연은 수차례 증류수에서 세척하여 400℃의 온도 H2/Ar의 분위기(H2 : Ar = 10 : 90%)에서 환원처리 하여 그래핀을 제조하였다.10 g of graphite was immersed in 1 L of a solution in which nitric acid / hydrogen peroxide was mixed at a ratio of 80:20 (v / v) for 1 hour, and then heat-treated at an oxygen temperature of 800 ° C. at 1 L / min. Heat-treated graphite was washed several times in distilled water to reduce the graphene in an atmosphere (H 2 : Ar = 10: 90%) of the temperature of H 2 / Ar 400 ℃ to prepare a graphene.

상기와 같이 제조된 그래핀과 상용 다중벽 CNT를 300℃의 온도에서 산소분위기로 30분 동안 열처리한 뒤 질산원액에 10분 동안 침적시켜 금속성 촉매 물질을 완전히 제거한 다음 증류수로 5회 이상 세척한 후 n-헥산(hexane)에 30분 동안 침 적 처리한 것을 건조시켜 미리 제조해 놓은 CNT를 고밀도프로필렌 고분자와 섞어 복합 재료를 제조하되, 이때 그래핀과 CNT는 각각 0.1wt%씩 첨가하였다.After heat-treating the graphene and commercial multi-walled CNT prepared as described above for 30 minutes in an oxygen atmosphere at a temperature of 300 ° C., they were immersed in a nitric acid solution for 10 minutes to completely remove the metallic catalyst material, and then washed five times with distilled water. 30 minutes of immersion in n-hexane (hexane) was dried to prepare a composite material by mixing the CNT prepared in advance with a high-density propylene polymer, where graphene and CNT was added by 0.1wt%.

실시예 8.Example 8.

흑연 10 g을 질산/과산화수소가 80 : 20의 비율(v/v)로 혼합된 용액 1 ℓ에 1시간 동안 침적시킨 다음 800℃의 온도, 1 ℓ/분의 산소 조건에서 열처리하였다. 열처리된 흑연은 수차례 증류수에서 세척하여 400℃의 온도 H2/Ar의 분위기(H2 : Ar = 5 : 95%)에서 환원처리 하여 그래핀을 제조하였다.10 g of graphite was immersed in 1 L of a solution in which nitric acid / hydrogen peroxide was mixed at a ratio of 80:20 (v / v) for 1 hour, and then heat-treated at an oxygen temperature of 800 ° C. at 1 L / min. The heat-treated graphite was washed several times in distilled water and reduced in an atmosphere of H 2 / Ar (H 2 : Ar = 5: 95%) at a temperature of 400 ° C. to prepare graphene.

상기와 같이 제조된 그래핀과 상용 다중벽 CNT를 300℃의 온도에서 산소분위기로 30분 동안 열처리한 뒤 질산원액에 10분 동안 침적시켜 금속성 촉매 물질을 완전히 제거한 다음 증류수로 5회 이상 세척한 후 n-헥산(hexane)에 30분 동안 침적 처리한 것을 건조시켜 미리 제조해 놓은 CNT를 고밀도프로필렌 고분자와 섞어 복합 재료를 제조하되, 이때 그래핀과 CNT는 각각 0.5wt% 및 0.1wt%씩을 첨가하였다.After heat-treating the graphene and commercial multi-walled CNT prepared as described above for 30 minutes in an oxygen atmosphere at a temperature of 300 ° C., they were immersed in a nitric acid solution for 10 minutes to completely remove the metallic catalyst material, and then washed five times with distilled water. 30 minutes of the immersion treatment in n-hexane (dry) was dried to prepare a composite material by mixing the prepared CNT with high density propylene polymer, where graphene and CNT was added 0.5wt% and 0.1wt%, respectively .

실시예 9.Example 9.

흑연 10 g을 질산/과산화수소가 80 : 20의 비율(v/v)로 혼합된 용액 1 ℓ에 1시간 동안 침적시킨 다음 800℃의 온도, 1 ℓ/분의 산소 조건에서 열처리하였다. 열처리된 흑연은 수차례 증류수에서 세척하여 400℃의 온도 H2/Ar의 분위기(H2 : Ar = 5 : 95%)에서 환원처리 하여 그래핀을 제조하였다.10 g of graphite was immersed in 1 L of a solution in which nitric acid / hydrogen peroxide was mixed at a ratio of 80:20 (v / v) for 1 hour, and then heat-treated at an oxygen temperature of 800 ° C. at 1 L / min. The heat-treated graphite was washed several times in distilled water and reduced in an atmosphere of H 2 / Ar (H 2 : Ar = 5: 95%) at a temperature of 400 ° C. to prepare graphene.

상기와 같이 제조된 그래핀과 상용 다중벽 CNT를 300℃의 온도에서 산소분위기로 30분 동안 열처리한 뒤 질산원액에 10분 동안 침적시켜 금속성 촉매 물질을 완전히 제거한 다음 증류수로 5회 이상 세척한 후 n-헥산(hexane)에 30분 동안 침적 처리한 것을 건조시켜 미리 제조해 놓은 CNT를 고밀도프로필렌 고분자와 섞어 복합 재료를 제조하되, 이때 그래핀과 CNT는 각각 1.0wt% 및 0.1wt%씩을 첨가하였다.After heat-treating the graphene and commercial multi-walled CNT prepared as described above for 30 minutes in an oxygen atmosphere at a temperature of 300 ° C., they were immersed in a nitric acid solution for 10 minutes to completely remove the metallic catalyst material, and then washed five times with distilled water. 30 minutes of the immersion treatment in n-hexane (dry) was dried to prepare a composite material by mixing the pre-prepared CNT with high density propylene polymer, where graphene and CNT were added by 1.0wt% and 0.1wt%, respectively .

실시예 10.Example 10.

흑연 10 g을 질산/과산화수소가 80 : 20의 비율(v/v)로 혼합된 용액 1 ℓ에 1시간 동안 침적시킨 다음 800℃의 온도, 1 ℓ/분의 산소 조건에서 열처리하였다. 열처리된 흑연은 수차례 증류수에서 세척하여 400℃의 온도 H2/Ar의 분위기(H2 : Ar = 5 : 95%)에서 환원처리 하여 그래핀을 제조하였다.10 g of graphite was immersed in 1 L of a solution in which nitric acid / hydrogen peroxide was mixed at a ratio of 80:20 (v / v) for 1 hour, and then heat-treated at an oxygen temperature of 800 ° C. at 1 L / min. The heat-treated graphite was washed several times in distilled water and reduced in an atmosphere of H 2 / Ar (H 2 : Ar = 5: 95%) at a temperature of 400 ° C. to prepare graphene.

상기와 같이 제조된 그래핀과 상용 다중벽 CNT를 300℃의 온도에서 산소분위기로 30분 동안 열처리한 뒤 질산원액에 10분 동안 침적시켜 금속성 촉매 물질을 완전히 제거한 다음 증류수로 5회 이상 세척한 후 n-헥산(hexane)에 30분 동안 침적 처리한 것을 건조시켜 미리 제조해 놓은 CNT를 고밀도프로필렌 고분자와 섞어 복합 재료를 제조하되, 이때 그래핀과 CNT는 각각 2.0wt% 및 0.1wt%씩을 첨가하였다.After heat-treating the graphene and commercial multi-walled CNT prepared as described above for 30 minutes in an oxygen atmosphere at a temperature of 300 ° C., they were immersed in a nitric acid solution for 10 minutes to completely remove the metallic catalyst material, and then washed five times with distilled water. 30 minutes of immersion in n-hexane (dry) was dried to prepare a composite material by mixing the pre-prepared CNT with high density propylene polymer, where graphene and CNT were added by 2.0wt% and 0.1wt%, respectively .

실시예 11.Example 11.

흑연 10 g을 질산/과산화수소가 80 : 20의 비율(v/v)로 혼합된 용액 1 ℓ에 1시간 동안 침적시킨 다음 800℃의 온도, 1 ℓ/분의 산소 조건에서 열처리하였다. 열처리된 흑연은 수차례 증류수에서 세척하여 400℃의 온도 H2/Ar의 분위기(H2 : Ar = 5 : 95%)에서 환원처리 하여 그래핀을 제조하였다.10 g of graphite was immersed in 1 L of a solution in which nitric acid / hydrogen peroxide was mixed at a ratio of 80:20 (v / v) for 1 hour, and then heat-treated at an oxygen temperature of 800 ° C. at 1 L / min. The heat-treated graphite was washed several times in distilled water and reduced in an atmosphere of H 2 / Ar (H 2 : Ar = 5: 95%) at a temperature of 400 ° C. to prepare graphene.

상기와 같이 제조된 그래핀과 상용 다중벽 CNT를 300℃의 온도에서 산소분위기로 30분 동안 열처리한 뒤 질산원액에 10분 동안 침적시켜 금속성 촉매 물질을 완전히 제거한 다음 증류수로 5회 이상 세척한 후 n-헥산(hexane)에 30분 동안 침적 처리한 것을 건조시켜 미리 제조해 놓은 CNT를 고밀도프로필렌 고분자와 섞어 복합 재료를 제조하되, 이때 그래핀과 CNT는 각각 2.0wt% 및 0.5wt%씩을 첨가하였다.After heat-treating the graphene and commercial multi-walled CNT prepared as described above for 30 minutes in an oxygen atmosphere at a temperature of 300 ° C., they were immersed in a nitric acid solution for 10 minutes to completely remove the metallic catalyst material, and then washed five times with distilled water. 30 minutes of the immersion treatment in n-hexane (dry) was dried to prepare a composite material by mixing the pre-prepared CNT with high density propylene polymer, where graphene and CNT were added by 2.0wt% and 0.5wt%, respectively .

실시예 12.Example 12.

흑연 10 g을 질산/과산화수소가 80 : 20의 비율(v/v)로 혼합된 용액 1 ℓ에 1시간 동안 침적시킨 다음 800℃의 온도, 1 ℓ/분의 산소 조건에서 열처리하였다. 열처리된 흑연은 수차례 증류수에서 세척하여 400℃의 온도 H2/Ar의 분위기(H2 : Ar = 5 : 95%)에서 환원처리 하여 그래핀을 제조하였다.10 g of graphite was immersed in 1 L of a solution in which nitric acid / hydrogen peroxide was mixed at a ratio of 80:20 (v / v) for 1 hour, and then heat-treated at an oxygen temperature of 800 ° C. at 1 L / min. The heat-treated graphite was washed several times in distilled water and reduced in an atmosphere of H 2 / Ar (H 2 : Ar = 5: 95%) at a temperature of 400 ° C. to prepare graphene.

상기와 같이 제조된 그래핀과 상용 다중벽 CNT를 300℃의 온도에서 산소분위 기로 30분 동안 열처리한 뒤 질산원액에 10분 동안 침적시켜 금속성 촉매 물질을 완전히 제거한 다음 증류수로 5회 이상 세척한 후 n-헥산(hexane)에 30분 동안 침적 처리한 것을 건조시켜 미리 제조해 놓은 CNT를 고밀도프로필렌 고분자와 섞어 복합 재료를 제조하되, 이때 그래핀과 CNT는 각각 2.0wt% 및 1.0wt%씩을 첨가하였다.After heat-treating the graphene and commercial multi-walled CNT prepared as described above for 30 minutes in an oxygen atmosphere at a temperature of 300 ° C., they were immersed in a nitric acid solution for 10 minutes to completely remove the metallic catalyst material, and then washed five times with distilled water. 30 minutes of the immersion treatment in n-hexane (dry) was dried to prepare a composite material by mixing the prepared CNT with high density propylene polymer, where graphene and CNT were added by 2.0wt% and 1.0wt%, respectively .

비교예 1.Comparative Example 1.

흑연 10 g을 질산/과산화수소가 80 : 20의 비율(v/v)로 혼합된 용액 1 ℓ에 1시간 동안 침적시킨 다음 800℃의 온도, 1 ℓ/분의 산소 조건에서 열처리하였다. 열처리된 흑연은 수차례 증류수에서 세척하여 400℃의 온도 H2/Ar의 분위기(H2 : Ar = 5 : 95%)에서 환원처리 하여 그래핀을 제조하였다.10 g of graphite was immersed in 1 L of a solution in which nitric acid / hydrogen peroxide was mixed at a ratio of 80:20 (v / v) for 1 hour, and then heat-treated at an oxygen temperature of 800 ° C. at 1 L / min. The heat-treated graphite was washed several times in distilled water and reduced in an atmosphere of H 2 / Ar (H 2 : Ar = 5: 95%) at a temperature of 400 ° C. to prepare graphene.

상기와 같이 제조된 그래핀과 상용 다중벽 CNT를 300℃의 온도에서 산소분위기로 30분 동안 열처리한 뒤 질산원액에 10분 동안 침적시켜 금속성 촉매 물질을 완전히 제거한 다음 증류수로 5회 이상 세척한 후 n-헥산(hexane)에 30분 동안 침적 처리한 것을 건조시켜 미리 제조해 놓은 CNT를 고밀도프로필렌 고분자와 섞어 복합 재료를 제조하되, 이때 그래핀과 CNT는 각각 5.0wt% 및 1.0wt%씩을 첨가하였다.After heat-treating the graphene and commercial multi-walled CNT prepared as described above for 30 minutes in an oxygen atmosphere at a temperature of 300 ° C., they were immersed in a nitric acid solution for 10 minutes to completely remove the metallic catalyst material, and then washed five times with distilled water. 30 minutes of immersion in n-hexane (hexane) was dried to prepare a composite material by mixing the pre-prepared CNT with high density propylene polymer, where graphene and CNT were added 5.0wt% and 1.0wt%, respectively .

비교예 2.Comparative Example 2

흑연 10 g을 질산/과산화수소가 80 : 20의 비율(v/v)로 혼합된 용액 1 ℓ에 1시간 동안 침적시킨 다음 800℃의 온도, 1 ℓ/분의 산소 조건에서 열처리하였다. 열처리된 흑연은 수차례 증류수에서 세척하여 400℃의 온도 H2/Ar의 분위기(H2 : Ar = 5 : 95%)에서 환원처리 하여 그래핀을 제조하였다.10 g of graphite was immersed in 1 L of a solution in which nitric acid / hydrogen peroxide was mixed at a ratio of 80:20 (v / v) for 1 hour, and then heat-treated at an oxygen temperature of 800 ° C. at 1 L / min. The heat-treated graphite was washed several times in distilled water and reduced in an atmosphere of H 2 / Ar (H 2 : Ar = 5: 95%) at a temperature of 400 ° C. to prepare graphene.

상기와 같이 제조된 그래핀과 상용 다중벽 CNT를 300℃의 온도에서 산소분위기로 30분 동안 열처리한 뒤 질산원액에 10분 동안 침적시켜 금속성 촉매 물질을 완전히 제거한 다음 증류수로 5회 이상 세척한 후 n-헥산(hexane)에 30분 동안 침적 처리한 것을 건조시켜 미리 제조해 놓은 CNT를 고밀도프로필렌 고분자와 섞어 복합 재료를 제조하되, 이때 그래핀과 CNT는 각각 2.0wt% 및 2.0wt%씩을 첨가하였다.After heat-treating the graphene and commercial multi-walled CNT prepared as described above for 30 minutes in an oxygen atmosphere at a temperature of 300 ° C., they were immersed in a nitric acid solution for 10 minutes to completely remove the metallic catalyst material, and then washed five times with distilled water. 30 minutes of immersion in n-hexane (hexane) was dried to prepare a composite material by mixing the pre-prepared CNT with high density propylene polymer, where graphene and CNT were added by 2.0wt% and 2.0wt%, respectively .

본 발명에 있어 각각의 특성 값은 다음 방법에 의해 측정하였다.In the present invention, each characteristic value was measured by the following method.

실험예 1. 전기전도도 측정Experimental Example 1. Electrical Conductivity Measurement

상기 실시예 및 비교예에서 제조한 고분자 복합재료의 전기전도도를 측정하기 위해, 4-probe volume resistivity tester(MCP-T610, Mitsubishi Chemical Co., Japan)를 이용하여 저항(V/I)을 측정한 후, 시편의 치수(W*T: 섬유 측면의 단면적; L: 전압 접촉부 사이의 거리)와의 관계를 이용하여 전기전도도(σ)를 계산하고, 그 결과를 하기 표 1에 나타내었다.In order to measure the electrical conductivity of the polymer composite material prepared in Examples and Comparative Examples, resistance (V / I) was measured using a 4-probe volume resistivity tester (MCP-T610, Mitsubishi Chemical Co., Japan). The electrical conductivity σ was then calculated using the relationship with the dimensions of the specimen (W * T: cross-sectional area of the fiber side; L: distance between voltage contacts), and the results are shown in Table 1 below.

실험예 2. 기계적 강도 측정Experimental Example 2. Measurement of Mechanical Strength

상기 실시예 및 비교예에서 제조한 고분자 복합재료의 기계적 강도를 확인하기 위하여, 임계 응력 세기 인자(critical stress intensity factor, KIC)를 측정하였다.In order to confirm the mechanical strength of the polymer composite material prepared in Examples and Comparative Examples, the critical stress intensity factor (K IC ) was measured.

구체적으로, 시료별 각각 10개의 SENB(Single Edge Notched Bending) 시편을 준비하여, 인스트론 인장 시험기(Instron Flexural Tester; Instron Model 1125, Instron, 미국)로 ASTM D 5045-91a에 준하여 측정하였으며, 50×10×5 ㎜의 크기로 절단하되, 이때 지지대간 거리와 시편 두께와의 비(span-to-depth ration)는 4 : 1로 고정하고, cross-head speed는 1 ㎜/분으로 유지하였다. 그 결과는 표 1과 같다.Specifically, 10 SENB (Single Edge Notched Bending) specimens were prepared for each sample, and measured according to ASTM D 5045-91a with an Instron Flexural Tester (Instron Model 1125, Instron, USA), 50 × Cutting was performed at a size of 10 × 5 mm, wherein the ratio of span-to-depth ratio between the supports and the specimen thickness was fixed at 4: 1, and the cross-head speed was maintained at 1 mm / minute. The results are shown in Table 1.

질산:H2O2 Nitrate: H 2 O 2 열처리
온도(℃)
Heat treatment
Temperature (℃)
환원온도
(℃)
Reduction temperature
(℃)
환원분위기
(H2:Ar)
Reducing atmosphere
(H 2 : Ar)
그래핀
(wt%)
Graphene
(wt%)
CNT
(wt%)
CNT
(wt%)
비저항
(Ωcm)
Resistivity
(Ωcm)
KIC
(MPa.m1/2)
K IC
(MPa.m 1/2 )
실시예1Example 1 90:1090:10 700700 300300 5:955:95 0.10.1 0.10.1 3.5×10-1 3.5 × 10 -1 1.521.52 실시예2Example 2 80:2080:20 800800 300300 5:955:95 0.10.1 0.10.1 4.0×10-1 4.0 × 10 -1 1.651.65 실시예3Example 3 60:4060:40 900900 300300 5:955:95 0.10.1 0.10.1 2.9×10-1 2.9 × 10 -1 1.501.50 실시예4Example 4 80:2080:20 800800 400400 5:955:95 0.10.1 0.10.1 2.5×10-1 2.5 × 10 -1 1.451.45 실시예5Example 5 80:2080:20 800800 600600 5:955:95 0.10.1 0.10.1 3.2×10-1 3.2 × 10 -1 1.631.63 실시예6Example 6 80:2080:20 800800 400400 1:991:99 0.10.1 0.10.1 3.8×10-1 3.8 × 10 -1 1.711.71 실시예7Example 7 80:2080:20 800800 400400 10:9010:90 0.10.1 0.10.1 4.2×10-1 4.2 × 10 -1 1.721.72 실시예8Example 8 80:2080:20 800800 400400 5:955:95 0.50.5 0.10.1 0.8×10-1 0.8 × 10 -1 1.871.87 실시예9Example 9 80:2080:20 800800 400400 5:955:95 1.01.0 0.10.1 5.0×10-2 5.0 × 10 -2 2.142.14 실시예10Example 10 80:2080:20 800800 400400 5:955:95 2.02.0 0.10.1 4.7×10-2 4.7 × 10 -2 2.252.25 실시예11Example 11 80:2080:20 800800 400400 5:955:95 2.02.0 0.50.5 2.5×10-2 2.5 × 10 -2 2.422.42 실시예12Example 12 80:2080:20 800800 400400 5:955:95 2.02.0 1.01.0 2.6×10-2 2.6 × 10 -2 2.532.53 비교예1Comparative Example 1 80:2080:20 800800 400400 5:955:95 5.05.0 1.01.0 2.6×10-2 2.6 × 10 -2 2.542.54 비교예2Comparative Example 2 80:2080:20 800800 400400 5:955:95 2.02.0 2.02.0 2.5×10-2 2.5 × 10 -2 2.522.52

단, 상기 값은 10회 이상 측정한 평균값이다.However, the said value is the average value measured 10 times or more.

이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 의하여 정의된다고 할 것이다. As described above, specific portions of the contents of the present invention have been described in detail, and for those skilled in the art, these specific techniques are merely preferred embodiments, and the scope of the present invention is not limited thereto. Will be obvious. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

도 1은 고분자 복합소재의 내부 보강 형태를 나타낸 그림으로, (a)는 종래 그래핀만으로 보강되었을 때이고, (b)는 본 발명의 그래핀과 CNT가 동시에 보강되었을 때의 개략도이다. 1 is a view showing the internal reinforcing form of the polymer composite material, (a) is when the conventional graphene is reinforced only, (b) is a schematic diagram when the graphene and CNT of the present invention is reinforced at the same time.

Claims (14)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 고분자 수지 내에 탄소나노튜브(CNT)와 그래핀을 동시에 분산시켜 제조하되,While dispersing carbon nanotubes (CNT) and graphene in a polymer resin at the same time, 상기 CNT는 다중벽 CNT를 200~500℃의 온도에서 산소분위기로 열처리한 것을 질산원액에 침적시켜 금속성 촉매 물질을 완전히 제거한 다음 증류수로 세척한 후 n-헥산(hexane)에 침적 처리한 것을 건조하여 사용하는 것을 특징으로 하는 전도성 고분자 복합재료의 제조방법.The CNTs were immersed in a nitric acid solution by heat-treating the multi-walled CNTs in an oxygen atmosphere at a temperature of 200-500 ° C. to completely remove the metallic catalyst material, and then washed with distilled water and dried by dipping in n-hexane (hexane). Method for producing a conductive polymer composite material, characterized in that used. 삭제delete 제 9항에 있어서,The method of claim 9, 상기 그래핀은 흑연을 질산과 과산화수소의 혼합용액에 침적시켜 산처리 한 것을 700~900℃ 온도 범위의 산소분위기에서 열처리 한 다음 증류수로 세척하고, 300~600℃의 온도에서 H2/Ar 혼합가스 분위기(H2 : Ar = 1 : 99 내지 10 : 90%) 상태로 환원처리를 거쳐 사용하는 것을 특징으로 하는 전도성 고분자 복합재료의 제조방법.The graphene is an acid treatment by depositing graphite in a mixed solution of nitric acid and hydrogen peroxide heat treatment in an oxygen atmosphere of 700 ~ 900 ℃ temperature and then washed with distilled water, H 2 / Ar mixed gas at a temperature of 300 ~ 600 ℃ A method for producing a conductive polymer composite material, characterized in that used in the atmosphere (H 2 : Ar = 1: 99 to 10: 90%) through a reduction treatment. 삭제delete 삭제delete 삭제delete
KR1020090027136A 2009-03-30 2009-03-30 Conductive polymeric nanocomposite with excellent mechanical and electrical properties KR101073998B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090027136A KR101073998B1 (en) 2009-03-30 2009-03-30 Conductive polymeric nanocomposite with excellent mechanical and electrical properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090027136A KR101073998B1 (en) 2009-03-30 2009-03-30 Conductive polymeric nanocomposite with excellent mechanical and electrical properties

Publications (2)

Publication Number Publication Date
KR20100108868A KR20100108868A (en) 2010-10-08
KR101073998B1 true KR101073998B1 (en) 2011-10-17

Family

ID=43130070

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090027136A KR101073998B1 (en) 2009-03-30 2009-03-30 Conductive polymeric nanocomposite with excellent mechanical and electrical properties

Country Status (1)

Country Link
KR (1) KR101073998B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101182380B1 (en) 2011-03-15 2012-09-12 한양대학교 산학협력단 Hybrid polymer composite fibers comprising graphene and carbon nanotubes
CN102181112B (en) * 2011-05-25 2013-06-05 曾斌 Plastic-based composite material capable of conducting electricity and shielding electromagnetic waves and preparation method thereof
PL222519B1 (en) 2011-09-19 2016-08-31 Inst Tech Materiałów Elektronicznych Method for obtaining graphene layers and graphene paste containing nanopuffs
KR101455834B1 (en) * 2013-04-01 2014-11-03 채경남 Smart composite using piezo-resistance property of grapene
CN104672357B (en) * 2013-11-29 2018-04-10 合肥杰事杰新材料股份有限公司 A kind of composite material and preparation method thereof of graphene/carbon nanotube hybrid thing enhancing polymer
CN103756103B (en) * 2014-02-19 2016-03-30 中国科学院金属研究所 Graphene/high density polyethylene(HDPE) thermistor composite material and preparation method
WO2017150748A1 (en) * 2016-03-02 2017-09-08 주식회사 대신테크젠 Composite composition having high thermal conductivity for use in automotive light housing and preparation method therefor
CN107602987B (en) * 2017-10-10 2020-12-25 上海第二工业大学 Polymer PTC composite material containing graphene and carbon nano tube and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Aiping Yu et al., Appl. Phys. Lett. 89, 133102 (2006)
Aiping Yu et al.,Advanced Materials, Volume 20, Issue 24, pages 4740–4744, December 17, 2008
Stankovich et al., Carbon, Volume 45, Issue 7, June 2007, Pages 1558-1565

Also Published As

Publication number Publication date
KR20100108868A (en) 2010-10-08

Similar Documents

Publication Publication Date Title
KR101073998B1 (en) Conductive polymeric nanocomposite with excellent mechanical and electrical properties
Singh et al. Effect of length of carbon nanotubes on electromagnetic interference shielding and mechanical properties of their reinforced epoxy composites
JP3972674B2 (en) Carbon fiber manufacturing method and carbon fiber reinforced resin composition
Foroughi et al. Highly conductive carbon nanotube‐graphene hybrid yarn
He et al. Electric-magnetic-dielectric synergism and Salisbury screen effect in laminated polymer composites with multiwall carbon nanotube, nickel, and antimony trioxide for enhancing electromagnetic interference shielding
Pandey et al. Carbon nanotube-based multifunctional polymer nanocomposites
Sharma et al. Enhanced thermomechanical and electrical properties of multiwalled carbon nanotube paper reinforced epoxy laminar composites
Lu et al. Electrical properties and shape-memory behavior of self-assembled carbon nanofiber nanopaper incorporated with shape-memory polymer
JP6096806B2 (en) Resin composition for electromagnetic shielding containing composite carbon material
Shateri-Khalilabad et al. Fabricating electroconductive cotton textiles using graphene
Zhang et al. Polymer-embedded carbon nanotube ribbons for stretchable conductors
Zhang et al. Review of Electrically Conductive Composites and Films Containing Cellulosic Fibers or Nanocellulose.
KR100895696B1 (en) A Method for Preparation of Silicone Rubber/Carbon Nanotube Composites with Electrical Insulating Properties
He et al. Impact of the spatial distribution of high content of carbon nanotubes on the electrical conductivity of glass fiber fabrics/epoxy composites fabricated by RTM technique
Khan et al. Exploitation of nanobifiller in polymer/graphene oxide–carbon nanotube, polymer/graphene oxide–nanodiamond, and polymer/graphene oxide–montmorillonite composite: A review
Liang et al. Electrical properties of percolative polystyrene/carbon nanofiber composites
Jain et al. Polyacrylonitrile/carbon nanofiber nanocomposite fibers
Zou et al. Efficient electromagnetic interference shielding of flexible Ag microfiber sponge/polydimethylsiloxane composite constructed by blow spinning
Li et al. Flexible and strain conductive cotton yarn enabled by low-temperature sintering of silver paste with multifunctional sensing capability in human motion detection and wearable applications
Dai et al. Electromagnetic performances of composites with promising carbons derived from bacterial cellulose
Jia et al. Rational design for enhancing mechanical and conductive properties of Ti3C2 MXene based elastomer composites
Xie et al. Aqueous nanocoating approach to strong natural microfibers with tunable electrical conductivity for wearable electronic textiles
Sun et al. MXene-decorated carbonized jute composite for high-performance electromagnetic interference shielding
Orhun et al. Design of dual‐conductive polyacrylonitrile‐based composite nanofiber: Synergistic effect of copper nanoparticles decorated‐boron nitride and polyaniline
Rahaman et al. Electrical conductivity of polymer–carbon composites: Effects of different factors

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140818

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151001

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160912

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170829

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180823

Year of fee payment: 8