KR101073639B1 - Manufacturing Method for Polyurethane conductive coating resin - Google Patents

Manufacturing Method for Polyurethane conductive coating resin Download PDF

Info

Publication number
KR101073639B1
KR101073639B1 KR1020090010058A KR20090010058A KR101073639B1 KR 101073639 B1 KR101073639 B1 KR 101073639B1 KR 1020090010058 A KR1020090010058 A KR 1020090010058A KR 20090010058 A KR20090010058 A KR 20090010058A KR 101073639 B1 KR101073639 B1 KR 101073639B1
Authority
KR
South Korea
Prior art keywords
cnt
coating resin
polyurethane coating
polyurethane
carbon nanotubes
Prior art date
Application number
KR1020090010058A
Other languages
Korean (ko)
Other versions
KR20100090856A (en
Inventor
문호준
김형열
이재연
서석훈
Original Assignee
주식회사 나노솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나노솔루션 filed Critical 주식회사 나노솔루션
Priority to KR1020090010058A priority Critical patent/KR101073639B1/en
Publication of KR20100090856A publication Critical patent/KR20100090856A/en
Application granted granted Critical
Publication of KR101073639B1 publication Critical patent/KR101073639B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 폴리우레탄 코팅 수지의 제조 방법에 관한 것으로서, 더욱 상세하게는 탄소 나노튜브 분산액, 폴리올 및 디이소시아네이트를 반응시켜 프리폴리머를 제조하는 제1단계; 및 상기 프리폴리머를 쇄연장하는 제2단계:를 포함하는 폴리우레탄 코팅 수지의 제조 방법에 관한 것이다. The present invention relates to a method for preparing a polyurethane coating resin, and more particularly, a first step of preparing a prepolymer by reacting a carbon nanotube dispersion, a polyol, and a diisocyanate; And a second step of chain-extending the prepolymer.

본 발명에 따르면, 종래보다 CNT를 적게 사용하더라도 우수한 전기저항특성을 부여할 수 있고, 폴리우레탄 필름의 물리적 특성이 우수하다는 이점이 있다. According to the present invention, even if less CNT is used than in the related art, excellent electrical resistance characteristics can be given, and the physical properties of the polyurethane film are excellent.

Description

폴리우레탄 코팅 수지의 제조 방법{Manufacturing Method for Polyurethane conductive coating resin}Manufacturing Method for Polyurethane Conductive Coating Resin

본 발명은 폴리우레탄 코팅 수지의 제조 방법에 관한 것으로서, 더욱 상세하게는 탄소 나노튜브 분산액, 폴리올 및 디이소시아네이트를 반응시켜 프리폴리머를 제조하는 제1단계; 및 상기 프리폴리머를 쇄연장하는 제2단계:를 포함하는 폴리우레탄 코팅 수지의 제조 방법에 관한 것이다. The present invention relates to a method for preparing a polyurethane coating resin, and more particularly, a first step of preparing a prepolymer by reacting a carbon nanotube dispersion, a polyol, and a diisocyanate; And a second step of chain-extending the prepolymer.

전기 전도성 폴리우레탄 코팅 수지는 전기적 특성, 유연성, 기계적 강도, 내수성, 마모 강도, 가공성 및 경제적 측면에서 전자재료의 코팅, 의류 산업 및 산업 전 분야에서 널리 사용되고 있다. 본 발명은 높은 전기 전도성을 가지며 내마모성 및 기계적 특성을 우수한 전도성 폴리우레탄 코팅 수지를 제조하기 위한 것으로, 더욱 구체적으로는 개질하여 관능기가 도입된 CNT 및 이를 이용한 폴리우레탄 코팅 수지 합성에 관한 것이다. Electrically conductive polyurethane coating resins are widely used in the coating of electronic materials, clothing industry and all industries in terms of electrical properties, flexibility, mechanical strength, water resistance, wear strength, processability and economics. The present invention relates to the production of a conductive polyurethane coating resin having high electrical conductivity and excellent wear resistance and mechanical properties, and more particularly, to a modified CNT introduced functional group and a polyurethane coating resin synthesis using the same.

폴리우레탄 건식 코팅 수지에 전도성 효과를 부여하는 방법은 탄소 나노튜브의 탄소 원자가 3개의 다른 탄소 원자와 결합하여 육각형의 벌집 무늬 형태를 이루고 있는 2차원의 흑연 판이 감기는 각도와 감긴 지름에 따라서 도체 또는 반도체의 특성을 발현한다. 특히 합성 방법과 조건에 따라 2차원의 탄소 판막(grapheme sheet)을 실린더 모양으로 둥글게 봉한 모양으로 속이 빈 원통 구조를 갖는 단일벽(single-walled) 탄소 나노튜브(SWNT)와 이러한 단일 벽이 여러 개의 겹으로 서로 겹쳐져 있는 다중벽(multi-walled) 탄소 나노튜브(MWNT)로 구분된다. 이러한 탄소 나노튜브는 그것의 준 1차원적인 양자구조로 인하여 특이한 양자현상들이 관측되었고, 지름에 비해 대략 1000배 정도의 길은 길이로 인해 다른 물질보다 강한 전기장을 갖는 전계방출(field emission)효과와 금속에 준하는 높은 전기 전도도가 있다.     The method of imparting a conductive effect to a polyurethane dry coating resin is a method of applying a conductor or a coil depending on the winding angle and diameter of a two-dimensional graphite plate where carbon atoms of carbon nanotubes combine with three other carbon atoms to form a hexagonal honeycomb pattern. Expresses the characteristics of the semiconductor. In particular, single-walled carbon nanotubes (SWNT) having a hollow cylindrical structure in which two-dimensional carbon sheets are rounded in a cylindrical shape depending on the synthesis method and conditions, and the single walls It is divided into multi-walled carbon nanotubes (MWNTs) that overlap each other in layers. These carbon nanotubes have unusual quantum phenomena observed due to their quasi one-dimensional quantum structure, and their lengths are approximately 1000 times their diameter, and the field emission effects and metals have stronger electric fields than other materials due to their length. There is a high electrical conductivity.

현재 반도체 부품 및 디스플레이(LED) 등의 부품으로 탄소 나노튜브가 전계방출소자로서 응용되고 있고, 전기전자 공업, 정밀기계 공업, 정밀화학 공업 등의 생산현장에서 정전기로 인한 화재, 정밀기계의 오작동에 의한 생산효율 저하 및 불량률 발생 방지를 위하여 탄소 나노튜브 기술이 활발히 이용되고 있다.     Currently, carbon nanotubes are being applied as field emission devices as semiconductor components and displays (LEDs) .In the field of electrical and electronics industry, precision machinery industry, and fine chemical industry, fires caused by static electricity and malfunction of precision machinery are used. Carbon nanotube technology is actively used to prevent the production efficiency and the failure rate caused by the.

또한, 생활용품, 의복 등에서 발생하는 정전기에 의한 불쾌감 해소를 위하여 탄소 나노튜브기술이 이용되고 있다. 최근까지 폭 넓은 분야에서 적극적인 기술개발이 이루어지고 있다.In addition, carbon nanotube technology is used to eliminate the discomfort caused by static electricity generated in household goods, clothing, and the like. Until recently, active technology development has been carried out in a wide range of fields.

본 발명은 종래 폴리우레탄 수지에 CNT 분산액을 단순 혼합함에 의한 폴리우레탄 전도성 코팅 수지의 제조공정에서 발생하는 CNT의 분산문제 및 코팅액의 저장안정성, 이에 따른 물성저하를 해결할 기술로서 기존의 제품보다 전기전도성이 우수한 폴리우레탄 코팅 수지 제조 방법을 제공하고자 한다.The present invention is a technique to solve the dispersion problem and storage stability of the coating solution, and the resulting lowering of the physical properties of the polyurethane conductive coating resin by simply mixing the CNT dispersion in the conventional polyurethane resin as compared to the conventional products It is to provide a method for producing this excellent polyurethane coating resin.

상기 과제를 해결하기 위하여, 본 발명은 탄소 나노튜브 분산액, 폴리올 및 디이소시아네이트를 반응시켜 프리폴리머를 제조하는 제1단계; 및 상기 프리폴리머를 쇄연장하는 제2단계:를 포함하는 폴리우레탄 코팅 수지의 제조 방법으로서, 상기 제1단계는, 폴레카보네이트디올, 실리콘디올 및 촉매를 80℃에서 30분 혼합하고; 상기 혼합물에 지방족디이소시아네이트 및 탄소 나노튜브 분산액을 3~5회 분할하여 투입하면서 80℃에서 3~4시간 반응하는 것을 특징으로 하는 폴리우레탄 코팅 수지의 제조 방법을 제공한다. In order to solve the above problems, the present invention comprises a first step of preparing a prepolymer by reacting the carbon nanotube dispersion, polyol and diisocyanate; And a second step of chain extending the prepolymer, wherein the first step comprises: mixing polycarbonate diol, silicon diol, and a catalyst at 80 ° C. for 30 minutes; Aliphatic diisocyanate and carbon nanotube dispersion is added to the mixture 3 to 5 times while providing a method for producing a polyurethane coating resin, characterized in that the reaction for 3 to 4 hours at 80 ℃.

본 발명은 CNT의 개질을 통하여 카르복실(COOH) 관능기를 도입함으로써, 폴리우레탄 공중합체 합성 시 내구성이 우수한 폴리카보네이트디올(polycarbonate-diol), 내마모성이 우수한 실리콘디올(silicone-diol), 무황변 type의 지방족 디이소시아네트(aliphatic diisocyanate)와 관능기로 개질된 CNT와 축합반응을 통하여 우레탄 결합을 형성함으로써 CNT의 분산 및 전기저항성이 우수하다.The present invention, by introducing a carboxyl (COOH) functional group through the modification of the CNT, polycarbonate-diol (polycarbonate-diol), excellent wear resistance silicone diol (silicone-diol), yellowing type excellent in the polyurethane copolymer synthesis The CNT dispersion and the electrical resistance are excellent by forming a urethane bond through condensation reaction with aliphatic diisocyanate and functional modified CNT.

본 발명은 종래와 같이 폴리우레탄 코팅 수지에 CNT를 단순 분산하는 것이 아니라 폴리우레탄 합성 시 관능기가 도입된 CNT를 prepolymer 합성법을 이용하여 디이소시아네이트와 축합반응을 시킴으로써 CNT 특유의 coil 형상을 우레탄그룹에 의한 박리(exfoliation) 혹은 우레탄그룹이 삽입(intercalation)되어 CNT의 분산효과가 매우 크게 나타나게 되어, 종래보다 CNT를 적게 사용하더라도 우수한 전기저항 특성을 부여할 수 있다. 또 디이소시아네이트와 CNT를 축합반응 시킴으로써 종래의 폴리우레탄 코팅 수지에 CNT 용액을 단순 분산시킨 제품보다 폴리우레탄 필름의 물리적 특성이 우수하다는 이점이 있다. According to the present invention, a CNT-specific coil shape is formed by a urethane group by condensation reaction with diisocyanate using a prepolymer synthesis method. Exfoliation or intercalation of urethane groups results in a very large dispersion effect of CNTs, which can give excellent electrical resistance even when less CNTs are used. In addition, the condensation reaction between diisocyanate and CNT has the advantage that the physical properties of the polyurethane film are superior to the products in which the CNT solution is simply dispersed in a conventional polyurethane coating resin.

(실시예 1: CNT 합성 및 분산액 제조)(Example 1: CNT Synthesis and Dispersion Preparation)

탄소 나노튜브 분산액은 열화학증착법(Catalyst Chemical Vapor Deposition)으로 합성한 다중벽 탄소 나노튜브를 유기용매에 넣고 초음파처리와 밀링(milling) 방법에 의해 절단하였으며 사용된 물질과 조성은 다음과 같다(도1 참조).The carbon nanotube dispersions were multi-walled carbon nanotubes synthesized by Catalytic Chemical Vapor Deposition in an organic solvent and cut by ultrasonication and milling. The materials and compositions used were as follows (Fig. 1). Reference).

[표1]Table 1

항 목Item 내용Contents 다중벽 탄소 나노튜브Multiwalled Carbon Nanotubes 지름 3~5nm, 순도 95wt.% 이상3 ~ 5nm in diameter, purity over 95wt.% 분산방법Dispersion Method 초음파처리 300W 30분, 볼밀링 1hrUltrasonicated 300W 30min, Ball Milling 1hr 용매menstruum DMFDMF 분산제Dispersant BYK190BYK190 CNT 농도CNT concentration 1wt.%1wt.%

(실험예 1: CNT 분산액)Experimental Example 1 CNT Dispersion

[표2][Table 2]

항 목Item CNT-ACNT-A CNT-BCNT-B CNT-CCNT-C CNT typeCNT type Multi-wall CNT,
직경 3~5nm
Multi-wall cnt,
3 ~ 5nm in diameter
Multi-wall CNT,
직경 1~3nm
Multi-wall cnt,
1 ~ 3nm in diameter
Multi-wall CNT,
직경 3~5nm
Multi-wall cnt,
3 ~ 5nm in diameter
CNT 전처리 CNT pretreatment 산 처리Acid treatment 산 처리Acid treatment 미처리Untreated 관능기Functional group COOHCOOH COOHCOOH --

(실시예 2: CNT-폴리우레탄 공중합체 합성) Example 2: Synthesis of CNT-Polyurethane Copolymer

본 발명의 CNT-폴리우레탄 공중합체 합성을 위하여 CNT를 포함한 폴리올을 디 이소시아네이트와 반응시켜, 프리폴리머를 제조하고 이를 쇄 연장함으로써 폴리우레탄 코팅 수지를 제조하였다. CNT-폴리우레탄 공중합체 제조방법은 폴레카보네이트디올과 실리콘디올과 촉매를 80℃에서 30분 혼합하는 단계와 지방족디이소시아네이트를 투입하여 80℃, 3~4시간 반응하는 단계 및 이때 CNT/DMF 용액을 3~5회 분할하여 투입하는 단계, 반응 후 -NCO 말단 확인 및 쇄연장제를 투입하여 반응을 완성하는 단계를 통하여 제조하였다.      For the synthesis of the CNT-polyurethane copolymer of the present invention, a polyol including CNT was reacted with diisocyanate to prepare a prepolymer and to extend the chain to prepare a polyurethane coating resin. CNT-polyurethane copolymer production method is a step of mixing polycarbonate diol, silicon diol and the catalyst at 80 30 minutes and reacting for 3 to 4 hours at 80 ℃, aliphatic diisocyanate and the CNT / DMF solution The step of dividing 3 to 5 times, and after the reaction was prepared through the step of -NCO terminal identification and chain extender to complete the reaction.

쇄연장제로서 1,4-butanediol, ethylene glycol, 1,6-hexnaediol을 주재료로 사용하였다. 1,4-butanediol, ethylene glycol and 1,6-hexnaediol were used as chain extenders.

이때, 상기 CNT-폴리우레탄 공중합체 제조 과정에서 지방족디이소시아네이트 투입 시 폴리올과의 축합중합을 형성하게 되면서 반응물의 점도가 상승하게 되며, 점도가 상승할 때 CNT/DMF 용액을 적정량을 투입함으로써, CNT 내부에서 우레탄 그룹이 1차적으로 생성되게 하고, 계속적인 반응을 통하여 폴리우레탄 프리폴리머 형성시켜, CNT 내부로의 폴리우레탄 프리폴리머의 삽입(intercalating), 또는 삽입된 폴리우레탄 프리폴리머의 공중합체 형성을 통한 CNT를 박리(exfoliation)시킴으로 CNT 용액을 분산시켰다. 상기 제조방법은 CNT의 응집(aggregation)을 완벽하게 방지할 수 있는 기술이며, CNT로 제조된 폴리우레탄 코팅액의 저장 안정성도 유지할 수 있다(도2 참조).     At this time, when the aliphatic diisocyanate is added in the process of preparing the CNT-polyurethane copolymer, the viscosity of the reactant is increased while forming a condensation polymerization with the polyol. The primary production of urethane groups therein and the formation of polyurethane prepolymers through subsequent reactions lead to intercalation of the polyurethane prepolymers into the CNTs, or CNTs through copolymerization of the inserted polyurethane prepolymers. The CNT solution was dispersed by exfoliation. The manufacturing method is a technology that can completely prevent the aggregation (aggregation) of the CNT, it is also possible to maintain the storage stability of the polyurethane coating liquid made of CNT (see Figure 2).

[표3][Table 3]

Figure 112009007708803-pat00001
Figure 112009007708803-pat00001

(실험예 2: CNT-폴리우레탄 공중합체 분석)Experimental Example 2: CNT-Polyurethane Copolymer Analysis

1. FT-IR 측정      1.FT-IR measurement

CNT가 공중합된 폴리우레탄 코팅 수지의 FT-IR 측정결과 전형적인 우레탄 그룹을 포함한 폴리우레탄 수지임을 확인할 수 있었다. 구체적으로 FT-IR 스펙트럼에서 Diisocyanate의 특징인 NCO기의 피크가 나타나지 않아 Diisocyanate와 Polyol이 반응을 하였음을 알 수 있다. 스펙트럼을 보면, 3350 cm-1 과 1530 cm-1 부근에서의 흡수 피크는 각각 우레탄 그룹 내의 -NH-의 신축진동과 굽힘 진동으로 인하여 나타난 특성 피크이다. 1740 cm-1 부근의 흡수 피크는 카르보닐기(C=O)의 신축진동으로 나타나는 특성 피크로서 폴리우레탄의 합성이 잘 이루어졌음을 확인할 수 있었다. 또 1250cm-1 부근에서 카보네이트 그룹의(-O-COO-C) 특성 흡수 피크가 나타남으로써 Polycarbonatediol을 이용한 폴리우레탄 수지임을 확인할 수 있었다(도3 참조). FT-IR measurement of the CNT-copolymerized polyurethane coating resin was confirmed that the polyurethane resin containing a typical urethane group. Specifically, the peak of the NCO group, which is a characteristic of Diisocyanate, does not appear in the FT-IR spectrum, indicating that Diisocyanate and Polyol reacted. In the spectra, the absorption peaks around 3350 cm -1 and 1530 cm -1 are characteristic peaks due to the stretching and bending vibrations of -NH- in the urethane group, respectively. The absorption peak near 1740 cm −1 is a characteristic peak represented by the stretching vibration of the carbonyl group (C═O). In addition, the absorption peak of the (-O-COO-C) characteristic of the carbonate group appeared in the vicinity of 1250cm -1 to confirm that the polyurethane resin using the polycarbonatediol (see Fig. 3).

2. 기계적 물성2. Mechanical Properties

CNT가 공중합된 폴리우레탄 코팅 수지를 release paper에 코팅한 후 필름을 형성하여 만능재료 시험기(Universal test machine)를 이용하여 인장 강도, 100% 탄성률, 신장률을 각각 측정하였다. 측정결과 CNT-PU A과 CNT-PU B의 경우 Ref. PU에 비하여 100% 탄성률이 52%~97% 증가하였으며, 신장률은 30%~35% 감소하였고, 인장 강도는 거의 변화가 없었다. 반면 CNT-PU C의 경우는 100% 탄성률은 조금 상승하였으나, 인장 강도의 경우 Ref. PU에 비해 감소하는 특성을 보였다.      CNT-copolymerized polyurethane coating resin was coated on release paper, and a film was formed to measure tensile strength, 100% elastic modulus, and elongation rate using a universal test machine, respectively. Measurement result For CNT-PU A and CNT-PU B Ref. Compared with PU, 100% elastic modulus increased 52% ~ 97%, elongation decreased 30% ~ 35%, and tensile strength was almost unchanged. On the other hand, in the case of CNT-PU C, the 100% modulus of elasticity slightly increased, but in the case of tensile strength, Ref. It showed a decrease compared to PU.

[표4]Table 4


시료명

Name of sample
100%
Modulus(kgf/cm2)
100%
Modulus (kgf / cm 2 )
Tensile
Strength(kgf/cm2)
Tensile
Strength (kgf / cm 2 )

Elongation(%)

Elongation (%)
Ref. PURef. PU 23.523.5 245245 682682 CNT-PU ACNT-PU A 35.835.8 223223 473473 CNT-PU BCNT-PU B 46.346.3 243243 442442 CNT-PU CCNT-PU C 30.530.5 217217 633633

3. 표면저항 측정3. Measurement of surface resistance

CNT가 공중합된 폴리우레탄 코팅 수지를 PET film에 일정 두께(50㎛~100㎛)로 코팅하여 전기저항측정기로 전기저항을 측정하였다. 표면저항은 필름 표면의 전자들이 자유롭게 이동하는데 방해를 얼마나 받는가를 저항치로 나타낸 것으로, 대전방지특성에 영향을 미친다. 본 발명에 따른 CNT가 공중합된 폴리우레탄 코팅필름의 표면저항 측정결과 CNT-PU A와 CNT-PU B가 코팅 두께가 증가함에 따라 표면저항이 감소하는 특성을 보였다. CNT-PU C의 경우 폴리우레탄 수지 내에서 분산상태가 나빠서 전기저항이 특성이 우수하지 못하였다. 이는 FE-SEM 이미지로도 확인할 수 있다. 특히 CNT-PU B의 경우 105Ω 이하로 전기저항이 측정되며 도전성 코팅제로 적용 시 우수한 대전방지 성능을 발현할 수 있다.      The polyurethane coating resin copolymerized with CNT was coated on a PET film with a predetermined thickness (50 μm˜100 μm), and the electrical resistance was measured by an electrical resistance meter. Surface resistance is a measure of how much the electrons on the surface of the film are disturbed to move freely, and affects the antistatic property. As a result of measuring the surface resistance of the CNT-coated polyurethane coating film according to the present invention, the surface resistance of CNT-PU A and CNT-PU B was decreased as the coating thickness was increased. In the case of CNT-PU C, the electrical resistance was not excellent because of poor dispersion state in the polyurethane resin. This can also be seen in the FE-SEM image. In particular, in the case of CNT-PU B, the electrical resistance is measured to 105 Ω or less, and when applied as a conductive coating, excellent antistatic performance can be expressed.

항 목Item 두께(㎛)Thickness (㎛) 전기저항(Ω)Electrical resistance CNT-PU ACNT-PU A 5050 1.05~1071.05 ~ 107 100100 1.3~1061.3 ~ 106 CNT-PU BCNT-PU B 5050 1.3~1071.3-107 100100 8.8~1058.8 ~ 105 CNT-PU CCNT-PU C 5050 측정 안됨Not measured 100100 측정 안됨Not measured

4. 필름의 내열성 측정4. Measurement of heat resistance of film

CNT가 공중합된 폴리우레탄 코팅 수지의 내열성을 측정하기 위하여 TGA(Thermogravimetric analyzer)를 이용하여 측정하였다. TGA 그래프에서 CNT-PU A와 CNT-PU B 경우 Ref. PU 및 CNT-PU C에 비하여 열분해 시작온도가 약 20℃ 이상 높게 나타났으며, 이는 나노사이즈의 무기물인 CNT의 첨가로 수지 내로 전달되는 열에너지의 분담하는 역할 및 원래 CNT가 가지고 있는 높은 열저항(heat-resistance) 때문이다. 특히 CNT가 매트릭스 고분자에 잘 분산되어 있을 경우 열 저항 특성이 잘 발현되며, 본 발명에서도 분산특성이 우수한 CNT-PU A와 CNT-PU B가 내열성이 향상되었다(도4 참조).    In order to measure the heat resistance of the polyurethane-coated resin copolymerized CNT was measured using a TGA (Thermogravimetric analyzer). Ref. CNT-PU A and CNT-PU B in the TGA graph. Compared with PU and CNT-PU C, the onset temperature of pyrolysis was higher than about 20 ℃. This is due to the addition of nano-size inorganic CNT, which contributes to the sharing of heat energy transferred into the resin and the high thermal resistance of the original CNT. heat-resistance. In particular, when the CNTs are well dispersed in the matrix polymer, the heat resistance characteristics are well expressed, and in the present invention, CNT-PU A and CNT-PU B having excellent dispersion characteristics are improved in heat resistance (see FIG. 4).

본 실시예에 따른 CNT 분산 특성 분석은 도 5와 같다. CNT dispersion characteristics analysis according to this embodiment is shown in FIG.

도 1은 본 발명에 따른 탄소 나노튜브 분산액의 제조 공정을 나타낸다. 1 shows a process for preparing a carbon nanotube dispersion according to the present invention.

도 2는 본 발명에 따른 CNT-폴리우레탄 공중합체 제조 공정을 나타낸다. 2 shows a process for producing a CNT-polyurethane copolymer according to the present invention.

도 3은 본 발명의 일 실시예에 따른 CNT가 공중합된 폴리우레탄 코팅 수지의 FT-IR 측정결과를 나타낸다. Figure 3 shows the FT-IR measurement results of the CNT-coated polyurethane coating resin according to an embodiment of the present invention.

도 4는 본 발명의 일 실시예에 따른 CNT가 공중합된 폴리우레탄 코팅 수지 필름의 내열성을 측정한 결과이다. 4 is a result of measuring the heat resistance of the CNT-coated polyurethane coating resin film according to an embodiment of the present invention.

도 5는 본 발명의 일 실시예에 따른 CNT의 분산 특성을 나타내는 사진이다. 5 is a photograph showing dispersion characteristics of CNTs according to an embodiment of the present invention.

(도5a는 CNT-PU-A, 도5b는 CNT-PU-B, 도5c는 CNT-PU-C) (FIG. 5A shows CNT-PU-A, FIG. 5B shows CNT-PU-B, and FIG. 5C shows CNT-PU-C)

Claims (6)

탄소 나노튜브 분산액, 폴리올 및 디이소시아네이트를 반응시켜 프리폴리머를 제조하는 제1단계; 및 상기 프리폴리머를 쇄연장하는 제2단계:를 포함하는 폴리우레탄 코팅 수지의 제조 방법으로서, A first step of preparing a prepolymer by reacting a carbon nanotube dispersion, a polyol, and a diisocyanate; And a second step of chain extending the prepolymer; 상기 제1단계는, The first step, 폴레카보네이트디올, 실리콘디올 및 촉매를 80℃에서 30분 혼합하고; Polycarbonatediol, silicondiol and catalyst were mixed at 80 ° C. for 30 minutes; 상기 혼합물에 지방족디이소시아네이트 및 탄소 나노튜브 분산액을 3~5회 분할하여 투입하면서 80℃에서 3~4시간 반응하는 것을 특징으로 하는 폴리우레탄 코팅 수지의 제조 방법.Aliphatic diisocyanate and a carbon nanotube dispersion is added to the mixture 3 to 5 times while producing a polyurethane coating resin, characterized in that for 3 to 4 hours reaction at 80 ℃. 삭제delete 제 1 항에 있어서, The method of claim 1, 상기 탄소 나노튜브 분산액은, The carbon nanotube dispersion, 열화학증착법으로 합성한 탄소 나노튜브를 유기용매에 넣고 초음파처리와 밀링에 의해 절단한 것임을 특징으로 하는 폴리우레탄 코팅 수지의 제조 방법.A method for producing a polyurethane coating resin, characterized in that the carbon nanotubes synthesized by the thermochemical vapor deposition method was put into an organic solvent and cut by ultrasonication and milling. 제 3 항에 있어서,The method of claim 3, wherein 상기 탄소 나노튜브 분산액은 산 전처리에 의하여 관능기 COOH, OH 또는 에 폭시기가 도입된 것임을 특징으로 하는 폴리우레탄 코팅 수지의 제조 방법.The carbon nanotube dispersion is a method for producing a polyurethane coating resin, characterized in that the functional group COOH, OH or epoxy groups are introduced by acid pretreatment. 제 4 항에 있어서, The method of claim 4, wherein 상기 탄소 나노튜브는 단층벽 탄소 나노튜브, 다중벽 탄소 나노튜브 또는 탄소 나노섬유인 것을 특징으로 하는 폴리우레탄 코팅 수지의 제조 방법.The carbon nanotubes are a single-walled carbon nanotubes, multi-walled carbon nanotubes or carbon nanofibers manufacturing method of the polyurethane coating resin, characterized in that. 제 5 항에 있어서, The method of claim 5, 상기 폴리우레탄 코팅 수지 중 탄소 나노튜브의 함량은 0.1~5.0중량%인 것을 특징으로 하는 폴리우레탄 코팅 수지의 제조 방법.The content of carbon nanotubes in the polyurethane coating resin is a method for producing a polyurethane coating resin, characterized in that 0.1 to 5.0% by weight.
KR1020090010058A 2009-02-09 2009-02-09 Manufacturing Method for Polyurethane conductive coating resin KR101073639B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090010058A KR101073639B1 (en) 2009-02-09 2009-02-09 Manufacturing Method for Polyurethane conductive coating resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090010058A KR101073639B1 (en) 2009-02-09 2009-02-09 Manufacturing Method for Polyurethane conductive coating resin

Publications (2)

Publication Number Publication Date
KR20100090856A KR20100090856A (en) 2010-08-18
KR101073639B1 true KR101073639B1 (en) 2011-10-14

Family

ID=42756245

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090010058A KR101073639B1 (en) 2009-02-09 2009-02-09 Manufacturing Method for Polyurethane conductive coating resin

Country Status (1)

Country Link
KR (1) KR101073639B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190060042A (en) * 2017-11-24 2019-06-03 주식회사 빅스 Conductive water-dispersible polyurethane resin composition for surface coating of emi gasket material and its manufacturing process

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101327871B1 (en) * 2011-12-27 2013-11-11 한국신발피혁연구원 Manufacturing method for floor material for energy saving and electromagnetic shielding and floor material prepared by using the same
JP6140280B2 (en) * 2012-07-08 2017-05-31 モレキュラー レバー デザイン,エルエルシー Polyurethane polymers and compositions made using discrete carbon nanotubes MOLECULARREBAR
KR101538056B1 (en) * 2013-10-02 2015-07-20 한화케미칼 주식회사 Prepartion method of polyurethane composite containing carbon nanotube
KR102562265B1 (en) * 2021-04-26 2023-08-01 (주)유창하이텍 Antistatic composition using predispersed single wall carbon nanotube and method for manufacturing the same
CN114989640B (en) * 2022-06-23 2023-12-05 深圳市飞墨科技有限公司 Carbon nano tube modification method, conductive PA material and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001866A (en) * 2006-06-26 2008-01-10 Toyo Tire & Rubber Co Ltd Polyurethane sheet and its production process
KR100853127B1 (en) * 2007-05-15 2008-08-20 삼환염공(주) Industrial permanent anti-static coating agent using the carbon nanotube, and that manufacturing method, and coating method using that coating agent, and coated material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001866A (en) * 2006-06-26 2008-01-10 Toyo Tire & Rubber Co Ltd Polyurethane sheet and its production process
KR100853127B1 (en) * 2007-05-15 2008-08-20 삼환염공(주) Industrial permanent anti-static coating agent using the carbon nanotube, and that manufacturing method, and coating method using that coating agent, and coated material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190060042A (en) * 2017-11-24 2019-06-03 주식회사 빅스 Conductive water-dispersible polyurethane resin composition for surface coating of emi gasket material and its manufacturing process
KR101999516B1 (en) * 2017-11-24 2019-07-12 주식회사 빅스 Conductive water-dispersible polyurethane resin composition for surface coating of emi gasket material and its manufacturing process

Also Published As

Publication number Publication date
KR20100090856A (en) 2010-08-18

Similar Documents

Publication Publication Date Title
Thakur et al. Ultratough, ductile, castor oil-based, hyperbranched, polyurethane nanocomposite using functionalized reduced graphene oxide
Benega et al. Improvements in thermal and mechanical properties of composites based on epoxy-carbon nanomaterials-A brief landscape
KR101327871B1 (en) Manufacturing method for floor material for energy saving and electromagnetic shielding and floor material prepared by using the same
KR101073639B1 (en) Manufacturing Method for Polyurethane conductive coating resin
Li et al. In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites
US8784695B2 (en) Method for manufacturing polyurethane nanocomposite comprising expanded graphite and composition thereof
Karim et al. SWNTs coated by conducting polyaniline: synthesis and modified properties
CA2886691C (en) Electrically conductive coatings containing graphenic carbon particles
Kang et al. Thermal, impact and toughness behaviors of expanded graphite/graphite oxide-filled epoxy composites
Du et al. Urethane-functionalized graphene oxide for improving compatibility and thermal conductivity of waterborne polyurethane composites
Zhang et al. Polydopamine functional reduced graphene oxide for enhanced mechanical and electrical properties of waterborne polyurethane nanocomposites
Aakyiir et al. Combining hydrophilic MXene nanosheets and hydrophobic carbon nanotubes for mechanically resilient and electrically conductive elastomer nanocomposites
Zeng et al. Controllable mechanical properties of epoxy composites by incorporating self-assembled carbon nanotube–montmorillonite
KR101321099B1 (en) Multiple film based on epoxy resin having carbon nanoparticles and process for producing the same
Kausar Fullerene nanofiller reinforced epoxy nanocomposites—Developments, progress and challenges
US10294375B2 (en) Electrically conductive coatings containing graphenic carbon particles
KR20110078577A (en) Manufacturing method for conductive polyurethane nanocomposite with expanded graphite
Karippal et al. Effect of amine functionalization of CNF on electrical, thermal, and mechanical properties of epoxy/CNF composites
Liu et al. Synthesis and properties of sandwiched films of epoxy resin and graphene/cellulose nanowhiskers paper
KR101182723B1 (en) Method for manufacturing conductive polyurethane resin composite in which carbon nano tube is uniformly dispersed
KR101074346B1 (en) The manufacturing method for wet polyurethane composite has good electrical conductivity and wet polyurethane composite manufactured by the method and foamed film using of the same
Zhu et al. Enhanced dielectric performance of TPU composites filled with Graphene@ poly (dopamine)-Ag core-shell nanoplatelets as fillers
Wu et al. Latex co‐coagulation approach to fabrication of polyurethane/graphene nanocomposites with improved electrical conductivity, thermal conductivity, and barrier property
Yoon et al. Grafting polycarbonate onto graphene nanosheets: synthesis and characterization of high performance polycarbonate–graphene nanocomposites for ESD/EMI applications
Fu et al. Fluorescent markable multi-mode pressure sensors achieved by sandwich-structured electrospun P (VDF-HFP) nanocomposite films

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141007

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151007

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161007

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170928

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180928

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191007

Year of fee payment: 9