KR101071632B1 - Surface treating method of engine valve - Google Patents

Surface treating method of engine valve Download PDF

Info

Publication number
KR101071632B1
KR101071632B1 KR1020080132318A KR20080132318A KR101071632B1 KR 101071632 B1 KR101071632 B1 KR 101071632B1 KR 1020080132318 A KR1020080132318 A KR 1020080132318A KR 20080132318 A KR20080132318 A KR 20080132318A KR 101071632 B1 KR101071632 B1 KR 101071632B1
Authority
KR
South Korea
Prior art keywords
engine valve
shaft
groove
grinding
valve
Prior art date
Application number
KR1020080132318A
Other languages
Korean (ko)
Other versions
KR20100073602A (en
Inventor
손현조
Original Assignee
손현조
안전공업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손현조, 안전공업주식회사 filed Critical 손현조
Priority to KR1020080132318A priority Critical patent/KR101071632B1/en
Publication of KR20100073602A publication Critical patent/KR20100073602A/en
Application granted granted Critical
Publication of KR101071632B1 publication Critical patent/KR101071632B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

본 발명은 엔진밸브의 표면처리 방법에 관한 것으로서, 코터홈이 형성된 엔진밸브의 표면처리시 연질화법을 적용하되 코터홈의 굽힘강도를 유지하는 엔진밸브의 표면처리 방법을 제공하는 것이다.The present invention relates to a surface treatment method of an engine valve, to provide a surface treatment method of an engine valve to maintain the bending strength of the coater groove while applying a soft nitriding method when the surface treatment of the engine valve with the coater groove is formed.

본 발명은 최소 하나 이상의 코터홈이 형성된 엔진밸브의 표면처리 방법에 있어서, 성형된 엔진밸브가 일정한 길이를 갖도록 축부 전장을 절단하는 과정과(S110); 전장절단 후, 엔진밸브의 축부 외경을 그라인더로 연삭(황삭) 가공하는 축 조연 과정과(S120); 축 조연 후, 1500 ~ 1750rpm으로 고속 회전하는 한 쌍의 숫돌 사이에 엔진밸브의 축부를 위치시켜 정삭 가공하는 축 사상 과정과(S130); 축 사상 후, 엔진밸브를 550 ~ 590℃ 범위의 연질화 용액에 30 ~ 45분간 침지시켜 화학반응을 통해 질화층을 형성하는 연질화 과정과(S140); 연질화 과정 후, 엔진밸브의 코터홈이 형성된 축단부를 950 ~ 1050℃ 범위에서 1.5 ~ 3초간 고주파 열처리한 후 상온에서 공냉시키는 축 단부 열처리 과정과(S150); 축 단부 열처리과정 후, 코터홈이 형성된 축단부를 180 ~ 250℃ 범위에서 1.5 ~ 3초간 중주파 열처리하는 축 단부 템퍼링 과정과(S160); 상기 축 단부 템퍼링 과정 후, 숫돌에 의한 연삭으로 코터홈에 형성된 이물질 및 돌출부분을 제거하는 코터홈 연삭 과정과(S170); 코터홈 연삭 후, 엔진밸브의 축부를 숫돌로부터 실시되는 축 버핑을 통해 질화로부터 발생한 유해층을 제거하는 과정과(S180); 축 버핑 후, 엔진밸브의 헤드부에 형성된 밸브면을 숫돌로 연마하는 밸브면 연마 과정과(S190); 벨브면 연마 후, 엔진밸브를 세척하여 이물질을 제거하는 세척과정(S200);을 포함하여 이루어지는 것을 특징으로 한다.The present invention provides a method for treating a surface of an engine valve having at least one coater groove, the method comprising: cutting an entire length of a shaft portion such that a molded engine valve has a predetermined length (S110); After the length-cutting, the axis of the process of grinding (roughing) the shaft outer diameter of the engine valve with a grinder (S120); After finishing the shaft, the shaft finishing process of finishing and positioning the shaft portion of the engine valve between a pair of grinding wheels rotating at high speed at 1500 ~ 1750rpm (S130); After the shaft finishing, the nitriding process of forming a nitride layer through a chemical reaction by immersing the engine valve in a soft nitriding solution in the range of 550 ~ 590 ℃ 30 ~ 45 minutes (S140); After the soft nitriding process, the shaft end portion formed with the cotter groove of the engine valve is subjected to a high frequency heat treatment for 1.5 to 3 seconds in the range of 950 ~ 1050 ℃ and the shaft end heat treatment process for air cooling at room temperature (S150); After the shaft end heat treatment process, the shaft end tempering process for performing a medium frequency heat treatment for 1.5 to 3 seconds in the shaft end portion formed with the coater groove 180 ~ 250 ℃ (S160); After the shaft end tempering process, the coater groove grinding process for removing foreign matter and protrusions formed in the coater groove by grinding by the grinding wheel (S170); After grinding the cotter groove, the process of removing the harmful layer generated from the nitriding through the shaft buffing is carried out from the shaft of the engine valve shaft (S180); After the shaft buffing, the valve surface polishing process for polishing the valve surface formed in the head portion of the engine valve with a grindstone (S190); After polishing the valve surface, washing the engine valve to remove foreign matters (S200); characterized in that it comprises a.

엔진밸브, 코터홈, 표면처리, 연질화법, 고주파열처리 Engine valve, coater groove, surface treatment, soft nitriding method, high frequency heat treatment

Description

엔진밸브의 표면처리 방법 {SURFACE TREATING METHOD OF ENGINE VALVE}Surface Treatment Method of Engine Valve {SURFACE TREATING METHOD OF ENGINE VALVE}

본 발명은 엔진밸브의 표면처리 방법에 관한 것으로서, 보다 상세하게는, 최소 하나 이상의 코터홈이 형성된 엔진밸브에 대하여 축부는 연질화법(Tufftride-Nitride)에 의해 표면처리하되 코터홈이 형성된 축 단부는 별도의 표면처리 방법을 통해 굽힘강도를 향상시킨 엔진밸브의 표면처리 방법에 관한 것이다.The present invention relates to a method for surface treatment of an engine valve, and more particularly, for an engine valve having at least one coater groove, the shaft portion is surface-treated by Tufftride-Nitride, but the shaft end on which the coater groove is formed is It relates to a surface treatment method of the engine valve to improve the bending strength through a separate surface treatment method.

일반적으로 엔진밸브의 축부는 그 일단부에 둘레방향으로 코터홈이 형성되고, 상기 코터홈에는 코터(Cotter)와 함께 리테이너가 결합되며, 엔진밸브의 헤드부는 실린더헤드의 흡기 및 배기구멍에 밀착되고, 엔진밸브의 실린더헤드와 코터 및 리테이너 사이에는 스프링이 구비되어 캠축의 회전에 의해 상하 운동하는 엔진밸브를 원위치로 복귀시키는 기능을 한다.In general, the shaft portion of the engine valve is formed with a coater groove in the circumferential direction at one end thereof, and the retainer is coupled to the coater groove with a coater, and the head portion of the engine valve is in close contact with the intake and exhaust holes of the cylinder head. A spring is provided between the cylinder head of the engine valve and the coater and the retainer to return the engine valve, which is vertically moved by the rotation of the cam shaft, to its original position.

또한, 상기 코터는 엔진밸브의 종류에 따라 싱글코터(Single Cotter) 및 멀티코터(Multi Cotter)로 구분된다.In addition, the coater is divided into a single coater (Multi Cotter) and a multi coater (Multi Cotter) according to the type of the engine valve.

상기의 싱글코터는 엔진밸브와 코터가 조립된 일체형으로 스프링의 상하 반 복운동시 권선방향으로 회전하는 것이며, 멀티코터는 엔진밸브와 코터가 분리된 것으로 리테이너와 스프링에 영향을 받지 않고 자유롭게 회전하도록 구성된다. The single coater is an integrally assembled engine valve and coater, and rotates in the winding direction when the spring is repeatedly moved up and down, and the multi-coater is separated from the engine valve and the coater so that it can rotate freely without being influenced by the retainer and the spring. It is composed.

상기와 같은 엔진밸브의 조립구성에 있어서, 캠축의 구동시 엔진밸브를 비스듬히 누르거나 당기는 형태로 상하운동이 발생하며, 이때 코터홈에는 상하 및 좌우 방향의 응력이 작용하여 코터홈의 강도가 낮아지거나 취약하면 파손이 발생할 우려가 있었다. 반면, 코터홈측의 표면 경도가 너무 높으면 탄성력이 저하되어 파손의 원인이 되기도 하였다.In the assembly configuration of the engine valve as described above, the vertical movement occurs in the form of pressing or pulling the engine valve at an angle when the camshaft is driven, the stress in the vertical direction and the left and right directions to the cotter groove lowers the strength of the coater groove or If vulnerable, damage could occur. On the other hand, if the surface hardness of the coater groove side is too high, the elastic force is lowered, causing damage.

즉, 엔진밸브의 축부에는 강도향상을 위한 표면처리 작업이 필수적이되 축부와 코터홈측의 표면처리 작업은 각각 이루어져야 했다.In other words, the surface treatment work to improve the strength is essential to the shaft portion of the engine valve, but the surface treatment work on the shaft portion and the cotter groove side had to be performed respectively.

일반적으로 엔진밸브 축부의 마모를 위한 표면처리 방법으로는 경질크롬(Cr) 도금과 표면질화(연질화법)에 의한 두 가지 방법이 주로 적용된다.In general, two methods of surface treatment for wear of the engine valve shaft are mainly applied by hard chromium (Cr) plating and surface nitriding (soft nitriding).

크롬 도금은 내마모성과, 윤활성, 내열성, 내식성 등이 우수한 장점이 있으나, 자연의 광물질에서 생산되는 크롬은 고갈상태로 진행되어 현재 희소가치가 높고, 그에 따른 가격이 상승되는 문제점이 있으며, 각종 유해성분이 내포된 문제점등이 있었다.Although chromium plating has excellent wear resistance, lubricity, heat resistance, corrosion resistance, etc., chromium produced from natural minerals is depleted and has a high scarcity value, resulting in a high price, and various harmful components. There was a problem.

즉, 크롬 도금은 6가 크롬의 수용액을 가열하여 3가 크롬으로 변환시키면서 처리하였으나, 가열하는 과정에서 미세량의 6가 크롬이 증기속에 포함되어 호흡하는 과정에서 인체 내로 들어가 축적되는 문제점이 있으며, 이는 골다공증 및 다양한 질환의 원인으로 작용되기도 하였다. 뿐만 아니라, 크롬은 주변 토양을 오염시 키는 환경문제의 원인으로 작용되기도 하였다.In other words, chromium plating is processed while heating an aqueous solution of hexavalent chromium to trivalent chromium, but there is a problem in that a small amount of hexavalent chromium is contained in the vapor in the process of heating and accumulates in the human body in the process of breathing, It also acted as a cause of osteoporosis and various diseases. In addition, chromium has also contributed to environmental problems that pollute the surrounding soil.

반면, 표면질화(연질화법)는 K2CO3와 KCNO를 주성분으로 하며 화학반응을 통해 얻어지는 것으로, 가격변동이 쉽고, 무한 생산이 가능하다는 장점이 있다.On the other hand, surface nitriding (soft nitriding method) is obtained by a chemical reaction with the main components of K 2 CO 3 and KCNO, has the advantage of easy price fluctuation, infinite production.

또한, 표면질화(연질화법)는 독성이 강한 KCN의 발생이 수반되지만 인체에 축적되지 않으며 장시간 접촉해도 인체에 유해하지 않은 것으로 알려져있다. In addition, surface nitriding (soft nitriding) is accompanied by the generation of highly toxic KCN, but is not accumulated in the human body and is known to be harmful to the human body even after prolonged contact.

연질화법(Tufftride-Nitride)에서 질화층은 마르텐사이트(Martensite)계와 오스테나이트(Austenite)계로 구성되어 있다.In the Tufftride-Nitride, the nitride layer is composed of martensite and austenite.

도 1은 연질화법을 통해 형성된 마르텐사이트계 및 오스테나이트계의 질화층을 도시한 단면 확대사진이다.1 is an enlarged cross-sectional view of a martensitic and austenitic nitride layer formed through a soft nitriding method.

도 1의 (가)는 마르텐사이트계로 이루어진 질화층 단면 확대사진으로, 모재(20)의 표면으로 확산층(21)이 소정의 두께로 성형되고, 확산층(21)의 외측으로 질소화합물층(22)과 백층(23)이 형성되는 것이다.FIG. 1A is an enlarged photograph of a cross section of a nitride layer made of martensite, and the diffusion layer 21 is formed to a predetermined thickness on the surface of the base material 20, and the nitrogen compound layer 22 and the outside of the diffusion layer 21 are formed. The white layer 23 is formed.

도 1의 (나)는 오스테나이트계로 이루어진 질화층 단면 확대사진으로, 모재(25)의 표면으로 소정의 백층(26)과 화합물층(27) 및 표면산화층(28)으로 이루어지는 것이다.1 (b) is an enlarged photograph of a cross section of an austenitic nitride layer, which is formed of a predetermined white layer 26, a compound layer 27, and a surface oxide layer 28 on the surface of the base material 25.

그러나, 상기 마르텐사이트계 및 오스테나이트계의 백층(23, 26)은 매우 단단하여 깨지기 쉽고, 열처리 과정에서 파괴가 불가능하다는 문제점이 있었다.However, the martensitic and austenitic back layers 23 and 26 are very hard and fragile, and there is a problem that breakage is impossible in the heat treatment process.

종래의 코터홈이 형성된 엔진밸브에 대한 표면처리 방법은, 도 2에 도시한 바와 같이, 엔진밸브의 축부에서 경질 하드 크롬 도금구간(L)만 경질 하드 크롬 도 금을 실시하고, 코터홈 구간(S)은 도금처리를 하지 않고 고주파 열처리를 실시하여 코터홈 구간(S)의 마모를 향상시키는 방법을 채택하였다. As shown in FIG. 2, in the conventional method for treating an engine valve having a coater groove, as shown in FIG. 2, the hard hard chromium plating section L is hardly plated at the shaft portion of the engine valve and the coater groove section ( S) is a method of improving the wear of the coater groove section (S) by performing a high frequency heat treatment without plating.

그러나, 상술한 바와 같이 크롬 도금은 희소성과 고가의 가격, 그리고 유해성분을 내포하는 등 다양한 문제점이 있었다.However, as described above, chromium plating has various problems such as scarcity, high price, and harmful components.

반면, 연질화법에 의한 표면처리는 크롬 도금에 비해 다수의 장점을 갖고 있음에도, 질화층이 갖는 취성 때문에 엔진의 구동 과정에서 상,하,좌,우 방향의 응력이 코터홈에 치중되면 연질화층 일부에 남아있는 딱딱한 부분이 파손의 빌미를 제공하여 결국 엔진밸브의 파손으로 진행되어 사용 불가능 상태에 이르게 된다.On the other hand, the surface treatment by soft nitriding method has many advantages over chromium plating. However, if the stresses in the up, down, left and right directions are concentrated in the cotter groove during the engine driving process, the soft nitride layer is partially part of the brittleness of the nitride layer The hard part remaining at the tip provides a breakage of damage, which eventually leads to a breakdown of the engine valve and leads to an unusable state.

또한, 엔진밸브 축부에 대해 연질화법을 적용한 후 코터홈에 고주파 열처리 방법을 적용한다 하더라도, 마르텐사이트계 및 오스테나이트계의 백층(23, 26)이 열처리 과정에서 잘 파괴되지 않았으며, 원형으로 이루어진 코터홈의 구성적 특성상 반응상태가 불균일하여 질화층 파괴가 더욱 어려우며 딱딱한(취성에 약한) 부분이 남게되는 문제점이 있었다.In addition, even if the high-frequency heat treatment method is applied to the cotter groove after the soft nitriding method is applied to the engine valve shaft portion, the martensitic and austenitic back layers 23 and 26 are not easily destroyed during the heat treatment process. Due to the constitutive characteristics of the coater groove, the reaction state is nonuniform, which makes it more difficult to destroy the nitride layer and leaves a hard (weak) brittle part.

따라서, 본 발명은 상술한 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 엔진밸브의 표면처리시 연질화법을 적용하되 코터홈의 굽힘강도를 유지하는 엔진밸브의 표면처리 방법을 제공하는데 본 발명의 목적이 있다.Accordingly, the present invention has been made to solve the above-mentioned problems of the prior art, and provides a method for treating the surface of the engine valve to maintain the bending strength of the coater groove while applying a soft nitriding method during the surface treatment of the engine valve. There is a purpose.

상술한 목적을 달성하기 위한 기술적 수단으로, 본 발명은 최소 하나 이상의 코터홈이 형성된 엔진밸브의 표면처리 방법에 있어서, 성형된 엔진밸브가 일정한 길이를 갖도록 축부 전장을 절단하는 과정과; 전장절단 후, 엔진밸브의 축부 외경을 그라인더로 연삭(황삭) 가공하는 축 조연 과정과; 축 조연 후, 1500 ~ 1750rpm으로 고속 회전하는 한 쌍의 숫돌 사이에 엔진밸브의 축부를 위치시켜 정삭 가공하는 축 사상 과정과; 축 사상 후, 엔진밸브를 550 ~ 590℃ 범위의 연질화 용액에 30 ~ 45분간 침지시켜 화학반응을 통해 질화층을 형성하는 연질화 과정과; 연질화 과정 후, 엔진밸브의 코터홈이 형성된 축단부를 950 ~ 1050℃ 범위에서 1.5 ~ 3초간 고주파 열처리한 후 상온에서 공냉시키는 축 단부 열처리 과정과; 축 단부 열처리과정 후, 코터홈이 형성된 축단부를 180 ~ 250℃ 범위에서 1.5 ~ 3초간 중주파 열처리하는 축 단부 템퍼링 과정과; 상기 축 단부 템퍼링 과정 후, 숫돌에 의한 연삭으로 코터홈에 형성된 이물질 및 돌출부분을 제거하는 코터홈 연삭 과정과; 코터홈 연삭 후, 엔진밸브의 축부를 숫돌로부터 실시되는 축 버핑을 통해 질화로부터 발생한 유해층을 제거하는 과정과; 축 버핑 후, 엔진밸브의 헤드부에 형성된 밸브면을 숫돌로 연마하는 밸브면 연마 과정과; 벨브면 연마 후, 엔진밸브를 세척하여 이물질을 제거하는 세척과정;을 포함하여 이루어지는 것을 특징으로 한다.As a technical means for achieving the above object, the present invention provides a surface treatment method of an engine valve having at least one coater groove, the process comprising: cutting the entire length of the shaft portion so that the molded engine valve has a certain length; An axis rolling process of grinding (roughing) the shaft outer diameter of the engine valve with a grinder after the full length cutting; An axis finishing process of finishing and positioning the shaft portion of the engine valve between a pair of grinding wheels rotating at a high speed at 1500 to 1750 rpm after the shaft is rolled; After the shaft finishing, the nitriding process of immersing the engine valve in a soft nitriding solution in the range of 550 ~ 590 30 to 45 minutes to form a nitride layer through a chemical reaction; After the soft nitriding process, the shaft end heat treatment process for the high frequency heat treatment for 1.5 ~ 3 seconds in the range of 950 ~ 1050 ℃ the shaft end formed with the coater groove of the engine valve and air cooled at room temperature; After the shaft end heat treatment process, the shaft end tempering process of the intermediate frequency heat treatment for 1.5 to 3 seconds in the range of 180 ~ 250 ℃ shaft end portion formed with the coater groove; A cotter groove grinding process of removing foreign substances and protrusions formed in the cotter groove by grinding by a grinding wheel after the shaft end tempering process; After the cotter groove grinding, removing the harmful layer generated from nitriding through the shaft buffing performed by the shaft of the engine valve from the grindstone; A valve surface polishing process of polishing the valve surface formed on the head of the engine valve with a grindstone after the shaft buffing; After polishing the valve surface, washing the engine valve to remove the foreign matter; characterized in that it comprises a.

상기 연질화 용액의 바람직한 성분비는 CN- 4중량%, CNO- 32중량%, [CO3]2- 19중량%, K+ 40중량%, Na+ 5중량%로 이루어지는 것을 특징으로 한다.The preferred component ratio of the soft nitriding solution is characterized by consisting of CN - 4% by weight, CNO - 32% by weight, [CO 3 ] 2-19 % by weight, K + 40% by weight, Na + 5% by weight.

이때, 상기 연질화 과정을 통해 형성된 엔진밸브의 질화층 두께는 20 ~ 50㎛로 형성됨을 특징으로 한다.At this time, the nitride layer thickness of the engine valve formed through the soft nitriding process is characterized in that formed in 20 ~ 50㎛.

본 발명에 따른 엔진밸브의 표면처리 방법에 의하면, 엔진밸브의 표면처리시 연질화법을 적용함으로 크롬 도금이 갖는 다양한 문제점을 해소하였으며, 코터홈이 형성된 축 단부는 별도의 열처리 공정과 코터홈측의 질화층을 제거함으로 코터홈측의 굽힘강도를 향상시킨 효과가 있다. According to the surface treatment method of the engine valve according to the present invention, by applying a soft nitriding method in the surface treatment of the engine valve, various problems of chromium plating are solved, and the shaft end formed with the coater groove has a separate heat treatment process and nitriding on the coater groove side. Removing the layer has an effect of improving the bending strength of the coater groove side.

이하, 첨부된 도면을 참조하면서 본 발명에 대해 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명의 실시예에 따른 엔진밸브의 외형을 도시한 정면도로서, 상기와 같이 엔진밸브(30)는 크게 헤드부(31) 및 축부(32)로 이루어지되, 헤드부(31)의 외주연은 축부(32)로 경사지게 연결되는 밸브면(34)을 형성한다. 또한, 축부(32)에서 헤드부(31)와 대응되는 또 다른 일측 단부에는 축부(32)의 둘레에 소정 깊이를 갖는 코터홈(33)이 형성된다. Figure 3 is a front view showing the external appearance of the engine valve according to an embodiment of the present invention, the engine valve 30 is composed of a head portion 31 and the shaft portion 32 as described above, the head of the head 31 The outer circumference forms a valve face 34 which is inclinedly connected to the shaft portion 32. In addition, at one end portion of the shaft portion 32 corresponding to the head portion 31, a coater groove 33 having a predetermined depth is formed around the shaft portion 32.

도 4는 본 발명의 실시예에 따른 엔진밸브의 표면처리 방법에 대한 순서도로서, 상기와 같이 본 발명에 따른 엔진밸브의 표면처리는, 전장절단(S110) -> 축 조연(S120) -> 축 사상(S130) -> 연질화(S140) -> 축 단부 열처리(S150) -> 축 단부 템퍼링(S160) -> 코터홈 연삭(S170) -> 축 버핑(S180) -> 밸브면 연마(S190) -> 세척(S200) 과정을 포함하여 이루어지는 것이다.Figure 4 is a flow chart for the surface treatment method of the engine valve according to an embodiment of the present invention, as described above, the surface treatment of the engine valve according to the present invention, the full length cutting (S110)-> shaft support (S120)-> shaft Finish (S130)-> Soft Nitriding (S140)-> Shaft End Heat Treatment (S150)-> Shaft End Tempering (S160)-> Cotter Groove Grinding (S170)-> Shaft Buffing (S180)-> Polishing Valve Surface (S190) -> It is made, including the washing (S200) process.

본 발명의 실시예에 따른 엔진밸브의 표면처리 방법을 보다 상세히 설명하면 다음과 같다.Referring to the surface treatment method of the engine valve according to an embodiment of the present invention in more detail.

(1) 전장절단(S110)(1) Battlefield Cutting (S110)

SUH11 또는 STR11 중 어느 하나의 재료를 이용하여 성형된 엔진밸브(30)가 일정한 길이를 갖도록 축부(32) 전장을 절단한다.The entire length of the shaft portion 32 is cut so that the engine valve 30 formed using the material of either SUH11 or STR11 has a constant length.

(2) 축 조연(S120)(2) shaft support (S120)

전장을 절단한 후 엔진밸브(30)의 축부(32) 외경을 그라인더로 연삭(황삭) 가공하는 1차 가공이 이루어진다.After cutting the entire length, primary processing is performed to grind (rough) the outer diameter of the shaft portion 32 of the engine valve 30 with a grinder.

(3) 축 사상(S130)(3) shaft mapping (S130)

축 조연 후 축부(32)의 외경을 2차 가공하는 것으로, 주축과 부축으로 이루어진 한 쌍의 숫돌을 1500 ~ 1750rpm으로 고속 회전시고 상기 숫돌 사이에 엔진밸 브(30)의 축부(32)를 위치시켜 정삭 가공 후 세정하는 것이다. After the shaft is rolled, the outer diameter of the shaft 32 is processed secondly, and a pair of grindstones composed of the main shaft and the minor shaft are rotated at a high speed at 1500 to 1750 rpm, and the shaft 32 of the engine valve 30 is positioned between the grindstones. To clean after finishing.

(4) 연질화(S140)(4) soft nitriding (S140)

축 사상 후 엔진밸브(30)를 연질화 용액에 침지시켜 화학반응을 통해 질화층을 형성하는 연질화 과정이 이루어진다.After the shaft finishing, the nitriding process is performed by immersing the engine valve 30 in a soft nitriding solution to form a nitride layer through a chemical reaction.

상기 연질화 용액의 성분비는 CN- 4중량%, CNO- 32중량%, [CO3]2- 19중량%, K+ 40중량%, Na+ 5중량%로 이루어지는 것으로, 엔진밸브(30)는 상기 연질화 용액의 온도가 550 ~ 590℃ 범위에서 30 ~ 45분간 침지시킴으로 화학반응을 통해 연질화 과정이 실시되는 것이다. 바람직하게, 연질화 과정을 통한 상기 엔진밸브(30)의 질화층 두께는 20 ~ 50㎛로 이루어짐을 특징으로 한다. Component ratio of the soft nitriding solution is CN - 4% by weight, CNO - 32% by weight, [CO 3 ] 2- 19% by weight, K + 40% by weight, Na + 5% by weight, the engine valve 30 is The temperature of the soft nitriding solution is immersed for 30 to 45 minutes in the range of 550 ~ 590 ℃ is a soft nitriding process through a chemical reaction. Preferably, the nitride layer thickness of the engine valve 30 through the soft nitriding process is characterized in that made of 20 ~ 50㎛.

삭제delete

삭제delete

삭제delete

삭제delete

(5) 축 단부 열처리(S150)(5) Shaft end heat treatment (S150)

연질화 과정을 거친 엔진밸브(30)는 코터홈(33)이 형성된 축 단부를 950 ~ 1050℃ 범위에서 1.5 ~ 3초간 고주파 열처리한 후 상온에서 공냉시키는 과정이 이어진다. After the soft nitriding process, the engine valve 30 is subjected to a high frequency heat treatment for 1.5 to 3 seconds in the range of 950 to 1050 ° C. in which the cotter groove 33 is formed, followed by air cooling at room temperature.

(6) 축 단부 템퍼링(S160)(6) shaft end tempering (S160)

상기 열처리(고주파)과정이 실시된 코터홈(33)이 형성된 축 단부는 템퍼링 (tempering) 과정을 통해 그 조직을 무르게하여 내부 응력을 없애는 과정으로, 180 ~ 250℃ 범위에서 1.5 ~ 3초간 중주파 열처리과정을 실시하여 표면 경화층을 부드럽게 하는 것이다.The shaft end formed with the cotter groove 33 subjected to the heat treatment (high frequency) process is a process of removing internal stress by softening the tissue through a tempering process, and performing a medium frequency heat treatment for 1.5 to 3 seconds in a range of 180 to 250 ° C. The procedure is to soften the surface hardened layer.

(7) 코터홈 연삭(S170)(7) Cotter Groove Grinding (S170)

상기 축 단부 템퍼링 과정이 실시된 축 단부에서 코터홈(33)은 별도의 연삭작업이 수행되는 것으로, 섬유질 숫돌로부터 코터홈(33)에 형성된 이물질 및 돌출부분을 연삭과정을 통해 제거하여 부드러운 표면을 형성하는 것이다.At the shaft end where the shaft end tempering process is performed, the coater groove 33 is a separate grinding operation, and removes foreign substances and protrusions formed in the coater groove 33 from the fibrous grindstone by grinding the smooth surface. To form.

(8) 축 버핑(S180)(8) Shaft Buffing (S180)

코터홈 연삭 후 엔진밸브(30)의 축부(32)는 섬유질 숫돌로부터 실시되는 축 버핑(레핑)과정을 통해 질화로부터 발생한 유해층을 제거하는 것이다. After grinding the cotter groove, the shaft 32 of the engine valve 30 removes the harmful layer generated from nitriding through a shaft buffing process performed from a fibrous grinding wheel.

(9) 밸브면 연마(S190)(9) Polishing the valve surface (S190)

축 버핑 과정이 종료된 후 숫돌에 엔진밸브(30)의 헤드부(31)를 공급하여 연 마하는 것으로, 헤드부(31)에 형성된 밸브면(34)이 숫돌로부터 연마되는 것이다.After the end of the shaft buffing process by supplying and grinding the head 31 of the engine valve 30 to the grindstone, the valve face 34 formed on the head 31 is polished from the grindstone.

(10) 세척(S200)(10) cleaning (S200)

벨브면의 연마가 종료된 후 엔진밸브(30)를 세척하여 이물질을 제거함으로써 엔진밸브(30)의 제조가 완료되는 것이다.After the polishing of the valve surface is completed, the engine valve 30 is washed to remove foreign substances, thereby completing the manufacture of the engine valve 30.

본 발명은 상기 실시예를 통해서 알 수 있듯이, 엔진밸브(30) 전체에 대한 연질화 과정(S140)이 이루어지되, 축 단부는 고주파 열처리 과정(S150) 및 축 단부 템퍼링(S160) 과정이 별도로 이루어지며, 코터홈(33)은 연삭과정(S170)을 통해 질화층을 제거하여 코터의 조립 후 엔진밸브(30)의 구동중에 발생되어지던 코터홈(33)의 파손을 방지할 수 있는 것이다.As the present invention can be seen through the above embodiment, the soft nitriding process (S140) is made for the entire engine valve 30, the shaft end is a high-frequency heat treatment process (S150) and shaft end tempering (S160) process is made separately The cotter groove 33 is to remove the nitride layer through the grinding process (S170) to prevent damage to the cotter groove 33 generated during operation of the engine valve 30 after the assembly of the coater.

도 5는 본 발명의 실시예에 따라 연질화 과정을 거친 엔진밸브 코터홈의 단면과 질화층을 제거한 엔진밸브 코터홈의 단면을 확대 도시한 것이다. 5 is an enlarged view of the cross section of the engine valve coater groove from which the nitriding layer is removed and the cross section of the engine valve coater groove subjected to the soft nitriding process according to the embodiment of the present invention.

도 5의 (가)는 연질화 과정을 거친 엔진밸브 코터홈의 단면 확대사진으로, 축부(32) 외경과 코터홈(33)에 모두 질화층(41)이 형성되어 있음을 알 수 있다.5A is an enlarged cross-sectional view of the engine valve coater groove that has undergone soft nitriding, and it can be seen that the nitride layer 41 is formed in both the outer diameter of the shaft portion 32 and the coater groove 33.

도 5의 (나)는 연질화 과정 후 코터홈 연삭을 통해 질화층을 제거한 엔진밸브 코터홈의 단면 확대사진으로, 축부(32) 외경에는 질화층이 남아있으나 코터홈(33)에는 질화층(41)이 제거되었음을 알 수 있다.5 (b) is an enlarged cross-sectional view of the engine valve coater groove in which the nitride layer is removed through the cotter groove grinding after the soft nitriding process, and the nitride layer remains in the outer diameter of the shaft part 32, but the nitride layer ( It can be seen that 41) has been removed.

도 6은 만능 재료 시험기를 이용한 코터홈이 형성된 엔진밸브 축 단부의 강 도를 테스트하는 것으로, 지그(10)의 하측 중앙으로 원통형의 바(11)를 설치하여 엔진밸브(30)의 코터홈(33)이 위치하도록 설치하고, 코터홈(33)의 양쪽을 하측에서 받침대(13)로 각각 지지하며 받침대(13)를 틀(14)이 지지하도록 설치하여 테스트하는 것이다.6 is to test the strength of the shaft end of the engine valve formed with a cotter groove using a universal material tester, by installing a cylindrical bar 11 in the lower center of the jig 10 to the coater groove of the engine valve 30 ( 33) is installed, and both sides of the coater groove 33 is supported by the pedestal 13 from the lower side, and the pedestal 13 is installed so that the frame 14 supports the test.

도 7은 상기 시험기를 이용하여 테스트한 결과를 나타낸 그래프이다.7 is a graph showing the results of the test using the tester.

즉, 코터홈(33)이 형성된 엔진밸브 축 단의 파단 강도는, 종래에는 700kg이상 형성되었으나, 본 발명의 실시예에 따른 엔진밸브 표면처리를 거치면 코터홈(33)이 형성된 엔진밸브 축 단의 파단 강도는 1400kg이상에서 형성되므로 약 700kg의 강도가 향상되어 안정된 하중을 확보할 수 있는 것이다.That is, although the breaking strength of the engine valve shaft end having the cotter groove 33 is formed in the past, 700kg or more, the surface of the engine valve shaft end formed with the coater groove 33 is subjected to the surface treatment of the engine valve according to the embodiment of the present invention. Since the breaking strength is formed at 1400kg or more, the strength of about 700kg is improved to secure a stable load.

상기한 바와 같이, 본 발명의 기술적 사상을 바람직한 실시 예를 참조하여 설명하였지만 해당 기술분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있는 것이다.As described above, although the technical idea of the present invention has been described with reference to the preferred embodiments, those skilled in the art will be able to vary the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. Can be modified and changed.

도 1은 연질화법을 통해 형성된 마르텐사이트계 및 오스테나이트계의 질화층을 도시한 단면 확대사진으로,1 is an enlarged cross-sectional view of a martensitic and austenitic nitride layer formed by soft nitriding;

도 1의 (가)는 마르텐사이트계로 이루어진 질화층 단면의 확대사진이며,Figure 1 (a) is an enlarged photograph of the cross section of the nitride layer made of martensite system,

도 1의 (나)는 오스테나이트계로 이루어진 질화층 단면의 확대사진이다.Figure 1 (b) is an enlarged photograph of the cross section of the nitride layer made of austenitic.

도 2는 크롬 도금과 고주파 열처리 방법을 병합한 종래의 엔진밸브 표면처리 구간을 도시한 예시도이다.Figure 2 is an exemplary view showing a conventional engine valve surface treatment section incorporating chromium plating and high frequency heat treatment method.

도 3은 본 발명의 실시예에 따른 엔진밸브의 외형을 도시한 정면도이다.Figure 3 is a front view showing the appearance of the engine valve according to an embodiment of the present invention.

도 4는 본 발명의 실시예에 따른 엔진밸브의 표면처리 방법에 대한 순서도이다.Figure 4 is a flow chart for the surface treatment method of the engine valve according to an embodiment of the present invention.

도 5는 본 발명의 실시예에 따라 연질화 과정을 거친 엔진밸브 코터홈의 단면과 질화층을 제거한 엔진밸브 코터홈의 단면을 확대 도시한 것으로,FIG. 5 is an enlarged cross-sectional view of the engine valve coater groove from which the nitriding layer is removed and the cross section of the engine valve coater groove that has undergone soft nitriding in accordance with an embodiment of the present invention.

도 5의 (가)는 연질화 과정을 거친 엔진밸브 코터홈의 단면 확대사진이며,5 (a) is an enlarged cross-sectional view of the engine valve coater groove which has undergone soft nitriding.

도 5의 (나)는 연질화 과정 후 코터홈 연삭을 통해 질화층을 제거한 엔진밸브 코터홈의 단면 확대사진이다.5B is an enlarged cross-sectional view of the engine valve coater groove from which the nitride layer is removed through the cotter groove grinding after the soft nitriding process.

도 6은 만능 재료 시험기를 이용한 코터홈이 형성된 엔진밸브 축 단부의 강도 테스트 예시도이다.Figure 6 is an exemplary test of the strength of the shaft end of the engine valve formed with a coater groove using a universal testing machine.

도 7은 도 6의 시험기를 이용하여 테스트한 결과를 나타낸 그래프이다.7 is a graph showing the results of the test using the tester of FIG. 6.

< 도면의 주요 부분에 대한 부호의 설명 ><Description of Symbols for Main Parts of Drawings>

30 : 엔진밸브 31 : 헤드부30: engine valve 31: head portion

32 : 축부 33 : 코터홈32: shaft 33: cotter groove

34 : 밸브면 41 : 질화층34: valve surface 41: nitride layer

Claims (3)

최소 하나 이상의 코터홈이 형성된 엔진밸브의 표면처리 방법에 있어서,In the surface treatment method of the engine valve formed with at least one coater groove, 성형된 엔진밸브(30)가 일정한 길이를 갖도록 축부(32) 전장을 절단하는 과정과(S110);Cutting the entire length of the shaft portion 32 such that the molded engine valve 30 has a predetermined length (S110); 전장절단 후, 엔진밸브(30)의 축부(32) 외경을 그라인더로 연삭(황삭) 가공하는 축 조연 과정과(S120);After the full length cutting, the axis of the grinding step (S120) for grinding (roughing) the outer diameter of the shaft portion 32 of the engine valve 30 with a grinder; 축 조연 후, 1500 ~ 1750rpm으로 고속 회전하는 한 쌍의 숫돌 사이에 엔진밸브(30)의 축부(32)를 위치시켜 정삭 가공하는 축 사상 과정과(S130);After finishing the shaft, the shaft finishing process of finishing finishing by positioning the shaft portion 32 of the engine valve 30 between a pair of grinding wheels rotating at a high speed of 1500 ~ 1750rpm (S130); 축 사상 후, 엔진밸브(30)를 550 ~ 590℃ 범위의 연질화 용액에 30 ~ 45분간 침지시켜 화학반응을 통해 질화층을 형성하는 연질화 과정과(S140);After the shaft finishing, the nitriding process of immersing the engine valve 30 in a soft nitriding solution in the range of 550 ~ 590 ℃ 30 to 45 minutes to form a nitride layer through a chemical reaction (S140); 연질화 과정 후, 엔진밸브(30)의 코터홈(33)이 형성된 축단부를 950 ~ 1050℃ 범위에서 1.5 ~ 3초간 고주파 열처리한 후 상온에서 공냉시키는 축 단부 열처리 과정과(S150);After the soft nitriding process, the shaft end heat treatment process for high frequency heat treatment for 1.5 to 3 seconds in the range of 950 ~ 1050 ℃ axial end portion formed with the cotter groove 33 of the engine valve 30 and air cooled at room temperature (S150); 축 단부 열처리과정 후, 코터홈(33)이 형성된 축단부를 180 ~ 250℃ 범위에서 1.5 ~ 3초간 중주파 열처리하는 축 단부 템퍼링 과정과(S160);After the shaft end heat treatment process, the shaft end tempering process for performing the medium frequency heat treatment for 1.5 to 3 seconds in the shaft end portion formed with the coater groove 33 180 ~ 250 ℃ (S160); 상기 축 단부 템퍼링 과정 후, 숫돌에 의한 연삭으로 코터홈(33)에 형성된 이물질 및 돌출부분을 제거하는 코터홈 연삭 과정과(S170);A cotter groove grinding process of removing foreign substances and protrusions formed in the cotter groove 33 by grinding by the grinding wheel after the shaft end tempering process (S170); 코터홈 연삭 후, 엔진밸브(30)의 축부(32)를 숫돌로부터 실시되는 축 버핑을 통해 질화로부터 발생한 유해층을 제거하는 과정과(S180);After the cotter groove grinding, the process of removing the harmful layer generated from the nitriding through the shaft buffing the shaft 32 of the engine valve 30 from the grindstone (S180); 축 버핑 후, 엔진밸브(30)의 헤드부(31)에 형성된 밸브면(34)을 숫돌로 연마하는 밸브면 연마 과정과(S190);A valve surface polishing process of polishing the valve surface 34 formed on the head portion 31 of the engine valve 30 with a grindstone after axial buffing (S190); 벨브면 연마 후, 엔진밸브(30)를 세척하여 이물질을 제거하는 세척과정(S200);을 포함하여 이루어지는 것을 특징으로 하는 엔진밸브의 표면처리 방법.After polishing the valve surface, washing the engine valve 30 to remove the foreign matter (S200); Surface treatment method of the engine valve comprising a. 제 1항에 있어서,The method of claim 1, 상기 연질화 용액의 성분비는 CN- 4중량%, CNO- 32중량%, [CO3]2- 19중량%, K+ 40중량%, Na+ 5중량%로 이루어지는 것을 특징으로 하는 엔진밸브의 표면처리 방법.The component ratio of the soft nitriding solution is CN - 4% by weight, CNO - 32% by weight, [CO 3 ] 2- 19% by weight, K + 40% by weight, Na + 5% by weight of the surface of the engine valve, characterized in that Treatment method. 제 1항에 있어서,The method of claim 1, 상기 연질화 과정(S140)을 통해 형성된 엔진밸브(30)의 질화층 두께는 20 ~ 50㎛로 형성됨을 특징으로 하는 엔진밸브의 표면처리 방법.The nitriding layer thickness of the engine valve 30 formed through the soft nitriding process (S140) is formed of 20 ~ 50㎛ surface treatment method of the engine valve.
KR1020080132318A 2008-12-23 2008-12-23 Surface treating method of engine valve KR101071632B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080132318A KR101071632B1 (en) 2008-12-23 2008-12-23 Surface treating method of engine valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080132318A KR101071632B1 (en) 2008-12-23 2008-12-23 Surface treating method of engine valve

Publications (2)

Publication Number Publication Date
KR20100073602A KR20100073602A (en) 2010-07-01
KR101071632B1 true KR101071632B1 (en) 2011-10-10

Family

ID=42636536

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080132318A KR101071632B1 (en) 2008-12-23 2008-12-23 Surface treating method of engine valve

Country Status (1)

Country Link
KR (1) KR101071632B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101990986B1 (en) 2018-12-31 2019-06-20 안전공업주식회사 Nitridation surface structure of high power and high temperature engine valve stem and the method of nitride treatment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101703151B1 (en) 2015-11-24 2017-02-06 주식회사 서연이화 sliding armrest system coupled with console knob using wiring
KR101714016B1 (en) * 2015-12-08 2017-03-09 주식회사 영풍열처리 Method of metal surface treatment for helical or spur gear of automatic transmission

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1047023A (en) 1996-08-07 1998-02-17 Aisan Ind Co Ltd Engine valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1047023A (en) 1996-08-07 1998-02-17 Aisan Ind Co Ltd Engine valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101990986B1 (en) 2018-12-31 2019-06-20 안전공업주식회사 Nitridation surface structure of high power and high temperature engine valve stem and the method of nitride treatment

Also Published As

Publication number Publication date
KR20100073602A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
KR101071632B1 (en) Surface treating method of engine valve
CN102501161B (en) Method for manufacturing needle roller with unloading function for bearing
CN103659562B (en) Without corner angle sphere needle roller processing method
JP3975314B2 (en) Bearing part material and rolling bearing raceway manufacturing method
CN102423869B (en) Manufacturing method of stainless steel roller needles for bearing
CN110616401A (en) Preparation method of wear-resistant hydraulic pump part
CN106736321A (en) A kind of 20Cr cam cuttings technique
CN111041161B (en) Machining method for forming self-sharpening edge by slit type induction quenching of cutter
KR20190042119A (en) Gloss treatment method of the surface of stainless hot forging products
KR101990986B1 (en) Nitridation surface structure of high power and high temperature engine valve stem and the method of nitride treatment
CN102501158A (en) Method for manufacturing quill roller for bearing
CN113199211B (en) Processing technology of sleeve for chain
JPH04333521A (en) Production of bearing ring
JPS60162726A (en) Method for surface-hardening toothed part of ring gear of flywheel
JPH11269631A (en) Surface treating method for parts made of steel
CN110293379B (en) Treatment method for martensite steel inlet valve disc conical surface
JP5231980B2 (en) Rocker arm and its polishing method
JPH1148036A (en) Manufacture for gear of super high quality
JPH025817B2 (en)
CN111471947A (en) Method for improving corrosion resistance of titanium alloy surface through high-energy shot blasting
JPH1150141A (en) Surface hardening treatment for steel parts
JP3009452B2 (en) Method of manufacturing high strength carbonitrided coil spring
JP3470792B2 (en) Metal rolling element for toroidal type continuously variable transmission and method of manufacturing the same
KR20010025964A (en) Method for manufacturing engine valve spring having high exhaustion resistance
CN113814664A (en) Gear shaving high-frequency process after press mounting of auxiliary shaft

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141010

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151119

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161004

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171010

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181105

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190819

Year of fee payment: 9