KR101068500B1 - Ultraefficient separation and sensing of mercury and methylmercury ions in drinking water by using aminonaphthalimide-functionalized fe3o4@sio2 core/shell magnetic nanoparticles - Google Patents
Ultraefficient separation and sensing of mercury and methylmercury ions in drinking water by using aminonaphthalimide-functionalized fe3o4@sio2 core/shell magnetic nanoparticles Download PDFInfo
- Publication number
- KR101068500B1 KR101068500B1 KR1020100024337A KR20100024337A KR101068500B1 KR 101068500 B1 KR101068500 B1 KR 101068500B1 KR 1020100024337 A KR1020100024337 A KR 1020100024337A KR 20100024337 A KR20100024337 A KR 20100024337A KR 101068500 B1 KR101068500 B1 KR 101068500B1
- Authority
- KR
- South Korea
- Prior art keywords
- shell
- magnetic nanoparticles
- core
- group
- mercury
- Prior art date
Links
- 239000002122 magnetic nanoparticle Substances 0.000 title claims abstract description 72
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 229910052753 mercury Inorganic materials 0.000 title claims abstract description 54
- 239000003651 drinking water Substances 0.000 title abstract description 13
- 235000020188 drinking water Nutrition 0.000 title abstract description 13
- 238000000926 separation method Methods 0.000 title description 10
- -1 methylmercury ions Chemical class 0.000 title description 2
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 57
- HCSXGHIWQVZBJK-UHFFFAOYSA-N 4-aminobenzo[de]isoquinoline-1,3-dione Chemical group C1=CC=C2C(=O)NC(=O)C3=C2C1=CC=C3N HCSXGHIWQVZBJK-UHFFFAOYSA-N 0.000 claims abstract description 41
- 239000000126 substance Substances 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 claims abstract description 11
- 230000003287 optical effect Effects 0.000 claims abstract description 5
- 239000002105 nanoparticle Substances 0.000 claims description 46
- 150000001875 compounds Chemical class 0.000 claims description 11
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 9
- 239000000356 contaminant Substances 0.000 claims description 9
- 125000000732 arylene group Chemical group 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 239000003463 adsorbent Substances 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 5
- 125000000027 (C1-C10) alkoxy group Chemical group 0.000 claims description 4
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 claims description 4
- 125000002947 alkylene group Chemical group 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 4
- 230000000171 quenching effect Effects 0.000 claims description 4
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 claims description 3
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 3
- 238000010791 quenching Methods 0.000 claims description 3
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims 1
- 238000000746 purification Methods 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 238000001179 sorption measurement Methods 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 3
- 239000000696 magnetic material Substances 0.000 description 20
- 229910021645 metal ion Inorganic materials 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 7
- 238000002189 fluorescence spectrum Methods 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- GNHIAZJQCWTMEG-UHFFFAOYSA-N 2-aminonaphthalene-1-carboxamide Chemical group C1=CC=C2C(C(=O)N)=C(N)C=CC2=C1 GNHIAZJQCWTMEG-UHFFFAOYSA-N 0.000 description 5
- JJWSNOOGIUMOEE-UHFFFAOYSA-N Monomethylmercury Chemical compound [Hg]C JJWSNOOGIUMOEE-UHFFFAOYSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000007993 MOPS buffer Substances 0.000 description 4
- 238000003917 TEM image Methods 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002159 nanocrystal Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- 125000005462 imide group Chemical group 0.000 description 3
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000005011 time of flight secondary ion mass spectroscopy Methods 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-WFGJKAKNSA-N acetone d6 Chemical compound [2H]C([2H])([2H])C(=O)C([2H])([2H])[2H] CSCPPACGZOOCGX-WFGJKAKNSA-N 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000003440 toxic substance Substances 0.000 description 2
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241000039087 Apostates Species 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 208000030527 Minamata disease Diseases 0.000 description 1
- 208000009507 Nervous System Mercury Poisoning Diseases 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000002498 deadly effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 238000000593 microemulsion method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 231100000701 toxic element Toxicity 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- FYUZFGQCEXHZQV-UHFFFAOYSA-N triethoxy(hydroxy)silane Chemical compound CCO[Si](O)(OCC)OCC FYUZFGQCEXHZQV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/02—Oxides; Hydroxides
- C01G49/08—Ferroso-ferric oxide [Fe3O4]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0225—Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/103—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Manufacturing & Machinery (AREA)
- Compounds Of Iron (AREA)
Abstract
본 발명은 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자, 이의 제조방법 및 응용에 관한 것으로,
자세하게는 수은 및 유기수은으로부터 오염된 음용수로부터 수은 및 유기수은을 고감도로 검출할 수 있으며, 화학적, 물리적 흡착을 통하여 오염된 음용수로부터 수은 및 유기수은을 분리 및 제거할 수 있는 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자, 이의 제조방법에 관한 것이고, 상기 자성체 나노입자를 이용하여 광학센서, 정수장치에 응용할 수 있는 기술에 관한 것이다.The present invention relates to a Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles having an aminonaphthalimide group substituted on the surface of the shell, and to a method and application thereof.
In detail, mercury and organic mercury can be detected with high sensitivity from drinking water contaminated with mercury and organic mercury, and an aminonaphthalimide group, which can separate and remove mercury and organic mercury from contaminated drinking water through chemical and physical adsorption, is formed on the surface of the shell. The present invention relates to a substituted Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticle and a method for manufacturing the same, and to a technology applicable to an optical sensor and a water purifier using the magnetic nanoparticle.
Description
본 발명은 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자, 이의 제조방법 및 응용에 관한 것으로,The present invention relates to a Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles having an aminonaphthalimide group substituted on the surface of the shell, and to a method and application thereof.
자세하게는 수은 및 유기수은으로부터 오염된 음용수로부터 수은 및 유기수은을 고감도로 검출할 수 있으며, 화학적, 물리적 흡착을 통하여 오염된 음용수로부터 수은 및 유기수은을 분리 및 제거할 수 있는 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자, 이의 제조방법에 관한 것이고, 상기 자성체 나노입자를 이용하여 광학센서, 정수장치에 응용할 수 있는 기술에 관한 것이다.In detail, mercury and organic mercury can be detected with high sensitivity from drinking water contaminated with mercury and organic mercury, and an aminonaphthalimide group, which can separate and remove mercury and organic mercury from contaminated drinking water through chemical and physical adsorption, is formed on the surface of the shell. The present invention relates to a substituted Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticle and a method for manufacturing the same, and to a technology applicable to an optical sensor and a water purifier using the magnetic nanoparticle.
수은은 독성이 강한 원소로서, 자연계 및 인공계에서 다양한 환경오염을 일으킨다. 자세하게, 메틸수은(methylmercury)종(CH3HgX; X=할로겐원소 등)과 같은 유기수은은 무기수은(HgX2)보다 훨씬 더 독성이 강하다. 빠른 용해도 때문에 메틸수은종은 혈액 뇌 장벽을 빠르게 통과하고, 뇌에 축적되며, 중추신경계뿐만 아니라 다른 여러 기관들을 손상시킨다. 일본에서 발생한 미나마타병은 메틸수은이 인체에 얼마나 치명적인지를 보여준다. 그래서, 오염물질에 함유된 수은이나 메틸수은을 제거하거나 분리해내는 기술이 환경 또는 바이오 분야에서 유행성 예방 차원에서 매우 중요시하게 여겨지고 있다. 최근 몇몇 연구실에서는 Hg2 + 또는 CH3Hg+를 검출할 수 있는 형광성 탐침자에 대한 보고서가 공지 되었지만, 환경 또는 바이오 계에서 형광성 나노입자를 이용하여 Hg2 + 또는 CH3Hg+를 분리 또는 제거하는 기술은 보고된 바가 없다. Mercury is a highly toxic element and causes various environmental pollutions in natural and artificial systems. In detail, organic mercury, such as the methylmercury species (CH 3 HgX; X = halogen element, etc.) is much more toxic than inorganic mercury (HgX 2 ). Because of their fast solubility, methylmercury quickly crosses the blood brain barrier, accumulates in the brain, and damages the central nervous system and many other organs. Minamata disease in Japan shows how deadly methylmercury is in the human body. Therefore, the technology of removing or isolating mercury or methyl mercury contained in the pollutant is considered to be very important for epidemic prevention in the environment or biotechnology. Recently, several laboratory, but a report of the fluorescent probes capable of detecting Hg 2 + or CH 3 Hg + known, by using the fluorescent nanoparticles on the environment or bio-based Hg 2 + or CH 3 Hg + the separation or removal No technique has been reported.
자성체 실리카 나노입자는 생체적합하고, 재생이 용이하며, 분해되지 않고 안정적인 특성 때문에 생명의학 또는 환경 연구 및 응용 분야에서 많은 관심을 받고 있다. 예를 들어, 자성체 나노입자는 생물분리공학, 약물표적, 세포분리, 효소고정 및 단백질정제에 이용된다. 그러나, 자성체 나노입자가 독성 환경 오염물질을 분리하거나 제거하는데 사용된 적은 없다.Magnetic silica nanoparticles are of great interest in biomedical or environmental research and applications because of their biocompatible, reproducible, non-degradable and stable properties. Magnetic nanoparticles, for example, are used in bioseparation engineering, drug targeting, cell separation, enzyme fixation and protein purification. However, magnetic nanoparticles have never been used to isolate or remove toxic environmental contaminants.
이와 관련하여, 초분자 개념이 결합된 고체 지지체의 자성체 나노입자를 사용하는 것은 생명학적, 독성학적 및 환경학적 응용을 위해 독성 물질을 단순하고 효율적으로 탐지 및 분리할 수 있을 것으로 기대되며, 관능화 된 하이브리드 나노입자를 개발하는데 중요하다.In this regard, the use of magnetic nanoparticles in solid supports combined with the supramolecular concept is expected to enable simple and efficient detection and separation of toxic substances for biologic, toxicological and environmental applications. It is important to develop hybrid nanoparticles.
상기의 문제점을 해결하고자, 본 발명은 수은 및 유기수은이 함유된 오염물로부터 수은 및 유기수은을 탐지 및 분리할 수 있는 형광성 및 자성을 갖는 나노입자를 제공하며, 이의 제조방법 및 응용을 제공하는데 목적이 있다.In order to solve the above problems, the present invention is to provide a fluorescent and magnetic nanoparticles capable of detecting and separating mercury and organic mercury from contaminants containing mercury and organic mercury, and to provide a method and application thereof. .
상기의 목적을 달성하기 위하여, 본 발명은 하기 화학식 1의 아미노나프탈이미드기가 쉘(shell) 표면에 치환된 Fe3O4/SiO2 코어/쉘(core/shell) 나노입자, 이의 제조방법 및 응용을 제공한다.In order to achieve the above object, the present invention is Fe 3 O 4 / SiO 2 core / shell (core / shell) nanoparticles having a amino naphthalimide group represented by the formula (1) substituted on the shell (shell) surface, a method for preparing the same And applications.
[화학식 1][Formula 1]
상기 화학식 1에서, R1, R2 및 R3은 서로 독립적으로 (C1-C20)알킬렌기, (C6-C30)아릴렌기, (C1-C20)알킬(C6-C30)아릴렌기로부터 선택되고, R4, R5 및 R6은 서로 독립적으로 (C1-C10)알콕시기이다.In
바람직하게 상기 화학식 1에서, R1 및 R2는 에틸렌기이고, R3은 프로필기이며, R4, R5 및 R6은 에톡시기인 아미노나프탈이미드기를 제공하며, 자세하게는 하기 화학식의 화합물과 같다.Preferably in
[화학식 2] [Formula 2]
이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 상기 화학식 1의 아미노나프탈이미드기가 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자 및 이의 제조방법을 제공하며, 음용수에 함유된 수은 및 메틸수은을 검출 및 분리하는데 이용할 수 있는 응용을 제공한다.The present invention provides Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles substituted with an aminonaphthalimide group represented by Chemical Formula 1 and a method for preparing the same, and used to detect and isolate mercury and methyl mercury contained in drinking water. It provides an application.
본 발명은 상기 화학식 1의 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자의 제조방법에 있어서,The present invention provides a method for producing a Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles in which the amino naphthalimide group of Formula 1 is substituted on the surface of the shell,
(a) 아민계 용매 하에서 하기 화학식 3의 화합물과 하기 화학식 4의 화합물을 반응하여 하기 화학식 1의 화합물을 수득하는 단계;(a) reacting a compound of
(b) 상기 수득한 화학식 1의 화합물과 Fe3O4/SiO2 코어/쉘 나노입자를 비활성기체 분위기 하에서 반응하여 제조하는 단계;를(b) reacting the compound of
포함하는 하기 화학식 1의 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자의 제조방법을 제공한다. It provides a method for producing a Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles containing an amino naphthalimide group of the general formula (1) substituted on the shell surface.
[화학식 3](3)
[화학식 4][Formula 4]
상기 화학식 1, 3 및 4에서, R1, R2 및 R3은 서로 독립적으로 (C1-C20)알킬렌기, (C6-C30)아릴렌기, (C1-C20)알킬(C6-C30)아릴렌기로부터 선택되고, R4, R5 및 R6은 서로 독립적으로 (C1-C10)알콕시기이다.In
바람직하게, 1, 3 및 4에서, R1 및 R2은 에틸렌기, R3은 프로필렌기이고, R4, R5 및 R6은 에톡시기이다.Preferably, at 1, 3 and 4, R 1 and R 2 are ethylene groups, R 3 is propylene groups, and R 4 , R 5 and R 6 are ethoxy groups.
본 발명의 Fe3O4/SiO2 코어/쉘 나노입자는 코어의 평균 직경이 4 nm인 나노결정인 것을 이용하는 것이 바람직하며, 공지되어 있는 제조방법에 의해 Fe3O4/SiO2 코어/쉘 나노입자를 제조할 수 있다. 자세하게는 평균 직경 4 nm의 Fe3O4 나노결정 역미세에멀젼(reverse microemulsion) 방법에 의해 Fe3O4/SiO2 코어/쉘 나노입자를 제조할 수 있으며, 보다 자세하게는 유기용매와 물의 혼합 용매 하에서 Fe3O4 나노결정 입자를 분산하고, 트리에틸오르쏘실리케이트(triethyl ortho-silicate, TEOS) 및 암모니아수와 같은 알칼리성 환원제를 첨가하여, 반응용액이 투명해질 때까지 강하게 교반함으로써 Fe3O4/SiO2 코어/쉘 나노입자를 제조할 수 있다. 상기와 같이 제조된 Fe3O4/SiO2 코어/쉘 나노입자는 나노 크기의 구형 입자로서, 자성을 띄는 특징이 있다.The Fe 3 O 4 / SiO 2 core / shell nanoparticles of the present invention are preferably nanocrystals having an average diameter of 4 nm. The Fe 3 O 4 / SiO 2 core / shell is known by a known manufacturing method. Nanoparticles can be prepared. Specifically, Fe 3 O 4 / SiO 2 core / shell nanoparticles may be prepared by a reverse microemulsion method of Fe 3 O 4 nanocrystals having an average diameter of 4 nm, and more specifically, a mixed solvent of an organic solvent and water. under the Fe 3 O 4 nanocrystals by dispersing the particles, adding an alkaline reducing agent, such as triethyl ortho silicate (triethyl ortho-silicate, TEOS), and ammonia water, by vigorous stirring until the reaction solution becomes transparent Fe 3 O 4 / SiO 2 core / shell nanoparticles can be prepared. The Fe 3 O 4 / SiO 2 core / shell nanoparticles prepared as described above are nano-sized spherical particles, and have magnetic characteristics.
본 발명의 상기 (a) 단계는 아민계 용매로서, 단독 용매 또는 혼합 용매를 이용할 수 있으며, 트리에틸아민을 이용하는 것이 바람직하다.In the step (a) of the present invention, a single solvent or a mixed solvent may be used as the amine solvent, and triethylamine is preferably used.
본 발명의 상기 (b) 단계는 유기용매 하에 상기 (a) 단계에서 수득한 화학식 1의 화합물을 용해하고, Fe3O4/SiO2 코어/쉘 나노입자를 첨가하여 비활성 기체 분위기 하에서 12 내지 48시간, 바람직하게는 24시간 동안 반응하여 화학식 1의 아미노나프탈이미드가 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자를 제조할 수 있으며, 상기 유기용매는 무수물을 이용하는 것이 부산물 생성 억제하여 수득률을 향상시키는데 효율적이며, 상기 유기용매로는 무수 톨루엔 용매를 이용하는 것이 가장 바람직하다. 상기 비활성 기체는 헬륨 또는 질소를 이용할 수 있으며, 질소를 이용하는 것이 바람직하다. 본 발명의 제조방법에 따라 화학식 1의 아미노나프탈이미드기는 Fe3O4/SiO2 코어/쉘 나노입자의 표면에 공유결합함으로써 쉘 표면에 치환된다.In the step (b) of the present invention, the compound of
본 발명의 상기 화학식 1의 아미노나프탈이미드기가 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자 및 제조과정은 도 1과 같다. 본 발명의 아미노나프탈이미드기가 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자는 놀랍게도 금속 이온에 대한 선택도가 우수한 화학센서 및 Hg2 + 및 CH3Hg+ 의 흡착제이며, 음용수로부터 Hg2 + 또는 CH3Hg+를 분리 및 제거할 수 있는 효과가 있다. 도 2의 A는 본 발명의 자성체 나노입자를 TEM 이미지로 관찰한 것이고, 코어/쉘 나노입자가 평균 직경이 약 4 nm 정도이며, 전체 입자의 평균 직경은 20 nm 정도인 것을 확인할 수 있으며, 도 2의 B는 본 발명의 자성체 나노입자가 자성 특성에 따라 자석에 끌려오는 모습을 확인할 수 있는 도면이다.Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles substituted with the aminonaphthalimide group of
본 발명의 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자는 형광 물질인 것을 특징으로 하며, 수은 또는 유기수은이 자성체 나노입자에 근접하여 유기 수용체에 결합할 경우, 소광(quench) 현상을 나타낸다. 상기 본 발명의 자성체 나노입자의 소광 효과는 수은 또는 유기수은이 수중에 ppb 단위로 존재하더라도 매우 민감하게 반응하며, 도 5 및 도 6에서 알 수 있듯이, 수은 또는 유기수은이 결합함에 따라 형광성이 급격하게 소광하는 것을 확인할 수 있다. 따라서, 수은 또는 유기수은을 검출하기 위한 광학 센서로 이용할 수 있다.The Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles in which the aminonaphthalimide group of the present invention is substituted on the surface of the shell are fluorescent materials, and mercury or organic mercury is bound to the organic receptor in proximity to the magnetic nanoparticles. In this case, a quench phenomenon is exhibited. The matting effect of the magnetic nanoparticles of the present invention is very sensitive even if mercury or organic mercury is present in the unit of ppb in the mercury, as can be seen in Figures 5 and 6, as the mercury or organic mercury is combined, the fluorescence is rapidly quenched You can see that. Therefore, it can be used as an optical sensor for detecting mercury or organic mercury.
또한 본 발명의 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자는 수중에 존재하는 여러가지 금속 이온에 대하여 선택적으로 검출이 가능하다. 도 10과 같이 여러가지 금속 이온에 존재하더라도 각각의 금속 이온에 대하여 서로 독립적으로 형광 특성을 나타낸다. 이에 따라 각 금속 이온에 대하여 고유의 형광 특성을 구별할 수 있으며, 수은 또는 유기수은이 수중에 여러가지 금속이온과 혼재하여 있더라도 검출이 가능하다.In addition, the Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles in which the aminonaphthalimide group of the present invention is substituted on the surface of the shell can be selectively detected for various metal ions present in water. Although present in various metal ions as shown in FIG. 10, each metal ion exhibits fluorescence characteristics independently from each other. Accordingly, intrinsic fluorescence characteristics can be distinguished for each metal ion, and even if mercury or organic mercury is mixed with various metal ions in the water, it can be detected.
본 발명의 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자는 수은 또는 유기수은과 화학적, 물리적 결합에 의해 오염물로부터 분리가 가능하고, 본 발명의 자성체 나노입자는 별도의 자성체, 예를 들어, 자석, 전자석 등에 의해 간단하게 오염물로부터 제거할 수 있으며, 따라서 수은 및 유기수은을 오염물로부터 쉽게 제거할 수 있는 강점이 있다. 따라서, 본 발명의 자성체 나노입자는 수은 및 유기수은을 오염물로부터 제거하기 위한 흡착제로 이용할 수 있다.The Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles in which the aminonaphthalimide group of the present invention is substituted on the surface of the shell can be separated from contaminants by chemical and physical bonding with mercury or organic mercury, and the magnetic nanoparticles of the present invention. Particles can be easily removed from contaminants by separate magnetic bodies, such as magnets, electromagnets, etc., and therefore have the advantage of easily removing mercury and organic mercury from contaminants. Therefore, the magnetic nanoparticles of the present invention can be used as an adsorbent for removing mercury and organic mercury from contaminants.
또한 본 발명의 또 다른 특징 중에 하나는, 상기와 같이 오염물로부터 수은 및 유기수은을 흡착하여 자성에 따라 분리/제거한 자성체 나노입자는 간단하게 EDTA와 반응하여 원래의 자성체 나노입자로 복원할 수 있다. 도 11은 수은 이온을 흡착한 자성체 나노입자를 EDTA로 처리한 후, 형광 스펙트럼을 관찰한 것이다. 거의 원래 상태로 복원하는 것을 확인할 수 있다.In addition, one of the features of the present invention, magnetic nanoparticles separated / removed according to the magnetic by adsorbing mercury and organic mercury from the contaminants as described above can be restored to the original magnetic nanoparticles by simply reacting with EDTA. FIG. 11 shows fluorescence spectra after treatment of mercury ion-adsorbed magnetic nanoparticles with EDTA. You can see that it is almost restored to its original state.
본 발명의 자성체 나노입자는 수은 및 유기수은 등의 독성 중금속이 함유된 오염수를 정제하는데 유용할 것이며, 수질과 관련된 다양한 분야에서 응용될 것으로 기대되며, 특히 정수 및 음용수를 제조하는 장치 등에 이용될 것으로 기대된다.
The magnetic nanoparticles of the present invention will be useful for purifying contaminated water containing toxic heavy metals such as mercury and organic mercury, and are expected to be applied in various fields related to water quality, in particular, devices for producing purified water and drinking water. It is expected.
본 발명은 상기 화학식 1의 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자, 이의 제조방법 및 응용에 관한 것으로, 본 발명의 자성체 나노입자는 형광 특성과 자성 특성을 가지며, 금속 이온을 화학적, 물리적으로 흡착함으로써 오염물로부터 금속 이온을 검출, 분리 및 제거할 수 있으며, 특히 음용수에 함유된 수은 또는 유기수은을 선택적으로 검출할 수 있으며, ppb 단위의 금속 이온도 검출이 가능할 정도로 감도가 매우 우수하며, 화학적, 물리적 흡착에 의해 수은 또는 유기수은을 분리 및 제거할 수 있는 놀라운 복합적 특성을 갖는다. The present invention relates to Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles having an aminonaphthalimide group represented by
따라서, 본 발명의 상기 화학식 1의 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자는 환경, 바이오 산업에 있어, 수은 및 유기수은과 같은 독성 물질을 검출하고 분리 및 제거하는데 탁월한 효과를 가진 점을 고려할 때, 더욱 다양한 분야에서 응용될 것으로 기대된다.
Accordingly, the Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles in which the aminonaphthalimide group of
도 1은 본 발명의 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자의 제조 일례를 나타낸 반응식이고,
도 2는 본 발명의 실시예 2의 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자의 TEM 이미지(A) 및 물에 담지된 자성체 나노입자가 자석에 끌려오는 모습을 나타내는 그림(B)이며,
도 3은 본 발명의 실시예 2의 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자(a)와 Fe3O4/SiO2 코어/쉘 나노입자의 FT-IR 스펙트럼을 비교한 것이며,
도 4는 본 발명의 실시예 2의 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자의 TOF-SIMS 스펙트럼이며,
도 5는 물(pH 7)에 Hg2 +을 증가시키며, 실시예 2의 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자(0.05 uM)의 형광 스펙트럼을 조사한 것이며,
도 6은 도 5에서 얻은 Hg2 +의 농도와 형광 세기의 관계를 보정한 그래프이며,
도 7은 pH 7의 물에 Hg2 +을 첨가(2.0 equiv.)하여 시간에 따른 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자(1.0 uM)의 형광 세기를 나타낸 그래프이며,
도 8은 물/에탄올(9:1 v/v) 혼합물에 CH3Hg+ 농도를 추가적으로 증가시켜 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자(0.05 uM)의 형광 스펙트럼을 관찰한 것이며,
도 9는 도 8에서 얻은 CH3Hg+의 농도와 형광 세기의 관계를 보정한 그래프이며,
도 10은 pH 7의 물에 Hg2 +(4 equiv.)을 첨가하고, 다른 금속 이온 예를 들어 Na+, Mg2 +, Ca2 +, Cu2 +, Ag+, Co2 +, Mn2 +, Ni2 + 및 Pb2 + 이온(10 equiv.)을 더 첨가하여 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자(1.0 uM)의 형광 세기를 관찰한 것이며,
도 11은 A의 경우, Hg2 + 이온이 없을 때(a)와 존재할 때(b) 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자(1.0 uM)의 형광 스펙트럼과 EDTA 처리하여 복원되는 것을 형광 스펙트럼으로 관찰한 것이고, B의 경우, Hg2+ 이온을 흡착한 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자를 EDTA로 처리함으로써, 소광되었던 자성체 나노입자가 다시 형광성을 띔으로써 복원됨을 확인할 수 있는 그림이며,
도 12는 실시예 2의 자성체 나노입자와 Hg2 + 의 1:1 착물의 Jop's plot이며,
도 13은 수중에 Hg2 +(5.0 equiv.)가 존재하지 않을 때(a)와 존재할 때(b), 및 물/에탄올(9:1 v/v) 중에 CH3Hg+(5.0 equiv.)가 존재할 때(c)의 pH 변화에 따른 실시예 2의 자성체 나노입자의 형광 강도를 플롯한 것이다.1 is a reaction scheme showing an example of preparation of Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles in which the aminonaphthalimide group of the present invention is substituted on the surface of a shell,
2 is a TEM image (A) of Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles in which the aminonaphthalimide group is substituted on the shell surface of Example 2 of the present invention, and magnetic nanoparticles supported on water are magnets. It is a picture (B) which shows a state attracted to
FIG. 3 shows Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles (a) and Fe 3 O 4 / SiO 2 core / shell nanoparticles in which an aminonaphthalimide group of Example 2 of the present invention is substituted on a shell surface Is a comparison of the FT-IR spectra of
4 is a TOF-SIMS spectrum of Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles in which the aminonaphthalimide group of Example 2 of the present invention is substituted on the surface of a shell,
Figure 5 is the fluorescence of water (pH 7) to increase the Hg 2 +, Example is an
6 is a graph showing the relationship between the correction Hg 2 + concentration and the fluorescence intensity obtained in Figure 5,
7 is Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles (1.0 uM) in which the amino naphthalimide group is substituted on the surface of the shell over time by the addition of Hg 2 + in water at pH 7 (2.0 equiv.) Is a graph showing the fluorescence intensity of
FIG. 8 shows Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles in which the aminonaphthalimide group is substituted on the surface of the shell by further increasing the CH 3 Hg + concentration in a water / ethanol (9: 1 v / v) mixture. Fluorescence spectrum of 0.05 uM),
9 is a graph in which the relationship between the concentration of CH 3 Hg + obtained in FIG. 8 and the fluorescence intensity is corrected.
10 is added to (. 4 equiv) Hg 2 + in pH 7 water and, for other metal ions, for example Na +, Mg 2 +, Ca 2 +, Cu 2 +, Ag +, Co 2 +, Mn 2 Fluorescence intensity of Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles (1.0 uM) in which aminonaphthalimide group is substituted on the shell surface by the addition of + , Ni 2 + and Pb 2 + ions (10 equiv.) Is observed,
11 is the case of A, Hg 2 + when ions are not in the presence of and (a) (b) amino naphthalimide the imide group is substituted on the shell surface of Fe 3 O 4 / SiO 2 core / shell magnetic material nanoparticles (1.0 uM Fluorescence spectrum and EDTA treatment to restore the fluorescence spectrum. For B, Fe 3 O 4 / SiO 2 core / shell having an aminonaphthalimide group adsorbed Hg 2+ ion on the surface of the shell By treating the magnetic nanoparticles with EDTA, the figure shows that the magnetic nanoparticles that have been quenched are restored by fluorescence again.
Figure 12 is a second embodiment of the magnetic material nanoparticles and
(. 5.0 equiv): Figure 13 is when there is no Hg 2 + in water (a) and when present (b), and water / ethanol (9 1 v / v) in CH 3 Hg + (5.0 equiv. ) The fluorescence intensity of the magnetic nanoparticles of Example 2 according to the pH change of (c) when is present is plotted.
이하, 본 발명을 하기의 실시예에 의거하여 좀 더 상세히 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 한정하지는 않는다.
Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are not intended to limit the invention only.
[제조예 1] Fe3O4/SiO2 코어/쉘 나노입자의 제조Preparation Example 1 Preparation of Fe 3 O 4 / SiO 2 Core / Shell Nanoparticles
둥근 플라스크에 시클로헥산 170ml를 담고, 여기에 Fe3O4 나노결정 분말 8.0 mg을 첨가하고 강하게 교반한다. 여기에 테트라에틸오르소실리케이트(TEOS) 1.5ml를 적가한 후, 과량의 NH4OH 용액을 첨가한 후, 12시간 동안 반응한다.In a round flask, add 170 ml of cyclohexane, and add Fe 3 O 4 8.0 mg nanocrystal powder is added and vigorously stirred. After 1.5ml of tetraethylorthosilicate (TEOS) was added dropwise, an excess of NH 4 OH solution was added, followed by reaction for 12 hours.
생성된 Fe3O4/SiO2 코어/쉘 나노입자는 자성을 이용하여 반응물로부터 분리해 내고, 에탄올에 수회 재분산하여 자석을 이용하여 수득하였다.
The resulting Fe 3 O 4 / SiO 2 core / shell nanoparticles were separated from the reactants using magnetism, re-dispersed several times in ethanol and obtained using a magnet.
[실시예 1] 화학식 2의 아미노나프탈이미드의 제조Example 1 Preparation of Aminonaphthalimide of
50ml 트리에틸아민에 참고문헌(X. Guo, X. Qian and L. Jia, J. Am . Chem . Soc., 2004, 126, 2272.)에 의해 제조된 하기 화학식 5의 화합물 0.1 g(0.118 mmol)을 용해하고, 여기에 트리에톡시(3-이소시아네이트프로필)실란 58uL(0.237 mmol)을 첨가하고 80℃에서 하룻밤 동안 교반하였다. 이후, 상온으로 식히고, 용매는 진공하에서 제거하고, 잔유물은 실리카겔 컬럼 크로마토그래피(에틸아세테이트/n-헥산 =1:4)에서 정제하여 노란색 고형물을 수득하였다(수득률 60%).0.1 g (0.118 mmol) of the compound of
[화학식 5][Chemical Formula 5]
1H NMR (300 MHz, Aceton-d6) δ= 8.63 (q, 4J (H,H) = 8.4 Hz, 4H; Ar-H), 8.46 (d, 2J(H,H) = 3.4 Hz, 2H; Ar-H), 7.83 (t, 3J (H,H) = 7.35 Hz, 3H; Ar-H) 7.4 (d, 2J(H,H) = 8.1Hz, 4H; Ar-H), 6.07(t, 2J(H,H) = 6.0 Hz, 2H; NH), 4.2 (m, 4H; CH2), 3.9 (m, 4H; CH2), 3.83 (m, 16H; CH2), 3.65 (m, 4H; CH2), 3.44 (m, 8H; CH2), 2.6 (m, 8H; CH2), 1.62 (m, 4H; CH2), 1.21 (t, 3J (H,H) = 6.9 Hz, 18H; CH3), 0.63 (t, 3J (H,H) = 8.7 Hz, 4H; CH2) 13C NMR (Aceton-d6) δ=161, 159, 158, 157, 138.2, 137, 135, 125, 124, 123, 122, 121, 118, 70, 63, 61, 60.8, 58, 46.5, 45, 43, 38, 23, 17.8, 0.83. IR (KBr, cm-1):3428, 2913, 2841, 2354, 1700, 1640, 1457, 1358, 770, 666. HRMS (FAB+) m/z 1335.6238 [(M+H)+ calcd for C67H93N9O16Si2:1335.6279]. Anal. calcd for C67H93N9O16Si2: C, 60.20; H, 7.01; N, 9.43. found: C, 60.22; H, 7.03; N,9.45.
1 H NMR (300 MHz, Aceton-d 6 ) δ = 8.63 (q, 4 J (H, H) = 8.4 Hz, 4H; Ar-H), 8.46 (d, 2 J (H, H) = 3.4 Hz , 2H; Ar-H), 7.83 (t, 3 J (H, H) = 7.35 Hz, 3H; Ar-H) 7.4 (d, 2 J (H, H) = 8.1 Hz, 4H; Ar-H) , 6.07 (t, 2J (H, H) = 6.0 Hz, 2H; NH), 4.2 (m, 4H; CH 2 ), 3.9 (m, 4H; CH 2 ), 3.83 (m, 16H; CH 2 ), 3.65 (m, 4H; CH 2 ), 3.44 (m, 8H; CH 2 ), 2.6 (m, 8H; CH 2 ), 1.62 (m, 4H; CH 2 ), 1.21 (t, 3 J (H, H ) = 6.9 Hz, 18H; CH 3 ), 0.63 (t, 3 J (H, H) = 8.7 Hz, 4H; CH 2 ) 13 C NMR (Aceton-d 6 ) δ = 161, 159, 158, 157, 138.2, 137, 135, 125, 124, 123, 122, 121, 118, 70, 63, 61, 60.8, 58, 46.5, 45, 43, 38, 23, 17.8, 0.83. IR (KBr, cm -1 ): 3428, 2913, 2841, 2354, 1700, 1640, 1457, 1358, 770, 666.HRMS (FAB + ) m / z 1335.6238 [(M + H) + calcd for C 67 H 93 N 9 O 16 Si 2 : 1335.6279. Anal. calcd for C 67 H 93 N 9 O 16 Si 2 : C, 60.20; H, 7.01; N, 9.43. found: C, 60.22; H, 7.03; N, 9.45.
[실시예 2] 아미노아프탈이미드기가 치환된 Fe3O4/SiO2 코어/쉘 나노입자의 제조Example 2 Preparation of Fe 3 O 4 / SiO 2 Core / Shell Nanoparticles Substituted with AminoAphthalimide Groups
상기 실시예 1에서 수득한 화학식 2의 아미노나프탈이미드 화합물 50 mg(0.054 mmol)을 5 mL의 무수 톨루엔에 용해하고, 여기에 제조예 1에서 수득한 Fe3O4/SiO2 코어/쉘 나노입자 100 mg을 첨가하고, 질소기체 하에서 24시간 동안 환류냉각기에서 교반하였다. 반응을 종료하고 수득한 고형물은 디클로로메탄 및 아세톤으로 수차례 세척하고, 진공건조하였다.
50 mg (0.054 mmol) of the aminonaphthalimide compound of
[평가][evaluation]
1. 구조적 특성 분석1. Structural Characterization
1H 및 13C NMR 스펙트럼은 Bruker ARX 300 MHz 분광기로 측정하였다. 질량분석은 JEOL JMS-700 질량분석기를 이용하였다. 투과전자현미경(TEM) 이미지는 JEOL JEM-2100 F를 이용하여 50 keV로 측정하였다. 이미지는 Fuji Photo Film Co. LTd. FDL5000 시스템을 이용하였다. 모든 형광 스펙트럼은 RF-5310PC 분광기에 기록되었따.
1 H and 13 C NMR spectra were measured with a Bruker ARX 300 MHz spectrometer. Mass spectrometry was performed using JEOL JMS-700 mass spectrometer. Transmission electron microscopy (TEM) images were measured at 50 keV using JEOL JEM-2100 F. Image is Fuji Photo Film Co. LTd. The FDL5000 system was used. All fluorescence spectra were recorded on an RF-5310PC spectrometer.
2. 광학적 분광 특성 분석2. Optical Spectroscopic Characterization
형광 방출 스펙트럼은 Shimadzu RF-5310-PC 장비를 이용하였고, 수산화금속 과염소염의 모액(0.01M)은 pH 7의 물을 이용하였다. 모든 측정은 여기 조건 350 nm 및 여기, 방출 슬릭 두께 1.5 nm로 측정되었다. pH 값은 0.2 MOPS를 이용하여 조절하였다. 형광 양자 수율은 메틸렌 블루(Φ=0.04)를 참조하여 예측하였다.
Fluorescence emission spectrum was used for Shimadzu RF-5310-PC equipment, and the mother liquor (0.01M) of metal hydroxide perchlorate was used water of pH 7. All measurements were measured with excitation conditions 350 nm and excitation, emission slick thickness 1.5 nm. pH value was adjusted using 0.2 MOPS. Fluorescence quantum yield was predicted with reference to methylene blue (Φ = 0.04).
3. 음용수로부터 Hg2 + 및 CH3Hg+의 분리3. separation of the Hg + 2 and CH 3 Hg + from drinking water
컬럼(1 cm × 5 cm)은 상기 실시예 2에 의해 제조된 자성체 나노입자를 이용하여 제조되었다. 흡착성을 갖는 컬럼은 이온 크로마토그래피 내에 분석 컬럼 앞에 연결되었다. 그리고나서, Hg2 + 및 CH3Hg+가 함유된 오염수를 주입하였다. 용리액은 컬럼으로 1.0 ml/min. 속도로 흘려보냈다. 용액은 ICP-MS(ELAN DRC Ⅱ, Perkin Elmer)에 의해 분석하였다.
A column (1 cm × 5 cm) was prepared using the magnetic nanoparticles prepared in Example 2. The column with adsorption was connected before the analytical column in ion chromatography. Then, Hg 2 + and CH 3 Hg + are injected to be contained contamination. Eluent was 1.0 ml / min. Spilled at a speed. The solution was analyzed by ICP-MS (ELAN DRC II, Perkin Elmer).
4. 결과4. Results
본 발명의 실시예 2의 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자는 TEM 이미지로 확인한 결과, 도 2(A)와 같이 평균 직경 4 nm의 Fe3O4 나노 코어와 좁은 크기 분포의 평균 직경 20 nm의 자성체 나노입자의 구형 구조를 갖는 것으로 나타났으며, 도 2(B)와 같이 자성을 띄게 된다.Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles in which the aminonaphthalimide group of Example 2 of the present invention is substituted on the surface of the shell were confirmed by TEM image, and as shown in FIG. It has been shown to have a spherical structure of magnetic nanoparticles having an average diameter of 20 nm of Fe 3 O 4 nanocores and a narrow size distribution, it becomes magnetic as shown in Figure 2 (B).
본 발명은 Fe3O4/SiO2 코어/쉘 나노입자 표면에 유기 결합이 형성되었는지 확인하기 위해, FT-IR 및 TOF-SIMS을 이용하여 조사하였다. 상기 실시예 2의 아미노나프탈이미드기가 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자의 FT-IR 스펙트럼은 도 3과 같이 3438, 2921, 2853, 1696, 1652, 1592, 1531, 1460 및 1379 cm-1에서 강한 밴드가 나타났고, 이것은 아미노나프탈아미드기 수용체에 의해 비롯되었음을 나타내고, Fe3O4/SiO2 코어/쉘 나노입자(도 3의 B)와 피크가 일치함에 따라 Fe3O4/SiO2 코어/쉘 나노입자 표면에 아미노나프탈아미드기가 치환되었음을 알 수 있다. 상기 실시예 2의 아미노나프탈이미드기가 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자의 TOF-SIMS 스펙트럼은 도 4와 같으며, 아미노나프탈아미드기에 대한 특성을 나타내며(m/z=551, 576, 605), 또한 Fe3O4/SiO2 코어/쉘 나노입자의 표면 상에 아미노나프탈아미드기가 결합되어 있음을 확인하여 준다. The present invention was investigated using FT-IR and TOF-SIMS to determine whether organic bonds were formed on the Fe 3 O 4 / SiO 2 core / shell nanoparticle surface. The FT-IR spectra of the Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles substituted with the aminonaphthalimide group of Example 2 were 3438, 2921, 2853, 1696, 1652, 1592, 1531, Strong bands appeared at 1460 and 1379 cm −1 , indicating that they were originated by the aminonaphthalamide group receptor, as peaks matched with Fe 3 O 4 / SiO 2 core / shell nanoparticles (FIG. 3B) It can be seen that the aminonaphthalamide group is substituted on the surface of the Fe 3 O 4 / SiO 2 core / shell nanoparticle. The TOF-SIMS spectrum of the Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles substituted with the aminonaphthalimide group of Example 2 is the same as that of FIG. 4, and shows properties for the aminonaphthalamide group (m / z = 551, 576, 605), and also confirmed that the aminonaphthalamide group is bonded on the surface of the Fe 3 O 4 / SiO 2 core / shell nanoparticles.
상기 실시예 2의 아미노나프탈이미드기가 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자에 대한 분광 측정은 pH 7의 0.2M MOPS 완충용액에서 수행된다. Spectroscopic measurement of the Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles substituted with the aminonaphthalimide group of Example 2 is performed in a 0.2 M MOPS buffer solution at pH 7.
실시예 2의 아미노나프탈이미드기가 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자의 흡수 스펙트럼은 350 nm에서 단일 가시광 흡수 밴드(e = 6.50×104 M-1 cm-1) 및 520 nm에서 상응하는 최대 형광 방출을 나타낸다. 예상한 바와 같이, 실시예 2의 아미노나프탈이미드기가 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자는 그의 apo 상태(F = 0.035)에서 형광을 나타내는데, 이는 분자내 전하-이동 밴드(ICT)에 의한 것이다. Hg2 + 농도가 증가함에 따라, 실시예 2의 아미노나프탈이미드기가 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자은 방출 스펙트럼에서 PET (광유도된 전자 이동,F < 0.0001, Fig. 2A and 2B) 효과와 함께 큰 소광 효과를 나타낸다. Hg2 + 에 대한 노출로 인한 형광 소광은 완전히 가역적이므로, EDTA (0.01 N, 1 mL)의 첨가로 (도 11) 방출 밴드가 회복된다. 또한, 형광 변화는 수회의 검출-분리 사이클을 통해 재현될 수 있다. 형광 변화를 이용한 Job plot은 실시예 2의 자성체 나노입자와 Hg2 + 의 1:1 결합을 나타낸다(도 12). 상기 적정으로부터, 실시예 2의 자성체 나노입자와 Hg2 +의 배위결합에 대한 결합상수(K)는 1.05×105 M-1 (log K = 5.02)로 계산된다. 이어서, 실시예 2의 자성체 나노입자는 1.2 ppb의 검출 한계를 나타내고(도 5 및 도 6), 이는 U.S. EPA 한계치 (~2 ppb)와 비교하여 식수 중에 있는 Hg2 + 농도를 감지하기에 충분하다. 상기 실시예 2의 자성체 나노입자의 반응 시간을 측정하기 위해서, 520 nm 에서 실시예 2의 자성체 나노입자의 형광 강도에 대한 시간 경로를 조사하였다 (도 7). Hg2 +을 첨가한 후 즉시, 실시예 2의 자성체 나노입자의 형광 강도는 감소하기 시작하고, 60 초후에 형광 강도는 거의 소멸하였다 (도 7). 이러한 결과는 상기 시스템의 반응 시간이 60초임을 나타낸다.
The absorption spectrum of the Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles substituted with the aminonaphthalimide group of Example 2 was found to be a single visible light absorption band ( e = 6.50 × 10 4 M −1 cm −1 ) at 350 nm. And the corresponding maximum fluorescence emission at 520 nm. As expected, the Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles substituted with the aminonaphthalimide group of Example 2 exhibited fluorescence in their apo state ( F = 0.035), which is an intramolecular charge-transfer By band (ICT). Hg 2 + concentration increases, this embodiment of the 2-amino-naphthalimide the imide group is substituted Fe 3 O 4 / SiO 2 core / shell nano magnetic substance ipjaeun The emission spectrum shows a large quenching effect with PET (photoinduced electron transfer, F <0.0001, Fig. 2A and 2B) effects. Because the fluorescence quenching caused by the exposure to the Hg + 2 is completely reversible, and is recovered by the addition (Fig. 11) emission band of EDTA (0.01 N, 1 mL) . In addition, fluorescence changes can be reproduced through several detection-separation cycles. Job plot using the fluorescence change is one of the example 2 and the magnetic material nanoparticles of Hg 2 +: indicates a first coupling (12). Binding constant for the coordinated from the fair Example 2, the magnetic material and the nanoparticles of Hg 2 + (K) is calculated to be 1.05 × 10 5 M -1 (log K = 5.02). Subsequently This exemplary magnetic material nanoparticles of example 2 shows a detection limit of 1.2 ppb (Fig. 5 and 6), is sufficient to compared to the US EPA limits (~ 2 ppb) sensing the Hg 2 + concentration in the drinking water . In order to measure the reaction time of the magnetic nanoparticles of Example 2, the time path to the fluorescence intensity of the magnetic nanoparticles of Example 2 was examined at 520 nm (FIG. 7). The fluorescence intensity of the magnetic material of the nanoparticle immediately in Example 2, followed by the addition of Hg + 2 is started to decrease, and the fluorescence intensity at 60 seconds was almost disappeared (Fig. 7). This result indicates that the response time of the system is 60 seconds.
Hg2 +에 대한 이온-선택적 형광 검출로서 실시예 2의 자성체 나노입자의 이용을 알아보기 위해, 다양한 생물학적 및 환경적으로 관련 있는 금속이온, Na+, Mg2+ , Ca2 +, Cu2 +, Ag+, Co2 +, Ni2 +, Mn2 + 및 Pb2 + 을 첨가함에 따른 실시예 2의 자성체 나노입자의 형광 방출 변화를 기반으로 한 경합을 수용액 중에서 조사하였다 (도 10). 프로브 자성체 나노입자은 Hg2 +에 대해서만 큰 PET 효과를 나타냈다. 예측한 바와 같이, Hg2 +가 결합된 자성체 나노입자의 형광 강도는 Na+, Mg2 +, Ca2 +, Cu2 +, Ag+, Co2 +, Ni2 +, Mn2 + 및 Pb2 +의 존재 하에서는 변화하지 않고, 실시예 2의 자성체 나노입자가 금속 이온의 혼합물에서 Hg2 + 의 분리를 위해 선택적으로 흡수한다는 것을 나타낸다.Ion for Hg 2 + - selective to investigate the use of magnetic material nanoparticles of Example 2 as a fluorescence detection, a variety of biological and environmental metal ions related to, Na +, Mg 2+, Ca 2 +, Cu 2 + , Ag +, Co 2 +, Ni 2 +, Mn 2 + a and the contention is based on the fluorescent emission changes of the magnetic material nanoparticles of example 2 in accordance with the addition of Pb 2 + was investigated in an aqueous solution (Fig. 10). Only the probe nano magnetic substance ipjaeun Hg 2 + PET exhibited a large effect. As predicted, the Hg + 2 The fluorescence intensity of the combined magnetic material nanoparticles are Na +, Mg 2 +, Ca 2 +,
또한, pH 7의 물/에탄올(9;1 v/v) 중에서 CH3Hg+에 대한 실시예 2의 자성체 나노입자의 결합능을 용해도에 의해 조사하였다. 도 8에 나타난 바와 같이, CH3Hg+ 농도가 증가함에 따라, 실시예 2의 자성체 나노입자는 방출 스펙트럼에서 PET 효과와 함께 큰 소광 효과를 나타낸다. CH3Hg+ 을 브로브 자성체 나노입자가 함유된 0.2 M MOPS 완충액에 첨가하고, 형광 강도가 포화된다. 상기 결과는 Hg2 + 이온에 대한 것 보다 더 높은 감도를 나타낸다. 실시예 2의 자성체 나노입자과 CH3Hg+ 배위결합에 대한 결합 상수 (K)는 5.25×105 M- 1(log K = 5.72)으로 계산된다. 또한, CH3Hg+ 에 대한 프로브 자성체 나노입자의 검출 한계는 CH3Hg+ 에 대한 실시예 2의 자성체 나노입자(0.05 uM)의 형광 적정을 ppb 수준으로 모니터하여 측정하였다 (도 8 및 도 9). 실시예 2의 자성체 나노입자의 형광 강도는 첨가된 CH3Hg+의 양에 거의 비례하고 25℃ 에서 물/에탄올 (9:1 v/v)중 0.8 ppb의 CH3Hg+ 에 대해 검출 가능하다.In addition, the binding ability of the magnetic nanoparticles of Example 2 to CH 3 Hg + in water / ethanol (9; 1 v / v) at pH 7 was investigated by solubility. As shown in FIG. 8, as the concentration of CH 3 Hg + increases, the magnetic nanoparticles of Example 2 exhibit a large quenching effect with a PET effect in the emission spectrum. CH 3 Hg + is added to 0.2 M MOPS buffer containing the brob magnetic nanoparticles and the fluorescence intensity is saturated. The results show a higher sensitivity than for Hg 2 + ions. The binding constant (K) for the magnetic nanoparticles of Example 2 and the CH 3 Hg + coordination bond is calculated as 5.25 × 10 5 M − 1 (log K = 5.72). Further, CH 3 detection limit of the probe magnetic material nanoparticles for the Hg + was measured by monitoring the fluorescence titration of Example 2, the magnetic material nanoparticles (0.05 uM) for the CH 3 Hg + to the ppb level (Figs. 8 and 9 ). Is detectable for CH 3 Hg + of 0.8 ppb of: fluorescence intensity of Example 2, the magnetic material nanoparticles are almost proportional to the amount of addition of CH 3 Hg +, and in 25 ℃ water / ethanol (1 v / v 9) .
용해도를 최적화하기 위해 아세토니트릴 용액을 사용하여 Na+, Ca2 +, Cu2 +, Ag+, Zn2 +, Mn2 +, Pb2 +, Hg2 + 및 CH3Hg+ 을 첨가함에 따른 발광 변화를 기초로 하여 금속 이온에 대한 아미노나프탈이미드기의 결합능을 관찰하였다. 프로브 자성체 나노입자와는 달리, 아미노나프탈아미디기는 Cu2 +, Ag+, Hg2 + 뿐 아니라 CH3Hg+ 에 대해 소멸 효과를 나타낸다. 이러한 차이는 프로브 자성체 나노입자가 Hg2 +에 대해 선택적 형광 화학감지체로서 이용될 수 있는 잠재능을 갖는다. 형광 화학감지체로서 실시예 2의 자성체 나노입자의 고선택적 Hg2 + 검출은 Fe3O4/SiO2 코어/쉘 나노입자 표면상에서 아미노나프탈이미드의 예비조직에 기인한다.Luminescence by adding Na + , Ca 2 + , Cu 2 + , Ag + , Zn 2 + , Mn 2 + , Pb 2 + , Hg 2 + and CH 3 Hg + using acetonitrile solution to optimize solubility Based on the change, the binding ability of the aminonaphthalimide group to the metal ion was observed. Unlike the probe magnetic material nanoparticles, amino naphthalimide amino digi represents the extinction effect on Cu 2 +, Ag +, Hg 2 +
형광 센서로서 생물학적 및 환경적 이용을 위해, 감도는 넓은 pH 범위에 대해 효과적이어야 한다. Hg2 + 및 CH3Hg+의 부재 하에서 실시예 2의 자성체 나노입자에 대한 pH의 효과를 조사하였다 (도 13). pH < 4 에서, 형광 방출은 대부분 소멸하는데 아마도 아미노나프탈이미드기의 질소 원자의 양성자첨가반응에 기인하는 것으로 보인다. 그러나, 최소 또는 약간의 형광 변화가 pH 6-11에서 관찰된다. 이러한 결과는 분명히 실시예 2의 자성체 나노입자가 pH > 4 인 생리적 환경에서 사용될 수 있다는 것을 입증한다. 또한, Hg2 + 및 CH3Hg+ 를 첨가한 경우 pH 4-11의 범위에서 큰 소멸 효과가 발생하였고, 이는 실시예 2의 자성체 나노입자가 pH > 4 에서 Hg2 + 및 CH3Hg+ 에 대한 화학감지체 및 흡착체로서 이용될 수 있다는 것을 나타낸다.For biological and environmental use as a fluorescence sensor, sensitivity must be effective over a wide pH range. Hg 2 + and CH 3 Hg + the effect of pH on the magnetic nanoparticles of example 2 were investigated in the absence (Fig. 13). At pH <4, fluorescence emission is mostly extinguished, probably due to the protonation reaction of the nitrogen atom of the aminonaphthalimide group. However, minimal or slight fluorescence change is observed at pH 6-11. These results clearly demonstrate that the magnetic nanoparticles of Example 2 can be used in a physiological environment with pH> 4. In addition, the Hg + 2 and CH 3 Hg +, if one were added to a large extinction effect occurs within the range of pH 4-11, which in Example 2 is pH> 4 magnetic material nanoparticles of Hg 2 + and CH 3 Hg + It can be used as a chemical sensor and an adsorbent.
이어서, 아미노나프탈아미드기를 함유하는 짧은 컬럼을 이용하여 식수 중 Hg2+ 또는 CH3Hg+의 분리를 위한 프로브 자성체 나노입자의 효과를 측정하였다. Hg2 + (100 ppb) 또는 CH3Hg+ (100 ppb) 를 함유하는 식수 소량(1mL)을 흡착체인 프로브 자성체 나노입자로 제조된 컬럼(1 cm x 5 cm)에 주입하였다. 컬럼을 1 ml/분의 유속으로 0.2M MOPS 완충액(pH 7)으로 용출하였다. 실시예 2의 자성체 나노입자로 분리된 Hg2 + 및 CH3Hg+ 의 양을 측정하기 위해서, 식수 용출액 중에 남아있는 Hg2 + 및 CH3Hg+ 의 양을 ICP-MS로 측정하였다. 흥미롭게도, Hg2 + 및 CH3Hg+ 의 잔류량은 ICP-MS에 의해 측정되지 않았고, 이는 고안된 실시예 2의 자성체 나노입자가 Hg2 + 및 CH3Hg+ 을 거의 100% 제거했다는 것을 나타낸다. 그러므로, 실시예 2의 아미노나프탈이미드기가 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자는 식수로부터 Hg2 + 및 CH3Hg+ 의 선택적 분리 및 신속한 제거를 위한 대단히 유용하고 효과적인 제제일 수 있다.
The effect of the probe magnetic nanoparticles for the separation of Hg 2+ or CH 3 Hg + in drinking water was then measured using a short column containing aminonaphthalamide groups. Hg + 2 was fed to the (100 ppb) or CH 3 Hg + a column (1 cm x 5 cm) to prepare a small amount of water (1mL) containing (100 ppb) by adsorption chain probe nanoparticle magnetic material. The column was eluted with 0.2 M MOPS buffer (pH 7) at a flow rate of 1 ml / min. Example 2 conducted to determine the amount of Hg 2 + and CH 3 Hg +, separated by a magnetic body of the nanoparticles was measured remaining amount of Hg 2 + and CH 3 + Hg in the effluent water by ICP-MS. Interestingly, Hg 2 +, and the residual amount of CH 3 Hg + were not measured by the ICP-MS, indicating that the magnetic material nanoparticles designed in Example 2 had substantially remove 100% of the Hg 2 + and CH 3 Hg +. Therefore, the Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles substituted with the aminonaphthalimide group of Example 2 are extremely useful and effective for the selective separation and rapid removal of Hg 2 + and CH 3 Hg + from drinking water. It may be a formulation.
Claims (11)
[화학식 1]
[상기 화학식 1에서, R1, R2 및 R3은 서로 독립적으로 (C1-C20)알킬렌기, (C6-C30)아릴렌기, (C1-C20)알킬(C6-C30)아릴렌기로부터 선택되고, R4, R5 및 R6은 서로 독립적으로 (C1-C10)알콕시기이다.]
Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles having an aminonaphthalimide group represented by Formula 1 substituted on the surface of the shell.
[Formula 1]
[In Formula 1, R 1 , R 2 and R 3 are independently selected from (C1-C20) alkylene group, (C6-C30) arylene group, (C1-C20) alkyl (C6-C30) arylene group , R 4 , R 5 and R 6 are each independently a (C 1 -C 10) alkoxy group.]
하기 화학식 2의 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자.
[화학식 2]
The method of claim 1,
Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles having an aminonaphthalimide group represented by Formula 2 substituted on the shell surface.
(2)
(a) 아민계 용매 하에서 하기 화학식 3의 화합물과 하기 화학식 4의 화합물을 반응하여 하기 화학식 1의 화합물을 수득하는 단계;
(b) 상기 수득한 화학식 1의 화합물과 Fe3O4/SiO2 코어/쉘 나노입자를 비활성기체 분위기 하에서 반응하여 제조하는 단계;를
포함하는 하기 화학식 1의 아미노나프탈이미드기가 쉘 표면에 치환된 Fe3O4/SiO2 코어/쉘 자성체 나노입자의 제조방법.
[화학식 1]
[화학식 3]
[화학식 4]
[상기 화학식 1, 3 및 4에서, R1, R2 및 R3은 서로 독립적으로 (C1-C20)알킬렌기, (C6-C30)아릴렌기, (C1-C20)알킬(C6-C30)아릴렌기로부터 선택되고, R4, R5 및 R6은 서로 독립적으로 (C1-C10)알콕시기이다.]
In the manufacturing method of Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles in which the amino naphthalimide group of the general formula (1) is substituted on the surface of the shell,
(a) reacting a compound of formula 3 with a compound of formula 4 under an amine solvent to obtain a compound of formula 1;
(b) reacting the compound of Chemical Formula 1 and Fe 3 O 4 / SiO 2 core / shell nanoparticles thus obtained under an inert gas atmosphere to prepare the
Method for producing a Fe 3 O 4 / SiO 2 core / shell magnetic nanoparticles having an aminonaphthalimide group represented by Formula 1 substituted on the shell surface.
[Formula 1]
(3)
[Chemical Formula 4]
[In Formulas 1, 3 and 4, R 1 , R 2 and R 3 are independently of each other a (C1-C20) alkylene group, (C6-C30) arylene group, (C1-C20) alkyl (C6-C30) aryl And R 4 , R 5 and R 6 are each independently a (C 1 -C 10) alkoxy group.]
상기 (a) 단계의 아민계 용매는 트리에틸아민인 자성체 나노입자의 제조방법.
The method of claim 3,
The amine solvent of the step (a) is triethylamine manufacturing method of the magnetic nanoparticles.
상기 (b) 단계의 비활성 기체는 질소 기체인 자성체 나노입자의 제조방법.
The method of claim 3,
The inert gas of step (b) is nitrogen gas production method of magnetic nanoparticles.
상기 화학식 1, 3 및 4에서, R1 및 R2는 에틸렌기이고, R3은 프로필기이며, R4, R5 및 R6은 에톡시기인 자성체 나노입자의 제조방법.
The method of claim 3,
In Chemical Formulas 1, 3, and 4, R 1 and R 2 are ethylene groups, R 3 is a propyl group, and R 4 , R 5 and R 6 are ethoxy groups.
An optical sensor for detecting mercury and organic mercury using the magnetic nanoparticles of claim 1 or 2.
상기 자성체 나노입자는 형성 특성을 가지며, 상기 검출은 소광 현상에 따라 검출되는 광학센서.
The method of claim 7, wherein
The magnetic nanoparticles have a forming property, the detection is detected according to the quenching phenomenon.
An adsorbent for separating / removing mercury and organic mercury from contaminants using the magnetic nanoparticles of claim 1 or 2.
상기 흡착제는 EDTA에 의해 복원되는 흡착제.
10. The method of claim 9,
The adsorbent is restored by EDTA.
A water purification device containing the magnetic nanoparticles of claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100024337A KR101068500B1 (en) | 2010-03-18 | 2010-03-18 | Ultraefficient separation and sensing of mercury and methylmercury ions in drinking water by using aminonaphthalimide-functionalized fe3o4@sio2 core/shell magnetic nanoparticles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100024337A KR101068500B1 (en) | 2010-03-18 | 2010-03-18 | Ultraefficient separation and sensing of mercury and methylmercury ions in drinking water by using aminonaphthalimide-functionalized fe3o4@sio2 core/shell magnetic nanoparticles |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110105210A KR20110105210A (en) | 2011-09-26 |
KR101068500B1 true KR101068500B1 (en) | 2011-09-29 |
Family
ID=45507989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100024337A KR101068500B1 (en) | 2010-03-18 | 2010-03-18 | Ultraefficient separation and sensing of mercury and methylmercury ions in drinking water by using aminonaphthalimide-functionalized fe3o4@sio2 core/shell magnetic nanoparticles |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101068500B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105056890A (en) * | 2015-07-14 | 2015-11-18 | 宋传承 | Magnetic nanoplate and method for treating heavy metal sewage with same |
CN105217695A (en) * | 2015-08-28 | 2016-01-06 | 南京大学 | The methods and applications of a kind of novel magnetic nano magnetic kind and process industrial biochemistry tail water thereof |
CN109012568A (en) * | 2018-07-06 | 2018-12-18 | 中南大学 | A kind of nanofiber-based hud typed adsorbent material of magnetic silicon oxide and preparation method thereof |
CN109052596A (en) * | 2018-08-21 | 2018-12-21 | 杭州电子科技大学 | The preparation method and application of magnetic Nano flocculant suitable for emulsifiable oil waste water processing |
CN109163739A (en) * | 2018-08-20 | 2019-01-08 | 河南工业大学 | A method of preparing magneto-optic glass base single layer magnetic phasmon Terahertz sense film |
KR102353060B1 (en) | 2020-08-24 | 2022-01-19 | 홍익대학교세종캠퍼스산학협력단 | Manufacturing Method For Υ-Fe2O3-PPy Nano Coposite Materials And Absorption Method For Methylene Blue Using The Same |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102660255B (en) * | 2012-04-20 | 2013-11-20 | 北京化工大学 | Magnetic fluorescent nanoparticle with biological activity and method for preparing magnetic fluorescent nanoparticle |
CN107138093B (en) * | 2016-08-22 | 2020-04-21 | 浙江大学台州研究院 | Preparation method of magnetic nano stirrer |
CN108479732A (en) * | 2018-04-27 | 2018-09-04 | 山西大同大学 | A kind of Fe with nucleocapsid structure3O4/SiO2/ PPy complex microspheres and preparation method thereof |
CN113646633A (en) * | 2018-10-17 | 2021-11-12 | 易兹代亚科技股份有限公司 | Biomaterial detecting microparticle and biomaterial detecting method using the same |
CN115121224B (en) * | 2022-08-05 | 2023-03-10 | 广东省建工设计院有限公司 | Sludge carbon biological filler with core-shell structure and preparation method and application thereof |
CN116041791B (en) * | 2023-03-02 | 2024-05-24 | 江西广源新材料有限公司 | Naphthalene anhydride microencapsulated magnesium hydroxide composite powder and preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080027791A (en) * | 2005-05-27 | 2008-03-28 | 시바 스페셜티 케미칼스 홀딩 인크. | Functionalized nanoparticles |
KR20100006080A (en) * | 2008-07-08 | 2010-01-18 | 연세대학교 산학협력단 | Fluorescence magnetic silica nanoparticles, preparation method thereof and biomedical compositions comprising the same |
-
2010
- 2010-03-18 KR KR1020100024337A patent/KR101068500B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080027791A (en) * | 2005-05-27 | 2008-03-28 | 시바 스페셜티 케미칼스 홀딩 인크. | Functionalized nanoparticles |
KR20100006080A (en) * | 2008-07-08 | 2010-01-18 | 연세대학교 산학협력단 | Fluorescence magnetic silica nanoparticles, preparation method thereof and biomedical compositions comprising the same |
Non-Patent Citations (1)
Title |
---|
J. Am. Chem. Soc. 2004년 Vol.126, pp.2272-2273 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105056890A (en) * | 2015-07-14 | 2015-11-18 | 宋传承 | Magnetic nanoplate and method for treating heavy metal sewage with same |
CN105056890B (en) * | 2015-07-14 | 2018-01-02 | 宋传承 | A kind of magnetic Nano disk and the method using its heavy metal-polluted water process of progress |
CN105217695A (en) * | 2015-08-28 | 2016-01-06 | 南京大学 | The methods and applications of a kind of novel magnetic nano magnetic kind and process industrial biochemistry tail water thereof |
CN109012568A (en) * | 2018-07-06 | 2018-12-18 | 中南大学 | A kind of nanofiber-based hud typed adsorbent material of magnetic silicon oxide and preparation method thereof |
CN109163739A (en) * | 2018-08-20 | 2019-01-08 | 河南工业大学 | A method of preparing magneto-optic glass base single layer magnetic phasmon Terahertz sense film |
CN109052596A (en) * | 2018-08-21 | 2018-12-21 | 杭州电子科技大学 | The preparation method and application of magnetic Nano flocculant suitable for emulsifiable oil waste water processing |
CN109052596B (en) * | 2018-08-21 | 2021-07-27 | 杭州电子科技大学 | Preparation method and application of magnetic nano flocculant suitable for emulsified oil wastewater treatment |
KR102353060B1 (en) | 2020-08-24 | 2022-01-19 | 홍익대학교세종캠퍼스산학협력단 | Manufacturing Method For Υ-Fe2O3-PPy Nano Coposite Materials And Absorption Method For Methylene Blue Using The Same |
Also Published As
Publication number | Publication date |
---|---|
KR20110105210A (en) | 2011-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101068500B1 (en) | Ultraefficient separation and sensing of mercury and methylmercury ions in drinking water by using aminonaphthalimide-functionalized fe3o4@sio2 core/shell magnetic nanoparticles | |
Cho et al. | Recyclable fluorimetric and colorimetric mercury-specific sensor using porphyrin-functionalized Au@ SiO 2 core/shell nanoparticles | |
Park et al. | Ultraefficient separation and sensing of mercury and methylmercury ions in drinking water by using aminonaphthalimide-functionalized Fe 3 O 4@ SiO 2 core/shell magnetic nanoparticles | |
Jung et al. | Functionalized magnetic nanoparticles as chemosensors and adsorbents for toxic metal ions in environmental and biological fields | |
Wang et al. | Preparation of fluorescent nanofibrous film as a sensing material and adsorbent for Cu2+ in aqueous solution via copolymerization and electrospinning | |
Ni et al. | A novel fluorescent probe based on rhodamine B derivative for highly selective and sensitive detection of mercury (II) ion in aqueous solution | |
Sun et al. | Multifunctional optical sensing probes based on organic–inorganic hybrid composites | |
Mir et al. | Detection of Hg2+ in aqueous solution by pyrazole derivative-functionalized Fe3O4@ SiO2 fluorescent probe | |
Liu et al. | Visual detection of Hg2+ with high selectivity using thymine modified gold nanoparticles | |
Dong et al. | Dansyl derivative functionalized Fe 3 O 4@ SiO 2 fluorescent probe for detection and removal of Hg 2+ in aqueous solution | |
Lu et al. | Facile Hg 2+ detection in water using fluorescent self-assembled monolayers of a rhodamine-based turn-on chemodosimeter formed via a “click” reaction | |
Chatterjee et al. | Safranin O-functionalized cuboid mesoporous silica material for fluorescent sensing and adsorption of permanganate | |
WO2005114193A1 (en) | Affinity particle and method of affinity separation | |
KR101121739B1 (en) | Rhodamin B derivative compound as the fluorigenic and chromogenic probe for Ag+/Ag Nanoparticles in aqueous media | |
Son et al. | A thin-layer chromatography plate prepared from BODIPY-based receptor immobilized SiO 2 nanoparticles as a portable chemosensor for Pb 2+ | |
Chen et al. | A highly sensitive and selective turn-on fluorogenic and colorimetric sensor based on pyrene-functionalized magnetic nanoparticles for Hg2+ detection and cell imaging | |
CN109297943B (en) | Fluorine ion detection method and removal method | |
KR101665046B1 (en) | Ratiometric fluorescent chemosensor including boronic acid binding to mercury ion selectively, preparation method thereof and detection method of mercury ion using the same | |
CN101343538B (en) | Fluorescence silica gel particle and uses thereof | |
Mir et al. | 1, 3, 4-Thiadiazol derivative functionalized-Fe 3 O 4@ SiO 2 nanocomposites as a fluorescent probe for detection of Hg 2+ in water samples | |
Eskandari et al. | Molecularly imprinted polymers on CdS quantum dots for sensitive determination of cefixime after its preconcentration by magnetic graphene oxide | |
Chandran et al. | Tunable surface modification of silica nanoparticles through'click'chemistry | |
Chen et al. | Modification of silica nanoparticles with fluorescein hydrozide for Cu (II) sensing | |
Wechakorn et al. | Rhodamine-Triazole functionalized Fe3O4@ SiO2 nanoparticles as fluorescent sensors for heavy metal ions | |
Lv et al. | Magnetically recoverable fluorescence chemosensor for the adsorption and selective detection of Hg 2+ in water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20140703 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20150630 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20160718 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20170703 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20190822 Year of fee payment: 9 |