KR101066336B1 - Groundwater Purification Method in Extracted Low-Density Non-Aqueous Liquid (LUNPL) for Oil Pollution Recovery - Google Patents

Groundwater Purification Method in Extracted Low-Density Non-Aqueous Liquid (LUNPL) for Oil Pollution Recovery Download PDF

Info

Publication number
KR101066336B1
KR101066336B1 KR1020100002287A KR20100002287A KR101066336B1 KR 101066336 B1 KR101066336 B1 KR 101066336B1 KR 1020100002287 A KR1020100002287 A KR 1020100002287A KR 20100002287 A KR20100002287 A KR 20100002287A KR 101066336 B1 KR101066336 B1 KR 101066336B1
Authority
KR
South Korea
Prior art keywords
oil
pretreatment tank
tank
groundwater
contaminated
Prior art date
Application number
KR1020100002287A
Other languages
Korean (ko)
Other versions
KR20110082347A (en
Inventor
이재우
김영
박후원
하준수
곽종운
이관형
Original Assignee
(주)그린텍환경컨설팅
(주) 도담이앤씨종합건축사사무소
롯데건설 주식회사
(주)인텔리지오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)그린텍환경컨설팅, (주) 도담이앤씨종합건축사사무소, 롯데건설 주식회사, (주)인텔리지오 filed Critical (주)그린텍환경컨설팅
Priority to KR1020100002287A priority Critical patent/KR101066336B1/en
Publication of KR20110082347A publication Critical patent/KR20110082347A/en
Application granted granted Critical
Publication of KR101066336B1 publication Critical patent/KR101066336B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

본 발명은 유류로 오염된 지역의 토양 및 지하수 복원을 위한 방법으로 오염지역 내에 존재하는 유류오염원인 LNAPL을 토양복원기술의 하나인 Bioslurping 공정을 통해 추출/회수하고 이를 유수분리한 후 발생하는 오염지하수를 펜톤산화처리하여 방류하는 처리방법에 관한 것이다. 유수분리 후 유류오염지하수내에는 자유상 유류성분과 유류성분이 흡착된 미세토양입자가 존재하며 이로 인한 펜톤 산화처리효율 저하가 나타나기 때문에, 입자상 물질의 농도 및 분포특성에 따라 전기부상이나 자연침강을 통한 입자제거가 가능한 전처리조를 펜톤산화반응조 전단에 설치한 후 펜톤산화반응조에서 지하수내 유기오염물질을 산화제거하는 기술을 특징으로 한다.The present invention is a method for restoring soil and groundwater in an oil-contaminated area, extracting / recovering LNAPL, which is an oil pollutant in a contaminated area, through a bioslurping process, which is one of soil restoration technologies, and contaminated groundwater The present invention relates to a treatment method for discharging fenton oxide. After oil separation, there are free soil oils and fine soil particles adsorbed to oil components in the oil contaminated groundwater, resulting in deterioration of Fenton's oxidation treatment efficiency. After installing the pretreatment tank capable of removing particles through the front side of the Fenton oxidation tank, the Fenton oxidation tank features the technology of oxidizing and removing organic pollutants in groundwater.

Description

유류오염토양 복원을 위한 추출 저밀도비수용성액체 (LNAPL)내 지하수 정화 방법{A purifying method of Light non-aqueous phase liquid in underground water for remediation of petroleum hydrocarbons -contaminated soil}A purifying method of light non-aqueous phase liquid in underground water for remediation of petroleum hydrocarbons -contaminated soil}

본 발명은 유류로 오염된 지역의 토양 및 지하수 복원을 위한 방법으로 오염지역 내에 존재하는 유류오염원인 LNAPL을 토양복원기술의 하나인 Bioslurping 공정을 통해 추출/회수하고 이를 유수분리한 후 발생하는 오염지하수를 펜톤산화처리하여 방류하는 처리방법에 관한 것이다.The present invention is a method for restoring soil and groundwater in an oil-contaminated area, extracting / recovering LNAPL, which is an oil pollutant in a contaminated area, through a bioslurping process, which is one of soil restoration technologies, and contaminated groundwater The present invention relates to a treatment method for discharging fenton oxide.

국내에서는 토양오염 현황에 대한 자료가 거의 없으며 최근 들어 부분적인 조사 자료들이 보고되기 시작하였다. 국내의 경우 토양오염의 대다수를 차지하는 유류오염의 경우 주요 발생원은 유류 제조 및 저장시설, 군부대 및 유류관련 산업단지 등으로부터의 유류 유출로 인한 오염 축적, 수송과정 등에서 발생하는 유류 오염사고 등이 주를 이루고 있다.There is little data on soil pollution in Korea, and some survey data have recently been reported. In the case of oil pollution, which accounts for the majority of soil pollution in Korea, the main sources of oil pollution are oil accumulation and pollution caused by oil spills from oil manufacturing and storage facilities, military units and oil-related industrial complexes, and transportation processes. It is coming true.

유류오염 지역에서 유출된 유류는 휘발성 유류물질과 저밀도 비휘발성 유류탄화수소 등으로 구성된 LNAPL 형태로 지하수층 위에 표류하면서 존재하며, 지하수 오염을 지속적으로 유발하는 고농도 유류오염원으로 작용한다. 하지만 오염토양내 LNAPL 존재 및 분포 상황과 이로 인한 지하수의 복합 유류오염물질의 분포나 농도에 대한 정확한 국내 통계자료는 거의 전무한 상황이다. 다만, 유류에 의한 토양 오염농도는 TPH를 중심으로 매년 증가하는 추세이며 특히 군부대나 유류관련 산업 단지 내 오염도가 매우 심각한 수준인 것으로 파악되고 있다.Oil spilled from the oil polluted area drifting on the groundwater layer in the form of LNAPL composed of volatile oil and low-density nonvolatile oil hydrocarbon, etc., and acts as a high concentration oil pollutant that causes groundwater contamination continuously. However, there are few accurate national statistics on the presence and distribution of LNAPL in contaminated soil and the distribution or concentration of complex oil pollutants in groundwater. However, the concentration of soil pollution by oil is increasing every year, especially in TPH, and the level of pollution in military units and oil-related industrial complexes is very serious.

현재 사용되고 있는 유류오염 토양 및 지하수 복원방법은 생물학적 처리방법, 물리·화학적 처리방법과 열처리 방법 등으로 나눠지며 처리 위치에 따라서는 원위치 처리기술(in situ)과 굴착이나 추출후 처리기술(on situ)로 구분되어 진다. 이러한 처리 방법들은 각각 다른 장단점을 가지고 있다. 최근 LNAPL 층을 선택적으로 추출함으로써 유류오염원을 제거하고 동시에 휘발성물질을 bioventing을 통해 탈기시키고 지중 산소공급을 통한 원위치 생물학적 처리가 가능한 bioslurping 공정에 대한 연구와 상용화가 활발히 이루어지고 있다. Currently used oil-contaminated soil and groundwater restoration methods are divided into biological treatment methods, physical and chemical treatment methods, and heat treatment methods. Depending on the treatment location, in situ and on situ treatment techniques are used. It is divided into Each of these methods has different advantages and disadvantages. Recently, the selective extraction of the LNAPL layer has been actively researched and commercialized for the bioslurping process that removes oil pollutants, simultaneously degass volatiles through bioventing, and enables in situ biological treatment through underground oxygen supply.

한편 일반적으로 산업폐수 처리에 사용되고 있는 화학적 처리방법인 펜톤 반응은 2가 철이온과 과산화수소 반응을 이용하여 생성된 강력한 산화제인 수산화라디칼(OH·)을 사용하여 오염물질을 산화 처리하는 반응이다. 그러나 지하수 내 존재하는 콜로이드성 미세 입자상 물질에는 유류오염물질이 흡착되어 있는데, 이는 펜톤산화처리에 의해 쉽게 제거되지 않아 처리 효율이 떨어질 수 있다. 따라서 상기 펜톤 반응의 효율 저하를 최소화하면서도 기존의 bioslurping 공정에서 유수분리 후 발생하는 오염지하수를 효과적으로 처리할 수 있는 기술 개발이 요구된다.
Meanwhile, the Fenton reaction, which is a chemical treatment method generally used for industrial wastewater treatment, is a reaction of oxidizing pollutants using radical hydroxide (OH ·), a powerful oxidant produced by using divalent iron ions and hydrogen peroxide reaction. However, oil contaminants are adsorbed to the colloidal fine particulate matter present in the groundwater, which is not easily removed by the fenton oxidation treatment, which may reduce treatment efficiency. Therefore, there is a need to develop a technology capable of effectively treating the contaminated groundwater generated after oil separation in a conventional bioslurping process while minimizing the deterioration of the Fenton reaction.

상술한 종래기술의 문제점을 해결하고자 안출된 본 발명의 목적은, 유류에 흡착된 미세토양을 포함한 미세오염입자상 물질을 효과적으로 제거함으로써 펜톤산화처리 효율을 향상시키고 필요 약품량을 최소화시키는 것이 가능한 오염 지하수 처리 장치를 제공하는 것이다. An object of the present invention devised to solve the above-mentioned problems of the prior art is to improve the efficiency of fenton oxidation and to minimize the amount of chemicals required by effectively removing fine contaminating particulate matter including fine soil adsorbed in oil. It is to provide a processing device.

상기 목적을 달성하기 위한 본 발명에 따른 오염 지하수 처리 장치는, 펜톤(Fenton) 산화를 이용한 오염 지하수 처리 장치에 있어서, 펜톤 산화반응이 이루어지는 반응조(60)의 전단에, 유류에 흡착된 미세 콜로이드 입자에 대하여는 전기 분해하여 부상시키고, 밀도가 1을 초과하는 입자물질에 대하여는 자연 침강시키는 전처리조를 구비한다. The contaminated groundwater treatment apparatus according to the present invention for achieving the above object, in the contaminated groundwater treatment apparatus using Fenton oxidation, the fine colloidal particles adsorbed to oil at the front end of the reaction tank 60 in which the Fenton oxidation reaction is performed It is equipped with a pretreatment tank which electrolyzes and floats, and spontaneously seizes with respect to the particle | grain material whose density exceeds 1.

본 발명에서는 유수분리 후 지하수 내에 존재하는 유류흡착된 입자성 물질중 미세 콜로이드성 입자는 전기분해에 의한 부상원리로 제거하고, 지하수보다 밀도가 큰 물질은 중력 침강으로 제거하는 전처리공정을 통해 이러한 입자성 물질에 의하여 펜톤산화효율이 저하되는 것을 줄일 수 있어, 방류하는 지하수의 수질을 향상시키는 것이 가능하고, 이에 따라 산화처리에 필요한 약품량을 감소시키는 효과가 있다. 또한 전기부상수단과 중력침강을 지역 및 추출 입도분포 특성에 따라 번갈아 운전함으로써 에너지 소비 저감 효과가 있다. 아울러 본 발명에 따른 전처리조는 기존의 공기부상법에 비해 별도의 공기압축장치나 압축조가 필요 없어 오염지하수 현장내 오염지역으로의 이동성이 양호하며, 간단한 전압변경을 통해 지하수 내 유류 흡착된 미세 입자상 물질의 분포특성에 따른 최적운전이 가능한 장점이 있다.
In the present invention, the fine colloidal particles in the oil-adsorbed particulate matter present in the groundwater after oil-water separation are removed by the flotation principle by electrolysis, and the particles having a higher density than the groundwater are removed by gravity sedimentation. It is possible to reduce the deterioration of the Fenton oxidation efficiency by the material material, it is possible to improve the water quality of the discharged groundwater, thereby reducing the amount of chemicals required for the oxidation treatment. In addition, there is an effect of reducing energy consumption by alternately operating the electric flotation means and gravity sedimentation according to the characteristics of the region and the extraction particle size distribution. In addition, the pretreatment tank according to the present invention does not require a separate air compression device or a compression tank compared to the conventional air flotation method, and thus has good mobility to the contaminated area within the contaminated groundwater site. There is an advantage that the optimal operation is possible according to the distribution characteristic of.

도 1은 본 발명에 따른 펜톤 산화 반응조가 구비된 오염 지하수 처리 시스템의 개략도이다.
도 2는 본 발명에 따른 전기분해 부상장치가 구비된 전처리조 (30)의 개략적 구성도이다.
도 3은 본 발명에 따라 침전 및 여과를 시킨 후, 지하수 시료에 대한 펜톤 산화 처리효율(TOC 농도 기준)을 비교한 그래프이다.
1 is a schematic diagram of a contaminated groundwater treatment system equipped with a Fenton oxidation reactor according to the present invention.
2 is a schematic configuration diagram of a pretreatment tank 30 equipped with an electrolytic flotation device according to the present invention.
3 is a graph comparing the Fenton oxidation treatment efficiency (TOC concentration standard) for groundwater samples after precipitation and filtration according to the present invention.

이하, 본 발명의 기술적 구성을 보다 상세하게 설명하도록 한다. Hereinafter, the technical configuration of the present invention to be described in more detail.

본 발명은 기존의 bioslurping 공정에서 유수분리 후 발생하는 오염지하수를 경제적이며 효과적으로 처리하기 위한 방법으로서, 유수분리 후 미세입자가 포함된 오염지하수를 전기부상과 중력침강의 선택적 운전을 통해 전처리한 후 잔류 유류오염물질이 포함된 지하수는 펜톤 산화조에서 처리하도록 구성된다. The present invention is a method for economically and effectively treating the contaminated groundwater generated after oily water separation in the existing bioslurping process, and remains after pre-treatment of the contaminated groundwater containing microparticles after oily water separation through selective operation of electric flotation and gravity settling. Groundwater containing oil pollutants are configured for treatment in a Fenton oxidizer.

상술한 바와 같이, 본 발명은 오염지하수 내 콜로이드성 미세입자상 물질 제거 전처리조와 후단의 화학적 처리장치인 펜톤산화조의 조합을 특징으로 하여 구성된 오염지하수 정화시스템이다. 전처리조는 전기부상조를 근간으로 하되 유류오염지역 특성 및 토양정화 단계에 맞추어 운전된다. 유류오염이 심각한 지역이나 정화초기 단계에서는 고농도 LNAPL이 추출되며 이에 따라 유수분리 후에도 잔류하는 콜로이드성 미세유류오염입자 농도가 높을 수 있다. 이러한 콜로이드성 미세 입자상물질은 OH·에 의한 화학적 산화 방법으로 충분히 제거되기 어렵다. 따라서 본 발명에 따른 전기부상 장치의 전압조절을 통해 미세유류오염입자 제거효율을 향상시킴으로써 후속되는 펜톤산화처리 효율 향상이 가능하다. 반면, 오염지역의 농도가 높지 않거나 우기시 지하수량 증가 혹은 후기 정화단계에서는 전처리조에서 전기부상장치의 가동없이 자연 침강을 통해 입자제거를 수행하여 에너지 소비를 최소화하면서 펜톤 처리하는 방법으로의 구성이 가능하다.
As described above, the present invention is a contaminated groundwater purification system composed of a combination of a colloidal particulate matter pretreatment tank in a contaminated groundwater and a Fenton oxidation tank which is a chemical treatment apparatus at a rear stage. The pretreatment tank is based on the electric flotation tank and operates according to the characteristics of the oil polluted area and the soil purification stage. In areas where oil pollution is serious, but in the early stages of purification, high concentrations of LNAPL may be extracted, which may result in high concentrations of colloidal micro-pollutant particles remaining after oil separation. Such colloidal fine particulate matter is difficult to be sufficiently removed by the chemical oxidation with OH. Therefore, it is possible to improve the efficiency of the subsequent fenton oxidation treatment by improving the micro-oil contaminant particle removal efficiency through the voltage control of the electric flotation device according to the present invention. On the other hand, when the concentration of the polluted area is not high, or during the rainy season, the groundwater volume increases or the later purification stage, the pre-treatment tank removes particles through natural sedimentation without operating the electric flotation device and minimizes energy consumption. It is possible.

이하, 첨부된 도면을 참조하여 본 발명에 따른 장치의 설명은 다음과 같다.Hereinafter, a description of the apparatus according to the present invention with reference to the accompanying drawings.

도 1에 도시된 바와 같이 본 발명에 따른 오염 지하수 처리 시스템은 bioslurping 추출을 위한 펌프 (10), 유수분리조 (20), 전기분해부상장치가 결합된 전처리조 (30), 유류저장조 (40), 침강고형물저장조 (50), 펜톤산화반응조 (60), pH 조정조 (70)를 포함한다.
As shown in FIG. 1, the contaminated groundwater treatment system according to the present invention includes a pump 10 for extracting bioslurping, an oil separation tank 20, a pretreatment tank 30 having an electrolysis flotation device, an oil storage tank 40, Settle solids storage tank (50), Fenton oxidation tank (60), pH adjusting tank (70).

도 1은 본 발명에 따른 유류로 오염된 토양 복원 및 추출된 LNAPL내 오염 지하수처리를 위한 시스템의 전체적인 구성도이다. 유류오염 지역의 LNAPL은 지중 내 추출장치 및 연결관을 통해 펌프 (10)로 지상 압송된다. 펌프 (10) 추출된 LNAPL은 중력식 유수분리장치 (20)를 거쳐 유류와 지하수가 분리되며, 유수분리장치 (20) 상부의 유류는 유류저장조 (40)로, 하부에 침강된 입자들은 침강고형물 저장조 (50)로 이송된다. 상기 유수분리장치(20)에서 배출되는 지하수에는 일부 자유 유류성분과 유류가 흡착된 미세 콜로이드성 입자가 존재하며, 이러한 지하수 (31)는 전기분해 부상수단 (35)이 구비된 전처리조 (30)로 유입된다. 도 2는 본 발명에 따른 전처리조 (30)의 개략적 구성도이다. 도면에 개시된 바와 같이, 전처리조 내에 설치되는 상기 전기분해 부상수단(35)은 수직으로 교차 배열되는 음극 및 양극; 및 전류 인가부를 포함하는 구조로서, 전류 인가부(미도시)에 의하여 양극과 음극 사이에 전압을 가해주면, 기본적으로 전처리조 내의 수분을 전기 분해하여 음극쪽에서는 수소기체가, 양극쪽에서는 산소기체가 미세한 기포를 형성하며 발생되어, 지하수내 유류흡착된 미세콜로이드 입자상물질을 위로 띄워 제거시키고, 상대적으로 밀도가 큰 입자는 침강을 통해 제거될 수 있게 된다. 또한 상기와 같은 전기 분해 수단에 의하여 발생한 OH 라디칼은 직접적으로 전처리조 내의 유기물을 분해시킬 수 있어, 후속되는 펜톤 산화공정에서의 부하를 저감시킬 수 있으며, 또한 분해효율을 상승시킬 수 있을 것이다. 1 is an overall configuration diagram of a system for restoring soil contaminated with oil and treating contaminated groundwater in extracted LNAPL according to the present invention. LNAPLs in oil pollution areas are ground-feed to pumps 10 through underground extractors and connectors. LNAPL extracted from the pump (10) is separated from the oil and ground water through the gravity oil separator (20), the oil on the oil separator (20) is the oil storage tank (40), the sedimented solids in the bottom of the sediment solid storage tank Are transferred to 50. In the groundwater discharged from the oil / water separator 20, there are some free oil components and fine colloidal particles to which oil is adsorbed, and the groundwater 31 is a pretreatment tank 30 equipped with an electrolytic flotation means 35. Flows into. 2 is a schematic configuration diagram of a pretreatment tank 30 according to the present invention. As disclosed in the drawings, the electrolytic flotation means 35 installed in the pretreatment tank includes a cathode and an anode which are vertically arranged to cross each other; And a current applying unit, wherein when a voltage is applied between the anode and the cathode by a current applying unit (not shown), basically, the water in the pretreatment bath is electrolyzed to form a hydrogen gas on the cathode side and an oxygen gas on the anode side. Is generated by forming a fine bubble, floating up the oil-absorbed microcolloidal particulate matter in the ground water, and the relatively dense particles can be removed by sedimentation. In addition, the OH radicals generated by the electrolysis means as described above can directly decompose the organic matter in the pretreatment tank, thereby reducing the load in the subsequent Fenton oxidation process and further increasing the decomposition efficiency.

도 2에 개시된 바와 같이, 전처리조 (30)에서는 전기분해시 발생하는 미세기포에 의하여 밀도가 1에 가깝거나 작은 유류성분과 유류가 흡착된 콜로이드성 입자가 부상한 뒤 상부에서 스키머 (32)로 회수하여 유류저장조 (40)로 이송시키는 것이 바람직하다. 한편 지하수내에 존재하는 밀도가 1보다 큰 입자상 물질들은 중력침강에 의해 전처리조의 하부에 모인 후 침강고형물저장조 (50)로 이송된다. As disclosed in FIG. 2, in the pretreatment tank 30, oil components having a density close to or smaller than 1 and colloidal particles adsorbed with oil are lifted by the microbubbles generated during electrolysis, and then the skimmer 32 is moved from the top. It is preferable to collect and transfer the oil to the oil storage tank 40. Meanwhile, particulate matter having a density greater than 1 present in the groundwater is collected in the lower part of the pretreatment tank by gravity settling and then transferred to the settling solid storage tank 50.

전처리조 (30)의 유출부 상단에는 경사판 (36)이 부착되어, 상승되었다가 다시 하강하는 콜로이드성 미세유류오염입자 및 중력 하강하는 입자성 물질의 유출을 저감시킨다. 전처리된 지하수는 유출구 (37)와 유출관 (33)을 거쳐 후단의 펜톤산화반응조 (60)로 이송된다. 본 발명에 따른 전처리조에 있어서, 유출관 (33)의 배출지점(말단부)의 높이는 전처리조의 목표 수위와 같도록 설계하여 전처리조와 동일한 대기압에 의하여 흐름이 자연스럽게 유지되도록 하는 것이 바람직하다. 한편 상기 유출관의 배출지점의 높이는 상기 전처리조의 수위 및 체류시간을 고려하여 그 높이가 조절될 수 있도록 형성되는 것이 바람직하다. 상기 전처리조에 형성된 유입구는 전처리조의 상부로부터 유입이 되도록 위치되고, 유출부는 미세입자 유출을 최소화하기 위하여 전기분해 부상수단(35)의 상부, 전처리조(30)의 절반아래에 위치하도록 하는 것이 바람직하다.An inclined plate 36 is attached to the upper end of the outlet of the pretreatment tank 30 to reduce the outflow of colloidal micro-oil contaminant particles that rise and then descend, and the particulate matter that falls by gravity. The pretreated ground water is transferred to the Fenton oxidation tank 60 at the rear stage through the outlet 37 and the outlet pipe 33. In the pretreatment tank according to the present invention, the height of the outlet point (end) of the outlet pipe 33 is preferably designed to be equal to the target water level of the pretreatment tank so that the flow is naturally maintained by the same atmospheric pressure as the pretreatment tank. On the other hand, the height of the discharge point of the outlet pipe is preferably formed so that the height can be adjusted in consideration of the water level and residence time of the pretreatment tank. The inlet formed in the pretreatment tank is positioned to be introduced from the upper portion of the pretreatment tank, and the outlet portion is preferably positioned at the top of the electrolytic flotation means 35 and below half of the pretreatment tank 30 to minimize the outflow of fine particles. .

펜톤산화반응조 (60)에서는 유입되는 전처리된 오염지하수 내 유기물 처리를 위하여 pH를 3-4로 유지하며, 황산제이철 (FeSO4)과 과산화수소 (H2O2)를 1:5-1:10의 비율범위 내에서 펜톤 용액을 주입하면서 지하수와 혼합반응시킨다. 펜톤산화반응조 (60)의 유출수는 방류전 pH 조정조 (70)에서 pH를 6-7이 되도록 조정한 후 방류한다.
In the Fenton oxidation reactor (60), the pH is maintained at 3-4 to treat organic matter in the pretreated contaminated groundwater, and ferric sulfate (FeSO 4 ) and hydrogen peroxide (H 2 O 2 ) are 1: 5-1: 10. It is mixed with groundwater while injecting Fenton solution within the ratio range. The effluent of the Fenton oxidation tank 60 is discharged after adjusting the pH to 6-7 in the pH adjusting tank 70 before discharge.

후술하는 실시예는 본 발명의 기술적 사상을 예시하기 위한 것이며, 개시되는 범위로 본 발명을 제한하려는 의도가 아니다.
The embodiments described below are intended to illustrate the technical idea of the present invention and are not intended to limit the present invention to the ranges disclosed.

실시예Example

도 3에 유수분리 후 실제 지하수시료와 이를 다시 침전 및 여과처리한 후 시료들에 대해 펜톤산화를 통한 TOC 제거효율을 비교하였다. 도 3의 그래프에서 개시된 바와 같이, 입자상 물질을 가장 많이 제거한 여과시료에서 펜톤 산화 처리효과가 매우 높아짐을 알 수 있다. 또한 하기 표 1에 전기부상 전처리 전후 지하수 시료에 대해 펜톤산화를 통한 COD 제거율을 비교하였다. 전기부상을 통해 미세콜로이드입자가 제거되는 전처리조만의 COD 제거율은 약 76%이었으며 이후 펜톤 산화를 통해 93% 이상의 제거율을 나타내었다. 같은 양의 시료 부피에 대해 펜톤산화처리(FeSO4:H2O2=1:10)를 통해 제거된 COD 농도는 전처리전 시료의 경우 46 mg/L (= 530 mg/L-484 mg/L)이나 전처리 후 시료는 92 mg/L (= 128 mg/L-36 mg/L)로 약 두 배가량의 제거율 향상이 이루어짐을 확인하였다. 또한 표 2에서 보듯이 펜톤산화를 통한 COD 제거율은 전기부상 전처리시 부상시간과 전압조건에 영향을 받는다. 또한 전기부상 전처리과정에서 입자상 물질 이외에 용존성 유기물의 제거도 일어나는데 이는 전기분해를 통해 생성된 수산화라디칼이 펜톤산화와 무관하게 일부 용존유기물을 제거하는 효과에 기인하며 접촉시간과 전압을 증가시킴에 따라 용존유기물 제거효과는 상승하는 것으로 나타났다 (표 3).
After comparing the actual groundwater sample and sedimentation and filtration after real water separation in FIG. 3, the TOC removal efficiency through fenton oxidation was compared for the samples. As disclosed in the graph of FIG. 3, it can be seen that the Fenton oxidation treatment effect is very high in the filter sample from which the particulate matter is most removed. In addition, in Table 1, the COD removal rate through fenton oxidation was compared with respect to groundwater samples before and after the electrical injury pretreatment. The COD removal rate of the pretreatment tank in which the microcolloid particles were removed by the electric flotation was about 76%, and the removal rate was 93% or more through the Fenton oxidation. The COD concentration removed by Fenton oxidation (Fe S O 4 : H 2 O 2 = 1:10) for the same volume of sample was 46 mg / L (= 530 mg / L-484 mg for pre-treatment samples). / L) or after the pretreatment was 92 mg / L (= 128 mg / L-36 mg / L) was confirmed that about two times the removal rate improvement is achieved. In addition, as shown in Table 2, the COD removal rate through fenton oxidation is affected by the injury time and voltage conditions in the pretreatment of electrical injury. In addition, the removal of dissolved organic matter occurs in addition to the particulate matter during the pre-treatment of the electric flotation, which is caused by the effect of the removal of some dissolved organic matter regardless of the fenton oxidation caused by the radicals generated by the electrolysis. The dissolved organics removal effect was found to increase (Table 3).

<전기부상 전처리 전후 및 펜톤처리 전후 시료의 COD 농도 ><COD concentration of samples before and after electric injury pretreatment and Fenton treatment>

  전기부상 전처리 전, mg COD/L Mg COD / L, before electrical injury pretreatment 전기부상 전처리 후, mg COD/L Mg electrophoretic pretreatment, mg COD / L Before FentonBefore fenton 530530 128128 After
Fenton
After
Fenton
484484 3636

* 전기부상조건: 25V, 부상시간 30분
* Electric injury condition: 25V, injury time 30 minutes

<전기부상 전처리 시간 및 전압 조건에 따른 펜톤산화처리 효율 (%)><Fenton oxidation treatment efficiency (%) according to pre-treatment time and voltage condition of electrical injury>

  Applied electrical voltage Applied electrical voltage  TimeTime 15v15v 20v20v 25v25v 15min15min 80.5%80.5% 81.5%81.5% 85.5%85.5% 30min30min 90.5%90.5% 91.8%91.8% 93.1%93.1%

* Fenton 산화 후 시간별 전압변화량에 따른 COD농도 결과값
* Result of COD concentration according to voltage change by time after Fenton oxidation

<전기부상전처리 단계에서 전처리 시간 및 전압 조건에 따른 용존 COD 제거효율 (%)><Dissolved COD removal efficiency according to pretreatment time and voltage conditions in pre-floating step (%)>

  Applied electrical voltage Applied electrical voltage  TimeTime 15v15v 20v20v 25v25v 15min15min 7.2%7.2% 8.8%8.8% 12.4%12.4% 30min30min 15.2%15.2% 17.2%17.2% 18.6%18.6%

상기한 바와 같이 본 발명에 따르면, 고농도 유류오염 지역이나 bioslurping공정 복원 초기의 경우, 상기된 바와 같이 전기분해 부상 전처리조 (30)를 거쳐 펜톤산화처리하는 것이 바람직하며, 이 때 전처리조는 지하수의 수리학적 체류시간 및 미세입자 농도에 따라 상기와 같이 전압조절을 달리하여 운전될 수 있다. 한편 저농도 유류오염 지역이나 bioslurping공정 복원 후기와 같이 LNAPL 농도가 낮은 경우, 전기분해 부상 전처리조(30)가 선택적으로 운전될 수 있다. 즉, 미세콜로이드성 유류 흡착 입자가 저농도로 존재할 경우, 전처리조는 전기분해 부상수단 (35)을 탈착시키거나 전압을 가하지 않은 상태로 운전하면서 자연 침강만으로 입자제거가 이루어지도록 할 수 있을 것이다.
As described above, according to the present invention, in the case of the high concentration of the oil pollution area or the initial restoration of the bioslurping process, it is preferable to oxidize the fenton through the electrolysis flotation pretreatment tank 30 as described above, in which the pretreatment tank repairs the groundwater. Depending on the chemical retention time and the fine particle concentration it can be operated by varying the voltage control as described above. On the other hand, when the LNAPL concentration is low, such as low concentration oil pollution area or the late recovery of the bioslurping process, the electrolysis flotation pretreatment tank 30 may be selectively operated. That is, when the microcolloidal oil-adsorbed particles are present at low concentration, the pretreatment tank may be made to remove the particles only by natural sedimentation while the electrolytic flotation means 35 is removed or operated without applying voltage.

10: 펌프 20: 유수 분리조
30: 전처리조 40: 유류 저장조
50: 침강 고형물 처리조 60: 펜톤 산화 반응조
70: pH 조정조
10: pump 20: oil / water separator
30: pretreatment tank 40: oil storage tank
50: sedimentation solids treatment tank 60: fenton oxidation reactor
70: pH adjusting tank

Claims (8)

펜톤(Fenton) 산화를 이용한 오염 지하수 처리 장치에 있어서,
펜톤 산화반응이 이루어지는 반응조(60)의 전단에, 유류에 흡착된 미세 콜로이드 입자에 대하여는 전기 분해하여 부상시키고, 밀도가 1을 초과하는 입자물질에 대하여는 자연 침강시키는 전처리조를 구비하는 오염 지하수 처리 장치.
In the contaminated groundwater treatment apparatus using Fenton oxidation,
At the front end of the reaction tank 60 where the Fenton oxidation reaction is carried out, the contaminated groundwater treatment apparatus is provided with a pretreatment tank which electrolyzes and floats the fine colloidal particles adsorbed in oil, and naturally precipitates the particulate matter with a density greater than 1. .
청구항 1에 있어서,
상기 전처리조는 전기분해 부상수단을 구비하고 있으며, 상기 전기분해 부상수단은 수직으로 교차 배열되는 음극 및 양극; 및 전류 인가부를 포함하는 것을 특징으로 하는 오염 지하수 처리 장치.
The method according to claim 1,
The pretreatment tank has an electrolytic flotation means, the electrolysis flotation means comprising: a cathode and an anode which are vertically arranged to cross each other; And a current applying unit.
청구항 1에 있어서,
상기 전처리조의 상단은 유류성분 및 상기 유류에 흡착된 미세 콜로이드 입자의 처리를 위한 유류저장조(40)와 연결되고, 상기 전처리조의 중단부는 상기 펜톤 산화 반응조(60)와 연결되며, 상기 전처리조의 하단은 중력침강에 의한 입자상 물질이 이송되는 침강고형물 저장조(50)와 연결된 것을 특징으로 하는 오염 지하수 처리 장치.
The method according to claim 1,
An upper end of the pretreatment tank is connected to an oil storage tank 40 for processing oil components and fine colloidal particles adsorbed to the oil, and a stop portion of the pretreatment tank is connected to the Fenton oxidation reactor 60, and a lower end of the pretreatment tank is Polluted groundwater treatment device, characterized in that connected to the sediment solids storage tank (50) for transporting particulate matter by gravity sedimentation.
청구항 2에 있어서,
상기 전처리조의 중단에 형성된 유출부 상단에는 유류가 흡착된 미세 콜로이드 입자 및 입자성 물질의 유출이 저감되도록 경사판이 설치되는 것을 특징으로 하는 오염 지하수 처리 장치.
The method according to claim 2,
Contaminated groundwater treatment apparatus characterized in that the inclined plate is installed on the top of the outlet portion formed in the stop of the pretreatment tank so that the outflow of fine colloidal particles and particulate matter adsorbed with oil is reduced.
청구항 4에 있어서,
상기 전처리조의 유출부는 상기 전기분해 부상수단보다는 상부, 상기 전처리조의 절반아래에 위치하는 것을 특징으로 하는 오염 지하수 처리 장치.
The method of claim 4,
The outflow portion of the pretreatment tank is located above the electrolytic flotation means, and is located below the half of the pretreatment tank.
청구항 5에 있어서,
상기 유출부에 연결된 유출관의 말단부는 높이 조절이 가능하도록 형성된 것을 특징으로 하는 오염 지하수 처리 장치.
The method according to claim 5,
End portion of the outlet pipe connected to the outlet portion is contaminated groundwater treatment device, characterized in that formed to be adjustable in height.
청구항 6에 있어서,
상기 유출부에 연결된 유출관의 말단부의 높이는 상기 전처리조의 목표수위와 동일한 높이인 것을 특징으로 하는 오염 지하수 처리 장치.
The method of claim 6,
The height of the distal end of the outlet pipe connected to the outlet portion is contaminated ground water treatment apparatus, characterized in that the same height as the target water level of the pretreatment tank.
청구항 3에 있어서, 상기 전처리조의 상단과 상기 유류저장조(40) 사이에, 스키머가 더 부설된 것을 특징으로 하는 오염 지하수 처리 장치.
The contaminated groundwater treatment apparatus according to claim 3, wherein a skimmer is further provided between the upper end of the pretreatment tank and the oil storage tank (40).
KR1020100002287A 2010-01-11 2010-01-11 Groundwater Purification Method in Extracted Low-Density Non-Aqueous Liquid (LUNPL) for Oil Pollution Recovery KR101066336B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100002287A KR101066336B1 (en) 2010-01-11 2010-01-11 Groundwater Purification Method in Extracted Low-Density Non-Aqueous Liquid (LUNPL) for Oil Pollution Recovery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100002287A KR101066336B1 (en) 2010-01-11 2010-01-11 Groundwater Purification Method in Extracted Low-Density Non-Aqueous Liquid (LUNPL) for Oil Pollution Recovery

Publications (2)

Publication Number Publication Date
KR20110082347A KR20110082347A (en) 2011-07-19
KR101066336B1 true KR101066336B1 (en) 2011-09-20

Family

ID=44920391

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100002287A KR101066336B1 (en) 2010-01-11 2010-01-11 Groundwater Purification Method in Extracted Low-Density Non-Aqueous Liquid (LUNPL) for Oil Pollution Recovery

Country Status (1)

Country Link
KR (1) KR101066336B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101671751B1 (en) 2016-03-10 2016-11-03 효림산업주식회사 Remediation system of groundwater contaminants by oxidation treatment
KR101671756B1 (en) 2016-03-10 2016-11-17 효림산업주식회사 Remediation system of groundwater contaminants by pumping and treatment, oxidation treatment and reverse osmosis membrane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3944478A (en) 1973-05-02 1976-03-16 Mitsubishi Denki Kabushiki Kaisha Electrolytic drainage treating apparatus
KR19990026365A (en) * 1997-09-24 1999-04-15 정동현 Wastewater Treatment Method and Apparatus by Fenton Oxidation and Electric Electrolysis
KR20020060792A (en) * 2001-01-12 2002-07-19 금성이엔씨 주식회사 Method for treating waste water using electrolysis
KR20090047641A (en) * 2007-11-08 2009-05-13 (주)명성환경 Wastewater treatment device by electroly-zation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3944478A (en) 1973-05-02 1976-03-16 Mitsubishi Denki Kabushiki Kaisha Electrolytic drainage treating apparatus
KR19990026365A (en) * 1997-09-24 1999-04-15 정동현 Wastewater Treatment Method and Apparatus by Fenton Oxidation and Electric Electrolysis
KR20020060792A (en) * 2001-01-12 2002-07-19 금성이엔씨 주식회사 Method for treating waste water using electrolysis
KR20090047641A (en) * 2007-11-08 2009-05-13 (주)명성환경 Wastewater treatment device by electroly-zation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101671751B1 (en) 2016-03-10 2016-11-03 효림산업주식회사 Remediation system of groundwater contaminants by oxidation treatment
KR101671756B1 (en) 2016-03-10 2016-11-17 효림산업주식회사 Remediation system of groundwater contaminants by pumping and treatment, oxidation treatment and reverse osmosis membrane

Also Published As

Publication number Publication date
KR20110082347A (en) 2011-07-19

Similar Documents

Publication Publication Date Title
Pouet et al. Urban wastewater treatment by electrocoagulation and flotation
Dermentzis et al. Removal of nickel, copper, zinc and chromium from synthetic and industrial wastewater by electrocoagulation
DE60102563T2 (en) WATER AND WASTEWATER TREATMENT PROCESSES FOR REMOVING CONTAMINATION
KR100978939B1 (en) Remote monitoring and automatic control device for complex pollution groundwater purification
US20150076073A1 (en) Process for single system electrocoagulation, magnetic, cavitation and flocculation (emc/f) treatment of water and wastewater
US20040060876A1 (en) Bilge water reclamation system and process
KR101671756B1 (en) Remediation system of groundwater contaminants by pumping and treatment, oxidation treatment and reverse osmosis membrane
KR20080091699A (en) Treatment method of organic materials included in waste water, treatment device of organic meterials, treatment system of organic materials and recovery system of bitumen
KR20110127216A (en) Method and device for scrubbing effluents
CN109437454B (en) Enhanced physicochemical treatment method and device for refined high-salt high-ammonia special oily sewage
CN102442746A (en) Method for recycling high acid crude oil electric desalting wastewater
CN105236682B (en) Processing method and processing device containing oil-polluted water
CN210974231U (en) A processing apparatus for high concentration organic and heavy metal pollution&#39;s waste water
KR101066336B1 (en) Groundwater Purification Method in Extracted Low-Density Non-Aqueous Liquid (LUNPL) for Oil Pollution Recovery
CN110316881A (en) A kind of sewage air lift combined treatment process
CN112661353A (en) Sled dress formula petroleum hydrocarbon pollutes prosthetic sewage treatment plant in place
KR100984167B1 (en) Complex pollution groundwater purification treatment method and device
CN111675371A (en) Efficient emulsion wastewater treatment technology
CN114212853B (en) Air floatation tank for demulsification of emulsified oil-containing wastewater, wastewater treatment system comprising air floatation tank and method
CA2880227C (en) System and method for oil sands tailings treatment
RU2483029C1 (en) System of effluents treatment
KR20010090404A (en) The sewage treatment device
KR20030062988A (en) Remediation and dewatering of dredged slurry and mine tailing with the vacuum method and electrokinetic phenomenon(Vacuum-electrokinetic dewatering and remediatin method)
CN214299755U (en) Sled dress formula petroleum hydrocarbon pollutes prosthetic sewage treatment plant in place
CN105174662B (en) The treating method and apparatus of oil field difficult degradation oil extraction-generated waste water

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140912

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150819

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160912

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190801

Year of fee payment: 9