KR101064915B1 - Fusion polypeptide for inhibiting neurotransmitter secretion and method for delivering it - Google Patents

Fusion polypeptide for inhibiting neurotransmitter secretion and method for delivering it Download PDF

Info

Publication number
KR101064915B1
KR101064915B1 KR1020097003797A KR20097003797A KR101064915B1 KR 101064915 B1 KR101064915 B1 KR 101064915B1 KR 1020097003797 A KR1020097003797 A KR 1020097003797A KR 20097003797 A KR20097003797 A KR 20097003797A KR 101064915 B1 KR101064915 B1 KR 101064915B1
Authority
KR
South Korea
Prior art keywords
arg
ala
glu
lys
asp
Prior art date
Application number
KR1020097003797A
Other languages
Korean (ko)
Other versions
KR20090045269A (en
Inventor
이승규
이상규
Original Assignee
포휴먼텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포휴먼텍(주) filed Critical 포휴먼텍(주)
Publication of KR20090045269A publication Critical patent/KR20090045269A/en
Application granted granted Critical
Publication of KR101064915B1 publication Critical patent/KR101064915B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Abstract

본 발명은 신경전달물질의 분비를 억제하기 위해 신경세포내에 SNARE 복합체를 구성하는 3개의 단백질의 결합부위의 폴리펩타이드와 단백질전달체 (PTD, protein transduction domain) 를 융합하여 세포내 전달효율 및 국소부위로의 전달을 향상시키는 방법에 관한 것이다.The present invention is to fusion polypeptide and protein transduction domain (PTD) of the three proteins constituting the SNARE complex in neurons in order to suppress the secretion of neurotransmitters to intracellular delivery efficiency and local site It relates to a method of improving the delivery of.

Description

신경전달물질의 차단을 위한 융합 펩타이드 및 이의 전달방법 {FUSION POLYPEPTIDE FOR INHIBITING NEUROTRANSMITTER SECRETION AND METHOD FOR DELIVERING IT}Fusion peptide for blocking neurotransmitter and delivery method thereof {FUSION POLYPEPTIDE FOR INHIBITING NEUROTRANSMITTER SECRETION AND METHOD FOR DELIVERING IT}

본 발명은 신경전달물질의 분비를 억제하기 위해 신경세포내에 SNARE 복합체를 구성하는 3개의 단백질의 결합부위의 폴리펩타이드와 단백질전달체 (PTD, protein transduction domain) 를 융합하여 세포내 전달효율 및 국소부위로의 전달을 향상시키는 방법에 관한 것이다.The present invention is to fusion polypeptide and protein transduction domain (PTD) of the three proteins constituting the SNARE complex in neurons in order to suppress the secretion of neurotransmitters to intracellular delivery efficiency and local site It relates to a method of improving the delivery of.

신경전달물질의 분비를 위해서는 신경전달물질을 담지하고 있는 소포 (vesicle)의 표면에 존재하는 시냅토브레빈 (Synaptobrevin) (Vesicle-associate membrane protein, VAMP)와 시냅스전 혈장 막 (pre-synaptic plasma membrane)에 존재하는 SNAP25, 신택신 (Syntaxin)의 3개의 단백질이 SNARE 복합체를 형성하고 Ca2+ 의 자극에 의해 세포외로 분비된다 (도1).For secretion of neurotransmitters, synaptobrevin (Vesicle-associate membrane protein (VAMP)) and pre-synaptic plasma membranes present on the surface of vesicles carrying neurotransmitters Three proteins of SNAP25, Syntaxin, which are present in, form a SNARE complex and are secreted extracellularly by stimulation of Ca 2+ (FIG. 1).

신경전달물질의 분비 억제제로 가장 많이 사용되고 있는 보톨리늄 뉴로톡신은 A,B,C,D,E,F 등의 서브타입 (sub-type)이 존재하며, 이들은 각각 VAMP-2, SNAP25, 신택신의 특정위치를 절단하여 SNARE 복합체의 형성을 방해하여 신경전달 물질의 분비를 억제한다 (Schiavo et al. Nature 359, 832-835, 1992).Botolinium neurotoxins, which are most commonly used as inhibitors of neurotransmitters, have sub-types such as A, B, C, D, E, and F. These are specific to VAMP-2, SNAP25, and syntaxin, respectively. The site is cleaved to interfere with the formation of the SNARE complex to inhibit the secretion of neurotransmitters (Schiavo et al. Nature 359, 832-835, 1992).

이러한 보톨리늄 뉴로톡신은 독성이 매우 높아, 위에서 언급한 바와 같이 보톨리늄 뉴로톡신에 의해 잘려진 펩타이드 조각을 이용한 신경전달물질의 분비억제를 연구결과들이 보고되고 있으나, 전체 단백질의 일부만을 이용하기 때문에 특이성이 낮아 보톨리늄 뉴로톡신에 비하여 낮은 활성을 갖는 것이 일반적이며, 또한 펩타이드의 크기 커지는 경우, 세포내로의 전달이 속도가 낮아 리셉터에 결합하여 세포내로 유도되는 보톨리늄 뉴로톡신에 비하여 세포내 전달효율이 낮은 것이 현실이다 (Antonio V.Ferror-Monitiel et al. FEBS letters, 435, 84-88, 1998).These botulinum neurotoxins are highly toxic, and as mentioned above, studies on the inhibition of secretion of neurotransmitters using peptide fragments cut by the botulinum neurotoxin have been reported, but the specificity is low because only a part of the whole protein is used. It is common to have lower activity than botulinum neurotoxin, and when the size of the peptide is increased, the intracellular delivery efficiency is lower than that of the botulinum neurotoxin which binds to the receptor and is induced intracellularly due to the low rate of intracellular delivery. (Antonio V. Ferror-Monitiel et al. FEBS letters, 435, 84-88, 1998).

생체 내부 및 외부 모두에서 세포를 손상시키지 않고 생물학적 활성을 지닌 거대 분자를 생물학적으로 효과적으로 전달하는 일반적인 방법이 필요하게 되었다(L.A. Sternson, Ann. N.Y. Acad. Sci., 57, 19-21(1987)). 이와 같은 방법의 예로서, 지질 펩타이드의 화학적인 추가(P. Hoffmann et al. Immunobiol., 177, 158-170(1998)) 또는 폴리라이신이나 폴리알지닌과 같은 염기성 중합체를 사용하는 방법(W-C. Chen et al., Proc. Natl. Acad. Sci., USA, 75, 1872-1876(1978))이 있으나, 이들 방법은 아직 검증되지 않았다. 수송체로서 사용되는 엽산(C.P. Leamon and Low, Proc. Natl. Acd. Sci., USA, 88, 5572-5576(1991))은 엽산-염 결합체로서 세포 내로 이동된다는 사실이 보고 되었으나, 세포질 안으로까지 전달되는지는 아직 확인된 바가 없다. 또한, 슈도모나스 외독소(Pseudomonas Exotoxin)도 수송체의 한 종류로서 사용되고 있다(T.I. Prior et al., Cell, 64, 1017-1023(1991)). 그러나, 이들 방법에서도 생물학적으로 활성화된 '전달될' 물질의 세포 내로의 이 동에 관한 효과 및 이것의 일반적인 적용 가능성에 대해서는 명확하지 않다. 따라서 살아있는 세포의 세포질이나 핵 안으로 생물학적으로 활성인 물질을 보다 더 안전하고 효과적으로 전달할 수 있는 방법이 계속적으로 요구되고 있는 실정이다.There is a need for a general method for the biologically effective delivery of biologically active macromolecules without damaging cells both inside and outside the body (LA Sternson, Ann. NY Acad. Sci., 57, 19-21 (1987)). . Examples of such methods include chemical addition of lipid peptides (P. Hoffmann et al. Immunobiol., 177, 158-170 (1998)) or methods using basic polymers such as polylysine or polyarginine (WC. Chen et al., Proc. Natl. Acad. Sci., USA, 75, 1872-1876 (1978)), but these methods have not yet been validated. Folic acid (CP Leamon and Low, Proc. Natl. Acd. Sci., USA, 88, 5572-5576 (1991)), used as a transporter, has been reported to be transported into the cell as a folate-salt conjugate, but to the cytoplasm. It is not confirmed yet. Pseudomonas Exotoxin is also used as a type of transporter (T.I. Prior et al., Cell, 64, 1017-1023 (1991)). However, even in these methods, the effect on the transfer of biologically activated 'transferred' material into cells and its general applicability are not clear. Therefore, there is a continuous need for a method that can safely and effectively deliver biologically active substances into the cytoplasm or nucleus of living cells.

이러한 요구에 대한 연구의 결과로서 제시된 것으로 PTD가 있으며, 이중 가장 많은 연구가 진행된 것은 인간 면역결핍 바이러스-1(Human Immunodeficiency Virus-1, HIV-1)의 전사 인자인 Tat 단백질이다. 이 단백질이 세포막을 통과하는데 있어서 86개의 아미노산으로 구성된 완전한 형태일 때 보다 양 전하를 갖는 아미노산들이 집중적으로 분포되어 있는 47번째부터 57번째 아미노산(YGRKKRRQRRR)의 일부분으로 구성된 형태일 때 더욱 효과적임이 밝혀졌다(Fawell S. et al. Proc. Natl. Acad. Sci. USA 91, 664-668(1994)). 이와 같이 PTD로서의 효과가 확인된 다른 예로서는 HSV-1(Herpes Simplex Virus type 1)의 VP22 단백질의 267번째부터 300번째까지의 아미노산(Elliott G. et al. Cell, 88, 223-233(1997)) 및 초파리 ANTP(Antennapedia) 단백질의 339번째부터 355번째까지의 아미노산(Schwarze S. R. et al. Trends Pharmacol Sci. 21, 45-48(2000)) 등이 있으며, 전기적으로 양성인 아미노산들을 나열한 인위적인 펩타이드의 경우도 그 효과가 확인되었다(Laus R. et al. Nature Biotechnol. 18, 1269-1272(2000)).As a result of this study, PTD has been suggested, and the most studied is Tat protein, a transcription factor of human immunodeficiency virus-1 (HIV-1). It has been found that the protein is more effective in transcribing cell membranes when it is composed of parts of the 47th to 57th amino acids (YGRKKRRQRRR), which are concentrated in positively charged amino acids, rather than the complete form of 86 amino acids. (Fawell S. et al. Proc. Natl. Acad. Sci. USA 91, 664-668 (1994)). As another example of the effect as PTD, amino acids from 267 to 300 of VP22 protein of HSV-1 (Herpes Simplex Virus type 1) (Elliott G. et al. Cell, 88, 223-233 (1997)) And 339 to 355 amino acids (Schwarze SR et al. Trends Pharmacol Sci. 21, 45-48 (2000)) of the Drosophila ANTP (Antennapedia) protein, including artificial peptides that list electrically positive amino acids. The effect was confirmed (Laus R. et al. Nature Biotechnol. 18, 1269-1272 (2000)).

기술적 과제Technical Challenge

이에 본 발명자들은 SNARE 복합체를 형성하는 3종의 단백질이 서로 결합되는 도메인을 이용하여 세포안으로의 전달효율을 높여 경쟁적으로 단백질의 결합을 방해하여, 신경전달물질의 분비를 억제하고자 하였다. 본 발명에서는 세포안으로의 전달효율을 증진시키기 위하여 단백질 전달체 (PTD, Protein Transduction Domain)와 SNARE 복합체를 형성하는 3종의 단백질의 서로의 결합 도메인을 컨쥬게이션 하여 융합 폴리펩타이드 (fusion polypeptide)를 제조하고, 이를 이용하여 신경전달물질의 분비를 억제한다.Accordingly, the present inventors attempted to inhibit the secretion of neurotransmitters by compromising the binding of proteins competitively by increasing the transfer efficiency into cells using domains in which three proteins forming the SNARE complex are bound to each other. In the present invention, a fusion polypeptide is prepared by conjugating the binding domains of the protein transduction domain (PTD) and the three proteins that form the SNARE complex in order to enhance the delivery efficiency into cells. By using this, it suppresses the secretion of neurotransmitters.

SNARE 복합체를 구성하는 시냅토브레빈 (Synaptobrevin) (VAMP-2), SNAP25, 신택신 (Syntaxin)의 아미노산 서열은 각각 아래와 같다.The amino acid sequences of Synaptobrevin (VAMP-2), SNAP25, and Syntaxin constituting the SNARE complex are as follows.

SNAP25 (SEQ ID. NO.: 1)SNAP25 (SEQ ID.NO .: 1)

MAEDADMRNE LEEMQRRADQ LADESLESTR RMLQLVEESK DAGIRTLVML DEQGEQLERIMAEDADMRNE LEEMQRRADQ LADESLESTR RMLQLVEESK DAGIRTLVML DEQGEQLERI

EEGMDQINKD MKEAEKNLTD LGKFCGLCVC PCNKLKSSDA YKKAWGNNQD GVVASQPARVEEGMDQINKD MKEAEKNLTD LGKFCGLCVC PCNKLKSSDA YKKAWGNNQD GVVASQPARV

VDEREQMAIS GGFIRRVTND ARENEMDENL EQVSGIIGNL RHMALDMGN E IDTQNRQIDR VDEREQMAIS GGFIRRVTND ARENEMDENL EQVSGIIGNL RHMALDMGN E IDTQNRQIDR

IMEKAQANKT RIDEANQRAT KMLGSGIMEKAQANKT RIDEANQRAT KMLGSG

VAMP2 (SEQ ID. NO.: 2)VAMP2 (SEQ ID.NO .: 2)

MSATAATAPP AAPAGEGGPP APPPNLTSV NR RLQQTQAQVD EVVDIMRVNV DKVLERDQKL MSATAATAPP AAPAGEGGPP APPPNLTSV NR RLQQTQAQVD EVVDIMRVNV DKVLERDQKL

SELDDRADAL QAGASQFETS AAKLKR KYWW KNLKMMIILG VICAIILIII IVYFSS SELDDRADAL QAGASQFETS AAKLKR KYWW KNLKMMIILG VICAIILIII IVYFSS

신택신 (SEQ ID. NO.: 3)Taxin (SEQ ID. NO .: 3)

MKDRTQELRT AKDSDDDDDV TVTVDRDRFM DEFFEQVEEI RGFIDKIAEN VEEVKRKHSAMKDRTQELRT AKDSDDDDDV TVTVDRDRFM DEFFEQVEEI RGFIDKIAEN VEEVKRKHSA

ILASPNPDEK TKEELEELMS DIKKTANKVR SKLKSIEQSI EQEEGLNRSS ALDRIRKTQHILASPNPDEK TKEELEELMS DIKKTANKVR SKLKSIEQSI EQEEGLNRSS ALDRIRKTQH

STLSRKFVEV MSEYNATQSD YRERCKGRIO RQLEITGRTT TSEELEDMLE SGNPAIFASGSTLSRKFVEV MSEYNATQSD YRERCKGRIO RQLEITGRTT TSEELEDMLE SGNPAIFASG

IIMDSSISKQ ALSEIETR HS EIIKLENSIR ELHDMFMD MA MLVESQGEMI DRIEYNVEHAIIMDSSISKQ ALSEIETR HS EIIKLENSIR ELHDMFMD MA MLVESQGEMI DRIEYNVEHA

VDYVERAVSD TKKAVKYQSK ARRKKIMIII CCVILGIIIA STIGGIFGVDYVERAVSD TKKAVKYQSK ARRKKIMIII CCVILGIIIA STIGGIFG

SNAP25 (SEQ ID NO.: 1) 중 170번째 아미노산에서 206번째 아미노산 (굵게 표시되고 밑줄친 부분)은 VAMP-2 와 결합되는 부분이며 (SEQ ID NO.: 4, SBD), VAMP-2 (SEQ ID NO.: 2) 중 29번째 아미노산에서 86아미노산 (굵게 표시되고 밑줄친 부분)은 SNAP25/신택신과 결합되는 도메인 (SEQ ID NO.: 5, VBD) 이다. 본 발명에서는 PTD 와 SBD (SEQ ID NO.: 4), VBD (SEQ ID NO.: 5)를 각각 컨쥬게이션 하여 신경전달물질의 분비 억제제로서 이용한다.From the 170th amino acid of SNAP25 (SEQ ID NO .: 1), the 206th amino acid (bold and underlined) is the part which is combined with VAMP-2 (SEQ ID NO .: 4, SBD), VAMP-2 (SEQ The 86 amino acid (bold and underlined) at the 29th amino acid of ID NO .: 2) is the domain (SEQ ID NO .: 5, VBD) that binds to SNAP25 / syntaxin. In the present invention, PTD, SBD (SEQ ID NO .: 4) and VBD (SEQ ID NO .: 5) are conjugated and used as inhibitors of neurotransmitters.

기술적 해결방법Technical solution

상기한 목적을 달성하기 위하여, 본 발명은 사람 SNAP25가 VAMP-2와 결합하는 도메인, 및 VAMP-2가 신택신,SNAP25 와 결합하는 도메인, 즉 신경세포에서 신경전달물질의 분비를 위해 형성되는 SNARE 복합체 구성을 억제하는 펩타이드와 세포투과성 및 피부, 눈 등으로 전달 효율이 높은 단백질 전달체 (PTD, Protein Transduction Domain)의 융합 폴리펩타이드를 제공한다. 본 발명에 따른 융합 펩타이드는 카테콜아민, 아세트콜린 등의 신경전달물질의 분비를 억제하며, PTD 의 결합에 따라 신경전달물질의 분비 억제 효능을 크게 증가하고 세포독성은 변화하지 않는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a domain for binding SNAMP25 to VAMP-2, and a domain for binding VAMP-2 to syntax, SNAP25, that is, SNARE formed for the secretion of neurotransmitters in neurons. The present invention provides a fusion polypeptide of a peptide that inhibits complex composition and a protein transduction domain (PTD) having high efficiency in cell permeability, skin, and eyes. The fusion peptide according to the present invention inhibits the secretion of neurotransmitters such as catecholamine, acetcholine, and greatly increases the secretion inhibitory effect of the neurotransmitter according to the binding of PTD, and the cytotoxicity does not change.

본 발명에 따른 융합 펩타이드는, 사람 SNAP-25에서 유래한 펩타이드(SBD로 언급)와 사람 VAMP-2에서 유래한 펩타이드 (VBD 로 언급)에 PTD 펩타이드가 결합된 융합 폴리펩타이드(본 명세서에서 종종, 'PTD-SBD 또는 VBD'로도 언급함)에 관한 것으로, 그의 펩타이드 서열은 하기 화학식 1 로 나타내어질 수 있다:The fusion peptide according to the present invention is a fusion polypeptide in which a PTD peptide is bound to a peptide derived from human SNAP-25 (referred to as SBD) and a peptide derived from human VAMP-2 (referred to as VBD) (sometimes used herein) (Also referred to as 'PTD-SBD or VBD'), the peptide sequence thereof may be represented by the following Chemical Formula 1:

화학식 1Formula 1

Figure 112009011398421-pct00001
Figure 112009011398421-pct00001

상기 식에서, []PTD는 자가 세포침투성 PTD 펩타이드로서, R1 은 타이로신, 알라닌, 아르기닌, 발린, 글라이신 및 프롤린의 곁사슬(side chaine)로 이루어진 군으로부터 1종 이상 선택되며, n 은 5 ∼ 30의 정수이며, 전체 아미노산 중 30% 이상이 아르기닌이다. PTD의 예로는 Hph-1 (SEQ ID. NO.: 6 - YARVRRRGPRR), Sim-2 (SEQ ID. NO.: 7 - AKAARQAAR), Tat (SEQ ID. NO.: 8 - YGRKKRRQRRR), Antp (SEQ ID. NO.: 9 - RQIKIWFQNRRMKWKK), VP22 (SEQ ID. NO.10 - DAATATRGRSAASRPTERPRAPARSAS RPRRPVE), R7 (SEQ ID. NO. 11 - RRRRRRR), MTS (SEQ ID. NO.: 12 - AAVALLPAVLLALLAPAAADQNQLMP), pep-1 (SEQ ID. NO. 13 - KETWWETWWTEWSQPKKKRKV) 등이 있다.In the above formula, [] PTD is a self-penetrating PTD peptide, R 1 is at least one selected from the group consisting of tyrosine, alanine, arginine, valine, glycine and proline, and n is 5-30 It is an integer and at least 30% of all amino acids are arginine. Examples of PTD include Hph-1 (SEQ ID. NO .: 6-YARVRRRGPRR), Sim-2 (SEQ ID. NO .: 7-AKAARQAAR), Tat (SEQ ID. NO .: 8-YGRKKRRQRRR), Antp (SEQ ID.NO .: 9-RQIKIWFQNRRMKWKK), VP22 (SEQ ID.NO.10-DAATATRGRSAASRPTERPRAPARSAS RPRRPVE), R7 (SEQ ID.NO. 11-RRRRRRR), MTS (SEQ ID.NO .: 12-AAVALLPAVLLALLAPAAADQNQLMP), pe 1 (SEQ ID. NO. 13-KETWWETWWTEWSQPKKKRKV).

[]Gly는 자가 세포침투성 PTD 펩타이드와 SBD,VBD 펩타이드를 연결해주고 융합 펩타이드의 유동성을 증진시켜 침투된 PTD-SBD 또는 VBD와 SNAPE 복합체간의 결합 효율성을 증진 시킨다. m 은 0 ∼ 5의 정수이다. 상기 화학식 1에서는 Gly을 링커로 사용한 것으로 제시하고 있으나, 다양한 링커가 본 발명의 목적에 따라 이용될 수 있다.[] Gly connects autologous cell penetrating PTD peptides with SBD and VBD peptides and enhances the fluidity of fusion peptides to enhance the binding efficiency between the infiltrated PTD-SBD or VBD and SNAPE complexes. m is an integer of 0-5. In Formula 1, Gly is used as a linker, but various linkers may be used according to the purpose of the present invention.

SBD (SEQ ID. NO.: 4) 와 VBD (SEQ ID. NO.: 5) 는 사람 SNAP-25 및 VAMP-2에서 유래된 펩타이드로서 본 발명에서는 이들 도메인의 절편을 포함한다. 상기 서열번호 4와 5의 서열에 임의의 변형, 즉 치환, 삽입 및 결실 등을 수행한 것도, 본 발명에 따른 융합 펩타이드의 SBD 와 VBD 부분으로서 사용될 수 있음이 당업자에 의해 이해될 것이다.SBD (SEQ ID. NO .: 4) and VBD (SEQ ID. NO .: 5) are peptides derived from human SNAP-25 and VAMP-2 and include fragments of these domains in the present invention. It will be understood by those skilled in the art that any modifications, ie substitutions, insertions and deletions, etc. to the sequences of SEQ ID NOS: 4 and 5 can be used as the SBD and VBD moieties of the fusion peptides according to the invention.

본 발명에 따르면, SBD 혹은 VBD와 PTD의 펩타이드 사이에 약 3 개의 글라이신 잔기를 삽입시킴으로써, 세포 내로의 전달 및 흡수 효율을 상승시킬 수 있다.According to the present invention, by inserting about three glycine residues between the peptides of SBD or VBD and PTD, the efficiency of delivery and uptake into cells can be enhanced.

한편, 본 발명에 따른 융합 펩타이드를 제조하는 방법은, 당업계에 자명하게 공지된 방법, 예컨대 고체상 합성법 또는 재조합 발현계를 이용한 합성 방법이 사용될 수 있다. 그러나, 본 발명에 따른 융합 펩타이드의 제조 방법이 이 방법에 의해서만 한정되는 것은 아니다.On the other hand, the method for producing a fusion peptide according to the present invention, methods known in the art, for example, a solid phase synthesis method or a synthetic method using a recombinant expression system may be used. However, the method for preparing the fusion peptide according to the present invention is not limited only by this method.

첫째, 펩타이드 합성용 유기합성 기기를 이용하여 순수한 융합 펩타이드의 합성을 수행할 수 있다. 이 방법은 Merrifield의 고체상(solid phase) 펩타이드 합성법으로(J. Am. Chem. Soc. 85, 2149-21, 54(1963)), 펩타이드 반자동합성기(Peti-Syzer Model PSS-510)를 이용하여 아미노산의 C-말단과 N-말단의 반응성을 갖는 모노머를 축합 반응시켜 융합 펩타이드를 합성한다.First, the synthesis of pure fusion peptides can be performed using an organic synthesis device for peptide synthesis. This method is based on Merrifield's solid phase peptide synthesis ( J. Am. Chem. Soc . 85, 2149-21, 54 (1963)) and amino acid using a peptide semi-automatic synthesizer (Peti-Syzer Model PSS-510). A fusion peptide is synthesized by condensation reaction of a monomer having a C-terminus with an N-terminus of.

고체상 합성은 적당한 수지에 α-아미노기가 보호된 아미노산을 카르복실 말단의 아미노산부터 커플링시킴으로서 시작된다. 이때 α-아미노기가 보호된 아미노산을 히드록시 메틸 수지 또는 클로로메틸레이티드 수지에 에스테르 결합으로 붙인다. α-아미노기를 보호하는 그룹으로는 Fmoc(9-플루오레닐 메톡시카르보닐)를 사용한다(Fmoc로 보호된 아미노산은 (주)비드테크사를 통해 구입할 수 있다). 예를 들어, Arg 의 아미노기는 반응성을 갖는다. Gly, Lys, Gln의 반응성 잔기는 tert-부틸(t-Bu), Pmc(2,2,5,7,8-펜타메틸크로만-6-술포닐)과 같은 적당한 그룹으로 보호된 Fmoc-아미노산을 이용한다. 펩타이드 합성은 고체 지지체(solid support) 수지에 붙어있는 펩타이드 사슬의 아미노 말단에 대해 순차적으로 보호기를 트리플로오로아세트산(TFA), 페놀과 같은 시약으로 제거함으로서 진행된다. 펩타이드는 TFA 용액으로부터 디에틸에테르로 추출하여 분리하며 고성능 액체 크로마토그래피(HPLC)로 정제할 수 있다.Solid phase synthesis begins by coupling an amino acid having an α-amino group protected to a suitable resin from the amino acid at the carboxyl end. At this time, the amino acid in which the α-amino group is protected is attached to the hydroxy methyl resin or the chloromethylated resin as an ester bond. As a group protecting the α-amino group, Fmoc (9-fluorenyl methoxycarbonyl) is used. (Fmoc-protected amino acids can be purchased from Bidtech Co., Ltd.). For example, the amino group of Arg is reactive. Reactive moieties of Gly, Lys, Gln are Fmoc-amino acids protected with appropriate groups such as tert-butyl (t-Bu), Pmc (2,2,5,7,8-pentamethylchroman-6-sulfonyl) Use Peptide synthesis proceeds by sequentially removing protecting groups with reagents such as trifluoroacetic acid (TFA), phenol, on the amino terminus of the peptide chain attached to a solid support resin. Peptides can be isolated from TFA solution by extraction with diethyl ether and purified by high performance liquid chromatography (HPLC).

둘째, 생물학적 방법을 이용한 융합 펩타이드의 제조방법은, (a) 특정 펩타이드를 발현할 수 있는 발현 벡터 pPET에 융합 펩타이드의 유전자를 클로닝(cloning)하여 융합 펩타이드의 형태로 발현시킬 수 있는 재조합 벡터를 제조하는 단계, 그리고 (b) 상기 pPET-PTD-SBD(VBD) 발현 벡터를 이용하여 대장균 내에서의 재조합 수송체-PTD-SBD(VBD) 펩타이드의 형태로 대량 발현시킨 후, 순수 분리 정제하는 단계를 포함한다. 이때, 재조합 벡터를 제조하기 위하여, 융합 펩타이드를 코딩하는 염기서열은 당업자라면, 본원에 개시된 아미노산 서열로부터 용이하게 유추할 수 있으며, 이러한 염기서열을 삽입하기 위한 클로닝 벡터, 클로닝 기술을 이용하여 제조한 재조합 발현 벡터, 이 재조합 벡터로 형질전환시켜 목적 융합 펩타이드를 발현시키기 위한 숙주 세포, 재조합 벡터를 숙주로 형질전환시키는 방법, 형질전환된 숙주 세포로부터 목적 융합 펩타이드를 발현시키는 방법, 및 최종 생성물로부터 목적 융합 펩타이드를 수득하는 방법 등에 대한 선택 및 전반적인 기술적 사항은 당업자라면 용이하게 인식할 수 있다.Second, the method for producing a fusion peptide using a biological method, (a) to produce a recombinant vector that can be expressed in the form of a fusion peptide by cloning the gene of the fusion peptide in the expression vector pPET that can express a specific peptide. And (b) mass expression in the form of recombinant transporter-PTD-SBD (VBD) peptide in E. coli using the pPET-PTD-SBD (VBD) expression vector, followed by pure separation and purification. Include. At this time, in order to prepare a recombinant vector, a base sequence encoding a fusion peptide can be easily inferred from the amino acid sequence disclosed by those skilled in the art, a cloning vector for inserting such a base sequence, prepared using a cloning technique A recombinant expression vector, a host cell for transforming with the recombinant vector to express the desired fusion peptide, a method for transforming the recombinant vector into a host, a method for expressing the desired fusion peptide from the transformed host cell, and a target from the final product Selection and general technical matters, such as how to obtain the fusion peptide, will be readily appreciated by those skilled in the art.

한편, 본 발명은 사람유래의 SBD, VBD 의 펩타이드에 상기 단백질 전달체 PTD 펩타이드가 결합된 융합 펩타이드를 포함한 신경전달물질 억제제를 제공한다.On the other hand, the present invention provides a neurotransmitter inhibitor including a fusion peptide in which the protein transporter PTD peptide is coupled to human-derived SBD, VBD peptide.

이러한 신경전달물질 억제제는 통증완화, 주름개선, 사각턱 개선 등 다양한 분야에 응용가능하며, 특히 PTD 에 의해 피부 등의 국소부위로 전달이 가능하다.Such neurotransmitter inhibitors can be applied to various fields such as pain relief, wrinkle improvement, and square jaw improvement.

유리한 효과Favorable effect

본 발명에 따른 융합 펩타이드는 세포내 전달효율 및 국소부위로의 전달효율이 우수하며, 따라서 상기 융합 펩타이드에 의해 신경전달물질의 분비를 효과적으로 억제한다.The fusion peptide according to the present invention is excellent in intracellular delivery efficiency and local delivery efficiency, and thus effectively inhibits the secretion of neurotransmitters by the fusion peptide.

도 1 은 신경전달물질의 분비 메카니즘을 나타낸 그림이다.1 is a diagram showing the secretion mechanism of neurotransmitters.

도 2 는 합성 펩타이드의 HPLC 결과를 나타낸다.2 shows the HPLC results of the synthetic peptides.

도 3 은 PTD 컨쥬게이트의 DNA 개열지도를 나타낸다.3 shows a DNA cleavage map of the PTD conjugate.

도 4 는 PTD-SBD, PTD-VBD 의 아가로스겔 사진을 나타낸다.Figure 4 shows agarose gel pictures of PTD-SBD, PTD-VBD.

도 5 는 PTD 의 컨쥬게이션에 따른 세포 투과 효율을 나타낸 것이다.5 shows the cell permeation efficiency according to the conjugation of PTD.

도 6 는 좌골신경을 2Hz로 50회 자극하여 기록된 복합근활동전위의 평균. 이것으로부터 근육수축의 양을 표시하는 활동전위의 진폭(dY) 및 자극 후 근육의 활동전위가 발생 때까지 지연시간(tC)을 나타낸 것이다.Figure 6 is the average of the compound muscle action potential recorded by stimulating the sciatic nerve 50 times at 2Hz. From this, the amplitude of the action potential (dY) indicating the amount of muscle contraction, and the delay time (tC) until the action potential of the muscle after the stimulation is shown.

도 7 는 Amplitude of compound muscle action potential 을 나타낸 것이다.7 shows Amplitude of compound muscle action potential.

발명의 실시를 위한 형태DETAILED DESCRIPTION OF THE INVENTION

실시예 1 : PTD-SBD(VBD) 컨쥬게이트의 제조Example 1 Preparation of PTD-SBD (VBD) Conjugates

(1) PTD-SBD(VBD) conjugate 의 제조(1) Preparation of PTD-SBD (VBD) conjugate

YARVRRRGPRRGGGEIDTQNRQIDRIMEKAQANKTRIDEANQRATKMLGSG (PTD-GGG-SBD polypeptide)YARVRRRGPRRGGGEIDTQNRQIDRIMEKAQANKTRIDEANQRATKMLGSG (PTD-GGG-SBD polypeptide)

YARVRRRGPRRGGGNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAAKLKR (PTD-GGG-VBD polypeptide) 의 아미노산 서열을 갖는 융합 폴리펩타이드를 펩타이드 반자동합성기(Peti-Syzer Model PSS-510)를 이용하여 고체상(solid phase) 펩타이드 합성법으로 합성하였다. 0.1 mmol의 Rink Amide MBHA 수지를 표준 반응용기에 넣고, 합성하려는 펩타이드의 C-말단 첫 번째 아미노산인 활성화된 0.5 mmol의 Fmoc-G 와 Fmoc-R을 각각 넣고 합성을 시작하였다. C-말단 아미노산에서부터 N-말단 아미노산까지 배열순서대로 해당하는 아미노산 잔기를 0.5 mmol씩 3회 반응시켰다. Fmoc의 탈보호는 디메틸 포름아미드(DMF)로 희석한 20 % 피페리데인을 사용하여 10 분간 3회 수행하였으며, DMF로 10 분 동안 세척하고 커플링을 100분 동안 실시하였다. 커플링에는 N-히드록시벤조트리아졸 (HOBT)과 1,3-디이소프로필카르보디이미드 (DIC)를 사용하였고, DMF로 10 분간 세척하는 시스템을 이용하였다.A fusion polypeptide having the amino acid sequence of YARVRRRGPRRGGGNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAAKLKR (PTD-GGG-VBD polypeptide) was synthesized in a solid phase synthesis using a peptide semiautomatic synthesizer (Peti-Syzer Model PSS-510). 0.1 mmol of Rink Amide MBHA resin was placed in a standard reaction vessel, and the synthesis was started by adding 0.5 mmol of Fmoc-G and Fmoc-R, the first amino acids of C-terminal of the peptide to be synthesized. From the C-terminal amino acid to the N-terminal amino acid, the corresponding amino acid residues were reacted three times with 0.5 mmol each. Deprotection of Fmoc was performed three times for 10 minutes using 20% piperidine diluted with dimethyl formamide (DMF), washed for 10 minutes with DMF and coupling for 100 minutes. Coupling used N-hydroxybenzotriazole (HOBT) and 1,3-diisopropylcarbodiimide (DIC), and the system which wash | cleaned with DMF for 10 minutes was used.

(2) 융합 펩타이드의 분리 및 정제(2) Isolation and Purification of Fusion Peptides

합성이 완료된 후 펩타이드를 50 mL 코닝 튜브 (corning tube)에 넣고 0℃로 냉각시킨 후, 페놀 0.75 g, 1,2-에탄디티올 (EDT) 0.25 mL, 티아니솔 0.25 mL, 증류수 0.5 mL 및 TFA 8.25 mL의 혼합비를 가진 절단 용매를 넣은 후 실온에서 4시간 반응시켰다. 반응이 끝난 후 펩타이드와 분리된 수지를 여과하고 남은 용액에 50℃이하의 디에틸에테르를 30ml 첨가하여 펩타이드를 침전시키고 디에틸에테르를 두 번 더 첨가하여 세척하였다. 수득한 침전물을 건조시킨 후 MeOH에 녹여 HPLC로 정제하였다. 정제에 사용된 컬럼은 C18 분석용 컬럼 218TP54 (VyDac)과 C18 분취용 컬럼 218TP1022 (VyDac)을 사용하였다. 정제조건은 각각 1 mL/min, 25 mL/min 이었고, 용매로서 A: 100 % H2O + 0.01 % TFA와 B: 100% 아세토니트릴 + 0.01 % TFA를 사용하여 펩타이드를 용출하였다. 용출된 펩타이드의 아세토니트릴을 제거하고 동결 건조하여 순도 높은 펩타이드를 얻을 수 있었다. (도 2)After the synthesis was completed, the peptide was placed in a 50 mL corning tube, cooled to 0 ° C., 0.75 g of phenol, 0.25 mL of 1,2-ethanedithiol (EDT), 0.25 mL of tianisol, 0.5 mL of distilled water, and After cutting the cutting solvent having a mixing ratio of 8.25 mL of TFA was reacted for 4 hours at room temperature. After the reaction, the resin separated from the peptide was filtered and 30 ml of diethyl ether below 50 ° C. was added to the remaining solution to precipitate the peptide, followed by washing with two more diethyl ethers. The obtained precipitate was dried and then dissolved in MeOH and purified by HPLC. The columns used for purification were C18 analytical column 218TP54 (VyDac) and C18 preparative column 218TP1022 (VyDac). Purification conditions were 1 mL / min and 25 mL / min, respectively, and the peptide was eluted using A: 100% H 2 O + 0.01% TFA and B: 100% acetonitrile + 0.01% TFA as a solvent. Acetonitrile of the eluted peptide was removed and lyophilized to obtain a high purity peptide. (Figure 2)

실시예 2. 미생물 발현 시스템을 이용한 융합 펩타이 발현 벡터의 제조 및 정제Example 2. Preparation and Purification of Fusion Peptide Expression Vectors Using a Microbial Expression System

(1) 발현 벡터 제조(1) Expression Vector Preparation

융합 펩타이드를 코딩하는 염기서열 제작을 위하여, N-말단에 Hind Ⅲ, C-말단에 BamHⅠ을 pUC 19 (입수처:invitrogen)에 넣어 주형을 제작하였다. 융합 펩타이드의 고발현과 용이한 정제를 위한 poly His tag 영역, 고발현 단백질을 코딩하는 염기서열을 결합시키기 위하여 제한효소 HindⅢ, BamHⅠ반응을 거쳐 주형을 분리해내고, 퀴아퀵(Auiaquick) 정제키트를 사용하여 정제하였다. 발현 벡터, pPET 벡터는 제한효소 HindⅢ, BamHⅠ를 사용하여 처리하고, 퀴아퀵(Auiaquick) 정제키트를 사용하여 정제한 뒤, 상기 준비된 융합 펩타이드를 코딩하는 염기서열 주형 클로닝하여 재조합 발현벡터를 제조하였다. 개략적인 발현벡터 벡터의 유전자 지도 는 도 3에서 보는 바와 같다.To prepare a nucleotide sequence encoding the fusion peptide, Hind III at the N-terminus and BamHI at the C-terminus were put in pUC 19 (invitrogen) to prepare a template. In order to bind the poly His tag region for high expression and easy purification of the fusion peptide and the nucleotide sequence encoding the high expression protein, the template was separated through the restriction enzyme HindIII and BamH I reaction, and the quiaquick purification kit was used. Purification was carried out. The expression vector, pPET vector was processed using restriction enzymes HindIII, BamHI, purified using a Quiaquick purification kit, and then cloned the base template encoding the prepared fusion peptide to prepare a recombinant expression vector. The gene map of the schematic expression vector vector is as shown in FIG.

(2) 대장균 형질전환체의 제조 및 융합 펩타이드의 발현 및 정제(2) Preparation of E. coli transformants and expression and purification of fusion peptides

상기에서 제조된 발현벡터를 사용하여 대장균 BL21 (입수처:invitrogen )를 열충격 형질 전환 방법(Heat shock transformation)으로 형질 전환시킨 다음, 형질 전환된 대장균을 100 mL의 LB 배지에 1 mL의 양으로 1% 접종하고 12시간 동안 37℃에서 교반하면서 전 배양하였다. 이어서, 이를 다시 각각 1,000 mL의 LB 배지에 접종하고 37℃에서 4시간 동안 배양한 후, 1 mM 농도의 IPTG(이소프로필 β-D-티오갈락토피라노사이드, GibcoBRL cat. #15529-019)를 첨가하여 lac 오페론의 발현을 유도하고 8시간 동안 배양하여 융합 펩타이드의 발현을 유도하였다. 상기 배양액을 4℃에서 5,000 rpm으로 20분간 원심분리하여 펠렛만 남기고 상등액을 제거한 후, 1 mg/mL의 라이소자임 (Sigma, cat,#L-7651)이 포함된 10 mL의 완충용액 (50 mM NaH2PO4, 300 mM NaCl, 10 mM 이미다졸, pH 8.0)으로 펠렛을 풀어준 다음, 얼음에서 30분간 방치한 후, 초음파 분쇄기 (Heat systems, ultrasonic processor XL)를 사용하여 300W의 세기로 10초간 초음파를 주입하고 10초간 냉각하는 과정을 반복하여 누적 초음파 주입시간이 3분이 되게 하였다. 용출액을 4℃에서 12,000 rpm으로 20분간 원심분리하여 대장균의 파쇄물을 제거하고 순수한 용출액만을 분리하였다. 분리된 용출액에 2.5 mL의 50% Ni2+-NTA 아가로즈 슬러리 (Qiagen, cat#30230)를 넣고 4℃에서 200 rpm으로 1시간 동안 교반하여 융합단백질과 Ni2+-NTA 아가로즈를 결합시키고, 이 혼합액을 크로마트그래피용 0.8×4cm 컬럼 (BioRad, cat #731-1550) 에 넣어 흘려주었다. 4 mL의 완충용액 2 (50mM NaH2PO4, 300mM NaCl, 20mM 이미다졸, pH 8.0)를 사용하여 두 차례 세척을 한 후, 0.5 mL의 완충용액 3 (50mM NaH2PO4, 300mM NaCl, 250mM 이미다졸, pH 8.0)으로 네 차례에 나누어 융합단백질을 분취하고, SDS-PAGE를 실시한 후 코우마쉬 블루 염색법으로 확인하였고, 그 결과를 도 4에 나타내었다. 도 4에서, 레인 1 은 표준분자량 단백질이고, 레인 2 는 PTD-SBD, 레인 3 은 PTD-VBD 이다. 융합단백질에 2 mL 빙냉 4 M NH2OH, 0.4 M K2CO3, 6 M GuHCl, pH 9.0을 넣어 최종 완충용액 농도가 2 M NH2OH, 0.2 M K2CO3, 3 M GuHCl, pH 9.0가 되게 한 뒤, 45℃에서 225 rpm으로 5시간동안 교반하여 융합단백질을 융합 펩타이드와 수송체 단백질로 분리하고, 12 N HCl를 넣어 pH를 2∼3로 조정하고 10분 동안 더 교반하여 반응을 완료했다. 12.5 N NaOH를 넣어 pH가 6.5되게 중성화 반응시킨 뒤, 충진된 Ni2+-NTA 아가로즈 컬럼에 넣어 분리된 수송체 단백질을 분리한 다음, 겔 여과하여 완충 용액내 염 성분을 제거한 뒤 동결 건조하여 순수 융합 펩타이드를 수득했다.E. coli BL21 (invitrogen) was transformed by a heat shock transformation method using the expression vector prepared above, and the transformed E. coli was transformed into 1 mL in 100 mL of LB medium in an amount of 1 mL. % Incubation and pre-culture with stirring at 37 ° C. for 12 hours. It was then inoculated again in 1,000 mL of LB medium and incubated at 37 ° C. for 4 hours, followed by 1 mM concentration of IPTG (isopropyl β-D-thiogalactopyranoside, GibcoBRL cat. # 15529-019). Was added to induce the expression of lac operon and incubated for 8 hours to induce the expression of the fusion peptide. The culture solution was centrifuged at 5,000 rpm for 20 minutes at 4 ° C. to remove the supernatant, leaving only the pellet. Then, 10 mL of buffer solution containing 1 mg / mL of lysozyme (Sigma, cat, # L-7651) (50 mM NaH) 2 PO 4 , 300 mM NaCl, 10 mM imidazole, pH 8.0), the pellet was left for 30 minutes on ice, and then subjected to an ultrasonic mill (Heat systems, ultrasonic processor XL) at a strength of 300 W for 10 seconds. The ultrasonic injection was repeated for 10 seconds and the cumulative ultrasonic injection time was 3 minutes. The eluate was centrifuged at 12,000 rpm for 20 minutes at 4 ° C. to remove the lysate of E. coli, and only pure eluate was separated. 2.5 mL of 50% Ni 2+ -NTA agarose slurry (Qiagen, cat # 30230) was added to the separated eluate, and stirred at 200 rpm at 4 ° C. for 1 hour to combine the fusion protein with Ni 2+ -NTA agarose. The mixed solution was poured into a 0.8 × 4 cm column for chromatography (BioRad, cat # 731-1550). After washing twice with 4 mL of Buffer 2 (50 mM NaH 2 PO 4 , 300 mM NaCl, 20 mM imidazole, pH 8.0), 0.5 mL of Buffer 3 (50 mM NaH 2 PO 4 , 300 mM NaCl, 250 mM Imidazole, pH 8.0) was divided into four times and the fusion protein was fractionated, and subjected to SDS-PAGE, and confirmed by the Coomassie blue staining method, the results are shown in FIG. In Figure 4, lane 1 is a standard molecular weight protein, lane 2 is PTD-SBD, lane 3 is PTD-VBD. 2 mL ice-cold 4 M NH 2 OH, 0.4 MK 2 CO 3 , 6 M GuHCl, pH 9.0 was added to the fusion protein, resulting in 2 M NH 2 OH, 0.2 MK 2 CO 3 , 3 M GuHCl, pH 9.0 After stirring, the mixture was stirred at 45 ° C. at 225 rpm for 5 hours to separate the fusion protein into the fusion peptide and the transporter protein, and 12 N HCl was added to adjust the pH to 2-3 and stirred for 10 minutes to complete the reaction. did. 12.5 N NaOH was added to neutralize the pH to 6.5, and the separated transport protein was separated from the packed Ni 2+ -NTA agarose column, and then gel-filtered to remove salts from the buffer solution and freeze-dried. Pure fusion peptides were obtained.

실시예 3. 실험관내에서 융합펩타이드에 의한 신경전달물질 분비 억제 효과Example 3 Inhibitory Effect of Neurotransmitter Secretion by Fusion Peptides in Vitro

상기 실시예 1과 2 에서 제조된 융합 펩타이드의 신경전달물질의 분비 억제효과를 분석하였다. SBD 및 VBD 의 절편을 각각 2개씩 제조하여 활성을 비교하였다.The secretion inhibitory effect of the neurotransmitters of the fusion peptides prepared in Examples 1 and 2 were analyzed. Two fragments of SBD and VBD were each prepared to compare their activity.

시료 1 : SBD (SEQ ID. NO.:4)Sample 1: SBD (SEQ ID.NO.:4)

시료 2 : VBD (SEQ ID. NO.:5)Sample 2: VBD (SEQ ID. NO.:5)

시료 3 : Hph-1-GGG-SBD (SEQ ID. NO.:14)Sample 3: Hph-1-GGG-SBD (SEQ ID.NO.:14)

시료 4 : Hph-1-GGG-VBD (SEQ ID. NO.:15)Sample 4: Hph-1-GGG-VBD (SEQ ID.NO.:15)

시료 5 : Tat-GGG-SBD (SEQ ID. NO.:16)Sample 5: Tat-GGG-SBD (SEQ ID.NO.:16)

시료 6 : Hph-1-GGG-SBDF1(SEQ ID. NO.:17)Sample 6: Hph-1-GGG-SBDF1 (SEQ ID.NO.:17)

시료 7 : Hph-1-GGG-SBDF2 (SEQ ID. NO.:18)Sample 7: Hph-1-GGG-SBDF2 (SEQ ID.NO.:18)

시료 8 : Hph-1-GGG-VBDF1 (SEQ ID. NO.:19)Sample 8: Hph-1-GGG-VBDF1 (SEQ ID.NO.:19)

시료 9 : Hph-1-GGG-VBDF2 (SEQ ID. NO.:20)Sample 9: Hph-1-GGG-VBDF2 (SEQ ID.NO.:20)

Hph-1-GGG-SBD (SEQ ID. NO.: 14)Hph-1-GGG-SBD (SEQ ID.NO .: 14)

YARVRRRGPRRGGGEIDTQNRQIDRIMEKAQANKTRIDEANQRATKMLGSGYARVRRRGPRRGGGEIDTQNRQIDRIMEKAQANKTRIDEANQRATKMLGSG

Hph-1-GGG-VBD (SEQ ID. NO.: 15)Hph-1-GGG-VBD (SEQ ID.NO .: 15)

YARVRRRGPRRGGGNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAAKLKRYARVRRRGPRRGGGNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAAKLKR

Tat-GGG-SBD (SEQ ID. NO.: 16)Tat-GGG-SBD (SEQ ID.NO .: 16)

YGRKKRRQRRRGGGEIDTQNRQIDRIMEKAQANKTRIDEANQRATKMLGSGYGRKKRRQRRRGGGEIDTQNRQIDRIMEKAQANKTRIDEANQRATKMLGSG

Hph-1-GGG-SBDF1 (SEQ ID. NO.: 17)Hph-1-GGG-SBDF1 (SEQ ID.NO .: 17)

YARVRRRGPRRGGGIMEKAQANKTRIDEANQRATKMLGSGYARVRRRGPRRGGGIMEKAQANKTRIDEANQRATKMLGSG

Hph-1-GGG-SBDF2 (SEQ ID. NO.: 18)Hph-1-GGG-SBDF2 (SEQ ID.NO .: 18)

YARVRRRGPRRGGGKTRIDEANQRATKMYARVRRRGPRRGGGKTRIDEANQRATKM

Hph-1-GGG-VBDF1 (SEQ ID. NO.: 19)Hph-1-GGG-VBDF1 (SEQ ID.NO .: 19)

YARVRRRGPRRGGGNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKYARVRRRGPRRGGGNRRLQQTQAQVDEVVDIMRVNVDKVLERDQK

Hph-1-GGG-VBDF2 (SEQ ID. NO.: 20)Hph-1-GGG-VBDF2 (SEQ ID.NO .: 20)

YARVRRRGPRRGGGLSELDDRADALQAGASQFETSAAKLKRYARVRRRGPRRGGGLSELDDRADALQAGASQFETSAAKLKR

PC12 세포 (Pheochromocytoma, ATCC CRL-1721)를 T75 (Nunc)에서 2 mM L-글루타민, 1.5 g/L 중탄산나트륨, 15% 말 혈청, 2.5% FBS를 넣은 F-12K 배지(Gibco) 15 mL에 해빙하고, 이틀간 배양하여, 세포 밀도 625,000 세포/㎠가 되게 한 뒤, 원심분리하여 상등액을 제거하고, 동일 볼륨의 F-12K 배지와 약물을 각각 넣어주어 하루 동안 배양하고, Ca2+ 10uM 의 농도로 자극하여 분비되는 카테콜아민의 양을 형광 HPLC를 통하여 분석하였다. 약물들의 농도는 10-6로부터 10-5의 농도 (M)로 넣어 주었다. 그 결과를 표 1에 나타내었다. 표 1 에서 볼 수 있듯이 본 발명에 사용된 화학식 1로 표시되는 화합물은 신경전달물질의 분비억제 효과가 우수함을 알 수 있었다.PC12 cells ( Peochromocytoma , ATCC CRL-1721) were thawed in T75 (Nunc) in 15 mL of F-12K medium (Gibco) in 2 mM L-glutamine, 1.5 g / L sodium bicarbonate, 15% horse serum, 2.5% FBS. After culturing for 2 days, the cell density was 625,000 cells / cm 2, the supernatant was removed by centrifugation, and cultured for one day by adding F-12K medium and drugs of the same volume, respectively, at a concentration of Ca 2+ 10 uM. The amount of catecholamine stimulated and secreted was analyzed via fluorescence HPLC. The concentration of drugs was put in a concentration (M) from 10 -6 to 10 -5 . The results are shown in Table 1. As shown in Table 1, the compound represented by the formula (1) used in the present invention was found to be excellent in the secretion inhibitory effect of the neurotransmitter.

표 1TABLE 1

polypeptide 의 신경전달물질의 분비 억제 효과Inhibitory effect of neurotransmitter on polypeptide

Figure 112009011398421-pct00002
Figure 112009011398421-pct00002

Negative : no stimulationNegative: no stimulation

Positive : Ca2+ stimulation and no drugPositive: Ca 2+ stimulation and no drug

실시예 4: PTD conjugation 에 따른 세포내 전달효과Example 4 Intracellular Delivery Effect by PTD Conjugation

PTD 의 결합에 따른 세포내 전달효과를 분석하기 위하여 PTD와 컨쥬게이션한 SBDF1 펩타이드과 컨쥬게이션하지 않은 SBDF1 펩타이드 각각에 형광물질인 FITC (입수처: Sigma, Fluorescein 5-isothiocyanate, 27072-45-3)를 레이블링하여 Facs (FACSCalibur, Becton Dickinson)로 분석하였다 (도 5). 그 결과 PTD의 컨쥬게이션에 따라 약 50배의 전달효과 향상효과 있는 것으로 분석되었다.In order to analyze the intracellular delivery effect of PTD binding, the fluorescent substance FITC (Sigma, Fluorescein 5-isothiocyanate, 27072-45-3) was applied to SBDF1 peptide conjugated with PTD and unconjugated SBDF1 peptide. Labeling was analyzed by Facs (FACSCalibur, Becton Dickinson) (FIG. 5). As a result, according to the conjugation of PTD, it was analyzed that the effect of improving delivery effect was about 50 times.

실시예 5 : PTD conjugate 에 따른 근마비 효력시험Example 5 Myofascial Effect Test by PTD Conjugate

보톨리늄 뉴로톡신 및 본 발명자의 펩타이드는 신경전달물질을 차단하여 근육의 마비를 발생시키므로 보톨리늄 뉴로톡신 및 펩타이드를 래트의 전경골근에 주사하여 1주, 2주, 및 3주에 좌골신경의 전기자극에 의한 전경골근의 복합근활동전위 (compound muscle action potential, CMAP) 의 진폭(dY)을 측정하였다. 측정방법은 먼저 8주령의 SD 래트 (공급처 : 효창) 에 보톨리늄 뉴로톡신 A (제조원 : allergan, 구입처 : Sigma) 와 시료 1, 시료3, 시료 6 을 뒷다리 오른쪽 전경골근에 5 ㎕ 씩 주사하였다. 보톨리늄 뉴로톡신의 주사방법은 400U 의 보톨리늄 뉴로톡신을 1㎖ 의 생리식염수에 녹여 400U/㎖ 의 용액을 만들고, 래트에 5㎕ 를 1 회 주사하였다. 또한 시료1, 시료3, 시료6 은 각각 래트당 10ng, 100ng, 500ng 씩을 투여하였다.Since botulinum neurotoxin and the peptide of the present invention block the neurotransmitter and cause muscle paralysis, the injection of botulinum neurotoxin and peptide into the forearm muscle of rats was applied to the electrical stimulation of the sciatic nerve at 1, 2 and 3 weeks. The amplitude (dY) of the compound muscle action potential (CMAP) of the forearm muscle was measured. First, 8-week-old SD rats (source: Hyochang) were injected with bolulinum neurotoxin A (manufacturer: allergan, purchased from Sigma) and samples 1, 3, and 6 into 5 μl of the right forearm muscle. In the method of injection of botulinum neurotoxin, 400 U of botulinum neurotoxin was dissolved in 1 ml of physiological saline to prepare a solution of 400 U / ml, and 5 µl of the rat was injected once. Sample 1, Sample 3, and Sample 6 were each administered 10 ng, 100 ng, and 500 ng per rat.

복합근활동전위의 측정은 래트에 ketamine/xylazine 칵테일을 복강 내 주사하여 마취한 후 30℃ 로 유지되는 검사대 위에 래트를 복와위로 두고 사지를 고정하여 수행했다. 검사하고자 하는 하지의 고관절, 슬관절, 발목관절을 각각 90도로 굴곡시켜 고정하고, 기록전극, 기준전극, 접지전극을 전경골근, 종골건, 발바닥쪽에 각각 부착했다. 자극전극(+) 침을 슬와부에 찌르고, 자극전극(-) 침을 후치골부 와 대퇴대전자부의 치골흔에 찔렀다. 자극 전극을 통해 1∼5microA 범위로 전류를 흘려 좌골신경을 자극하여 전경골근의 복합근활동전위를 유발시켰다. 최대 진폭을 나타내는 자극강도의 ∼150% 강도로 2Hz로 50회 반복 자극하여 반복 복합근활동전위를 유발하였다. 5분 휴식 후 20Hz로 50회 반복 자극하여 반복 복합근활동전위를 유발하였다. 이들 신호를 생물전기증폭기 및 신호처리기(CyberAmp380, Axon Instruments, Inc.에서 500배 증폭시키고 300 ∼ 3000 Hz 범위에서 필터 후 신호획득장치(Digidata1320, Axon Instruments, Inc.)를 사용하여 컴퓨터로 입력하여 파형을 표시하였다.The compound muscle action potential was measured by intraperitoneal injection of a ketamine / xylazine cocktail into the rat and anesthetized the limb with the rat placed on the abdomen on an examination table maintained at 30 ° C. The hip joint, knee joint and ankle joint of the lower limbs to be examined were fixed at 90 degrees, and the recording electrode, reference electrode, and ground electrode were attached to the forearm bone, calcaneus tendon, and sole of the foot, respectively. The stimulation electrode (+) needle was inserted into the hip, and the stimulation electrode (-) needle was inserted into the pubic bone of the posterior bone and the femoral femur. Stimulation of the sciatic nerve was induced by flowing a current in the range of 1 to 5 microA through the stimulation electrode to induce the complex muscle action potential of the forearm muscle. Repeated complex muscle action potential was induced by stimulating 50 times at 2Hz with ˜150% intensity of stimulus intensity indicating maximum amplitude. Repeated stimulation of 50 times at 20Hz after 5 minutes rest induced repeated complex muscle action potential. These signals are amplified 500 times in bioelectric amplifiers and signal processors (CyberAmp380, Axon Instruments, Inc.), and then filtered into a computer using a signal acquisition device (Digidata1320, Axon Instruments, Inc.) in the range 300 to 3000 Hz. Is indicated.

컴퓨터에 저장된 신호를 분석하여 2Hz로 50회 반복 CMAP의 평균전위의 negative peak과 positive peak의 진폭의 차이(dY)와 전기자극과 negative peak의 시점간 지연시간(tC)를 계산하였다 (도 6).The signal stored in the computer was analyzed to calculate the difference between the amplitude of the negative peak and the positive peak (dY) of the 50 potential CMAP at 2 Hz and the delay time (tC) between the time points of the electrical stimulation and the negative peak (FIG. 6). .

보톨리늄 뉴로톡신 및 시료1, 시료3, 시료6의 시간에 대한 복합근활동전위 결과는 도 7과 같이 보톨리늄 뉴로톡신의 경우 5 unit 의 주사에 따라 완벽하게 근육을 마비시켰으며, 시료1의 경우 20% 정도의 약한 근마비를 나타내었고, 시료3 및 시료 6의 경우 물질의 투여량이 증가함에 따라 보톨리늄 뉴로톡신과 동일한 효과를 나타내었다.The botulinum neurotoxin and the result of complex muscle action potential for the time of samples 1, 3, and 6 were completely paralyzed according to the injection of 5 units of botulinum neurotoxin, as shown in FIG. Weak muscle paralysis of about% was shown, and sample 3 and 6 showed the same effect as botulinum neurotoxin as the dose of substance increased.

이상에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 본 기술분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to preferred embodiments of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. It will be appreciated.

이상에서 설명한 바와 같이, 본 발명에 따른 융합 펩타이드는 세포내 전달효율 및 국소부위로의 전달효율이 우수하며, 따라서 상기 융합 펩타이드에 의해 신경전달물질의 분비를 효과적으로 억제한다.As described above, the fusion peptide according to the present invention is excellent in intracellular delivery efficiency and delivery efficiency to the local site, and thus effectively inhibits the secretion of neurotransmitters by the fusion peptide.

<110> FORHUMANTECH CO., LTD. <120> FUSION POLYPEPTIDE FOR INHIBITING NEUROTRANSMITTER SECRETION AND METHOD FOR DELIVERING IT <130> IPN-34385 <160> 20 <170> KopatentIn 1.71 <210> 1 <211> 206 <212> PRT <213> Artificial Sequence <220> <223> SNAP25 <400> 1 Met Ala Glu Asp Ala Asp Met Arg Asn Glu Leu Glu Glu Met Gln Arg 1 5 10 15 Arg Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met 20 25 30 Leu Gln Leu Val Glu Glu Ser Lys Asp Ala Gly Ile Arg Thr Leu Val 35 40 45 Met Leu Asp Glu Gln Gly Glu Gln Leu Glu Arg Ile Glu Glu Gly Met 50 55 60 Asp Gln Ile Asn Lys Asp Met Lys Glu Ala Glu Lys Asn Leu Thr Asp 65 70 75 80 Leu Gly Lys Phe Cys Gly Leu Cys Val Cys Pro Cys Asn Lys Leu Lys 85 90 95 Ser Ser Asp Ala Tyr Lys Lys Ala Trp Gly Asn Asn Gln Asp Gly Val 100 105 110 Val Ala Ser Gln Pro Ala Arg Val Val Asp Glu Arg Glu Gln Met Ala 115 120 125 Ile Ser Gly Gly Phe Ile Arg Arg Val Thr Asn Asp Ala Arg Glu Asn 130 135 140 Glu Met Asp Glu Asn Leu Glu Gln Val Ser Gly Ile Ile Gly Asn Leu 145 150 155 160 Arg His Met Ala Leu Asp Met Gly Asn Glu Ile Asp Thr Gln Asn Arg 165 170 175 Gln Ile Asp Arg Ile Met Glu Lys Ala Gln Ala Asn Lys Thr Arg Ile 180 185 190 Asp Glu Ala Asn Gln Arg Ala Thr Lys Met Leu Gly Ser Gly 195 200 205 <210> 2 <211> 117 <212> PRT <213> Artificial Sequence <220> <223> VAMP2 <400> 2 Met Ser Ala Thr Ala Ala Thr Ala Pro Pro Ala Ala Pro Ala Gly Glu 1 5 10 15 Gly Gly Pro Pro Ala Pro Pro Pro Asn Leu Thr Ser Val Asn Arg Arg 20 25 30 Leu Gln Gln Thr Gln Ala Gln Val Asp Glu Val Val Asp Ile Met Arg 35 40 45 Val Asn Val Asp Lys Val Leu Glu Arg Asp Gln Lys Leu Ser Glu Leu 50 55 60 Asp Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln Phe Glu Thr 65 70 75 80 Ser Ala Ala Lys Leu Lys Arg Lys Tyr Trp Trp Lys Asn Leu Lys Met 85 90 95 Met Ile Ile Leu Gly Val Ile Cys Ala Ile Ile Leu Ile Ile Ile Ile 100 105 110 Val Tyr Phe Ser Ser 115 <210> 3 <211> 288 <212> PRT <213> Artificial Sequence <220> <223> Syntaxin <400> 3 Met Lys Asp Arg Thr Gln Glu Leu Arg Thr Ala Lys Asp Ser Asp Asp 1 5 10 15 Asp Asp Asp Val Thr Val Thr Val Asp Arg Asp Arg Phe Met Asp Glu 20 25 30 Phe Phe Glu Gln Val Glu Glu Ile Arg Gly Phe Ile Asp Lys Ile Ala 35 40 45 Glu Asn Val Glu Glu Val Lys Arg Lys His Ser Ala Ile Leu Ala Ser 50 55 60 Pro Asn Pro Asp Glu Lys Thr Lys Glu Glu Leu Glu Glu Leu Met Ser 65 70 75 80 Asp Ile Lys Lys Thr Ala Asn Lys Val Arg Ser Lys Leu Lys Ser Ile 85 90 95 Glu Gln Ser Ile Glu Gln Glu Glu Gly Leu Asn Arg Ser Ser Ala Leu 100 105 110 Asp Arg Ile Arg Lys Thr Gln His Ser Thr Leu Ser Arg Lys Phe Val 115 120 125 Glu Val Met Ser Glu Tyr Asn Ala Thr Gln Ser Asp Tyr Arg Glu Arg 130 135 140 Cys Lys Gly Arg Ile Lys Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr 145 150 155 160 Thr Ser Glu Glu Leu Glu Asp Met Leu Glu Ser Gly Asn Pro Ala Ile 165 170 175 Phe Ala Ser Gly Ile Ile Met Asp Ser Ser Ile Ser Lys Gln Ala Leu 180 185 190 Ser Glu Ile Glu Thr Arg His Ser Glu Ile Ile Lys Leu Glu Asn Ser 195 200 205 Ile Arg Glu Leu His Asp Met Phe Met Asp Met Ala Met Leu Val Glu 210 215 220 Ser Gln Gly Glu Met Ile Asp Arg Ile Glu Tyr Asn Val Glu His Ala 225 230 235 240 Val Asp Tyr Val Glu Arg Ala Val Ser Asp Thr Lys Lys Ala Val Lys 245 250 255 Tyr Gln Ser Lys Ala Arg Arg Lys Lys Ile Met Ile Ile Ile Cys Cys 260 265 270 Val Ile Leu Gly Ile Ile Ile Ala Ser Thr Ile Gly Gly Ile Phe Gly 275 280 285 <210> 4 <211> 37 <212> PRT <213> Artificial Sequence <220> <223> SBD <400> 4 Glu Ile Asp Thr Gln Asn Arg Gln Ile Asp Arg Ile Met Glu Lys Ala 1 5 10 15 Gln Ala Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln Arg Ala Thr Lys 20 25 30 Met Leu Gly Ser Gly 35 <210> 5 <211> 58 <212> PRT <213> Artificial Sequence <220> <223> VBD <400> 5 Asn Arg Arg Leu Gln Gln Thr Gln Ala Gln Val Asp Glu Val Val Asp 1 5 10 15 Ile Met Arg Val Asn Val Asp Lys Val Leu Glu Arg Asp Gln Lys Leu 20 25 30 Ser Glu Leu Asp Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln 35 40 45 Phe Glu Thr Ser Ala Ala Lys Leu Lys Arg 50 55 <210> 6 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> Hph-1 <400> 6 Tyr Ala Arg Val Arg Arg Arg Gly Pro Arg Arg 1 5 10 <210> 7 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> Sim-2 <400> 7 Ala Lys Ala Ala Arg Gln Ala Ala Arg 1 5 <210> 8 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> Tat <400> 8 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg 1 5 10 <210> 9 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Antp <400> 9 Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Trp Lys Lys 1 5 10 15 <210> 10 <211> 34 <212> PRT <213> Artificial Sequence <220> <223> VP22 <400> 10 Asp Ala Ala Thr Ala Thr Arg Gly Arg Ser Ala Ala Ser Arg Pro Thr 1 5 10 15 Glu Arg Pro Arg Ala Pro Ala Arg Ser Ala Ser Arg Pro Arg Arg Pro 20 25 30 Val Glu <210> 11 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> R7 <400> 11 Arg Arg Arg Arg Arg Arg Arg 1 5 <210> 12 <211> 26 <212> PRT <213> Artificial Sequence <220> <223> MTS <400> 12 Ala Ala Val Ala Leu Leu Pro Ala Val Leu Leu Ala Leu Leu Ala Pro 1 5 10 15 Ala Ala Ala Asp Gln Asn Gln Leu Met Pro 20 25 <210> 13 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> pep-1 <400> 13 Lys Glu Thr Trp Trp Glu Thr Trp Trp Thr Glu Trp Ser Gln Pro Lys 1 5 10 15 Lys Lys Arg Lys Val 20 <210> 14 <211> 51 <212> PRT <213> Artificial Sequence <220> <223> Hph-1-GGG-SBD <400> 14 Tyr Ala Arg Val Arg Arg Arg Gly Pro Arg Arg Gly Gly Gly Glu Ile 1 5 10 15 Asp Thr Gln Asn Arg Gln Ile Asp Arg Ile Met Glu Lys Ala Gln Ala 20 25 30 Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln Arg Ala Thr Lys Met Leu 35 40 45 Gly Ser Gly 50 <210> 15 <211> 72 <212> PRT <213> Artificial Sequence <220> <223> Hph-1-GGG-VBD <400> 15 Tyr Ala Arg Val Arg Arg Arg Gly Pro Arg Arg Gly Gly Gly Asn Arg 1 5 10 15 Arg Leu Gln Gln Thr Gln Ala Gln Val Asp Glu Val Val Asp Ile Met 20 25 30 Arg Val Asn Val Asp Lys Val Leu Glu Arg Asp Gln Lys Leu Ser Glu 35 40 45 Leu Asp Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln Phe Glu 50 55 60 Thr Ser Ala Ala Lys Leu Lys Arg 65 70 <210> 16 <211> 51 <212> PRT <213> Artificial Sequence <220> <223> Tat-GGG-SBD <400> 16 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly Gly Gly Glu Ile 1 5 10 15 Asp Thr Gln Asn Arg Gln Ile Asp Arg Ile Met Glu Lys Ala Gln Ala 20 25 30 Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln Arg Ala Thr Lys Met Leu 35 40 45 Gly Ser Gly 50 <210> 17 <211> 40 <212> PRT <213> Artificial Sequence <220> <223> Hph-1-GGG-SBDF1 <400> 17 Tyr Ala Arg Val Arg Arg Arg Gly Pro Arg Arg Gly Gly Gly Ile Met 1 5 10 15 Glu Lys Ala Gln Ala Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln Arg 20 25 30 Ala Thr Lys Met Leu Gly Ser Gly 35 40 <210> 18 <211> 28 <212> PRT <213> Artificial Sequence <220> <223> Hph-1-GGG-SBDF2 <400> 18 Tyr Ala Arg Val Arg Arg Arg Gly Pro Arg Arg Gly Gly Gly Lys Thr 1 5 10 15 Arg Ile Asp Glu Ala Asn Gln Arg Ala Thr Lys Met 20 25 <210> 19 <211> 45 <212> PRT <213> Artificial Sequence <220> <223> Hph-1-GGG-VDBF1 <400> 19 Tyr Ala Arg Val Arg Arg Arg Gly Pro Arg Arg Gly Gly Gly Asn Arg 1 5 10 15 Arg Leu Gln Gln Thr Gln Ala Gln Val Asp Glu Val Val Asp Ile Met 20 25 30 Arg Val Asn Val Asp Lys Val Leu Glu Arg Asp Gln Lys 35 40 45 <210> 20 <211> 41 <212> PRT <213> Artificial Sequence <220> <223> Hph-1-GGG-VBDF2 <400> 20 Tyr Ala Arg Val Arg Arg Arg Gly Pro Arg Arg Gly Gly Gly Leu Ser 1 5 10 15 Glu Leu Asp Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln Phe 20 25 30 Glu Thr Ser Ala Ala Lys Leu Lys Arg 35 40 <110> FORHUMANTECH CO., LTD. <120> FUSION POLYPEPTIDE FOR INHIBITING NEUROTRANSMITTER SECRETION AND          METHOD FOR DELIVERING IT <130> IPN-34385 <160> 20 <170> KopatentIn 1.71 <210> 1 <211> 206 <212> PRT <213> Artificial Sequence <220> <223> SNAP25 <400> 1 Met Ala Glu Asp Ala Asp Met Arg Asn Glu Leu Glu Glu Met Gln Arg   1 5 10 15 Arg Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met              20 25 30 Leu Gln Leu Val Glu Glu Ser Lys Asp Ala Gly Ile Arg Thr Leu Val          35 40 45 Met Leu Asp Glu Gln Gly Glu Gln Leu Glu Arg Ile Glu Glu Gly Met      50 55 60 Asp Gln Ile Asn Lys Asp Met Lys Glu Ala Glu Lys Asn Leu Thr Asp  65 70 75 80 Leu Gly Lys Phe Cys Gly Leu Cys Val Cys Pro Cys Asn Lys Leu Lys                  85 90 95 Ser Ser Asp Ala Tyr Lys Lys Ala Trp Gly Asn Asn Gln Asp Gly Val             100 105 110 Val Ala Ser Gln Pro Ala Arg Val Val Asp Glu Arg Glu Gln Met Ala         115 120 125 Ile Ser Gly Gly Phe Ile Arg Arg Val Thr Asn Asp Ala Arg Glu Asn     130 135 140 Glu Met Asp Glu Asn Leu Glu Gln Val Ser Gly Ile Gly Asn Leu 145 150 155 160 Arg His Met Ala Leu Asp Met Gly Asn Glu Ile Asp Thr Gln Asn Arg                 165 170 175 Gln Ile Asp Arg Ile Met Glu Lys Ala Gln Ala Asn Lys Thr Arg Ile             180 185 190 Asp Glu Ala Asn Gln Arg Ala Thr Lys Met Leu Gly Ser Gly         195 200 205 <210> 2 <211> 117 <212> PRT <213> Artificial Sequence <220> <223> VAMP2 <400> 2 Met Ser Ala Thr Ala Ala Thr Ala Pro Pro Ala Ala Pro Ala Gly Glu   1 5 10 15 Gly Gly Pro Pro Ala Pro Pro Pro Asn Leu Thr Ser Val Asn Arg Arg              20 25 30 Leu Gln Gln Thr Gln Ala Gln Val Asp Glu Val Val Asp Ile Met Arg          35 40 45 Val Asn Val Asp Lys Val Leu Glu Arg Asp Gln Lys Leu Ser Glu Leu      50 55 60 Asp Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln Phe Glu Thr  65 70 75 80 Ser Ala Ala Lys Leu Lys Arg Lys Tyr Trp Trp Lys Asn Leu Lys Met                  85 90 95 Met Ile Ile Leu Gly Val Ile Cys Ala Ile Ile Leu Ile Ile Ile Ile             100 105 110 Val Tyr Phe Ser Ser         115 <210> 3 <211> 288 <212> PRT <213> Artificial Sequence <220> <223> Syntaxin <400> 3 Met Lys Asp Arg Thr Gln Glu Leu Arg Thr Ala Lys Asp Ser Asp Asp   1 5 10 15 Asp Asp Asp Val Thr Val Thr Val Asp Arg Asp Arg Phe Met Asp Glu              20 25 30 Phe Phe Glu Gln Val Glu Glu Ile Arg Gly Phe Ile Asp Lys Ile Ala          35 40 45 Glu Asn Val Glu Glu Val Lys Arg Lys His Ser Ala Ile Leu Ala Ser      50 55 60 Pro Asn Pro Asp Glu Lys Thr Lys Glu Glu Leu Glu Glu Leu Met Ser  65 70 75 80 Asp Ile Lys Lys Thr Ala Asn Lys Val Arg Ser Lys Leu Lys Ser Ile                  85 90 95 Glu Gln Ser Ile Glu Gln Glu Glu Gly Leu Asn Arg Ser Ser Ala Leu             100 105 110 Asp Arg Ile Arg Lys Thr Gln His Ser Thr Leu Ser Arg Lys Phe Val         115 120 125 Glu Val Met Ser Glu Tyr Asn Ala Thr Gln Ser Asp Tyr Arg Glu Arg     130 135 140 Cys Lys Gly Arg Ile Lys Arg Gln Leu Glu Ile Thr Gly Arg Thr Thr 145 150 155 160 Thr Ser Glu Glu Leu Glu Asp Met Leu Glu Ser Gly Asn Pro Ala Ile                 165 170 175 Phe Ala Ser Gly Ile Ile Met Asp Ser Ser Ile Ser Lys Gln Ala Leu             180 185 190 Ser Glu Ile Glu Thr Arg His Ser Glu Ile Ile Lys Leu Glu Asn Ser         195 200 205 Ile Arg Glu Leu His Asp Met Phe Met Asp Met Ala Met Leu Val Glu     210 215 220 Ser Gln Gly Glu Met Ile Asp Arg Ile Glu Tyr Asn Val Glu His Ala 225 230 235 240 Val Asp Tyr Val Glu Arg Ala Val Ser Asp Thr Lys Lys Ala Val Lys                 245 250 255 Tyr Gln Ser Lys Ala Arg Arg Lys Lys Ile Met Ile Ile Is Cys Cys             260 265 270 Val Ile Leu Gly Ile Ile Ile Ala Ser Thr Ile Gly Gly Ile Phe Gly         275 280 285 <210> 4 <211> 37 <212> PRT <213> Artificial Sequence <220> <223> SBD <400> 4 Glu Ile Asp Thr Gln Asn Arg Gln Ile Asp Arg Ile Met Glu Lys Ala   1 5 10 15 Gln Ala Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln Arg Ala Thr Lys              20 25 30 Met Leu Gly Ser Gly          35 <210> 5 <211> 58 <212> PRT <213> Artificial Sequence <220> <223> VBD <400> 5 Asn Arg Arg Leu Gln Gln Thr Gln Ala Gln Val Asp Glu Val Val Asp   1 5 10 15 Ile Met Arg Val Asn Val Asp Lys Val Leu Glu Arg Asp Gln Lys Leu              20 25 30 Ser Glu Leu Asp Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln          35 40 45 Phe Glu Thr Ser Ala Ala Lys Leu Lys Arg      50 55 <210> 6 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> Hph-1 <400> 6 Tyr Ala Arg Val Arg Arg Arg Gly Pro Arg Arg   1 5 10 <210> 7 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> Sim-2 <400> 7 Ala Lys Ala Ala Arg Gln Ala Ala Arg   1 5 <210> 8 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> Tat <400> 8 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg   1 5 10 <210> 9 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> Antp <400> 9 Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Trp Lys Lys   1 5 10 15 <210> 10 <211> 34 <212> PRT <213> Artificial Sequence <220> <223> VP22 <400> 10 Asp Ala Ala Thr Ala Thr Arg Gly Arg Ser Ala Ala Ser Arg Pro Thr   1 5 10 15 Glu Arg Pro Arg Ala Pro Ala Arg Ser Ala Ser Arg Pro Arg Arg Pro              20 25 30 Val glu         <210> 11 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> R7 <400> 11 Arg Arg Arg Arg Arg Arg Arg   1 5 <210> 12 <211> 26 <212> PRT <213> Artificial Sequence <220> <223> MTS <400> 12 Ala Ala Val Ala Leu Leu Pro Ala Val Leu Leu Ala Leu Leu Ala Pro   1 5 10 15 Ala Ala Ala Asp Gln Asn Gln Leu Met Pro              20 25 <210> 13 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> pep-1 <400> 13 Lys Glu Thr Trp Trp Glu Thr Trp Trp Thr Glu Trp Ser Gln Pro Lys   1 5 10 15 Lys Lys Arg Lys Val              20 <210> 14 <211> 51 <212> PRT <213> Artificial Sequence <220> <223> Hph-1-GGG-SBD <400> 14 Tyr Ala Arg Val Arg Arg Arg Gly Pro Arg Arg Gly Gly Glu Ile   1 5 10 15 Asp Thr Gln Asn Arg Gln Ile Asp Arg Ile Met Glu Lys Ala Gln Ala              20 25 30 Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln Arg Ala Thr Lys Met Leu          35 40 45 Gly Ser Gly      50 <210> 15 <211> 72 <212> PRT <213> Artificial Sequence <220> <223> Hph-1-GGG-VBD <400> 15 Tyr Ala Arg Val Arg Arg Arg Gly Pro Arg Arg Gly Gly Gly Asn Arg   1 5 10 15 Arg Leu Gln Gln Thr Gln Ala Gln Val Asp Glu Val Val Asp Ile Met              20 25 30 Arg Val Asn Val Asp Lys Val Leu Glu Arg Asp Gln Lys Leu Ser Glu          35 40 45 Leu Asp Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln Phe Glu      50 55 60 Thr Ser Ala Ala Lys Leu Lys Arg  65 70 <210> 16 <211> 51 <212> PRT <213> Artificial Sequence <220> <223> Tat-GGG-SBD <400> 16 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly Gly Gly Glu Ile   1 5 10 15 Asp Thr Gln Asn Arg Gln Ile Asp Arg Ile Met Glu Lys Ala Gln Ala              20 25 30 Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln Arg Ala Thr Lys Met Leu          35 40 45 Gly Ser Gly      50 <210> 17 <211> 40 <212> PRT <213> Artificial Sequence <220> <223> Hph-1-GGG-SBDF1 <400> 17 Tyr Ala Arg Val Arg Arg Arg Gly Pro Arg Arg Gly Gly Gly Ile Met   1 5 10 15 Glu Lys Ala Gln Ala Asn Lys Thr Arg Ile Asp Glu Ala Asn Gln Arg              20 25 30 Ala Thr Lys Met Leu Gly Ser Gly          35 40 <210> 18 <211> 28 <212> PRT <213> Artificial Sequence <220> <223> Hph-1-GGG-SBDF2 <400> 18 Tyr Ala Arg Val Arg Arg Arg Gly Pro Arg Arg Gly Gly Gly Lys Thr   1 5 10 15 Arg Ile Asp Glu Ala Asn Gln Arg Ala Thr Lys Met              20 25 <210> 19 <211> 45 <212> PRT <213> Artificial Sequence <220> <223> Hph-1-GGG-VDBF1 <400> 19 Tyr Ala Arg Val Arg Arg Arg Gly Pro Arg Arg Gly Gly Gly Asn Arg   1 5 10 15 Arg Leu Gln Gln Thr Gln Ala Gln Val Asp Glu Val Val Asp Ile Met              20 25 30 Arg Val Asn Val Asp Lys Val Leu Glu Arg Asp Gln Lys          35 40 45 <210> 20 <211> 41 <212> PRT <213> Artificial Sequence <220> <223> Hph-1-GGG-VBDF2 <400> 20 Tyr Ala Arg Val Arg Arg Arg Gly Pro Arg Arg Gly Gly Gly Leu Ser   1 5 10 15 Glu Leu Asp Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln Phe              20 25 30 Glu Thr Ser Ala Ala Lys Leu Lys Arg          35 40

Claims (6)

SEQ ID NO.: 6 내지 SEQ ID NO.: 13으로 구성된 군으로부터 선택된 어느 하나의 아미노산 서열을 가지는 단백질 전달체 (Protein Transduction Domain, PTD); 및 SNARE 복합체를 구성하는 SNAP25의 결합도메인 (SEQ ID. NO.: 4) 또는 VAMP-2의 결합도메인 (SEQ ID. NO.: 5)이 컨쥬게이션 된, 생체 내에서 신경전달물질의 분비를 억제하기 위한 융합 폴리펩타이드. Protein transduction domain (PTD) having any one amino acid sequence selected from the group consisting of SEQ ID NO .: 6 to SEQ ID NO .: 13; And inhibits secretion of neurotransmitters in vivo, wherein the binding domain of SNAP25 (SEQ ID. NO .: 4) or VAMP-2 binding domain (SEQ ID. NO .: 5) constituting the SNARE complex is conjugated Fusion polypeptides for 삭제delete 제 1항에 있어서, 단백질 전달체와 SNAP25의 결합도메인 (SEQ ID. NO.: 4) 또는 VAMP-2의 결합도메인 (SEQ ID. NO.: 5)이 링커 (linker)에 의해 컨쥬게이션 됨을 특징으로 하는, 융합 폴리펩타이드.The method of claim 1, characterized in that the binding domain of the protein carrier and SNAP25 (SEQ ID. NO .: 4) or the binding domain of VAMP-2 (SEQ ID. NO .: 5) is conjugated by a linker. Fusion polypeptides. 제 3항에 있어서, 링커가 3개의 글라이신으로 구성됨을 특징으로 하는, 융합 폴리펩타이드.The fusion polypeptide of claim 3, wherein the linker consists of three glycines. 제 1항의 융합 펩타이드를 활성 성분으로 함유하는 피부 통증완화용 약학 조성물.A pharmaceutical composition for alleviating skin pain containing the fusion peptide of claim 1 as an active ingredient. 제 1항의 융합 펩타이드를 활성 성분으로 함유하는 피부 주름개선용 약학 조성물.A pharmaceutical composition for improving skin wrinkles comprising the fusion peptide of claim 1 as an active ingredient.
KR1020097003797A 2006-08-31 2007-08-24 Fusion polypeptide for inhibiting neurotransmitter secretion and method for delivering it KR101064915B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20060083768 2006-08-31
KR1020060083768 2006-08-31

Publications (2)

Publication Number Publication Date
KR20090045269A KR20090045269A (en) 2009-05-07
KR101064915B1 true KR101064915B1 (en) 2011-09-16

Family

ID=39136095

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097003797A KR101064915B1 (en) 2006-08-31 2007-08-24 Fusion polypeptide for inhibiting neurotransmitter secretion and method for delivering it

Country Status (4)

Country Link
JP (1) JP2010502592A (en)
KR (1) KR101064915B1 (en)
CN (1) CN101511873B (en)
WO (1) WO2008026852A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153946A1 (en) * 2020-01-30 2021-08-05 (주)메디톡스 Peptide inhibiting formation of snare complex and use thereof
KR102550756B1 (en) * 2022-12-21 2023-07-05 (주)메디톡스 Peptide inhibiting neurotransmitter release from a cell and use thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101293777B1 (en) * 2010-06-30 2013-08-06 성균관대학교산학협력단 Peptides for treatment and prevention of allergic diseases
WO2012023838A2 (en) * 2010-08-20 2012-02-23 Lee Sang-Kyou Fusion protein having transcription factor transactivation-regulating domain and protein transduction domain, and transcription factor function inhibitor comprising the same
EP2649985A1 (en) * 2012-04-13 2013-10-16 Lipotec, S.A. Compounds which inhibit neuronal exocytosis (III)
JP6470678B2 (en) * 2012-04-13 2019-02-13 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド Compound (II) that inhibits neuronal exocytosis
CN103641888B (en) * 2013-12-03 2015-08-12 广州健坤生物科技有限公司 The little peptide of a kind of Multifucntional, the composition comprising this peptide and application thereof
CN106589137A (en) * 2016-12-12 2017-04-26 陕西慧康生物科技有限责任公司 Cell-penetrating peptide and human Beta-defensin 3 fusion protein and preparation method and application thereof
CN111621525B (en) * 2020-06-18 2021-04-23 中赛干细胞基因工程有限公司 Application of STX1B gene in promoting growth and differentiation of human adipose-derived mesenchymal stem cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060134722A1 (en) 2003-12-19 2006-06-22 Wisconsin Alumni Research Foundation Method and compositions for detecting botulinum neurotoxin

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034620A1 (en) * 1996-03-18 1997-09-25 The Regents Of The University Of California Peptide inhibitors of neurotransmitter secretion by neuronal cells
CN1297913A (en) * 1999-11-26 2001-06-06 上海博容基因开发有限公司 Human protoplasmic membrane transfer identifying protein 25 as one new kind of polypeptide and polynucleotides encoding this polypeptide
US20060153876A1 (en) * 2003-02-24 2006-07-13 Ira Sanders Cell membrane translocation of regulated snare inhibitors, compositions therefor, and methods for treatment of disease
US20060015376A1 (en) * 2004-07-16 2006-01-19 Sap Aktiengesellschaft Method and system for employee reservation of meeting rooms
US20060024331A1 (en) * 2004-08-02 2006-02-02 Ester Fernandez-Salas Toxin compounds with enhanced membrane translocation characteristics

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060134722A1 (en) 2003-12-19 2006-06-22 Wisconsin Alumni Research Foundation Method and compositions for detecting botulinum neurotoxin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153946A1 (en) * 2020-01-30 2021-08-05 (주)메디톡스 Peptide inhibiting formation of snare complex and use thereof
KR20220012979A (en) * 2020-01-30 2022-02-04 (주)메디톡스 Peptide inhibiting formation of SNARE complex and use thereof
KR102513577B1 (en) * 2020-01-30 2023-03-24 (주)메디톡스 Peptide inhibiting formation of SNARE complex and use thereof
KR102550756B1 (en) * 2022-12-21 2023-07-05 (주)메디톡스 Peptide inhibiting neurotransmitter release from a cell and use thereof

Also Published As

Publication number Publication date
KR20090045269A (en) 2009-05-07
JP2010502592A (en) 2010-01-28
CN101511873A (en) 2009-08-19
WO2008026852A1 (en) 2008-03-06
CN101511873B (en) 2012-11-07

Similar Documents

Publication Publication Date Title
KR101064915B1 (en) Fusion polypeptide for inhibiting neurotransmitter secretion and method for delivering it
EP1811033B1 (en) Cell-permeable peptide inhibitors of the JNK signal transduction pathway
Gupta et al. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides
KR100608558B1 (en) Cytoplasmic Transduction Peptides and Uses thereof
Järver et al. Cell-penetrating peptides—a brief introduction
KR100859972B1 (en) Cell membrane-penetrating peptide
US20080274956A1 (en) Fusion Protein Comprising a Bh3-Domain of a Bh3-Only Protein
US9694087B2 (en) Development of novel macromolecule transduction domain with improved cell permeability and method for using same
JP2015522264A (en) Cell penetrating peptides and methods for identifying cell penetrating peptides
CA3171988A1 (en) Human transferrin receptor binding peptide
Zaidi et al. A novel cell penetrating aspartic protease inhibitor blocks processing and presentation of tetanus toxoid more efficiently than pepstatin A
RU2012156861A (en) CHIMERS OF VITRONECTIN: KERATINOCYTES GROWTH FACTOR
KR20070108953A (en) Peptide vectores
EP3237434A1 (en) Cell penetrating peptides
CN108640973B (en) Polypeptide with targeting effect Syntenin protein, dimer thereof and application thereof
KR100553174B1 (en) The fusion peptide-ptd conjugates for improving skin-wrinkle and cosmetics containing the same
Kobayashi et al. Nucleolar localization signals of LIM kinase 2 function as a cell-penetrating peptide
KR102398339B1 (en) Fusion peptide for nitric oxide delivery and use thereof
Wu et al. Total synthesis and modification of proline-rich cyclopeptides Phakellistatins 17 and 18 isolated from marine sponge
Pierce et al. Peptide-oligonucleotide hybrids in antisense therapy
US20020142966A1 (en) Inhibitors of the E2F-1/cyclin interaction for cancer therapy
Osman et al. Microwave assisted peptide synthesis of some rationally designed cell penetrating peptides from c-kit receptor
KR20080012437A (en) Transmembrane delivery peptide and bio-material comprising the same
WO2019090015A1 (en) Peptidic materials that traffic efficiently to the cell cytosol and nucleus
KR102166543B1 (en) Composition and Method for Inhibiting Keloid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160308

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170512

Year of fee payment: 6

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20180308

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190909

Year of fee payment: 9