KR101059873B1 - Novel Peroxidase Variants with Increased Radical Stability - Google Patents

Novel Peroxidase Variants with Increased Radical Stability Download PDF

Info

Publication number
KR101059873B1
KR101059873B1 KR1020090117904A KR20090117904A KR101059873B1 KR 101059873 B1 KR101059873 B1 KR 101059873B1 KR 1020090117904 A KR1020090117904 A KR 1020090117904A KR 20090117904 A KR20090117904 A KR 20090117904A KR 101059873 B1 KR101059873 B1 KR 101059873B1
Authority
KR
South Korea
Prior art keywords
ser
ala
gly
leu
pro
Prior art date
Application number
KR1020090117904A
Other languages
Korean (ko)
Other versions
KR20110061297A (en
Inventor
송봉근
김용환
김수진
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020090117904A priority Critical patent/KR101059873B1/en
Priority to PCT/KR2010/005146 priority patent/WO2011068297A1/en
Publication of KR20110061297A publication Critical patent/KR20110061297A/en
Application granted granted Critical
Publication of KR101059873B1 publication Critical patent/KR101059873B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0065Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/18Baker's yeast; Brewer's yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Botany (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 코프리너스 시네레우스(Coprinus cinereus) 유래의 퍼옥시다아제(CiP) 단백질 변이체에 관한 것으로서, 서열번호 1의 아미노산 서열로 표시되는 CiP 단백질의 229 위치의 아미노산이 치환된, 보다 상세하게는 서열번호 2 내지 4의 아미노산 서열로 표시되는 단백질로 이루어진 군에서 선택되는 본 발명에 따른 CiP 단백질 변이체는, 기존의 CiP 단백질보다 증가된 라디칼 안정성을 가지므로 퍼옥시다아제를 이용하는 산업에 유용하게 사용될 수 있다.The present invention relates to a peroxidase (CiP) protein variant derived from Coprinus cinereus , in which the amino acid at position 229 of the CiP protein represented by the amino acid sequence of SEQ ID NO: 1 is substituted. CiP protein variants according to the present invention selected from the group consisting of proteins represented by the amino acid sequence of SEQ ID NO: 2 to 4 has an increased radical stability than the existing CiP protein can be usefully used in the industry using peroxidase .

퍼옥시다아제, 변이, 라디칼 안정성 Peroxidase, mutation, radical stability

Description

라디칼 안정성이 증가된 신규한 퍼옥시다아제 변이체{Peroxidase variants having improved radical stability}Novel peroxidase variants having improved radical stability

본 발명은 라디칼 안정성이 증가된, 코프리너스 시네레우스(Coprinus cinereus) 유래의 퍼옥시다아제(CiP) 단백질 변이체에 관한 것으로서, 보다 상세하게는 기존의 CiP 단백질보다 높은 라디칼 안정성을 갖는 CiP 단백질 변이체, 이를 코딩하는 유전자, 상기 유전자를 포함하는 재조합 벡터 및 상기 재조합 벡터를 포함하는 숙주 세포에 관한 것이다. The present invention relates to a peroxidase (CiP) protein variant derived from Coprinus cinereus , which has increased radical stability, and more particularly CiP protein variant having higher radical stability than conventional CiP protein, The present invention relates to a gene encoding the same, a recombinant vector including the gene, and a host cell including the recombinant vector.

퍼옥시다아제(peroxidase)는 과산화수소 존재하에서 기질을 산화시키는 작용을 하는 효소로서 모든 생명체에 널리 존재하는 것으로 알려져 있으며, 고분자 합성 분야 및 환경 오염물질 처리 공정 등에 이용되는 상업적으로 중요한 효소이다. 최근에는, 퍼옥시다아제를 효소촉매 중합반응(Enzymatic Polymerization)의 효소촉매로서 사용하여 폐놀계 고분자를 중합하는 데 활용하는 연구가 진행되고 있다.Peroxidase is an enzyme that functions to oxidize a substrate in the presence of hydrogen peroxide and is widely known in all living organisms. It is a commercially important enzyme used in polymer synthesis and environmental pollutant treatment processes. In recent years, research has been conducted to utilize peroxidase as an enzyme catalyst for enzymatic polymerization to polymerize phenolic polymers.

퍼옥시다아제는 산화제로서, 과산화수소를 만나면 두 개의 활성형 산소 복합 체를 형성하는데, 이는 기질로부터 수소원자를 탈리시켜 결과적으로 기질을 산화시킨다. 페놀의 경우에는 페녹시(phenoxy) 라디칼이 생성되며, 이들 라디칼의 커플링에 의해 고분자 중합이 진행되어 폐놀계 고분자를 생성한다. 이러한 라디칼 짝지음 반응(radical coupling reaction)은 폐수로부터 페놀계 또는 방향족 오염물을 제거하거나 산업적으로 유용한 고분자를 생산하는 데 이용된다.Peroxidase is an oxidizing agent that, upon encountering hydrogen peroxide, forms two active oxygen complexes, which desorb the hydrogen atoms from the substrate, resulting in oxidation of the substrate. In the case of phenol, phenoxy radicals are produced, and polymer polymerization proceeds by coupling of these radicals to produce phenolic polymers. Such radical coupling reactions are used to remove phenolic or aromatic contaminants from wastewater or to produce industrially useful polymers.

그러나, 퍼옥시다아제는 중합반응 시 빠르게 불활성화되어 산업적 활용이 제한되는 문제점이 있었다. 즉, 과산화수소가 높은 농도로 존재하면, 환원 기질(예컨대, 페놀)은 화합물 III라는 라디칼(예컨대, 페녹시 라디칼)을 생성하는데, 화합물 III는 하이드록실 자유 라디칼을 생성시킴으로써 헴(heme) 파괴 또는 단백질 산화를 일으켜 퍼옥시다아제는 활성을 잃게 된다. 환원제가 있는 경우에도, 산화 반응 동안 페녹시 라디칼과 같은 화합물 III 라디칼과 퍼옥시다아제의 작용으로 인해 퍼옥시다아제의 불활성화가 일어난다.However, peroxidase has a problem in that industrial utilization is limited because it is rapidly inactivated during the polymerization reaction. In other words, when hydrogen peroxide is present at high concentrations, the reducing substrate (eg phenol) generates a radical called compound III (eg, phenoxy radical), which causes the destruction of heme or protein by generating hydroxyl free radicals. Oxidation causes peroxidase to lose activity. Even in the presence of a reducing agent, inactivation of the peroxidase occurs due to the action of peroxidase and compound III radicals such as phenoxy radicals during the oxidation reaction.

이러한 문제점을 극복하고자, 단계적으로 희석한 과산화수소를 첨가하거나, 충분한 환원 기질을 공급하여 라디칼의 농도를 낮게 유지하는 방안이 제시되었으나, 그럼에도 불구하고 페녹시다아제의 낮은 활성은 개선되지 않았다.In order to overcome this problem, there has been proposed a method of maintaining a low concentration of radicals by adding stepwise diluted hydrogen peroxide or by supplying a sufficient reducing substrate, but the low activity of phenoxidase has never been improved.

따라서, 페녹시다아제의 광범위한 적용을 위하여 라디칼 안정성이 증가되어 고분자 중합반응계에 적합한 리파제의 제공 및 확보가 요구되고 있다.Accordingly, there is a demand for providing and securing a lipase suitable for a polymer polymerization system due to increased radical stability for a wide range of applications of phenoxidase.

본 발명은 상기와 같은 요구에 의해 안출된 것으로서, 본 발명의 목적은 라디칼 안정성이 증가된 CiP 단백질 변이체를 제공하는 것이다.The present invention has been made in view of the above requirements, and an object of the present invention is to provide a CiP protein variant with increased radical stability.

본 발명의 다른 목적은 상기 CiP 단백질 변이체를 코딩하는 유전자를 제공하는 것이다.Another object of the present invention is to provide a gene encoding the CiP protein variant.

본 발명의 또다른 목적은 상기 유전자를 포함하는 재조합 벡터를 제공하는 것이다.It is another object of the present invention to provide a recombinant vector comprising the gene.

본 발명의 또다른 목적은 상기 재조합 벡터를 포함하는 숙주 세포를 제공하는 것이다.It is another object of the present invention to provide a host cell comprising the recombinant vector.

상기 목적을 달성하기 위하여 본 발명은, 서열번호 1의 아미노산 서열로 표시되는 CiP 단백질의 229 위치의 아미노산이 치환된, 서열번호 2 내지 4의 아미노산 서열로 표시되는 단백질로 이루어진 군에서 선택되는 것을 특징으로 하는, CiP 단백질 변이체를 제공한다. In order to achieve the above object, the present invention is selected from the group consisting of a protein represented by the amino acid sequence of SEQ ID NO: 2 to 4, the amino acid at position 229 of the CiP protein represented by the amino acid sequence of SEQ ID NO: 1 CiP protein variants are provided.

상기 다른 목적을 달성하기 위하여 본 발명은 상기 CiP 단백질 변이체 서열을 코딩하는 유전자를 제공한다.In order to achieve the above another object, the present invention provides a gene encoding the CiP protein variant sequence.

상기 또다른 목적을 달성하기 위하여 본 발명은 상기 유전자를 포함하는 재조합 벡터를 제공한다.In order to achieve the above another object, the present invention provides a recombinant vector comprising the gene.

상기 또다른 목적을 달성하기 위하여 본 발명은 상기 재조합 벡터를 포함하는 숙주 세포를 제공한다.In order to achieve the above another object, the present invention provides a host cell comprising the recombinant vector.

본 발명에 따른 라디칼 안정성이 증가된 CiP 단백질 변이체는 천연형 CiP 단백질에 비해 증가된 라디칼 안정성을 나타내어 퍼옥시다아제의 활성을 유지하므로 바이오센서 및 면역분석(immunoassay)의 필수적 구성성분부터 페놀계 중합체를 포함하는 정밀 화합물의 합성을 위한 생물학적 효소까지, 분석진단 분야부터 정밀화학 산업 분야를 비롯한 다양한 산업에 유용하게 사용될 수 있다.CiP protein variants with increased radical stability according to the present invention exhibit increased radical stability compared to native CiP proteins to maintain the activity of peroxidase and thus include phenolic polymers from the essential components of biosensors and immunoassays. From biological enzymes for the synthesis of fine compounds, it can be usefully used in a variety of industries, including analytical diagnostics, fine chemicals.

본 발명은 서열번호 1의 아미노산 서열로 표시되는 코프리너스 시네레우스 유래의 퍼옥시다아제(CiP) 단백질의 229 위치의 아미노산이 치환된, 서열번호 2 내지 4의 아미노산 서열로 표시되는 단백질로 이루어진 군에서 선택되는 것을 특징으로 하는, CiP 단백질 변이체를 제공한다.The present invention is a group consisting of a protein represented by the amino acid sequence of SEQ ID NO: 2 to 4 of the amino acid at position 229 of the Coprius cinereus-derived peroxidase (CiP) protein represented by the amino acid sequence of SEQ ID NO: 1 CiP protein variants, characterized in that selected from.

또한, 본 발명의 CiP 단백질 변이체는 실질적으로 동등한 기능적인 활성을 갖는 기능적 동등물 또는 기능적 유도체가 본 발명의 범위에 포함된다. 이러한 기능적 동등물의 예로서, 서열번호 2 내지 4로 표시되는 아미노산 서열에서의 아미노산 잔기가 결실, 삽입, 비보전적 또는 보전적 치환되거나 또는 이들의 조합에 의해 변이된 변이체를 포함할 수 있다.In addition, CiP protein variants of the invention include within the scope of the invention functional equivalents or functional derivatives having substantially equivalent functional activity. As an example of such a functional equivalent, amino acid residues in the amino acid sequences represented by SEQ ID NOs: 2 to 4 may include variants in which they are deleted, inserted, non-conservative or conservatively substituted or mutated by a combination thereof.

경우에 따라, 본 발명의 CiP 단백질 변이체는 이들의 물리, 화학적 성질을 증가 또는 감소시키는 변형을 가질 수 있어 인산화(phosphorylation), 황 화(sulfation), 아크릴화(acrylation), 당화(glycosylation), 메틸화(methylation), 파네실화(farnesylation), 아세틸화(acetylation), 아밀화(amidation) 등으로 수식(modification)될 수 있으며, 이러한 수식에 의해 증가된 CiP 단백질 변이체의 활성이 실질적으로 유지되는 한, 이러한 기능적 유도체도 본 발명의 범위에 포함된다. In some cases, CiP protein variants of the invention may have modifications that increase or decrease their physical and chemical properties such that phosphorylation, sulfation, acrylation, glycosylation, methylation ( It may be modified by methylation, farnesylation, acetylation, amylation, and the like, so long as the activity of CiP protein variants increased by this modification is substantially maintained. Derivatives are also included within the scope of the present invention.

서열번호 2의 아미노산 서열로 표시되는 CiP 단백질 변이체는 서열번호 1의 아미노산 서열로 표시되는 천연형 CiP 단백질의 229 위치의 페닐알라닌이 알라닌으로 치환된 것으로, 천연형 CiP 단백질과 비교하여 약 70 배의 증가된 효소 활성을 갖는다(표 1 참조).The CiP protein variant represented by the amino acid sequence of SEQ ID NO: 2 is a substitution of alanine for phenylalanine at position 229 of the native CiP protein represented by the amino acid sequence of SEQ ID NO: 1, about 70-fold increase compared to the native CiP protein. Have enzymatic activity (see Table 1).

서열번호 3의 아미노산 서열로 표시되는 CiP 단백질 변이체는 서열번호 1의 아미노산 서열로 표시되는 천연형 CiP 단백질의 229 위치의 페닐알라닌이 아이소류신으로 치환된 것으로, 천연형 CiP 단백질과 비교하여 약 30 배의 증가된 효소 활성을 갖는다(표 1 참조).CiP protein variant represented by the amino acid sequence of SEQ ID NO: 3 is a phenylalanine at position 229 of the native CiP protein represented by the amino acid sequence of SEQ ID NO: 1 is substituted with isoleucine, about 30 times compared to the native CiP protein Have increased enzymatic activity (see Table 1).

서열번호 4의 아미노산 서열로 표시되는 CiP 단백질 변이체는 서열번호 1의 아미노산 서열로 표시되는 천연형 CiP 단백질의 229 위치의 페닐알라닌이 류신으로 치환된 것으로, 천연형 CiP 단백질과 비교하여 약 30 배의 증가된 효소 활성을 갖는다(표 1 참조).The CiP protein variant represented by the amino acid sequence of SEQ ID NO: 4 is a phenylalanine at position 229 of the native CiP protein represented by the amino acid sequence of SEQ ID NO: 1 substituted with leucine, about 30-fold increase compared to the native CiP protein. Have enzymatic activity (see Table 1).

본 발명은 또한, 상기 CiP 단백질 변이체를 코딩하는 유전자를 제공한다.The present invention also provides a gene encoding the CiP protein variant.

상기 CiP 단백질 변이체를 코딩하는 유전자는 코돈의 축퇴성(degeneracy)으 로 인하여 또는 상기 CiP 단백질 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 상기 CiP 단백질 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있고, 코딩 영역을 제외한 부분에서도 단백질의 발현에 영향을 미치지 않는 범위 내에서 다양한 변형 또는 수식이 이루어질 수 있으며, 그러한 변형 유전자 역시 본 발명의 범위에 포함된다. 본 발명에서 CiP 단백질 변이체를 코딩하는 유전자는 바람직하게는 서열번호 11 내지 13의 염기 서열로 표시되는 유전자이다. 본 발명의 CiP 단백질 변이체를 코딩하는 유전자는 이를 발현하는 벡터에 의해 제공될 수 있다. The gene encoding the CiP protein variant does not change the amino acid sequence of the CiP protein variant due to the degeneracy of the codon or in consideration of the preferred codon in the organism to express the CiP protein variant. Various modifications may be made to the coding region within, and various modifications or modifications may be made within a range that does not affect the expression of the protein in portions other than the coding region, and such modified genes are also included in the scope of the present invention. Gene encoding the CiP protein variant in the present invention is preferably a gene represented by the nucleotide sequence of SEQ ID NO: 11 to 13. The gene encoding the CiP protein variant of the present invention may be provided by a vector expressing it.

본 발명은 상기 CiP 단백질 변이체를 코딩하는 유전자를 포함하는 재조합 발현 벡터를 제공한다. The present invention provides a recombinant expression vector comprising a gene encoding the CiP protein variant.

본 발명에서 "벡터"는 숙주 세포에 CiP 단백질 변이체를 코딩하는 DNA를 도입하여 CiP 단백질 변이체를 발현시키기 위한 수단을 말하며, 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터 및 바이러스 벡터등을 포함한 통상의 모든 벡터를 포함하고, 바람직하게는 플라스미드 벡터이다.In the present invention, "vector" refers to a means for expressing CiP protein variants by introducing DNA encoding CiP protein variants into a host cell, and includes all conventional ones, including plasmid vectors, cosmid vectors, bacteriophage vectors, viral vectors, and the like. Vector, and is preferably a plasmid vector.

적합한 발현벡터는 프로모터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서 같은 발현 조절 엘리먼트 외에도 막 표적화 또는 분비를 위한 신호서열 또는 리더 서열을 포함하며, 목적에 따라 다양하게 제조될 수 있다. 예를 들어, 숙주가 효모인 경우에는 AOX1 프로모터, PHO5 프로모터, PGK 프로모터, GAP 프로모터 및 ADH 프로모터 등이 사용될 수 있다. 개시 코돈 및 종결 코돈은 유전자 작제물 이 투여되었을 때 개체에서 반드시 작용을 나타내야 하며 코딩 서열과 인프레임(in frame)에 있어야 한다. 또한, 발현벡터는 벡터를 함유하는 숙주 세포를 선택하기 위한 선택성 마커를 포함하고, 복제가능한 발현벡터인 경우 복제 기원을 포함한다. 벡터는 자가 복제하거나 숙주 세포 DNA에 통합될 수 있다.Suitable expression vectors include signal sequences or leader sequences for membrane targeting or secretion in addition to expression control elements such as promoters, initiation codons, termination codons, polyadenylation signals and enhancers, and can be prepared in various ways depending on the purpose. For example, when the host is yeast, AOX1 promoter, PHO5 promoter, PGK promoter, GAP promoter and ADH promoter can be used. The start codon and the stop codon must be functional in the individual when the gene construct is administered and must be in frame with the coding sequence. In addition, the expression vector comprises a selectable marker for selecting a host cell containing the vector and, in the case of a replicable expression vector, a replication origin. Vectors can either autonomously replicate or integrate into host cell DNA.

구체적으로, 본 발명에 따른 재조합 발현 벡터는 AOX1 프로모터를 포함하는 pPICZαA 벡터에 상기 CiP 단백질 변이체 서열을 코딩하는 유전자를 삽입하여 제조될 수 있다.Specifically, the recombinant expression vector according to the present invention may be prepared by inserting a gene encoding the CiP protein variant sequence into a pPICZαA vector comprising an AOX1 promoter.

본 발명은 상기 재조합 발현 벡터로 형질전환되어 CiP 단백질 변이체를 생산하는 숙주 세포를 제공한다. The present invention provides a host cell transformed with the recombinant expression vector to produce CiP protein variants.

숙주 세포에 따라서 단백질의 발현양과 수식 등이 다르게 나타나므로, 목적에 가장 적합한 숙주 세포를 선택하여 사용한다. 숙주 세포로는 에쉐리키아 콜라이(Escherichia coli), 바실러스 서브틸리스(Bacillus subtilis), 스트렙토마이세스(Streptomyces), 슈도모나스(Pseudomonas), 프로테우스 미라빌리스(Proteus mirabilis) 또는 스타필로코쿠스(Staphylococcus)와 같은 원핵 숙주 세포가 있으나 이로 제한되는 것은 아니다. 또한, 진균(예를 들어, 아스페르길러스(Aspergillus)), 효모(예를 들어, 피키아 파스토리스(Pichia pastoris), 사카로마이세스 세르비지애(Saccharomyces cerevisiae), 쉬조사카로마이세스(Schizosaccharomyces), 뉴로스포라 크라사(Neurospora crassa)등과 같은 진핵 세포를 숙주 세포로 사용할 수 있다. 이 중에서 특히, 피키아 파스토리스가 바람 직하다.Since expression amounts and formulas of proteins vary depending on the host cell, the host cell that is most suitable for the purpose is selected and used. Host cells include Escherichia coli, Bacillus subtilis, Streptomyces, Pseudomonas, Proteus mirabilis or Staphylococcus. Prokaryotic host cells such as, but are not limited to. In addition, fungi (e.g. Aspergillus), yeast (e.g. Pichia pastoris, Saccharomyces cerevisiae, Szozocaromyces ( Eukaryotic cells such as Schizosaccharomyces, Neurospora crassa, etc. can be used as host cells, among which Pichia Pastoris is preferred.

본 발명에 따른 재조합 발현 벡터로 숙주 세포를 형질전환시키기 위하여 당 분야에 공지된 방법을 이용할 수 있으며, 이러한 방법에는 전기충격유전자전달법(electroporation), 원형질 융합법, 인산 칼슘(CaPO4) 침전법 및 염화 칼슘(CaCl2) 침전법 등이 포함되나 이로 제한되지 않는다. In order to transform the host cell with the recombinant expression vector according to the present invention, a method known in the art may be used, and such a method may include electroporation, plasma fusion, and calcium phosphate (CaPO 4 ) precipitation. And calcium chloride (CaCl 2 ) precipitation, and the like.

이하, 하기 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are intended to illustrate the present invention, but the scope of the present invention is not limited thereto.

<시약 및 시료><Reagents and Samples>

퍼옥시다아제 활성을 측정하기 위한 기질인 ABTS(2,2'-azinobis(ethylbenzthiazoline-6-sulfonate)), H2O2 및 트립신(trypsin)은 시그마(Sigma; USA)로부터 구입하였고, Tag DNA 폴리머라아제는 로슈(Roche Applied Science; USA)로부터 구입하였다. 피키아 파스토리스 스트레인 X-33(천연형) 및 플라스미드 pPICZαA는 인비트로젠(Invitrogen; USA)으로부터 구입하였고, 효모 형질전환 키트(MicroPulserTM)는 바이오래드(Bio-Rad; USA)로부터 구입하였다. 고성 능액체크로마토그래피(HPLC)에 사용되는 물 및 에탄올은 버딕 & 잭슨 실험실(Burdick & Jackson Lab., USA)로부터 제공받았다. 효모 추출물, 펩톤(peptone) 및 트립톤(tryptone)과 같은 미생물 배양 배지는 벡톤 디킨슨(Becton Dichinson Co.; USA)으로부터 구입하였다.ABTS (2,2'-azinobis (ethylbenzthiazoline-6-sulfonate)), H 2 O 2 and trypsin, which are substrates for measuring peroxidase activity, were purchased from Sigma (USA), Tag DNA polymer. Aze was purchased from Roche Applied Science (USA). Pichia pastoris strain X-33 (natural) and plasmid pPICZαA were purchased from Invitrogen (USA) and the yeast transformation kit (MicroPulser ) was purchased from Bio-Rad (USA). Water and ethanol used for high performance liquid chromatography (HPLC) were provided by Burdick & Jackson Lab., USA. Microbial culture media such as yeast extract, peptone and tryptone were purchased from Becton Dichinson Co .; USA.

실시예 1: pPICZαA-rCiP의 제조 Example 1: Preparation of pPICZαA-rCiP

미국 국립보건원(NIH) 산하 생물공학정보연구소(NCBI)의 유전자 서열 데이터베이스인 GenBank에 공개되어 있는 Coprinus cinereus의 퍼옥시다아제(CiP; GenBank Accession No. X70789)의 아미노산 서열을 기초로, 이 아미노산 서열에 해당되는 유전자 서열을 Pichia Pastoris의 코돈 선호도(codon usage)를 고려하여 rCiP를 합성하였다(GenScript, USA). PCR을 통해 서열번호 19 및 20의 프라이머를 이용하여 rCiP 유전자의 구조 영역(structure region)을 증폭하였다. 상기 PCR은 100 μL의 반응액(100 ng rCiP 합성 유전자, 1 μL 서열번호 19 및 서열번호 20의 프라이머(50 pmol), 12 μL 염화마그네슘(25 mM), 10 μL 반응 완충액(10x), 2.5 μL 디옥시뉴클레오티드(2.5 mM), 0.5 μL의 Tag DNA 폴리머라아제(5 units/μL) 및 물)을 마이사이클러(My cyclerTM; BioRad, USA)를 이용하여 95 ℃에서 5분 반응시키고, 95 ℃에서 30초, 54 ℃에서 30초, 72 ℃에서 1분 반응시키는 것을 1 사이클로 하여 30 사이클 반응시킨 후, 70 ℃에서 10분 반응시킴으로써 종결시켰다. PCR 생성물과 T-벡터인 pCR 2.1-TOPO 벡터(Invitrogen, USA)를 라이게이 션(ligation)하여 pCR 2.1-TOPOp-rCiP를 제조하고, 시퀀싱(solgent, 대한민국)하여 증폭된 rCiP 염기서열에 변이가 없음을 확인하였다. pCR 2.1-TOPOp-rCiP와 PICZaA 벡터(Invitrogen, USA) 각각에 제한효소 EcoRI과 NotI을 처리한 후, 원하는 DNA 단편(fragment)을 젤 추출 키트(gel extraction kit; Qiagen, Germany)를 이용하여 정제하였다. 이후, 절단된 pPICZaA와 rCiP DNA 단편을 리가아제(TAKARA, Japan)를 이용하여 라이게이션하였다. This amino acid sequence is based on the amino acid sequence of the peroxidase (CiP; GenBank Accession No. X70789) of Coprinus cinereus , which is published in GenBank, a gene sequence database of the National Institutes of Health (NCBI). RCiP was synthesized by considering the codon usage of Pichia Pastoris (GenScript, USA). The structural regions of the rCiP gene were amplified using the primers SEQ ID NOs: 19 and 20 by PCR. The PCR was performed using 100 μL of reaction solution (100 ng rCiP synthetic gene, 1 μL SEQ ID NO: 19 and primers of SEQ ID NO: 20, 50 pmol), 12 μL magnesium chloride (25 mM), 10 μL reaction buffer (10 ×), 2.5 μL Deoxynucleotide (2.5 mM), 0.5 μL of Tag DNA polymerase (5 units / μL) and water were reacted for 5 minutes at 95 ° C. using a My cycler (BioRad, USA), 95 The reaction was carried out for 30 seconds at 30 ° C., 30 seconds at 54 ° C., and 1 minute at 72 ° C. for 30 cycles, and then terminated at 70 ° C. for 10 minutes. PCR 2.1-TOPOp-rCiP was prepared by ligation of the PCR product with the T-vector pCR 2.1-TOPO vector (Invitrogen, USA), followed by sequencing (solgent, Korea) to mutated rCiP sequences. It was confirmed that none. After treatment with the restriction enzymes EcoRI and NotI to each of the pCR 2.1-TOPOp-rCiP and PICZaA vectors (Invitrogen, USA), the desired DNA fragments were purified using a gel extraction kit (Qiagen, Germany). . Then, the cleaved pPICZaA and rCiP DNA fragments were ligated using ligase (TAKARA, Japan).

실시예 2 : 변이를 일으킬 아미노산의 선정Example 2 Selection of Amino Acids to Cause Mutation

상술한 바와 같이, 페녹시 라디칼과 퍼옥시다아제의 작용은 CiP의 불활성화를 일으킬 수 있다. 이에, 페놀의 산화 반응 동안 페녹시 라디칼 또는 페놀 기질에 의한 CiP의 개질을 알아보기 위해, 페놀 산화 반응 후 분리된 CiP를 질량 분석(mass spectrometry)에 의해 분석하였다. 다음과 같이, 반응 후 분리된 CiP와 본래의 CiP를 트립신을 이용하여 단백질 분해(proteolytic digestion)시킨 후 LC MS/MS로 분석하였다. As mentioned above, the action of phenoxy radicals and peroxidase can lead to inactivation of CiP. Thus, in order to investigate the modification of CiP by phenoxy radicals or phenol substrates during the phenol oxidation reaction, CiP separated after phenol oxidation reaction was analyzed by mass spectrometry. As described below, proteolytic digestion of the isolated CiP and the original CiP using trypsin was followed by LC MS / MS analysis.

25 ml의 포스페이트 완충액(0.1 M, pH 7.0)에 18 mM의 페놀을 넣어 반응 혼합물을 준비하고, CiP를 최종 농도가 25 U/mL가 되도록 첨가하고 18 mM의 과산화수소를 첨가하여 반응을 개시하였다. 반응 혼합물을 실온에서 40 분 동안 부드럽게 교반시키면서 배양하고 4 배의 차가운 아세톤을 빠르게 첨가하여 단백질 시료를 침전시켰다. 혼합물을 -20 ℃에서 밤새 배양하고 20 분 동안 13,000g, 4 ℃에서 원심분리시켰다. 상청액을 제거하고 1 mL의 차가운 아세톤을 첨가하여 침전물을 세 척하였다. 침전물 시료를 얼음에서 15 분 동안 배양한 후 20 분 동안 13,000g, 4 ℃에서 원심분리시켰다. 아세톤을 함유한 상청액을 제거하고 침전물을 동결건조하였다. 아세톤 침전으로부터 수득한 침전물을 10% SDS-PAGE(sodium dodecyl sulfate - polyacryl amide gel)로 분석하였다. 젤을 30 분 동안 콜로이드 쿠마시 브릴리언트 블루 G-250(Coomassie Brilliant Blue G-250; CBB; Sigma, USA)으로 염색시키고, 남은 염색은 8% 아세트산을 함유한 10% 메탄올로 세척하였다. CiP(46 kDa)를 함유한 적절한 단백질 밴드를 잘라내고 트립신 분해시켰다. 마이크로튜브 안의 각각의 젤 슬라이스를 25 mM 중탄산 암모늄(NH4HCO3, pH 7.8)과 아세토나이트릴의 1:1 혼합물 200μL로 젤 슬라이스가 깨끗해질 때까지 각각 10 분 동안 3 또는 4 회 탈염색시킨 후, 스피드백(SpeedVacTM; Savant Instruments, U.S.A.) 증발기로 건조시켰다. 건조시킨 젤 조각을 10 mM 다이티오트레이톨(dithiothreitol)/100 mM 중탄산 암모늄 용액 100 mL로 60 분 동안 56 ℃에서 배양하였다. 시료 용액을 제거한 후, 바로 제조된 55 mM 아이오도아세트아마이드(iodoacetamide)/100 mM 중탄산 암모늄 용액 100 μL를 첨가하고 빛을 차단한 채로 실온에서 45 분 동안 배양하였다. 젤 슬라이스를 아세토나이트릴이 있는 100 mM 중탄산 암모늄 용액으로 세척하고 진공 농축기에서 완전히 건조시켰다. 탈염색시킨 젤 슬라이스를 25 mM 중탄산 암모늄 용액에 용해된 트립신(0.02 μg/μl, w/v)으로 37 ℃에서 밤새 배양시키고 아세토나이트릴 및 5% 포름산(50:50, v/v) 30 μL로 두 번 추출하였다. 산성화시킨 펩티드를 젤로더 팁(GelLoader tip; Eppendorf, Germany)으로 만든 마이크로 컬럼(microcolumn)을 사용하여 제염하고, 0.1 μL의 포로스 R2 수지(POROS R2 resin; Perseptive Biosystems, USA)로 패킹하였다. 로딩한 펩티드를 5% 포름산으로 세척하고, 이온을 제거한 물, 0.15 포름산 중의 50% 아세토나이트릴 1 μL로 희석시키고, 진공 원심분리기에서 건조시키고 4 μL의 0.1% 포름산 중에 용해시켰다.18 mM phenol was added to 25 ml of phosphate buffer (0.1 M, pH 7.0) to prepare a reaction mixture. CiP was added to a final concentration of 25 U / mL and 18 mM hydrogen peroxide was added to initiate the reaction. The reaction mixture was incubated with gentle stirring for 40 minutes at room temperature and protein samples were precipitated by rapid addition of four times cold acetone. The mixture was incubated overnight at -20 ° C and centrifuged at 13,000 g, 4 ° C for 20 minutes. The supernatant was removed and the precipitate was washed by adding 1 mL of cold acetone. The precipitate sample was incubated on ice for 15 minutes and then centrifuged at 13,000 g, 4 ° C. for 20 minutes. The supernatant containing acetone was removed and the precipitate was lyophilized. The precipitate obtained from the acetone precipitation was analyzed by 10% SDS-PAGE (sodium dodecyl sulfate-polyacryl amide gel). Gels were stained with Colloidal Coomassie Brilliant Blue G-250 (CBB; Sigma, USA) for 30 minutes and the remaining staining was washed with 10% methanol containing 8% acetic acid. Appropriate protein bands containing CiP (46 kDa) were cut out and trypsin digested. Each gel slice in the microtube was destained 3 or 4 times for 10 minutes each until 200% of the gel slice was cleaned with 200 μL of a 1: 1 mixture of 25 mM ammonium bicarbonate (NH 4 HCO 3 , pH 7.8) and acetonitrile. Speed back (SpeedVac ; Savant Instruments, USA). The dried gel pieces were incubated with 100 mL of 10 mM dithiothreitol / 100 mM ammonium bicarbonate solution at 56 ° C. for 60 minutes. After removing the sample solution, 100 μL of a 55 mM iodoacetamide / 100 mM ammonium bicarbonate solution prepared immediately was added and incubated for 45 minutes at room temperature while blocking light. Gel slices were washed with 100 mM ammonium bicarbonate solution with acetonitrile and dried completely in a vacuum concentrator. Destained gel slices were incubated overnight at 37 ° C. with trypsin (0.02 μg / μl, w / v) dissolved in 25 mM ammonium bicarbonate solution and 30 μL of acetonitrile and 5% formic acid (50:50, v / v) Extracted twice. Acidified peptides were decontaminated using a microcolumn made of GelLoader tip (Eppendorf, Germany) and packed with 0.1 μL of POROS R2 resin (Perseptive Biosystems, USA). The loaded peptide was washed with 5% formic acid, diluted with 1 μL of deionized water, 50% acetonitrile in 0.15 formic acid, dried in a vacuum centrifuge and dissolved in 4 μL of 0.1% formic acid.

트립신 처리한 펩티드를 분리하고 LCQ DECA 이온 트랩(Thermo Fisher Scientific, CA)에 온-라인 연결된 스플리터(splitter; Agilent)를 사용하여 HP 1100 HPLC 나노-플로우 시스템으로 분석하였다. Zorbax 300SB-C18 수지(입자 크기 5 μm; Agilent Technologies, USA)를 홈-빌트 퓨즈드 실리카 컬럼(home-built fused silica column; 100 mm 길이 × 75 μm I.D., 팁 직경 10 μm)에 패킹시켰다. 결합한 펩티드를 0.2 μL/분의 유동속도로 0.1% (v/v) 포름산을 함유한 아세토나이트릴을 5 내지 90% (v/v)의 50 분 구배로 희석시켰다. ESI 소스에서 1.7 kV의 분사 전압을 적용하였고, 모세관 이동 온도(transfer capillary temperature)는 180 ℃로 설정하였다. 양이온 모드의 MS 스캔은 Xcalibur 1.2 소프트웨어로 제어하였다. 전구체 이온은 데이터-의존(data-dependent) 모드에서 계속적인 MS/MS 스캔을 위한 ± 3 m/z 윈도우내의 MS/MS 단편화를 위해 m/z 350 내지 2,000의 범위에서 선택하였다. 배제 다이나믹(exclusion dynamic) 모드를 적용하여 2 분 넘어 추가의 선택으로부터 선택된 가장 집중적인 이온을 배제하였다. 자동화 획득 제어(AGC) 모드(전체 MS 및 MS/MS에 대해 5.00e+04 및 1.00e+04의 AGC 값을 설정하였다)에서 2 m/z 유닛 이온 고립 윈도우를 사용하여 MS/MS 데이터를 얻었다. 표준화 CID는 35.0으로 설정하였다.Trypsinized peptides were isolated and analyzed with an HP 1100 HPLC nano-flow system using a splitter (Agilent) connected on-line to LCQ DECA ion traps (Thermo Fisher Scientific, Calif.). Zorbax 300SB-C18 resin (particle size 5 μm; Agilent Technologies, USA) was packed in a home-built fused silica column (100 mm length × 75 μm I.D., tip diameter 10 μm). The bound peptide was diluted with a 50 minute gradient of 5 to 90% (v / v) of acetonitrile containing 0.1% (v / v) formic acid at a flow rate of 0.2 μL / min. A injection voltage of 1.7 kV was applied at the ESI source and the transfer capillary temperature was set to 180 ° C. MS scan in cation mode was controlled by Xcalibur 1.2 software. Precursor ions were selected in the range of m / z 350 to 2,000 for MS / MS fragmentation within a ± 3 m / z window for continuous MS / MS scan in data-dependent mode. Exclusion dynamic mode was applied to exclude the most concentrated ions selected from further selection over 2 minutes. MS / MS data were obtained using a 2 m / z unit ion isolation window in an automated acquisition control (AGC) mode (AGC values of 5.00e + 04 and 1.00e + 04 were set for total MS and MS / MS). . The standardized CID was set at 35.0.

MS/MS 스펙트럼의 피크 리스트를 다음의 설정하에 바이오웍스(Bioworks) 3.3 소프트웨어(Thermo Fisher Scientific, USA)를 사용하여 데이터 포맷으로 된 각각의 파일로서 이출하였다: 펩티드 질량 범위, 500 내지 3500 Da; 최소 총 이온 강도 역치, 10000; 단편 이온의 최소 수, 20; 전구체 질량 허용오차, 1.4 amu; 그룹 스캔, 1; 최소 그룹 수, 1. 각각의 분석으로부터 만들어진 데이터 파일의 자동화된 조합에 의해 생성된 단일 텍스트 파일을 균 종으로 제한하여 NCBI non-redundant database(2009.7.) 또는 소정의 변수(trypsin as the enzyme with one potential missed cleavage; monoisotope mass selected, a 2-2.5 Da peptide mass tolerance and a 1-Da MS/MS toloerance; carbamidomethylation of cysteines, oxidation of methionine, deamidation of asparagine/glutamine(정식으로는'deamidation'이지만 데이터 추출 과정에서의 deisotoping artefact가 있을 수 있음), 1 to 4 phenylene(s) modification of phenylalanine as variable modifications; singly, doubly, or triply charged state)를 갖는 로컬 서버(버전 2.1, Matrix Science)에서 작동하는 매스콧(Mascot)을 사용한 퍼옥시다아제 단백질 데이터베이스에서 조사하였다. 매스콧 확률 분석(p<0.05)에 의한 중요한 히트만 고려하였다.The peak list of MS / MS spectra was exported as each file in data format using Bioworks 3.3 software (Thermo Fisher Scientific, USA) under the following settings: peptide mass range, 500 to 3500 Da; Minimum total ionic strength threshold, 10000; Minimum number of fragment ions, 20; Precursor mass tolerance, 1.4 amu; Group scan, 1; Minimum number of groups, 1. NCBI non-redundant database (2009.7.) Or certain variables (trypsin as the enzyme with one) by limiting the single text file generated by the automated combination of data files created from each analysis to the species. potential missed cleavage; monoisotope mass selected, a 2-2.5 Da peptide mass tolerance and a 1-Da MS / MS toloerance; carbamidomethylation of cysteines, oxidation of methionine, deamidation of asparagine / glutamine (formally 'deamidation' May have deisotoping artefacts), 1 to 4 phenylene (s) modification of phenylalanine as variable modifications; singly, doubly, or triply charged state; Mascot) was investigated in the peroxidase protein database. Only significant hits by the Massscott probability analysis (p <0.05) were considered.

단편(m/z 838.880)의 MS/MS 스펙트럼 및 새로운 시퀀싱을 통한 서열 정보를 도 2a 및 도 2b에 나타내었다. 불활성화된 CiP(m/z 838.880)의 단편 서열은 KGTTQPGPSLGFAEELSPFPGEFRM(잔기 219-241)이었고 페놀 분자에 의해 개질된 반면, 본래의 CiP의 단편(m/z 1211.621)은 그렇지 않았다. 페놀로 개질된 펩티드는 KGTTQPGPSLGFAEELSPFPGEFRM이었고, 밑줄친 하나의 페닐알라닌 잔기(F229)만이 하나 의 페놀 또는 페놀 올리고트리머(oligotrimer)와 공유결합하였다. 이로써 페놀 라디칼과 공유 결합함으로써 CiP를 불활성화시키는 부위는 229 위치의 페닐알라닌 잔기임을 알 수 있었다. MS / MS spectra of the fragment (m / z 838.880) and sequence information via fresh sequencing are shown in FIGS. 2A and 2B. The fragment sequence of inactivated CiP (m / z 838.880) was KGTTQPGPSLG F AEELSPFPGEFRM (residues 219-241) and was modified by the phenol molecule, whereas the original CiP fragment (m / z 1211.621) was not. The peptide modified with phenol was KGTTQPGPSLG F AEELSPFPGEFRM, with only one underlined phenylalanine residue (F229) covalently linked with one phenol or phenol oligotrimer. As a result, it was found that the site for inactivating CiP by covalently bonding with a phenol radical was a phenylalanine residue at the 229 position.

실시예 3: CiP 단백질 변이체 F229A의 제조 Example 3: Preparation of CiP Protein Variant F229A

CiP의 229 위치의 페닐알라닌을 특정 프라이머를 이용한 위치-특이적 변이유발(site-directed mutagenesis) 방법으로 알라닌으로 치환하여 CiP 단백질 변이체 F229A를 제조하였다.CiP protein variant F229A was prepared by replacing phenylalanine at position 229 of CiP with alanine by a site-directed mutagenesis method using specific primers.

<3-1> CiP의 229 위치의 변이유발<3-1> Variation of position 229 of CiP

먼저, 제한효소 EcoRI의 절단부위를 가진 5'-플랭킹 프라이머(서열번호 21)와 변이유발 프라이머(mutagenic primer; 서열번호 24)를 이용한 PCR로 CiP 유전자의 앞쪽에 해당하는 DNA를 증폭하였고, 제한효소 NotI의 절단부위를 갖는 3'-플랭킹 프라이머(서열번호 22)와 변이유발 프라이머(서열번호 23)를 이용한 PCR로 뒤쪽에 해당하는 DNA를 증폭하였다. 상기 PCR은 100 μL의 반응액(100 ng pPICZαA-rCiP, 1 μL 변이유발 프라이머(서열번호 23 또는 서열번호 24; 50 pmol), 1 μL 5'- 또는 3'-플랭킹 프라이머(서열번호 21 또는 서열번호 22; 50 pmol), 12 μL 염화마그네슘(25 mM), 10 μL 반응 완충액(10x), 2.5 μL 디옥시뉴클레오티드(2.5 mM), 0.5 μL의 Tag DNA 폴리머라아제(5 units/μL) 및 물)을 마이사이클러(My cyclerTM; BioRad, USA)를 이용하여 95 ℃에서 5분 반응시키고, 95 ℃에서 30초, 54 ℃에서 30초, 72 ℃에서 1분 반응시키는 것을 1 사이클로 하여 30 사이클 반응시킨 후, 70 ℃에서 10분 반응시킴으로써 종결시켰다. 두 PCR 생성물을 PCR 정제 키트(PCR purification kit; Qiagen)를 이용하여 정제하였다.First, the DNA corresponding to the front of the CiP gene was amplified by PCR using a 5 'flanking primer (SEQ ID NO: 21) and a mutagenic primer (SEQ ID NO: 24) having a cleavage site of restriction enzyme EcoRI. The DNA corresponding to the back was amplified by PCR using a 3'- flanking primer (SEQ ID NO: 22) and a mutagenesis primer (SEQ ID NO: 23) having a cleavage site of the enzyme NotI. The PCR was performed using 100 μL of reaction solution (100 ng pPICZαA-rCiP, 1 μL mutagenic primer (SEQ ID NO: 23 or SEQ ID NO: 24; 50 pmol), 1 μL 5'- or 3'- flanking primer (SEQ ID NO: 21 or SEQ ID NO: 22, 50 pmol), 12 μL magnesium chloride (25 mM), 10 μL reaction buffer (10 ×), 2.5 μL deoxynucleotide (2.5 mM), 0.5 μL of Tag DNA polymerase (5 units / μL) and Water) was reacted for 5 minutes at 95 ° C using My cycler (BioRad, USA), 30 seconds at 95 ° C, 30 seconds at 54 ° C, and 1 minute at 72 ° C as 30 cycles. After cycling reaction, it terminated by making it react at 70 degreeC for 10 minutes. Both PCR products were purified using a PCR purification kit (Qiagen).

상기 증폭된 두 DNA 단편과 서열번호 21의 프라이머, 서열번호 22의 프라이머를 이용한 PCR로(pPICZαA-rCiP 대신 동량의 상기 두 PCR 생성물을 첨가하고 1 μL의 두 플랭킹 프라이머(50 μL)를 사용하는 것을 제외하고 상기 PCR과 반응조건이 동일함) 변이가 일어난 유전자를 수득하였다.By PCR using the two amplified DNA fragments, the primer of SEQ ID NO: 21, and the primer of SEQ ID NO: 22 (adding the same amount of the two PCR products instead of pPICZαA-rCiP and using 1 μL of two flanking primers (50 μL) Except that the reaction conditions are the same as those of PCR).

<3-2> CiP 단백질 변이체 F229A를 발현하는 플라스미드 제조<3-2> Plasmid Expression Expressing CiP Protein Variant F229A

이 CiP 단백질 변이체의 유전자를 pCR 2.1-TOPO 벡터(Invitrogen, USA)에 클로닝한 후, 시퀀싱(solgent, 대한민국)하여 모든 PCR 생성물 및 변이체 유전자를 시퀀싱하여(Solgent, 대한민국) 변이가 제대로 일어났음을 확인하였다. pCR 2.1-TOPOp에 클로닝된 CiP 변이체 유전자와 PICZaA 벡터(Invitrogen, USA) 각각에 제한효소 EcoRI과 NotI을 처리한 후, 원하는 DNA 단편을 젤 추출 키트(Qiagen, Germany)를 이용하여 정제하였다. 이 후, 절단된 pPICZaA와 CiP DNA 단편을 리가아제(TAKARA, Japan)를 이용하여 라이게이션하였다. The gene of this CiP protein variant was cloned into pCR 2.1-TOPO vector (Invitrogen, USA), and then sequenced (solgent, Korea) to sequence all PCR products and variant genes (Solgent, Korea) to confirm that the mutation occurred. It was. After treatment with the restriction enzymes EcoRI and NotI for each of the CiP variant genes and PICZaA vectors (Invitrogen, USA) cloned into pCR 2.1-TOPOp, the desired DNA fragments were purified using a gel extraction kit (Qiagen, Germany). Thereafter, the cleaved pPICZaA and CiP DNA fragments were ligated using ligase (TAKARA, Japan).

<3-3> 피키아 파스토리스의 형질전환<3-3> Transformation of Pichia Pastoris

상기 pPICZαA에 클로닝된 CiP 단백질 변이체 유전자로 피키아 파스토리스 스트레인 X-33(Invitrogen, USA)을 전기충격유전자전달법으로 형질전환시키고, 100 μg/mL 제오신(Zeocin)이 함유된 YPDS 배지(1% 효모 추출물, 2% 펩톤, 2% 글루코즈 및 1M 소르비톨(sorbitol))에서 배양시켜 선별하였다.Pichia pastoris strain X-33 (Invitrogen, USA) was transfected with the CiP protein variant gene cloned in pPICZαA by electroshock gene transfer and YPDS medium containing 100 μg / mL Zeocin (1). Selection was made by incubating in% yeast extract, 2% peptone, 2% glucose and 1M sorbitol.

<3-4> CiP 단백질 변이체 F229A의 정제<3-4> Purification of CiP Protein Variant F229A

상기 선별된 양성 클론을 100 μg/mL 제오신이 함유된 BMMY 배지(1% 효모 추출물, 2% 펩톤, 100 mM 인산 칼륨, pH 6.0, 1.34% YNB(yeast nitrogen base), 400 mg/l 바이오틴(biotin), 0.5% 메탄올)에 30 ℃에서 220rpm으로 5일간 배양하였으며, 이때 멸균 메탄올(0.5%)을 24시간마다 배지에 첨가해 주었다. 가장 높은 활성을 보이는 배양액을 3,880g에서 20분 간 원심분리한 후, 상청액을 0.1 M Tris-HCl 완충액(pH 7.0)으로 제염하면서 한외여과(ultrafiltration; 10 kDa MWCo; Amicon)하여 농축시켰다. 마지막으로 0.1 M Tris-HCl 완충액(pH 7.0)을 용리액으로 사용하여 SEC(size exclusion column) 컬럼(Superose 6 10/300 GL; GE Healthcare, USA)으로 정제하였다. 가장 높은 ABTS 활성을 나타내는 분획을 결합하고 다시 한외여과(10 kDa MWCo; Amicon)로 농축시켰다. 총 단백질 농도는 BCA(Bicinchoninic acid) 방법(Pierce, USA)을 사용하여 결정하였다.The selected positive clones were subjected to BMMY medium containing 100 μg / mL zeocin (1% yeast extract, 2% peptone, 100 mM potassium phosphate, pH 6.0, 1.34% YNB (yeast nitrogen base), 400 mg / l biotin) biotin), 0.5% methanol) was incubated for 5 days at 30 rpm at 220 rpm, sterile methanol (0.5%) was added to the medium every 24 hours. The highest activity culture was centrifuged at 3880 g for 20 minutes, and the supernatant was concentrated by ultrafiltration (ultrafiltration; 10 kDa MWCo; Amicon) while desalting with 0.1 M Tris-HCl buffer (pH 7.0). Finally purified using a size exclusion column (SESE) column (Superose 6 10/300 GL; GE Healthcare, USA) using 0.1 M Tris-HCl buffer (pH 7.0) as eluent. Fractions showing the highest ABTS activity were combined and again concentrated by ultrafiltration (10 kDa MWCo; Amicon). Total protein concentration was determined using the Bicinchoninic acid (BCA) method (Pierce, USA).

실시예 4: CiP 단백질 변이체 F229I의 제조 Example 4: Preparation of CiP Protein Variant F229I

서열번호 23 및 24 대신에 각각 서열번호 25 및 26의 프라이머를 사용하는 것을 제외하고는 상기 실시예 3과 동일한 방법으로, CiP의 229 위치의 페닐알라닌을 아이소류신으로 치환한 CiP 단백질 변이체 F229I를 제조하였다.CiP protein variant F229I was prepared by substituting isoleucine for phenylalanine at position 229 in CiP, except that the primers of SEQ ID NO: 25 and 26 were used instead of SEQ ID NOs: 23 and 24, respectively. .

실시예 5: CiP 단백질 변이체 F229L의 제조 Example 5: Preparation of CiP Protein Variant F229L

서열번호 23 및 24 대신에 각각 서열번호 27 및 28 의 프라이머를 사용하는 것을 제외하고는 상기 실시예 3과 동일한 방법으로, CiP의 229 위치의 페닐알라닌을 류신으로 치환한 CiP 단백질 변이체 F229L을 제조하였다.CiP protein variant F229L was prepared by substituting leucine for phenylalanine at position 229 of CiP in the same manner as in Example 3 except that the primers of SEQ ID NOs: 27 and 28 were used instead of SEQ ID NOs: 23 and 24, respectively.

비교예 1: 천연형 CiP 단백질의 정제Comparative Example 1: Purification of Natural CiP Protein

pPICZαA-rCiP를 상기 실시예 3의 <3-3> 및 <3-4>에 기재한 방법으로 정제하였다.pPICZαA-rCiP was purified by the method described in <3-3> and <3-4> of Example 3.

비교예 2: CiP 단백질 변이체 F229G, F229V, F229H, F229Y 및 F229W의 제조Comparative Example 2: Preparation of CiP Protein Variants F229G, F229V, F229H, F229Y, and F229W

서열번호 23 및 24 대신에 각각 서열번호 29 및 30의 프라이머를 사용하는 것을 제외하고는 상기 실시예 3과 동일한 방법으로, CiP의 229 위치의 페닐알라닌을 글리신으로 치환한 CiP 단백질 변이체 F229G를 제조하였다.CiP protein variant F229G was prepared by replacing glycine with phenylalanine at position 229 of CiP in the same manner as in Example 3, except that the primers of SEQ ID NOs: 29 and 30 were used instead of SEQ ID NOs: 23 and 24, respectively.

서열번호 23 및 24 대신에 각각 서열번호 31 및 32의 프라이머를 사용하는 것을 제외하고는 상기 실시예 3과 동일한 방법으로, CiP의 229 위치의 페닐알라닌을 발린으로 치환한 CiP 단백질 변이체 F229V를 제조하였다.CiP protein variant F229V was prepared by substituting valine for phenylalanine at position 229 of CiP in the same manner as in Example 3 except for using the primers SEQ ID NOs: 31 and 32 instead of SEQ ID NOs: 23 and 24, respectively.

서열번호 23 및 24 대신에 각각 서열번호 33 및 34의 프라이머를 사용하는 것을 제외하고는 상기 실시예 3과 동일한 방법으로, CiP의 229 위치의 페닐알라닌을 히스티딘으로 치환한 CiP 단백질 변이체 F229H를 제조하였다.CiP protein variant F229H was prepared by substituting histidine for phenylalanine at position 229 in CiP, except that the primers of SEQ ID NOs: 33 and 34 were used instead of SEQ ID NOs: 23 and 24, respectively.

서열번호 23 및 24 대신에 각각 서열번호 35 및 36의 프라이머를 사용하는 것을 제외하고는 상기 실시예 3과 동일한 방법으로, CiP의 229 위치의 페닐알라닌을 티로신으로 치환한 CiP 단백질 변이체 F229Y를 제조하였다.CiP protein variant F229Y was prepared by substituting tyrosine for phenylalanine at position 229 of CiP, except that the primers of SEQ ID NOs: 35 and 36 were used instead of SEQ ID NOs: 23 and 24, respectively.

서열번호 23 및 24 대신에 각각 서열번호 37 및 38의 프라이머를 사용하는 것을 제외하고는 상기 실시예 3과 동일한 방법으로, CiP의 229 위치의 페닐알라닌을 트립토판으로 치환한 CiP 단백질 변이체 F229W를 제조하였다.CiP protein variant F229W was prepared by substituting tryptophan for phenylalanine at position 229 of CiP in the same manner as in Example 3, except that the primers of SEQ ID NOs: 37 and 38 were used instead of SEQ ID NOs: 23 and 24, respectively.

실험예 1: 천연형 CiP 단백질 및 CiP 단백질 변이체의 라디칼 안정성Experimental Example 1 Radical Stability of Natural CiP Protein and CiP Protein Variants

CiP 단백질을 0.5 mM의 페놀 및 0.5 mM의 과산화수소를 함유한 포스페이트 완충액(100mM, pH 6.0)에서 25 ℃에서 20 분 동안 교반하여 페놀 산화 반응을 개시하였다. 페놀 산화 반응을 개시한 후 매 5 분마다 시료를 채취하고 15 분 동안 4,000 rpm에서 원심분리하여 중합된 침전물을 제거하였다. 상청액을 채취하고, 액체 크로마토그래피(Agilent model 1200 liqhid chromatography; USA)를 이용하여 페놀의 농도를 분석하였다. 분석 조건은, 컬럼은 Zorbax XDB-C18(150 x 0.3 mm, 3.5 μm; Agilent, USA)을 25 ℃로 유지하였고, 이동상은 0.3% 아세트산(70%) 및 메탄올(30%)이며, 유동속도는 1.0 ml/분으로 하여 다이오드-어레이 검출기(diode-array detector)를 사용하여 280 nm에서 측정하였다. 페놀의 농도는 표준 곡 선(calibration curve)을 이용하여 정량하였다. 턴오버 용량(turnover capacity)은 반응 시작 후 20 분 동안 소모된 효소 당 소모된 페놀의 비율이다.The CiP protein was stirred in phosphate buffer (100 mM, pH 6.0) containing 0.5 mM phenol and 0.5 mM hydrogen peroxide for 20 minutes at 25 ° C. to initiate the phenol oxidation reaction. Samples were taken every 5 minutes after initiating the phenol oxidation reaction and centrifuged at 4,000 rpm for 15 minutes to remove polymerized precipitate. The supernatant was collected and analyzed for concentration of phenol using liquid chromatography (Agilent model 1200 liqhid chromatography; USA). Analytical conditions indicated that the column maintained Zorbax XDB-C 18 (150 × 0.3 mm, 3.5 μm; Agilent, USA) at 25 ° C., the mobile phase was 0.3% acetic acid (70%) and methanol (30%), flow rate Was measured at 280 nm using a diode-array detector at 1.0 ml / min. Phenol concentrations were quantified using a calibration curve. Turnover capacity is the ratio of phenol consumed per enzyme consumed for 20 minutes after the start of the reaction.

퍼옥시다아제 활성은 ABTS를 산화시키고 이를 흡광계를 이용하여 420 nm에서의 발색양을 측정하는 방법을 이용하여 측정하였는데, 시료 20 μL를 2 mL의 ABTS-H2O2(0.18 mM ABTS 및 2.9 mM H2O2, pH 5.0)와 석영 큐벳(quartz cuvette)에서 혼합하고, 25 ℃에서 UV-Vis 스펙트로미터(Shimadzu; Japan)를 이용하여 420 nm에서의 흡광도 변화를 측정하였다(ABTS의 몰 흡광계수: 34,799 M-1cm-1). Peroxidase activity was measured using a method of oxidizing ABTS and measuring the amount of color development at 420 nm using an absorption spectrometer. 20 μL of the sample was prepared using 2 mL of ABTS-H 2 O 2 (0.18 mM ABTS and 2.9 mM). H 2 O 2 , pH 5.0) and a quartz cuvette were mixed and absorbance change at 420 nm was measured at 25 ° C. using a UV-Vis spectrometer (Shimadzu; Japan) (molar extinction coefficient of ABTS). : 34,799 M −1 cm −1 ).

천연형 CiP 단백질, 및 상기 실시예 3 내지 5 및 비교예 2를 통해 제조된 CiP 단백질 변이체에 대한 시간에 따른 페놀 농도의 변화를 표 1 및 도 3a에 나타내었고, 효소 활성을 표 1 및 도 3b에 나타내었다. 또한, 턴오버 용량을 표 2에 나타내었다.Table 1 shows changes in phenol concentrations over time for the native CiP protein, and the CiP protein variants prepared through Examples 3 to 5 and Comparative Example 2. And shown in Figure 3a, the enzyme activity is shown in Table 1 and Figure 3b. In addition, the turnover capacity is shown in Table 2.

한편, 229 위치의 아미노산 치환이 페놀 라디칼에 대한 CiP 단백질의 안정성과 CiP 단백질의 턴오버 용량에 영향을 미친다는 점을 설명하기 위해, 각 아미노산의 HOMO(Highest Occupied Molecular Orbital) 에너지 레벨을 비교하여, 표 3에 나타내었다.On the other hand, in order to explain that the amino acid substitution at position 229 affects the stability of the CiP protein against the phenol radical and the turnover capacity of the CiP protein, comparing the highest Occupied Molecular Orbital (HOMO) energy level of each amino acid, Table 3 shows.

아미노산의 HOMO 에너지 레벨은 분자 역학에 의해 계산되었고, 하이퍼켐(Hyperchem) 8.0.3. 분자 역학을 이용한 반실험적 계산(semi-empirical calculation)을 수행하여 MM+ 역장(force field)을 이용한 아미노산의 기하학적 최적화를 실시하였다. 아미노산의 기하학적 최적화를 마친 후, 싱글 포인트 아 웃(single point out) 계산을 수행하여, RHF(Restricted Hartree-Fock) 방법에 기초한 PM3(Parametic Method No.3)를 이용하여 실시된 반실험적 계산과 함께 아미노산의 HOMO 에너지를 얻었다.HOMO energy levels of amino acids were calculated by molecular dynamics, Hyperchem 8.0.3. Semi-empirical calculations using molecular dynamics were performed to perform geometric optimization of amino acids using MM + force fields. After completing the geometric optimization of the amino acids, single point out calculations were performed, with semi-experimental calculations performed using Parametric Method No. 3 (PM3) based on the Restricted Hartree-Fock (RHF) method. HOMO energy of amino acids was obtained.

산화 반응 후 시간에 따른 페놀의 농도 및 효소 활성       Phenol Concentration and Enzyme Activity with Time after Oxidation 서열번호
SEQ ID NO:
페놀의 농도 [μM]Phenol Concentration [μM] 효소 활성 [U/ml]Enzyme Activity [U / ml]
초기Early 최종final 소모된 페놀[%]Spent phenol [%] 초기Early 최종final 잔여
활성[%]
residual
activation[%]
1 (천연형) 1 (natural) 0.510.51 0.410.41 2020 0.90.9 0.010.01 1One 2 (F229A)2 (F229A) 0.540.54 0.070.07 8787 1.121.12 0.800.80 7171 3 (F229I)3 (F229I) 0.480.48 0.080.08 8383 1.131.13 0.340.34 3030 4 (F229L)4 (F229L) 0.50.5 0.080.08 8484 1.081.08 0.320.32 3030 7 (F229H)7 (F229H) 0.50.5 0.190.19 6262 0.990.99 0.020.02 22 9 (F229W)9 (F229W) 0.510.51 0.210.21 5959 1.311.31 0.110.11 88

턴오버 용량(증가율)Turnover Capacity (Growth Rate) 서열번호SEQ ID NO: 턴오버 용량[mM/U](증가율)Turnover Capacity [mM / U] (Growth Rate) 1 (천연형)1 (natural) 0.11 (1.0)0.11 (1.0) 2 (F229A)2 (F229A) 1.47 (13.1)1.47 (13.1) 3 (F229I)3 (F229I) 0.51 (4.5)0.51 (4.5) 4 (F229L)4 (F229L) 0.55 (4.9)0.55 (4.9) 7 (F229H)7 (F229H) 0.32 (2.8)0.32 (2.8) 9 (F229W)9 (F229W) 0.25 (2.2)0.25 (2.2)

아미노산의 HOMO 에너지 레벨HOMO energy levels of amino acids 서열번호SEQ ID NO: EHOMO(eV)E HOMO (eV) 1 (천연형)1 (natural) -9.63-9.63 2 (F229A)2 (F229A) -10.32-10.32 3 (F229I)3 (F229I) -10.24-10.24 4 (F229L)4 (F229L) -10.28-10.28 7 (F229H)7 (F229H) -9.2-9.2 9 (F229W)9 (F229W) -8.76-8.76

상기 표 1에 나타낸 바와 같이, 본 발명에 따른 서열번호 2 내지 4의 CiP 단백질 변이체는 초기 페놀의 약 90%가 산화되어 페놀 중합체가 형성되는 반면, 서열번호 7 및 9의 CiP 단백질 변이체는 약 50%, 서열번호 1의 천연형 CiP 단백질은 약 20%만이 산화되었다. 또한, 서열번호 2 내지 4의 CiP 단백질 변이체는 서열번호 1의 천연형 CiP 단백질과 비교하여 각각 약 70배, 30배 및 30배의 증가된 효소 활성을 갖는다. 특히, 천연형 CiP 단백질 및 서열번호 7 및 9의 CiP 단백질 변이체는 10분 내에 활성을 잃은 반면, 서열번호 2의 CiP 단백질 변이체는 반응 개시 후 20 분이 지나도 초기 활성의 80%를 유지하고 있었다. 한편, 서열번호 5, 6 및 8의 CiP 단백질 변이체는 기질로서 ABTS로 시험하였을 때 아무런 퍼옥시다아제 활성을 나타내지 않았다. As shown in Table 1, CiP protein variants of SEQ ID NOS: 2 to 4 according to the present invention are about 90% of the initial phenol is oxidized to form phenolic polymers, whereas CiP protein variants of SEQ ID NOs: 7 and 9 are about 50 %, Only about 20% of the native CiP protein of SEQ ID NO: 1 was oxidized. In addition, the CiP protein variants of SEQ ID NOS: 2-4 have about 70-fold, 30-fold, and 30-fold increased enzymatic activity, respectively, compared to the native CiP protein of SEQ ID NO: 1. In particular, the native CiP protein and CiP protein variants of SEQ ID NOs: 7 and 9 lost activity within 10 minutes, while the CiP protein variants of SEQ ID NO: 2 maintained 80% of their initial activity 20 minutes after the start of the reaction. On the other hand, CiP protein variants of SEQ ID NOs: 5, 6 and 8 showed no peroxidase activity when tested by ABTS as substrate.

또한, 표 2에 나타낸 바와 같이, 서열번호 2 내지 4의 CiP 단백질 변이체는 서열번호 1의 천연형 CiP 단백질과 비교하여 각각 약 14배, 5배 및 5배의 증가된 턴오버 용량을 갖는다.In addition, as shown in Table 2, the CiP protein variants of SEQ ID NOS: 2 to 4 have increased turnover doses of about 14, 5, and 5 times, respectively, compared to the native CiP protein of SEQ ID NO: 1.

한편, HOMO의 에너지는 산화 포텐셜과 관계가 있으므로, 높은 HOMO 에너지 값을 가질수록 산화 및 라디칼의 공격에 취약함을 나타낸다. 표 3에 나타낸 바와 같이, 알라닌, 아이소류신 및 류신의 HOMO 에너지 레벨은 페닐알라닌, 히스티딘, 티로신 및 트립토판의 값보다 낮음을 알 수 있다. 천연형 CiP 단백질 및 CiP 단백질 변이체의 안정성은 HOMO 에너지 레벨과 상관관계가 있었다. 이는 산화 반응 동안 CiP를 불활성화시키는 요소는 CiP의 229 위치로의 페녹시 라디칼의 공격 및 결합임을 뒷받침한다.On the other hand, since the energy of HOMO is related to the oxidation potential, the higher the HOMO energy value, the more susceptible to the attack of oxidation and radicals. As shown in Table 3, it can be seen that HOMO energy levels of alanine, isoleucine and leucine are lower than the values of phenylalanine, histidine, tyrosine and tryptophan. The stability of native CiP protein and CiP protein variants correlated with HOMO energy levels. This supports that the factor that inactivates CiP during the oxidation reaction is the attack and binding of phenoxy radicals to the 229 position of CiP.

실험예 2: 퍼옥시다아제의 동역학(kinetics)Experimental Example 2: Kinetics of Peroxidase

CiP 단백질을 0 내지 100 μM의 다양한 농도(0, 10, 20, 30, 40, 50, 60, 75 및 100 μM)의 ABTS와 반응시키고 420 nm에서 흡광도를 측정하여, 다양한 농도의 ABTS에 대한 촉매반응 비율을 측정함으로써, 동역학 변수를 결정하였다. Catalyst for various concentrations of ABTS by reacting CiP protein with ABTS at various concentrations (0, 10, 20, 30, 40, 50, 60, 75 and 100 μM) and measuring absorbance at 420 nm By measuring the reaction rate, kinetic parameters were determined.

100 μM의 H2O2 및 0 내지 100 μM의 범위의 ABTS를 혼합한 반응액에 0.05 μM의 CiP 단백질을 첨가하여 반응을 개시하였다. 상기 모든 시료는 50 mM의 포스페이트-시트레이트 완충액(pH 5.0)에 용해시켰다. ABTS 농도에 대한 반응속도를 그래프로 도시한 Hanes-Woolf plot에 기초한 Michaelis-Menten 방정식으로부터, 천연형 CiP 단백질, 및 상기 실시예 3 내지 5 및 비교예 2를 통해 제조된 CiP 단백질 변이체의 Michaelis-Menten 상수(Km), 최대 턴오버수(kcat) 및 촉매효율(kcat/Km)을 도출하였다(표 4 참조).The reaction was initiated by adding 0.05 μM of CiP protein to the reaction mixture of 100 μM of H 2 O 2 and ABTS ranging from 0 to 100 μM. All the samples were dissolved in 50 mM phosphate-citrate buffer (pH 5.0). Michaelis-Menten of CiP protein variants, and CiP protein variants prepared through Examples 3 to 5 and Comparative Example 2 above, from a Michaelis-Menten equation based on a Hanes-Woolf plot graphically plotting the reaction rate against ABTS concentration Constant (K m ), maximum turnover number (k cat ) and catalytic efficiency (k cat / K m ) were derived (see Table 4).

천연형 CiP 단백질, 및 상기 실시예 3 내지 5 및 비교예 2를 통해 제조된 CiP 단백질 변이체에 대한 Hanes-Woolf plot을 도 4에 도시하였다.Hanes-Woolf plots for the native CiP protein, and CiP protein variants prepared through Examples 3 to 5 and Comparative Example 2 are shown in FIG. 4.

동역학 변수 (Kinetic Properties)Kinetic Properties 서열번호 SEQ ID NO: Km [μM]K m [μM] kcat [S-1]k cat [S -1 ] kcat/Km [μM·S-1]k cat / K m [μM · S −1 ] 1 (천연형)1 (natural) 7.7007.700 3.9183.918 0.5090.509 2 (F229A)2 (F229A) 129.194129.194 87.14687.146 0.6750.675 3 (F229I)3 (F229I) 46.85746.857 31.74031.740 0.6770.677 4 (F229L)4 (F229L) 38.35138.351 23.60023.600 0.6150.615 7 (F229H)7 (F229H) 37.38037.380 13.08013.080 0.3500.350 9 (F229W)9 (F229W) 29.32329.323 12.08012.080 0.4120.412

상기 표 4에 나타낸 바와 같이, 서열번호 2의 CiP 단백질 변이체의 기질 결합 친화도는 감소하였으나(Km = 129.19 μM), Kcat 값이 증가하여 높은 Kcat/Km 값을 나타내었다.As shown in Table 4, the substrate binding affinity of the CiP protein variant of SEQ ID NO: 2 was decreased (K m = 129.19 μM), K cat value was increased to show high K cat / K m value.

실험예 3: 분자 도킹 모의실험(Molecular docking simulation)Experimental Example 3: Molecular Docking Simulation

서열번호 2, 3 및 9의 CiP 단백질 변이체와 페놀 분자의 분자 도킹 모의실험을 디스커버리 스튜디오(Discovery Studio version 2.1; Accelrys, USA)를 사용하여 수행하였다. CiP의 구조로는 ARP(Arthromyces ramosus peroxidase; PDB ID: 1ARP)의 구조를 사용하였다. Molecular docking simulations of the CiP protein variants of SEQ ID NOS: 2, 3 and 9 and phenolic molecules were performed using Discovery Studio version 2.1 (Accelrys, USA). As the structure of CiP, the structure of ARP ( Arthromyces ramosus peroxidase; PDB ID: 1ARP) was used.

CiP 단백질의 구조는 로터머(rotamer) 라이브러리의 조합에 기초한 SCRWL 3.0 프로그램으로 모델링하고, 페놀의 구조는 디스커버리 스튜디오의 프래그먼트 빌더 툴(Fragment Builder tools)로 만들었다. 분자들에 대해 CHARMm 역장(force field)이 적용되었으며, CDOCKER 모듈을 사용하여 분자 도킹 모의실험을 하였다. The structure of the CiP protein was modeled with the SCRWL 3.0 program based on a combination of rotamer libraries, and the structure of the phenol was made with Discovery Studio's Fragment Builder tools. CHARMm force fields were applied to the molecules and molecular docking simulations were performed using the CDOCKER module.

페놀을 CiP 단백질에 도킹시키고 가능한 CiP 단백질-페놀 복합체를 생성하였다. CiP 단백질로부터 8Å내의 잔기를 결합부위로 사용하고 다른 잔기는 고정시켰다. CDOCKER 모듈의 기본 값(default parameter)으로 분자 도킹 모의실험을 수행하였다. 낮은 도킹 스코어 10개를 복합체의 결합 자유 에너지(binding free energy)를 계산하는 데 사용하였다. 복합체의 결합 자유 에너지를 디스커버리 스튜디오의 프로토콜에 따라 계산하였다. 가장 낮은 결합 자유 에너지를 갖는 CiP 단백질과 페놀의 복합체를 구조 분석에 사용하였다. CiP 단백질의 결합 거리는 복합체의 모델링된 구조를 이용하여 56His의 δN 원자와 활성 OH 기 간의 거리를 계산함으로써 결정하였다. 모델링한 복합체의 결합 자유 에너지 및 결합 거리를 표 5에 나타내었다.The phenol was docked to the CiP protein and produced a possible CiP protein-phenol complex. Residues within 8 μs of the CiP protein were used as binding sites and other residues were fixed. Molecular docking simulations were performed with default parameters of the CDOCKER module. Ten low docking scores were used to calculate the binding free energy of the complex. The binding free energy of the complex was calculated according to Discovery Studio's protocol. The complex of CiP protein and phenol with the lowest binding free energy was used for structural analysis. The binding distance of CiP protein was determined by calculating the distance between the δN atom of 56His and the active OH group using the modeled structure of the complex. The binding free energy and binding distance of the modeled composites are shown in Table 5.

모델링한 복합체의 결합 자유 에너지 및 거리Binding free energy and distance of the modeled composite 서열번호 SEQ ID NO: 결합 자유 에너지 [kcal/mol]Binding free energy [kcal / mol] 거리 [Å]Distance [Å] 1 (천연형)1 (natural) -15.1-15.1 11.311.3 2 (F229A)2 (F229A) -7.6-7.6 13.213.2 3 (F229I)3 (F229I) -10.3-10.3 14.114.1 9 (F229W)9 (F229W) -12.0-12.0 9.69.6

분자 도킹 모의실험을 수행한 결과, CiP의 F229 잔기는 CiP의 헴 포켓(heme pocket)의 입구에 위치하여, 기질의 방향족 고리와 소수성 상호작용을 함을 알 수 있었다. 이는 기질과 방향족 고리의 결합에 중요한 특질이다. 모델링한 복합체에서 CiP의 F229 잔기는 페놀과 방향족-방향족 상호작용을 하였다. 페놀은 F229와 평행적 상호작용을 하고, 활성 OH 기는 전자 운반(electron transfer)에 대해 촉매반응 잔기로 알려진 56His의 δN 원자를 향하였다(도 5a, 도 5b, 도 5c 및 도 5d 참조). 상기 표 5에 나타낸 바와 같이, 서열번호 9의 CiP 단백질 변이체도 유사한 상호작용을 하였으나, 천연형(11.3 Å)과 비교하여 페놀과의 거리가 더 가까웠다(9.6 Å). 이는 서열번호 9의 CiP 단백질 변이체가 페놀의 산화 반응에서 비슷한 잔기 활성을 갖는데도, 천연형 CiP 단백질(20%)보다 많은 페놀을 소모하는 것(50%)을 뒷받침한다. 또한, 천연형 CiP 단백질 및 서열번호 9의 CiP 단백질 변이체가 라디칼 공격에 있어서 유사한 방향족 환경을 갖는다면, 가까운 결합 거리는 CiP에 의해 매개되는 페놀의 산화에 대해 바람직한 환경을 제공할 것이다. Molecular docking simulations showed that the F229 residue of CiP was located at the inlet of the heme pocket of CiP, resulting in hydrophobic interaction with the aromatic ring of the substrate. This is an important property for the bonding of the substrate to the aromatic ring. In the modeled complex, the F229 residue of CiP had an aromatic-aromatic interaction with phenol. The phenol interacts in parallel with F229 and the active OH group was directed to the δN atom of 56His known as the catalytic moiety for electron transfer (see FIGS. 5A, 5B, 5C and 5D). As shown in Table 5, the CiP protein variant of SEQ ID NO: 9 had similar interactions, but was closer to the phenol compared to the native form (11.3 kV) (9.6 kV). This supports the consumption of more phenol (50%) than the native CiP protein (20%), although the CiP protein variant of SEQ ID NO: 9 has similar residue activity in the oxidation reaction of phenol. In addition, if the native CiP protein and CiP protein variant of SEQ ID NO: 9 have a similar aromatic environment for radical attack, the close bond distance will provide a favorable environment for the oxidation of phenol mediated by CiP.

방향족 잔기를 갖는 천연형 CiP 단백질 및 서열번호 9의 CiP 단백질 변이체와는 대조적으로, 소수성 잔기를 갖는 서열번호 2 및 3의 CiP 단백질 변이체는 페놀과 다른 결합을 나타내었다. 서열번호 2 및 3의 CiP 단백질 변이체는 천연형 CiP 단백질(11.3Å, -15.1 kcal/mol) 및 서열번호 9의 CiP 단백질 변이체(9.6Å, -12.0 kcal/mol)와 비교하여 보다 긴 결합 거리(13.2Å 및 14.1Å) 및 높은 결합 자유 에너지를 나타내었다(-7.61 kcal/mol 및 -10.35 kcal/mol). 헴 포켓의 입구에서 방향족 잔기를 제거하면 특이적인 방향족-방향족 상호작용을 파괴하기 때문에 방향족 기질에 대한 결합 친화도를 감소시킨다. 상기 표 3에 나타낸 바와 같이, 서열번호 2의 CiP 단백질 변이체는 방향족 기질인 ABTS에 대해 천연형 CiP 단백질(7.7003 μM)과 비교하여 감소한 Km 값(129.1939 μM)을 나타내었다. 이 결합 친화도(Km 값)는, 천연형 CiP 단백질은 낮은 결합 자유 에너지를 갖는 반면 서열번호 2의 CiP 단백질 변이체는 높은 결합 자유 에너지를 같은 모델링한 결과와도 일치하였다. 서열번호 2의 CiP 단백질 변이체가 천연형 CiP 단백질과 비교하여 긴 결합 거리와 높은 결합 자유 에너지를 갖는 상기 결과는 방향족 기질과의 결합에 있어 방향족 잔기가 중요한 역할을 하는 점을 시사한다. 또한, 도 3a 및 도 3b에 나타낸 바와 같이, 서열번호 2 및 3의 CiP 단백질 변이체는 천연형 CiP 단백질 및 서열번호 9의 CiP 단백질 변이체와 비교하여 페놀 산화 후 높은 효소 활성을 나타낸다. 즉, 지방족 잔기를 갖는 CiP 단백질 변이체, 특히 서열번호 2의 CiP 단백질 변이체는 방향족 잔기의 제거로 인하여 방향족 변이체와 비교하여 라디칼 공격에 보다 안정적이다. 따라서, CiP의 229 위치에서 방향족 잔기를 제거함으로 인해 퍼옥시다아제가 높은 라디칼 안정성을 갖게 됨을 알 수 있었다.In contrast to native CiP proteins having aromatic residues and CiP protein variants of SEQ ID NO: 9, CiP protein variants of SEQ ID NOS: 2 and 3 having hydrophobic residues showed different binding from phenols. CiP protein variants of SEQ ID NO: 2 and 3 have longer binding distances compared to native CiP protein (11.3 kPa, -15.1 kcal / mol) and CiP protein variant (9.6 kPa, -12.0 kcal / mol) 13.2 kV and 14.1 kV) and high binding free energy (-7.61 kcal / mol and -10.35 kcal / mol). Removal of the aromatic moiety at the inlet of the heme pocket reduces the specific binding affinity for the aromatic substrate because it disrupts specific aromatic-aromatic interactions. As shown in Table 3, the CiP protein variant of SEQ ID NO: 2 showed a reduced K m value (129.1939 μM) compared to native CiP protein (7.7003 μM) for ABTS, an aromatic substrate. This binding affinity (K m value) is consistent with the results of the same modeling of the high binding free energy of the CiP protein variant of SEQ ID NO: 2 while the native CiP protein has low binding free energy. The above results, in which the CiP protein variant of SEQ ID NO: 2 has a long binding distance and high binding free energy compared to the native CiP protein, suggest that the aromatic residue plays an important role in binding to the aromatic substrate. 3A and 3B, the CiP protein variants of SEQ ID NOS: 2 and 3 show higher enzymatic activity after phenol oxidation compared to the native CiP protein and CiP protein variants of SEQ ID NO: 9. That is, CiP protein variants with aliphatic residues, especially CiP protein variants of SEQ ID NO: 2, are more stable to radical attack compared to aromatic variants due to the removal of aromatic residues. Therefore, it was found that the peroxidase had high radical stability by removing the aromatic residue at position 229 of CiP.

상기 모델링 결과는 CiP의 F229 잔기가 방향족 기질의 결합 및 라디칼 공격에 중요하다는 실험적 결과와 일치하였다. 이러한 분자 도킹 모의실험은 다른 퍼옥시다아제에 있어서도 방향족 잔기를 제거하여 결합 친화도의 손실을 최소화함으로써 라디칼 안정성을 갖는 변이체를 구축할 수 있음을 시사한다.The modeling results are in agreement with experimental results that the F229 residue of CiP is important for the binding and radical attack of aromatic substrates. Such molecular docking simulations suggest that variants with radical stability can be constructed by removing aromatic residues to minimize loss of binding affinity even for other peroxidases.

도 1은 재조합 플라스미드 벡터 pPICZαA-rCiP에 대한 유전자지도이다.1 is a recombinant plasmid vector Gene map for pPICZαA-rCiP.

도 2a 및 도 2b는 각각 불활성화 CiP 단편(m/z 838.880)의 MS/MS 스펙트럼(도 2a) 및 새로운 시퀀싱을 통한 서열 정보(도 2b)이다.2A and 2B are MS / MS spectra of inactivated CiP fragment (m / z 838.880) (FIG. 2A) and sequence information via new sequencing (FIG. 2B), respectively.

도 3a 및 도 3b는 각각 천연형 CiP 단백질 또는 CiP 단백질 변이체와 페놀을 산화 반응시켰을 때, 시간에 따른 페놀 농도의 변화(도 3a) 및 효소 활성(도 3b)을 나타낸 그래프이다.3A and 3B are graphs showing changes in phenol concentration (FIG. 3A) and enzyme activity (FIG. 3B) with time when the natural type CiP protein or CiP protein variant is oxidized with phenol.

도 4는 천연형 CiP 단백질 또는 CiP 단백질 변이체를 ABTS와 산화 반응시켰을 때, 동역학 변수를 구하기 위한 Hanes-Woolf plot이다. 4 is a Hanes-Woolf plot for obtaining kinetic parameters when natural CiP protein or CiP protein variant is oxidized with ABTS.

도 5a, 도 5b, 도 5c 및 도 5d는 각각 서열번호 1의 천연형 CiP 단백질(도 5a), 서열번호 2의 CiP 단백질 변이체(도 5b), 서열번호 3의 CiP 단백질 변이체(도 5c) 및 서열번호 9의 CiP 단백질 변이체(도 5d)와 페놀의 분자 도킹 모의실험 결과를 나타낸 그림이다.5A, 5B, 5C and 5D show the native CiP protein of FIG. 1 (FIG. 5A), the CiP protein variant of FIG. 2 (FIG. 5B), the CiP protein variant of FIG. 3 (FIG. 5C), and Figure shows the molecular docking simulation results of the phenol and the CiP protein variant of SEQ ID NO.

표 1은 천연형 CiP 단백질 또는 CiP 단백질 변이체와 페놀을 산화 반응시켰을 때, 시간에 따른 페놀 농도 및 효소 활성을 나타낸 표이다.Table 1 is a table showing the phenol concentration and enzyme activity over time when the natural type CiP protein or CiP protein variant and phenol oxidized.

표 2는 천연형 CiP 단백질 또는 CiP 단백질 변이체와 페놀을 산화 반응시켰을 때, 턴오버 용량을 나타낸 표이다.Table 2 is a table showing the turnover capacity when the natural CiP protein or CiP protein variant is oxidized with phenol.

표 3은 천연형 CiP 단백질 및 CiP 단백질 변이체의 아미노산의 HOMO 에너지 레벨을 나타낸 표이다.Table 3 is a table showing HOMO energy levels of amino acids of native CiP protein and CiP protein variants.

표 4는 천연형 CiP 단백질 또는 CiP 단백질 변이체를 ABTS 산화 반응시킨 결과를 바탕으로 구한 동역학 변수를 나타낸 표이다.Table 4 is a table showing the kinetic parameters obtained based on the results of ABTS oxidation of the native CiP protein or CiP protein variants.

표 5는 분자 도킹 모의실험 결과, 모델링한 복합체의 결합 자유 에너지 및 결합 거리를 나타낸 표이다.Table 5 is a table showing binding free energy and binding distance of the modeled complex as a result of molecular docking simulation.

<110> KOREA research institute of chemical technology <120> Peroxidase variants having improved radical stability <130> FPD/200909-0140 <160> 38 <170> KopatentIn 1.71 <210> 1 <211> 343 <212> PRT <213> Artificial Sequence <220> <223> CiP protein derived from Coprinus cinereus <400> 1 Gln Gly Pro Gly Gly Gly Gly Ser Val Thr Cys Pro Gly Gly Gln Ser 1 5 10 15 Thr Ser Asn Ser Gln Cys Cys Val Trp Phe Asp Val Leu Asp Asp Leu 20 25 30 Gln Thr Asn Phe Tyr Gln Gly Ser Lys Cys Glu Ser Pro Val Arg Lys 35 40 45 Ile Leu Arg Ile Val Phe His Asp Ala Ile Gly Phe Ser Pro Ala Leu 50 55 60 Thr Ala Ala Gly Gln Phe Gly Gly Gly Gly Ala Asp Gly Ser Ile Ile 65 70 75 80 Ala His Ser Asn Ile Glu Leu Ala Phe Pro Ala Asn Gly Gly Leu Thr 85 90 95 Asp Thr Ile Glu Ala Leu Arg Ala Val Gly Ile Asn His Gly Val Ser 100 105 110 Phe Gly Asp Leu Ile Gln Phe Ala Thr Ala Val Gly Met Ser Asn Cys 115 120 125 Pro Gly Ser Pro Arg Leu Glu Phe Leu Thr Gly Arg Ser Asn Ser Ser 130 135 140 Gln Pro Ser Pro Pro Ser Leu Ile Pro Gly Pro Gly Asn Thr Val Thr 145 150 155 160 Ala Ile Leu Asp Arg Met Gly Asp Ala Gly Phe Ser Pro Asp Glu Val 165 170 175 Val Asp Leu Leu Ala Ala His Ser Leu Ala Ser Gln Glu Gly Leu Asn 180 185 190 Ser Ala Ile Phe Arg Ser Pro Leu Asp Ser Thr Pro Gln Val Phe Asp 195 200 205 Thr Gln Phe Tyr Ile Glu Thr Leu Leu Lys Gly Thr Thr Gln Pro Gly 210 215 220 Pro Ser Leu Gly Phe Ala Glu Glu Leu Ser Pro Phe Pro Gly Glu Phe 225 230 235 240 Arg Met Arg Ser Asp Ala Leu Leu Ala Arg Asp Ser Arg Thr Ala Cys 245 250 255 Arg Trp Gln Ser Met Thr Ser Ser Asn Glu Val Met Gly Gln Arg Tyr 260 265 270 Arg Ala Ala Met Ala Lys Met Ser Val Leu Gly Phe Asp Arg Asn Ala 275 280 285 Leu Thr Asp Cys Ser Asp Val Ile Pro Ser Ala Val Ser Asn Asn Ala 290 295 300 Ala Pro Val Ile Pro Gly Gly Leu Thr Val Asp Asp Ile Glu Val Ser 305 310 315 320 Cys Pro Ser Glu Pro Phe Pro Glu Ile Ala Thr Ala Ser Gly Pro Leu 325 330 335 Pro Ser Leu Ala Pro Ala Pro 340 <210> 2 <211> 343 <212> PRT <213> Artificial Sequence <220> <223> CiP protein variant(F229A) <400> 2 Gln Gly Pro Gly Gly Gly Gly Ser Val Thr Cys Pro Gly Gly Gln Ser 1 5 10 15 Thr Ser Asn Ser Gln Cys Cys Val Trp Phe Asp Val Leu Asp Asp Leu 20 25 30 Gln Thr Asn Phe Tyr Gln Gly Ser Lys Cys Glu Ser Pro Val Arg Lys 35 40 45 Ile Leu Arg Ile Val Phe His Asp Ala Ile Gly Phe Ser Pro Ala Leu 50 55 60 Thr Ala Ala Gly Gln Phe Gly Gly Gly Gly Ala Asp Gly Ser Ile Ile 65 70 75 80 Ala His Ser Asn Ile Glu Leu Ala Phe Pro Ala Asn Gly Gly Leu Thr 85 90 95 Asp Thr Ile Glu Ala Leu Arg Ala Val Gly Ile Asn His Gly Val Ser 100 105 110 Phe Gly Asp Leu Ile Gln Phe Ala Thr Ala Val Gly Met Ser Asn Cys 115 120 125 Pro Gly Ser Pro Arg Leu Glu Phe Leu Thr Gly Arg Ser Asn Ser Ser 130 135 140 Gln Pro Ser Pro Pro Ser Leu Ile Pro Gly Pro Gly Asn Thr Val Thr 145 150 155 160 Ala Ile Leu Asp Arg Met Gly Asp Ala Gly Phe Ser Pro Asp Glu Val 165 170 175 Val Asp Leu Leu Ala Ala His Ser Leu Ala Ser Gln Glu Gly Leu Asn 180 185 190 Ser Ala Ile Phe Arg Ser Pro Leu Asp Ser Thr Pro Gln Val Phe Asp 195 200 205 Thr Gln Phe Tyr Ile Glu Thr Leu Leu Lys Gly Thr Thr Gln Pro Gly 210 215 220 Pro Ser Leu Gly Ala Ala Glu Glu Leu Ser Pro Phe Pro Gly Glu Phe 225 230 235 240 Arg Met Arg Ser Asp Ala Leu Leu Ala Arg Asp Ser Arg Thr Ala Cys 245 250 255 Arg Trp Gln Ser Met Thr Ser Ser Asn Glu Val Met Gly Gln Arg Tyr 260 265 270 Arg Ala Ala Met Ala Lys Met Ser Val Leu Gly Phe Asp Arg Asn Ala 275 280 285 Leu Thr Asp Cys Ser Asp Val Ile Pro Ser Ala Val Ser Asn Asn Ala 290 295 300 Ala Pro Val Ile Pro Gly Gly Leu Thr Val Asp Asp Ile Glu Val Ser 305 310 315 320 Cys Pro Ser Glu Pro Phe Pro Glu Ile Ala Thr Ala Ser Gly Pro Leu 325 330 335 Pro Ser Leu Ala Pro Ala Pro 340 <210> 3 <211> 343 <212> PRT <213> Artificial Sequence <220> <223> CiP protein variant(F229I) <400> 3 Gln Gly Pro Gly Gly Gly Gly Ser Val Thr Cys Pro Gly Gly Gln Ser 1 5 10 15 Thr Ser Asn Ser Gln Cys Cys Val Trp Phe Asp Val Leu Asp Asp Leu 20 25 30 Gln Thr Asn Phe Tyr Gln Gly Ser Lys Cys Glu Ser Pro Val Arg Lys 35 40 45 Ile Leu Arg Ile Val Phe His Asp Ala Ile Gly Phe Ser Pro Ala Leu 50 55 60 Thr Ala Ala Gly Gln Phe Gly Gly Gly Gly Ala Asp Gly Ser Ile Ile 65 70 75 80 Ala His Ser Asn Ile Glu Leu Ala Phe Pro Ala Asn Gly Gly Leu Thr 85 90 95 Asp Thr Ile Glu Ala Leu Arg Ala Val Gly Ile Asn His Gly Val Ser 100 105 110 Phe Gly Asp Leu Ile Gln Phe Ala Thr Ala Val Gly Met Ser Asn Cys 115 120 125 Pro Gly Ser Pro Arg Leu Glu Phe Leu Thr Gly Arg Ser Asn Ser Ser 130 135 140 Gln Pro Ser Pro Pro Ser Leu Ile Pro Gly Pro Gly Asn Thr Val Thr 145 150 155 160 Ala Ile Leu Asp Arg Met Gly Asp Ala Gly Phe Ser Pro Asp Glu Val 165 170 175 Val Asp Leu Leu Ala Ala His Ser Leu Ala Ser Gln Glu Gly Leu Asn 180 185 190 Ser Ala Ile Phe Arg Ser Pro Leu Asp Ser Thr Pro Gln Val Phe Asp 195 200 205 Thr Gln Phe Tyr Ile Glu Thr Leu Leu Lys Gly Thr Thr Gln Pro Gly 210 215 220 Pro Ser Leu Gly Ile Ala Glu Glu Leu Ser Pro Phe Pro Gly Glu Phe 225 230 235 240 Arg Met Arg Ser Asp Ala Leu Leu Ala Arg Asp Ser Arg Thr Ala Cys 245 250 255 Arg Trp Gln Ser Met Thr Ser Ser Asn Glu Val Met Gly Gln Arg Tyr 260 265 270 Arg Ala Ala Met Ala Lys Met Ser Val Leu Gly Phe Asp Arg Asn Ala 275 280 285 Leu Thr Asp Cys Ser Asp Val Ile Pro Ser Ala Val Ser Asn Asn Ala 290 295 300 Ala Pro Val Ile Pro Gly Gly Leu Thr Val Asp Asp Ile Glu Val Ser 305 310 315 320 Cys Pro Ser Glu Pro Phe Pro Glu Ile Ala Thr Ala Ser Gly Pro Leu 325 330 335 Pro Ser Leu Ala Pro Ala Pro 340 <210> 4 <211> 343 <212> PRT <213> Artificial Sequence <220> <223> CiP protein variant(F229L) <400> 4 Gln Gly Pro Gly Gly Gly Gly Ser Val Thr Cys Pro Gly Gly Gln Ser 1 5 10 15 Thr Ser Asn Ser Gln Cys Cys Val Trp Phe Asp Val Leu Asp Asp Leu 20 25 30 Gln Thr Asn Phe Tyr Gln Gly Ser Lys Cys Glu Ser Pro Val Arg Lys 35 40 45 Ile Leu Arg Ile Val Phe His Asp Ala Ile Gly Phe Ser Pro Ala Leu 50 55 60 Thr Ala Ala Gly Gln Phe Gly Gly Gly Gly Ala Asp Gly Ser Ile Ile 65 70 75 80 Ala His Ser Asn Ile Glu Leu Ala Phe Pro Ala Asn Gly Gly Leu Thr 85 90 95 Asp Thr Ile Glu Ala Leu Arg Ala Val Gly Ile Asn His Gly Val Ser 100 105 110 Phe Gly Asp Leu Ile Gln Phe Ala Thr Ala Val Gly Met Ser Asn Cys 115 120 125 Pro Gly Ser Pro Arg Leu Glu Phe Leu Thr Gly Arg Ser Asn Ser Ser 130 135 140 Gln Pro Ser Pro Pro Ser Leu Ile Pro Gly Pro Gly Asn Thr Val Thr 145 150 155 160 Ala Ile Leu Asp Arg Met Gly Asp Ala Gly Phe Ser Pro Asp Glu Val 165 170 175 Val Asp Leu Leu Ala Ala His Ser Leu Ala Ser Gln Glu Gly Leu Asn 180 185 190 Ser Ala Ile Phe Arg Ser Pro Leu Asp Ser Thr Pro Gln Val Phe Asp 195 200 205 Thr Gln Phe Tyr Ile Glu Thr Leu Leu Lys Gly Thr Thr Gln Pro Gly 210 215 220 Pro Ser Leu Gly Leu Ala Glu Glu Leu Ser Pro Phe Pro Gly Glu Phe 225 230 235 240 Arg Met Arg Ser Asp Ala Leu Leu Ala Arg Asp Ser Arg Thr Ala Cys 245 250 255 Arg Trp Gln Ser Met Thr Ser Ser Asn Glu Val Met Gly Gln Arg Tyr 260 265 270 Arg Ala Ala Met Ala Lys Met Ser Val Leu Gly Phe Asp Arg Asn Ala 275 280 285 Leu Thr Asp Cys Ser Asp Val Ile Pro Ser Ala Val Ser Asn Asn Ala 290 295 300 Ala Pro Val Ile Pro Gly Gly Leu Thr Val Asp Asp Ile Glu Val Ser 305 310 315 320 Cys Pro Ser Glu Pro Phe Pro Glu Ile Ala Thr Ala Ser Gly Pro Leu 325 330 335 Pro Ser Leu Ala Pro Ala Pro 340 <210> 5 <211> 343 <212> PRT <213> Artificial Sequence <220> <223> CiP protein variant(F229G) <400> 5 Gln Gly Pro Gly Gly Gly Gly Ser Val Thr Cys Pro Gly Gly Gln Ser 1 5 10 15 Thr Ser Asn Ser Gln Cys Cys Val Trp Phe Asp Val Leu Asp Asp Leu 20 25 30 Gln Thr Asn Phe Tyr Gln Gly Ser Lys Cys Glu Ser Pro Val Arg Lys 35 40 45 Ile Leu Arg Ile Val Phe His Asp Ala Ile Gly Phe Ser Pro Ala Leu 50 55 60 Thr Ala Ala Gly Gln Phe Gly Gly Gly Gly Ala Asp Gly Ser Ile Ile 65 70 75 80 Ala His Ser Asn Ile Glu Leu Ala Phe Pro Ala Asn Gly Gly Leu Thr 85 90 95 Asp Thr Ile Glu Ala Leu Arg Ala Val Gly Ile Asn His Gly Val Ser 100 105 110 Phe Gly Asp Leu Ile Gln Phe Ala Thr Ala Val Gly Met Ser Asn Cys 115 120 125 Pro Gly Ser Pro Arg Leu Glu Phe Leu Thr Gly Arg Ser Asn Ser Ser 130 135 140 Gln Pro Ser Pro Pro Ser Leu Ile Pro Gly Pro Gly Asn Thr Val Thr 145 150 155 160 Ala Ile Leu Asp Arg Met Gly Asp Ala Gly Phe Ser Pro Asp Glu Val 165 170 175 Val Asp Leu Leu Ala Ala His Ser Leu Ala Ser Gln Glu Gly Leu Asn 180 185 190 Ser Ala Ile Phe Arg Ser Pro Leu Asp Ser Thr Pro Gln Val Phe Asp 195 200 205 Thr Gln Phe Tyr Ile Glu Thr Leu Leu Lys Gly Thr Thr Gln Pro Gly 210 215 220 Pro Ser Leu Gly Gly Ala Glu Glu Leu Ser Pro Phe Pro Gly Glu Phe 225 230 235 240 Arg Met Arg Ser Asp Ala Leu Leu Ala Arg Asp Ser Arg Thr Ala Cys 245 250 255 Arg Trp Gln Ser Met Thr Ser Ser Asn Glu Val Met Gly Gln Arg Tyr 260 265 270 Arg Ala Ala Met Ala Lys Met Ser Val Leu Gly Phe Asp Arg Asn Ala 275 280 285 Leu Thr Asp Cys Ser Asp Val Ile Pro Ser Ala Val Ser Asn Asn Ala 290 295 300 Ala Pro Val Ile Pro Gly Gly Leu Thr Val Asp Asp Ile Glu Val Ser 305 310 315 320 Cys Pro Ser Glu Pro Phe Pro Glu Ile Ala Thr Ala Ser Gly Pro Leu 325 330 335 Pro Ser Leu Ala Pro Ala Pro 340 <210> 6 <211> 343 <212> PRT <213> Artificial Sequence <220> <223> CiP protein variant(F229V) <400> 6 Gln Gly Pro Gly Gly Gly Gly Ser Val Thr Cys Pro Gly Gly Gln Ser 1 5 10 15 Thr Ser Asn Ser Gln Cys Cys Val Trp Phe Asp Val Leu Asp Asp Leu 20 25 30 Gln Thr Asn Phe Tyr Gln Gly Ser Lys Cys Glu Ser Pro Val Arg Lys 35 40 45 Ile Leu Arg Ile Val Phe His Asp Ala Ile Gly Phe Ser Pro Ala Leu 50 55 60 Thr Ala Ala Gly Gln Phe Gly Gly Gly Gly Ala Asp Gly Ser Ile Ile 65 70 75 80 Ala His Ser Asn Ile Glu Leu Ala Phe Pro Ala Asn Gly Gly Leu Thr 85 90 95 Asp Thr Ile Glu Ala Leu Arg Ala Val Gly Ile Asn His Gly Val Ser 100 105 110 Phe Gly Asp Leu Ile Gln Phe Ala Thr Ala Val Gly Met Ser Asn Cys 115 120 125 Pro Gly Ser Pro Arg Leu Glu Phe Leu Thr Gly Arg Ser Asn Ser Ser 130 135 140 Gln Pro Ser Pro Pro Ser Leu Ile Pro Gly Pro Gly Asn Thr Val Thr 145 150 155 160 Ala Ile Leu Asp Arg Met Gly Asp Ala Gly Phe Ser Pro Asp Glu Val 165 170 175 Val Asp Leu Leu Ala Ala His Ser Leu Ala Ser Gln Glu Gly Leu Asn 180 185 190 Ser Ala Ile Phe Arg Ser Pro Leu Asp Ser Thr Pro Gln Val Phe Asp 195 200 205 Thr Gln Phe Tyr Ile Glu Thr Leu Leu Lys Gly Thr Thr Gln Pro Gly 210 215 220 Pro Ser Leu Gly Val Ala Glu Glu Leu Ser Pro Phe Pro Gly Glu Phe 225 230 235 240 Arg Met Arg Ser Asp Ala Leu Leu Ala Arg Asp Ser Arg Thr Ala Cys 245 250 255 Arg Trp Gln Ser Met Thr Ser Ser Asn Glu Val Met Gly Gln Arg Tyr 260 265 270 Arg Ala Ala Met Ala Lys Met Ser Val Leu Gly Phe Asp Arg Asn Ala 275 280 285 Leu Thr Asp Cys Ser Asp Val Ile Pro Ser Ala Val Ser Asn Asn Ala 290 295 300 Ala Pro Val Ile Pro Gly Gly Leu Thr Val Asp Asp Ile Glu Val Ser 305 310 315 320 Cys Pro Ser Glu Pro Phe Pro Glu Ile Ala Thr Ala Ser Gly Pro Leu 325 330 335 Pro Ser Leu Ala Pro Ala Pro 340 <210> 7 <211> 343 <212> PRT <213> Artificial Sequence <220> <223> CiP protein variant(F229H) <400> 7 Gln Gly Pro Gly Gly Gly Gly Ser Val Thr Cys Pro Gly Gly Gln Ser 1 5 10 15 Thr Ser Asn Ser Gln Cys Cys Val Trp Phe Asp Val Leu Asp Asp Leu 20 25 30 Gln Thr Asn Phe Tyr Gln Gly Ser Lys Cys Glu Ser Pro Val Arg Lys 35 40 45 Ile Leu Arg Ile Val Phe His Asp Ala Ile Gly Phe Ser Pro Ala Leu 50 55 60 Thr Ala Ala Gly Gln Phe Gly Gly Gly Gly Ala Asp Gly Ser Ile Ile 65 70 75 80 Ala His Ser Asn Ile Glu Leu Ala Phe Pro Ala Asn Gly Gly Leu Thr 85 90 95 Asp Thr Ile Glu Ala Leu Arg Ala Val Gly Ile Asn His Gly Val Ser 100 105 110 Phe Gly Asp Leu Ile Gln Phe Ala Thr Ala Val Gly Met Ser Asn Cys 115 120 125 Pro Gly Ser Pro Arg Leu Glu Phe Leu Thr Gly Arg Ser Asn Ser Ser 130 135 140 Gln Pro Ser Pro Pro Ser Leu Ile Pro Gly Pro Gly Asn Thr Val Thr 145 150 155 160 Ala Ile Leu Asp Arg Met Gly Asp Ala Gly Phe Ser Pro Asp Glu Val 165 170 175 Val Asp Leu Leu Ala Ala His Ser Leu Ala Ser Gln Glu Gly Leu Asn 180 185 190 Ser Ala Ile Phe Arg Ser Pro Leu Asp Ser Thr Pro Gln Val Phe Asp 195 200 205 Thr Gln Phe Tyr Ile Glu Thr Leu Leu Lys Gly Thr Thr Gln Pro Gly 210 215 220 Pro Ser Leu Gly His Ala Glu Glu Leu Ser Pro Phe Pro Gly Glu Phe 225 230 235 240 Arg Met Arg Ser Asp Ala Leu Leu Ala Arg Asp Ser Arg Thr Ala Cys 245 250 255 Arg Trp Gln Ser Met Thr Ser Ser Asn Glu Val Met Gly Gln Arg Tyr 260 265 270 Arg Ala Ala Met Ala Lys Met Ser Val Leu Gly Phe Asp Arg Asn Ala 275 280 285 Leu Thr Asp Cys Ser Asp Val Ile Pro Ser Ala Val Ser Asn Asn Ala 290 295 300 Ala Pro Val Ile Pro Gly Gly Leu Thr Val Asp Asp Ile Glu Val Ser 305 310 315 320 Cys Pro Ser Glu Pro Phe Pro Glu Ile Ala Thr Ala Ser Gly Pro Leu 325 330 335 Pro Ser Leu Ala Pro Ala Pro 340 <210> 8 <211> 343 <212> PRT <213> Artificial Sequence <220> <223> CiP protein variant(F229Y) <400> 8 Gln Gly Pro Gly Gly Gly Gly Ser Val Thr Cys Pro Gly Gly Gln Ser 1 5 10 15 Thr Ser Asn Ser Gln Cys Cys Val Trp Phe Asp Val Leu Asp Asp Leu 20 25 30 Gln Thr Asn Phe Tyr Gln Gly Ser Lys Cys Glu Ser Pro Val Arg Lys 35 40 45 Ile Leu Arg Ile Val Phe His Asp Ala Ile Gly Phe Ser Pro Ala Leu 50 55 60 Thr Ala Ala Gly Gln Phe Gly Gly Gly Gly Ala Asp Gly Ser Ile Ile 65 70 75 80 Ala His Ser Asn Ile Glu Leu Ala Phe Pro Ala Asn Gly Gly Leu Thr 85 90 95 Asp Thr Ile Glu Ala Leu Arg Ala Val Gly Ile Asn His Gly Val Ser 100 105 110 Phe Gly Asp Leu Ile Gln Phe Ala Thr Ala Val Gly Met Ser Asn Cys 115 120 125 Pro Gly Ser Pro Arg Leu Glu Phe Leu Thr Gly Arg Ser Asn Ser Ser 130 135 140 Gln Pro Ser Pro Pro Ser Leu Ile Pro Gly Pro Gly Asn Thr Val Thr 145 150 155 160 Ala Ile Leu Asp Arg Met Gly Asp Ala Gly Phe Ser Pro Asp Glu Val 165 170 175 Val Asp Leu Leu Ala Ala His Ser Leu Ala Ser Gln Glu Gly Leu Asn 180 185 190 Ser Ala Ile Phe Arg Ser Pro Leu Asp Ser Thr Pro Gln Val Phe Asp 195 200 205 Thr Gln Phe Tyr Ile Glu Thr Leu Leu Lys Gly Thr Thr Gln Pro Gly 210 215 220 Pro Ser Leu Gly Tyr Ala Glu Glu Leu Ser Pro Phe Pro Gly Glu Phe 225 230 235 240 Arg Met Arg Ser Asp Ala Leu Leu Ala Arg Asp Ser Arg Thr Ala Cys 245 250 255 Arg Trp Gln Ser Met Thr Ser Ser Asn Glu Val Met Gly Gln Arg Tyr 260 265 270 Arg Ala Ala Met Ala Lys Met Ser Val Leu Gly Phe Asp Arg Asn Ala 275 280 285 Leu Thr Asp Cys Ser Asp Val Ile Pro Ser Ala Val Ser Asn Asn Ala 290 295 300 Ala Pro Val Ile Pro Gly Gly Leu Thr Val Asp Asp Ile Glu Val Ser 305 310 315 320 Cys Pro Ser Glu Pro Phe Pro Glu Ile Ala Thr Ala Ser Gly Pro Leu 325 330 335 Pro Ser Leu Ala Pro Ala Pro 340 <210> 9 <211> 343 <212> PRT <213> Artificial Sequence <220> <223> CiP protein variant(F229W) <400> 9 Gln Gly Pro Gly Gly Gly Gly Ser Val Thr Cys Pro Gly Gly Gln Ser 1 5 10 15 Thr Ser Asn Ser Gln Cys Cys Val Trp Phe Asp Val Leu Asp Asp Leu 20 25 30 Gln Thr Asn Phe Tyr Gln Gly Ser Lys Cys Glu Ser Pro Val Arg Lys 35 40 45 Ile Leu Arg Ile Val Phe His Asp Ala Ile Gly Phe Ser Pro Ala Leu 50 55 60 Thr Ala Ala Gly Gln Phe Gly Gly Gly Gly Ala Asp Gly Ser Ile Ile 65 70 75 80 Ala His Ser Asn Ile Glu Leu Ala Phe Pro Ala Asn Gly Gly Leu Thr 85 90 95 Asp Thr Ile Glu Ala Leu Arg Ala Val Gly Ile Asn His Gly Val Ser 100 105 110 Phe Gly Asp Leu Ile Gln Phe Ala Thr Ala Val Gly Met Ser Asn Cys 115 120 125 Pro Gly Ser Pro Arg Leu Glu Phe Leu Thr Gly Arg Ser Asn Ser Ser 130 135 140 Gln Pro Ser Pro Pro Ser Leu Ile Pro Gly Pro Gly Asn Thr Val Thr 145 150 155 160 Ala Ile Leu Asp Arg Met Gly Asp Ala Gly Phe Ser Pro Asp Glu Val 165 170 175 Val Asp Leu Leu Ala Ala His Ser Leu Ala Ser Gln Glu Gly Leu Asn 180 185 190 Ser Ala Ile Phe Arg Ser Pro Leu Asp Ser Thr Pro Gln Val Phe Asp 195 200 205 Thr Gln Phe Tyr Ile Glu Thr Leu Leu Lys Gly Thr Thr Gln Pro Gly 210 215 220 Pro Ser Leu Gly Trp Ala Glu Glu Leu Ser Pro Phe Pro Gly Glu Phe 225 230 235 240 Arg Met Arg Ser Asp Ala Leu Leu Ala Arg Asp Ser Arg Thr Ala Cys 245 250 255 Arg Trp Gln Ser Met Thr Ser Ser Asn Glu Val Met Gly Gln Arg Tyr 260 265 270 Arg Ala Ala Met Ala Lys Met Ser Val Leu Gly Phe Asp Arg Asn Ala 275 280 285 Leu Thr Asp Cys Ser Asp Val Ile Pro Ser Ala Val Ser Asn Asn Ala 290 295 300 Ala Pro Val Ile Pro Gly Gly Leu Thr Val Asp Asp Ile Glu Val Ser 305 310 315 320 Cys Pro Ser Glu Pro Phe Pro Glu Ile Ala Thr Ala Ser Gly Pro Leu 325 330 335 Pro Ser Leu Ala Pro Ala Pro 340 <210> 10 <211> 1032 <212> DNA <213> Artificial Sequence <220> <223> gene sequence encoding CiP protein of sequence No:1 <400> 10 caaggtcctg gtggtggtgg atctgttact tgtccaggag gtcaaagcac atcaaattct 60 cagtgctgtg tttggtttga tgtactggac gatcttcaaa ccaacttcta ccaagggtca 120 aaatgcgaat cacctgtcag aaaaatcttg cgtatcgtct tccatgatgc catcggattt 180 agtccagctt taacggctgc cggtcaattc ggtggaggtg gtgcggatgg atctattatc 240 gcccattcta acatcgaact tgcattccct gcaaacggtg gattgaccga tacaattgaa 300 gcattacgtg cagtcggtat taatcacggt gtctctttcg gtgatttaat ccagttcgct 360 accgcggttg gtatgtccaa ttgtccgggt tcacccagat tagaatttct gaccggaaga 420 agtaactcgt cccaaccatc acctccgagt ctgatcccag gtcctggtaa tacggttact 480 gccattctag acaggatggg cgatgctgga ttttctcccg atgaggtcgt cgatttgcta 540 gcagcacatt ctttagcgtc tcaagagggt ttgaacagtg ccatatttag gtccccgttg 600 gatagtaccc cccaggtatt cgacacacag ttctatatcg aaaccctgtt gaagggtact 660 actcaacccg gtccttcatt gggttttgca gaagaattgt ctccgttccc tggagaattt 720 agaatgagat cggatgctct tttggcaaga gactccagaa ctgcgtgtag gtggcaatcc 780 atgacttcaa gtaacgaggt tatgggtcaa aggtatagag cagccatggc gaaaatgtca 840 gtgttgggtt tcgacagaaa tgcgttgaca gattgctccg acgttatccc ttcggccgtt 900 agtaataacg ctgctccagt cattccagga ggtttgactg tcgatgatat agaggtatct 960 tgcccgtctg aaccatttcc agaaatcgcc actgcatccg gtccattgcc atcacttgct 1020 cctgctccat aa 1032 <210> 11 <211> 1032 <212> DNA <213> Artificial Sequence <220> <223> gene sequence encoding CiP protein variant of sequence No:2 <400> 11 caaggtcctg gtggtggtgg atctgttact tgtccaggag gtcaaagcac atcaaattct 60 cagtgctgtg tttggtttga tgtactggac gatcttcaaa ccaacttcta ccaagggtca 120 aaatgcgaat cacctgtcag aaaaatcttg cgtatcgtct tccatgatgc catcggattt 180 agtccagctt taacggctgc cggtcaattc ggtggaggtg gtgcggatgg atctattatc 240 gcccattcta acatcgaact tgcattccct gcaaacggtg gattgaccga tacaattgaa 300 gcattacgtg cagtcggtat taatcacggt gtctctttcg gtgatttaat ccagttcgct 360 accgcggttg gtatgtccaa ttgtccgggt tcacccagat tagaatttct gaccggaaga 420 agtaactcgt cccaaccatc acctccgagt ctgatcccag gtcctggtaa tacggttact 480 gccattctag acaggatggg cgatgctgga ttttctcccg atgaggtcgt cgatttgcta 540 gcagcacatt ctttagcgtc tcaagagggt ttgaacagtg ccatatttag gtccccgttg 600 gatagtaccc cccaggtatt cgacacacag ttctatatcg aaaccctgtt gaagggtact 660 actcaacccg gtccttcatt gggtgctgca gaagaattgt ctccgttccc tggagaattt 720 agaatgagat cggatgctct tttggcaaga gactccagaa ctgcgtgtag gtggcaatcc 780 atgacttcaa gtaacgaggt tatgggtcaa aggtatagag cagccatggc gaaaatgtca 840 gtgttgggtt tcgacagaaa tgcgttgaca gattgctccg acgttatccc ttcggccgtt 900 agtaataacg ctgctccagt cattccagga ggtttgactg tcgatgatat agaggtatct 960 tgcccgtctg aaccatttcc agaaatcgcc actgcatccg gtccattgcc atcacttgct 1020 cctgctccat aa 1032 <210> 12 <211> 1032 <212> DNA <213> Artificial Sequence <220> <223> gene sequence encoding CiP protein variant of sequence No:3 <400> 12 caaggtcctg gtggtggtgg atctgttact tgtccaggag gtcaaagcac atcaaattct 60 cagtgctgtg tttggtttga tgtactggac gatcttcaaa ccaacttcta ccaagggtca 120 aaatgcgaat cacctgtcag aaaaatcttg cgtatcgtct tccatgatgc catcggattt 180 agtccagctt taacggctgc cggtcaattc ggtggaggtg gtgcggatgg atctattatc 240 gcccattcta acatcgaact tgcattccct gcaaacggtg gattgaccga tacaattgaa 300 gcattacgtg cagtcggtat taatcacggt gtctctttcg gtgatttaat ccagttcgct 360 accgcggttg gtatgtccaa ttgtccgggt tcacccagat tagaatttct gaccggaaga 420 agtaactcgt cccaaccatc acctccgagt ctgatcccag gtcctggtaa tacggttact 480 gccattctag acaggatggg cgatgctgga ttttctcccg atgaggtcgt cgatttgcta 540 gcagcacatt ctttagcgtc tcaagagggt ttgaacagtg ccatatttag gtccccgttg 600 gatagtaccc cccaggtatt cgacacacag ttctatatcg aaaccctgtt gaagggtact 660 actcaacccg gtccttcatt gggtattgca gaagaattgt ctccgttccc tggagaattt 720 agaatgagat cggatgctct tttggcaaga gactccagaa ctgcgtgtag gtggcaatcc 780 atgacttcaa gtaacgaggt tatgggtcaa aggtatagag cagccatggc gaaaatgtca 840 gtgttgggtt tcgacagaaa tgcgttgaca gattgctccg acgttatccc ttcggccgtt 900 agtaataacg ctgctccagt cattccagga ggtttgactg tcgatgatat agaggtatct 960 tgcccgtctg aaccatttcc agaaatcgcc actgcatccg gtccattgcc atcacttgct 1020 cctgctccat aa 1032 <210> 13 <211> 1032 <212> DNA <213> Artificial Sequence <220> <223> gene sequence encoding CiP protein variant of sequence No:4 <400> 13 caaggtcctg gtggtggtgg atctgttact tgtccaggag gtcaaagcac atcaaattct 60 cagtgctgtg tttggtttga tgtactggac gatcttcaaa ccaacttcta ccaagggtca 120 aaatgcgaat cacctgtcag aaaaatcttg cgtatcgtct tccatgatgc catcggattt 180 agtccagctt taacggctgc cggtcaattc ggtggaggtg gtgcggatgg atctattatc 240 gcccattcta acatcgaact tgcattccct gcaaacggtg gattgaccga tacaattgaa 300 gcattacgtg cagtcggtat taatcacggt gtctctttcg gtgatttaat ccagttcgct 360 accgcggttg gtatgtccaa ttgtccgggt tcacccagat tagaatttct gaccggaaga 420 agtaactcgt cccaaccatc acctccgagt ctgatcccag gtcctggtaa tacggttact 480 gccattctag acaggatggg cgatgctgga ttttctcccg atgaggtcgt cgatttgcta 540 gcagcacatt ctttagcgtc tcaagagggt ttgaacagtg ccatatttag gtccccgttg 600 gatagtaccc cccaggtatt cgacacacag ttctatatcg aaaccctgtt gaagggtact 660 actcaacccg gtccttcatt gggtttggca gaagaattgt ctccgttccc tggagaattt 720 agaatgagat cggatgctct tttggcaaga gactccagaa ctgcgtgtag gtggcaatcc 780 atgacttcaa gtaacgaggt tatgggtcaa aggtatagag cagccatggc gaaaatgtca 840 gtgttgggtt tcgacagaaa tgcgttgaca gattgctccg acgttatccc ttcggccgtt 900 agtaataacg ctgctccagt cattccagga ggtttgactg tcgatgatat agaggtatct 960 tgcccgtctg aaccatttcc agaaatcgcc actgcatccg gtccattgcc atcacttgct 1020 cctgctccat aa 1032 <210> 14 <211> 1032 <212> DNA <213> Artificial Sequence <220> <223> gene sequence encoding CiP protein variant of sequence No:5 <400> 14 caaggtcctg gtggtggtgg atctgttact tgtccaggag gtcaaagcac atcaaattct 60 cagtgctgtg tttggtttga tgtactggac gatcttcaaa ccaacttcta ccaagggtca 120 aaatgcgaat cacctgtcag aaaaatcttg cgtatcgtct tccatgatgc catcggattt 180 agtccagctt taacggctgc cggtcaattc ggtggaggtg gtgcggatgg atctattatc 240 gcccattcta acatcgaact tgcattccct gcaaacggtg gattgaccga tacaattgaa 300 gcattacgtg cagtcggtat taatcacggt gtctctttcg gtgatttaat ccagttcgct 360 accgcggttg gtatgtccaa ttgtccgggt tcacccagat tagaatttct gaccggaaga 420 agtaactcgt cccaaccatc acctccgagt ctgatcccag gtcctggtaa tacggttact 480 gccattctag acaggatggg cgatgctgga ttttctcccg atgaggtcgt cgatttgcta 540 gcagcacatt ctttagcgtc tcaagagggt ttgaacagtg ccatatttag gtccccgttg 600 gatagtaccc cccaggtatt cgacacacag ttctatatcg aaaccctgtt gaagggtact 660 actcaacccg gtccttcatt gggtggtgca gaagaattgt ctccgttccc tggagaattt 720 agaatgagat cggatgctct tttggcaaga gactccagaa ctgcgtgtag gtggcaatcc 780 atgacttcaa gtaacgaggt tatgggtcaa aggtatagag cagccatggc gaaaatgtca 840 gtgttgggtt tcgacagaaa tgcgttgaca gattgctccg acgttatccc ttcggccgtt 900 agtaataacg ctgctccagt cattccagga ggtttgactg tcgatgatat agaggtatct 960 tgcccgtctg aaccatttcc agaaatcgcc actgcatccg gtccattgcc atcacttgct 1020 cctgctccat aa 1032 <210> 15 <211> 1032 <212> DNA <213> Artificial Sequence <220> <223> gene sequence encoding CiP protein variant of sequence No:6 <400> 15 caaggtcctg gtggtggtgg atctgttact tgtccaggag gtcaaagcac atcaaattct 60 cagtgctgtg tttggtttga tgtactggac gatcttcaaa ccaacttcta ccaagggtca 120 aaatgcgaat cacctgtcag aaaaatcttg cgtatcgtct tccatgatgc catcggattt 180 agtccagctt taacggctgc cggtcaattc ggtggaggtg gtgcggatgg atctattatc 240 gcccattcta acatcgaact tgcattccct gcaaacggtg gattgaccga tacaattgaa 300 gcattacgtg cagtcggtat taatcacggt gtctctttcg gtgatttaat ccagttcgct 360 accgcggttg gtatgtccaa ttgtccgggt tcacccagat tagaatttct gaccggaaga 420 agtaactcgt cccaaccatc acctccgagt ctgatcccag gtcctggtaa tacggttact 480 gccattctag acaggatggg cgatgctgga ttttctcccg atgaggtcgt cgatttgcta 540 gcagcacatt ctttagcgtc tcaagagggt ttgaacagtg ccatatttag gtccccgttg 600 gatagtaccc cccaggtatt cgacacacag ttctatatcg aaaccctgtt gaagggtact 660 actcaacccg gtccttcatt gggtgttgca gaagaattgt ctccgttccc tggagaattt 720 agaatgagat cggatgctct tttggcaaga gactccagaa ctgcgtgtag gtggcaatcc 780 atgacttcaa gtaacgaggt tatgggtcaa aggtatagag cagccatggc gaaaatgtca 840 gtgttgggtt tcgacagaaa tgcgttgaca gattgctccg acgttatccc ttcggccgtt 900 agtaataacg ctgctccagt cattccagga ggtttgactg tcgatgatat agaggtatct 960 tgcccgtctg aaccatttcc agaaatcgcc actgcatccg gtccattgcc atcacttgct 1020 cctgctccat aa 1032 <210> 16 <211> 1032 <212> DNA <213> Artificial Sequence <220> <223> gene sequence encoding CiP protein variant of sequence No:7 <400> 16 caaggtcctg gtggtggtgg atctgttact tgtccaggag gtcaaagcac atcaaattct 60 cagtgctgtg tttggtttga tgtactggac gatcttcaaa ccaacttcta ccaagggtca 120 aaatgcgaat cacctgtcag aaaaatcttg cgtatcgtct tccatgatgc catcggattt 180 agtccagctt taacggctgc cggtcaattc ggtggaggtg gtgcggatgg atctattatc 240 gcccattcta acatcgaact tgcattccct gcaaacggtg gattgaccga tacaattgaa 300 gcattacgtg cagtcggtat taatcacggt gtctctttcg gtgatttaat ccagttcgct 360 accgcggttg gtatgtccaa ttgtccgggt tcacccagat tagaatttct gaccggaaga 420 agtaactcgt cccaaccatc acctccgagt ctgatcccag gtcctggtaa tacggttact 480 gccattctag acaggatggg cgatgctgga ttttctcccg atgaggtcgt cgatttgcta 540 gcagcacatt ctttagcgtc tcaagagggt ttgaacagtg ccatatttag gtccccgttg 600 gatagtaccc cccaggtatt cgacacacag ttctatatcg aaaccctgtt gaagggtact 660 actcaacccg gtccttcatt gggtcatgca gaagaattgt ctccgttccc tggagaattt 720 agaatgagat cggatgctct tttggcaaga gactccagaa ctgcgtgtag gtggcaatcc 780 atgacttcaa gtaacgaggt tatgggtcaa aggtatagag cagccatggc gaaaatgtca 840 gtgttgggtt tcgacagaaa tgcgttgaca gattgctccg acgttatccc ttcggccgtt 900 agtaataacg ctgctccagt cattccagga ggtttgactg tcgatgatat agaggtatct 960 tgcccgtctg aaccatttcc agaaatcgcc actgcatccg gtccattgcc atcacttgct 1020 cctgctccat aa 1032 <210> 17 <211> 1032 <212> DNA <213> Artificial Sequence <220> <223> gene sequence encoding CiP protein variant of sequence No:8 <400> 17 caaggtcctg gtggtggtgg atctgttact tgtccaggag gtcaaagcac atcaaattct 60 cagtgctgtg tttggtttga tgtactggac gatcttcaaa ccaacttcta ccaagggtca 120 aaatgcgaat cacctgtcag aaaaatcttg cgtatcgtct tccatgatgc catcggattt 180 agtccagctt taacggctgc cggtcaattc ggtggaggtg gtgcggatgg atctattatc 240 gcccattcta acatcgaact tgcattccct gcaaacggtg gattgaccga tacaattgaa 300 gcattacgtg cagtcggtat taatcacggt gtctctttcg gtgatttaat ccagttcgct 360 accgcggttg gtatgtccaa ttgtccgggt tcacccagat tagaatttct gaccggaaga 420 agtaactcgt cccaaccatc acctccgagt ctgatcccag gtcctggtaa tacggttact 480 gccattctag acaggatggg cgatgctgga ttttctcccg atgaggtcgt cgatttgcta 540 gcagcacatt ctttagcgtc tcaagagggt ttgaacagtg ccatatttag gtccccgttg 600 gatagtaccc cccaggtatt cgacacacag ttctatatcg aaaccctgtt gaagggtact 660 actcaacccg gtccttcatt gggttacgca gaagaattgt ctccgttccc tggagaattt 720 agaatgagat cggatgctct tttggcaaga gactccagaa ctgcgtgtag gtggcaatcc 780 atgacttcaa gtaacgaggt tatgggtcaa aggtatagag cagccatggc gaaaatgtca 840 gtgttgggtt tcgacagaaa tgcgttgaca gattgctccg acgttatccc ttcggccgtt 900 agtaataacg ctgctccagt cattccagga ggtttgactg tcgatgatat agaggtatct 960 tgcccgtctg aaccatttcc agaaatcgcc actgcatccg gtccattgcc atcacttgct 1020 cctgctccat aa 1032 <210> 18 <211> 1032 <212> DNA <213> Artificial Sequence <220> <223> gene sequence encoding CiP protein variant of sequence No:9 <400> 18 caaggtcctg gtggtggtgg atctgttact tgtccaggag gtcaaagcac atcaaattct 60 cagtgctgtg tttggtttga tgtactggac gatcttcaaa ccaacttcta ccaagggtca 120 aaatgcgaat cacctgtcag aaaaatcttg cgtatcgtct tccatgatgc catcggattt 180 agtccagctt taacggctgc cggtcaattc ggtggaggtg gtgcggatgg atctattatc 240 gcccattcta acatcgaact tgcattccct gcaaacggtg gattgaccga tacaattgaa 300 gcattacgtg cagtcggtat taatcacggt gtctctttcg gtgatttaat ccagttcgct 360 accgcggttg gtatgtccaa ttgtccgggt tcacccagat tagaatttct gaccggaaga 420 agtaactcgt cccaaccatc acctccgagt ctgatcccag gtcctggtaa tacggttact 480 gccattctag acaggatggg cgatgctgga ttttctcccg atgaggtcgt cgatttgcta 540 gcagcacatt ctttagcgtc tcaagagggt ttgaacagtg ccatatttag gtccccgttg 600 gatagtaccc cccaggtatt cgacacacag ttctatatcg aaaccctgtt gaagggtact 660 actcaacccg gtccttcatt gggttgggca gaagaattgt ctccgttccc tggagaattt 720 agaatgagat cggatgctct tttggcaaga gactccagaa ctgcgtgtag gtggcaatcc 780 atgacttcaa gtaacgaggt tatgggtcaa aggtatagag cagccatggc gaaaatgtca 840 gtgttgggtt tcgacagaaa tgcgttgaca gattgctccg acgttatccc ttcggccgtt 900 agtaataacg ctgctccagt cattccagga ggtttgactg tcgatgatat agaggtatct 960 tgcccgtctg aaccatttcc agaaatcgcc actgcatccg gtccattgcc atcacttgct 1020 cctgctccat aa 1032 <210> 19 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer for rCiP(rCiP-N-EcoRI) <400> 19 cggaattcca gggtcctgga ggaggcgggt cag 33 <210> 20 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer for rCiP(rCiP-C-NotI) <400> 20 acgcgtcgac tcaaggagca ggagcgaggg agg 33 <210> 21 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> 5' flanking primer(EcoRI) <400> 21 gcgcgaattc caaggtcctg gtggtggtgg atctg 35 <210> 22 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> 3' flanking primer(NotI) <400> 22 gcgcgcggcc gcttatggag caggagcaag tgatggc 37 <210> 23 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229A(M1-F) <400> 23 cccggtcctt cattgggtgc tgcagaagaa ttgtctccg 39 <210> 24 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229A(M1-R) <400> 24 cggagacaat tcttctgcag cacccaatga aggaccggg 39 <210> 25 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229I(M3-F) <400> 25 cccggtcctt cattgggtat tgcagaagaa ttgtctccg 39 <210> 26 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229I(M3-R) <400> 26 cggagacaat tcttctgcaa tacccaatga aggaccggg 39 <210> 27 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229L(M2-F) <400> 27 cccggtcctt cattgggttt ggcagaagaa ttgtctccg 39 <210> 28 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229L(M2-R) <400> 28 cggagacaat tcttctgcca aacccaatga aggaccggg 39 <210> 29 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229G(M8-F) <400> 29 cccggtcctt cattgggtgg tgcagaagaa ttgtctccg 39 <210> 30 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229G(M8-R) <400> 30 cggagacaat tcttctgcac cacccaatga aggaccggg 39 <210> 31 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229V(M4-F) <400> 31 cccggtcctt cattgggtgt tgcagaagaa ttgtctccg 39 <210> 32 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229V(M4-R) <400> 32 cggagacaat tcttctgcaa cacccaatga aggaccggg 39 <210> 33 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229H(M7-F) <400> 33 cccggtcctt cattgggtca tgcagaagaa ttgtctccg 39 <210> 34 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229H(M7-R) <400> 34 cggagacaat tcttctgcat gacccaatga aggaccggg 39 <210> 35 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229Y(M5-F) <400> 35 cccggtcctt cattgggtta cgcagaagaa ttgtctccg 39 <210> 36 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229Y(M5-R) <400> 36 cggagacaat tcttctgcgt aacccaatga aggaccggg 39 <210> 37 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229W(M6-F) <400> 37 cccggtcctt cattgggttg ggcagaagaa ttgtctccg 39 <210> 38 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229W(M6-R) <400> 38 cggagacaat tcttctgccc aacccaatga aggaccggg 39 <110> KOREA research institute of chemical technology <120> Peroxidase variants having improved radical stability <130> FPD / 200909-0140 <160> 38 <170> KopatentIn 1.71 <210> 1 <211> 343 <212> PRT <213> Artificial Sequence <220> <223> CiP protein derived from Coprinus cinereus <400> 1 Gln Gly Pro Gly Gly Gly Gly Ser Val Thr Cys Pro Gly Gly Gln Ser   1 5 10 15 Thr Ser Asn Ser Gln Cys Cys Val Trp Phe Asp Val Leu Asp Asp Leu              20 25 30 Gln Thr Asn Phe Tyr Gln Gly Ser Lys Cys Glu Ser Pro Val Arg Lys          35 40 45 Ile Leu Arg Ile Val Phe His Asp Ala Ile Gly Phe Ser Pro Ala Leu      50 55 60 Thr Ala Ala Gly Gln Phe Gly Gly Gly Gly Ala Asp Gly Ser Ile Ile  65 70 75 80 Ala His Ser Asn Ile Glu Leu Ala Phe Pro Ala Asn Gly Gly Leu Thr                  85 90 95 Asp Thr Ile Glu Ala Leu Arg Ala Val Gly Ile Asn His Gly Val Ser             100 105 110 Phe Gly Asp Leu Ile Gln Phe Ala Thr Ala Val Gly Met Ser Asn Cys         115 120 125 Pro Gly Ser Pro Arg Leu Glu Phe Leu Thr Gly Arg Ser Asn Ser Ser     130 135 140 Gln Pro Ser Pro Pro Ser Leu Ile Pro Gly Pro Gly Asn Thr Val Thr 145 150 155 160 Ala Ile Leu Asp Arg Met Gly Asp Ala Gly Phe Ser Pro Asp Glu Val                 165 170 175 Val Asp Leu Leu Ala Ala His Ser Leu Ala Ser Gln Glu Gly Leu Asn             180 185 190 Ser Ala Ile Phe Arg Ser Pro Leu Asp Ser Thr Pro Gln Val Phe Asp         195 200 205 Thr Gln Phe Tyr Ile Glu Thr Leu Leu Lys Gly Thr Thr Gln Pro Gly     210 215 220 Pro Ser Leu Gly Phe Ala Glu Glu Leu Ser Pro Phe Pro Gly Glu Phe 225 230 235 240 Arg Met Arg Ser Asp Ala Leu Leu Ala Arg Asp Ser Arg Thr Ala Cys                 245 250 255 Arg Trp Gln Ser Met Thr Ser Ser Asn Glu Val Met Gly Gln Arg Tyr             260 265 270 Arg Ala Ala Met Ala Lys Met Ser Val Leu Gly Phe Asp Arg Asn Ala         275 280 285 Leu Thr Asp Cys Ser Asp Val Ile Pro Ser Ala Val Ser Asn Asn Ala     290 295 300 Ala Pro Val Ile Pro Gly Gly Leu Thr Val Asp Asp Ile Glu Val Ser 305 310 315 320 Cys Pro Ser Glu Pro Phe Pro Glu Ile Ala Thr Ala Ser Gly Pro Leu                 325 330 335 Pro Ser Leu Ala Pro Ala Pro             340 <210> 2 <211> 343 <212> PRT <213> Artificial Sequence <220> <223> CiP protein variant (F229A) <400> 2 Gln Gly Pro Gly Gly Gly Gly Ser Val Thr Cys Pro Gly Gly Gln Ser   1 5 10 15 Thr Ser Asn Ser Gln Cys Cys Val Trp Phe Asp Val Leu Asp Asp Leu              20 25 30 Gln Thr Asn Phe Tyr Gln Gly Ser Lys Cys Glu Ser Pro Val Arg Lys          35 40 45 Ile Leu Arg Ile Val Phe His Asp Ala Ile Gly Phe Ser Pro Ala Leu      50 55 60 Thr Ala Ala Gly Gln Phe Gly Gly Gly Gly Ala Asp Gly Ser Ile Ile  65 70 75 80 Ala His Ser Asn Ile Glu Leu Ala Phe Pro Ala Asn Gly Gly Leu Thr                  85 90 95 Asp Thr Ile Glu Ala Leu Arg Ala Val Gly Ile Asn His Gly Val Ser             100 105 110 Phe Gly Asp Leu Ile Gln Phe Ala Thr Ala Val Gly Met Ser Asn Cys         115 120 125 Pro Gly Ser Pro Arg Leu Glu Phe Leu Thr Gly Arg Ser Asn Ser Ser     130 135 140 Gln Pro Ser Pro Pro Ser Leu Ile Pro Gly Pro Gly Asn Thr Val Thr 145 150 155 160 Ala Ile Leu Asp Arg Met Gly Asp Ala Gly Phe Ser Pro Asp Glu Val                 165 170 175 Val Asp Leu Leu Ala Ala His Ser Leu Ala Ser Gln Glu Gly Leu Asn             180 185 190 Ser Ala Ile Phe Arg Ser Pro Leu Asp Ser Thr Pro Gln Val Phe Asp         195 200 205 Thr Gln Phe Tyr Ile Glu Thr Leu Leu Lys Gly Thr Thr Gln Pro Gly     210 215 220 Pro Ser Leu Gly Ala Ala Glu Glu Leu Ser Pro Phe Pro Gly Glu Phe 225 230 235 240 Arg Met Arg Ser Asp Ala Leu Leu Ala Arg Asp Ser Arg Thr Ala Cys                 245 250 255 Arg Trp Gln Ser Met Thr Ser Ser Asn Glu Val Met Gly Gln Arg Tyr             260 265 270 Arg Ala Ala Met Ala Lys Met Ser Val Leu Gly Phe Asp Arg Asn Ala         275 280 285 Leu Thr Asp Cys Ser Asp Val Ile Pro Ser Ala Val Ser Asn Asn Ala     290 295 300 Ala Pro Val Ile Pro Gly Gly Leu Thr Val Asp Asp Ile Glu Val Ser 305 310 315 320 Cys Pro Ser Glu Pro Phe Pro Glu Ile Ala Thr Ala Ser Gly Pro Leu                 325 330 335 Pro Ser Leu Ala Pro Ala Pro             340 <210> 3 <211> 343 <212> PRT <213> Artificial Sequence <220> <223> CiP protein variant (F229I) <400> 3 Gln Gly Pro Gly Gly Gly Gly Ser Val Thr Cys Pro Gly Gly Gln Ser   1 5 10 15 Thr Ser Asn Ser Gln Cys Cys Val Trp Phe Asp Val Leu Asp Asp Leu              20 25 30 Gln Thr Asn Phe Tyr Gln Gly Ser Lys Cys Glu Ser Pro Val Arg Lys          35 40 45 Ile Leu Arg Ile Val Phe His Asp Ala Ile Gly Phe Ser Pro Ala Leu      50 55 60 Thr Ala Ala Gly Gln Phe Gly Gly Gly Gly Ala Asp Gly Ser Ile Ile  65 70 75 80 Ala His Ser Asn Ile Glu Leu Ala Phe Pro Ala Asn Gly Gly Leu Thr                  85 90 95 Asp Thr Ile Glu Ala Leu Arg Ala Val Gly Ile Asn His Gly Val Ser             100 105 110 Phe Gly Asp Leu Ile Gln Phe Ala Thr Ala Val Gly Met Ser Asn Cys         115 120 125 Pro Gly Ser Pro Arg Leu Glu Phe Leu Thr Gly Arg Ser Asn Ser Ser     130 135 140 Gln Pro Ser Pro Pro Ser Leu Ile Pro Gly Pro Gly Asn Thr Val Thr 145 150 155 160 Ala Ile Leu Asp Arg Met Gly Asp Ala Gly Phe Ser Pro Asp Glu Val                 165 170 175 Val Asp Leu Leu Ala Ala His Ser Leu Ala Ser Gln Glu Gly Leu Asn             180 185 190 Ser Ala Ile Phe Arg Ser Pro Leu Asp Ser Thr Pro Gln Val Phe Asp         195 200 205 Thr Gln Phe Tyr Ile Glu Thr Leu Leu Lys Gly Thr Thr Gln Pro Gly     210 215 220 Pro Ser Leu Gly Ile Ala Glu Glu Leu Ser Pro Phe Pro Gly Glu Phe 225 230 235 240 Arg Met Arg Ser Asp Ala Leu Leu Ala Arg Asp Ser Arg Thr Ala Cys                 245 250 255 Arg Trp Gln Ser Met Thr Ser Ser Asn Glu Val Met Gly Gln Arg Tyr             260 265 270 Arg Ala Ala Met Ala Lys Met Ser Val Leu Gly Phe Asp Arg Asn Ala         275 280 285 Leu Thr Asp Cys Ser Asp Val Ile Pro Ser Ala Val Ser Asn Asn Ala     290 295 300 Ala Pro Val Ile Pro Gly Gly Leu Thr Val Asp Asp Ile Glu Val Ser 305 310 315 320 Cys Pro Ser Glu Pro Phe Pro Glu Ile Ala Thr Ala Ser Gly Pro Leu                 325 330 335 Pro Ser Leu Ala Pro Ala Pro             340 <210> 4 <211> 343 <212> PRT <213> Artificial Sequence <220> <223> CiP protein variant (F229L) <400> 4 Gln Gly Pro Gly Gly Gly Gly Ser Val Thr Cys Pro Gly Gly Gln Ser   1 5 10 15 Thr Ser Asn Ser Gln Cys Cys Val Trp Phe Asp Val Leu Asp Asp Leu              20 25 30 Gln Thr Asn Phe Tyr Gln Gly Ser Lys Cys Glu Ser Pro Val Arg Lys          35 40 45 Ile Leu Arg Ile Val Phe His Asp Ala Ile Gly Phe Ser Pro Ala Leu      50 55 60 Thr Ala Ala Gly Gln Phe Gly Gly Gly Gly Ala Asp Gly Ser Ile Ile  65 70 75 80 Ala His Ser Asn Ile Glu Leu Ala Phe Pro Ala Asn Gly Gly Leu Thr                  85 90 95 Asp Thr Ile Glu Ala Leu Arg Ala Val Gly Ile Asn His Gly Val Ser             100 105 110 Phe Gly Asp Leu Ile Gln Phe Ala Thr Ala Val Gly Met Ser Asn Cys         115 120 125 Pro Gly Ser Pro Arg Leu Glu Phe Leu Thr Gly Arg Ser Asn Ser Ser     130 135 140 Gln Pro Ser Pro Pro Ser Leu Ile Pro Gly Pro Gly Asn Thr Val Thr 145 150 155 160 Ala Ile Leu Asp Arg Met Gly Asp Ala Gly Phe Ser Pro Asp Glu Val                 165 170 175 Val Asp Leu Leu Ala Ala His Ser Leu Ala Ser Gln Glu Gly Leu Asn             180 185 190 Ser Ala Ile Phe Arg Ser Pro Leu Asp Ser Thr Pro Gln Val Phe Asp         195 200 205 Thr Gln Phe Tyr Ile Glu Thr Leu Leu Lys Gly Thr Thr Gln Pro Gly     210 215 220 Pro Ser Leu Gly Leu Ala Glu Glu Leu Ser Pro Phe Pro Gly Glu Phe 225 230 235 240 Arg Met Arg Ser Asp Ala Leu Leu Ala Arg Asp Ser Arg Thr Ala Cys                 245 250 255 Arg Trp Gln Ser Met Thr Ser Ser Asn Glu Val Met Gly Gln Arg Tyr             260 265 270 Arg Ala Ala Met Ala Lys Met Ser Val Leu Gly Phe Asp Arg Asn Ala         275 280 285 Leu Thr Asp Cys Ser Asp Val Ile Pro Ser Ala Val Ser Asn Asn Ala     290 295 300 Ala Pro Val Ile Pro Gly Gly Leu Thr Val Asp Asp Ile Glu Val Ser 305 310 315 320 Cys Pro Ser Glu Pro Phe Pro Glu Ile Ala Thr Ala Ser Gly Pro Leu                 325 330 335 Pro Ser Leu Ala Pro Ala Pro             340 <210> 5 <211> 343 <212> PRT <213> Artificial Sequence <220> <223> CiP protein variant (F229G) <400> 5 Gln Gly Pro Gly Gly Gly Gly Ser Val Thr Cys Pro Gly Gly Gln Ser   1 5 10 15 Thr Ser Asn Ser Gln Cys Cys Val Trp Phe Asp Val Leu Asp Asp Leu              20 25 30 Gln Thr Asn Phe Tyr Gln Gly Ser Lys Cys Glu Ser Pro Val Arg Lys          35 40 45 Ile Leu Arg Ile Val Phe His Asp Ala Ile Gly Phe Ser Pro Ala Leu      50 55 60 Thr Ala Ala Gly Gln Phe Gly Gly Gly Gly Ala Asp Gly Ser Ile Ile  65 70 75 80 Ala His Ser Asn Ile Glu Leu Ala Phe Pro Ala Asn Gly Gly Leu Thr                  85 90 95 Asp Thr Ile Glu Ala Leu Arg Ala Val Gly Ile Asn His Gly Val Ser             100 105 110 Phe Gly Asp Leu Ile Gln Phe Ala Thr Ala Val Gly Met Ser Asn Cys         115 120 125 Pro Gly Ser Pro Arg Leu Glu Phe Leu Thr Gly Arg Ser Asn Ser Ser     130 135 140 Gln Pro Ser Pro Pro Ser Leu Ile Pro Gly Pro Gly Asn Thr Val Thr 145 150 155 160 Ala Ile Leu Asp Arg Met Gly Asp Ala Gly Phe Ser Pro Asp Glu Val                 165 170 175 Val Asp Leu Leu Ala Ala His Ser Leu Ala Ser Gln Glu Gly Leu Asn             180 185 190 Ser Ala Ile Phe Arg Ser Pro Leu Asp Ser Thr Pro Gln Val Phe Asp         195 200 205 Thr Gln Phe Tyr Ile Glu Thr Leu Leu Lys Gly Thr Thr Gln Pro Gly     210 215 220 Pro Ser Leu Gly Gly Ala Glu Glu Leu Ser Pro Phe Pro Gly Glu Phe 225 230 235 240 Arg Met Arg Ser Asp Ala Leu Leu Ala Arg Asp Ser Arg Thr Ala Cys                 245 250 255 Arg Trp Gln Ser Met Thr Ser Ser Asn Glu Val Met Gly Gln Arg Tyr             260 265 270 Arg Ala Ala Met Ala Lys Met Ser Val Leu Gly Phe Asp Arg Asn Ala         275 280 285 Leu Thr Asp Cys Ser Asp Val Ile Pro Ser Ala Val Ser Asn Asn Ala     290 295 300 Ala Pro Val Ile Pro Gly Gly Leu Thr Val Asp Asp Ile Glu Val Ser 305 310 315 320 Cys Pro Ser Glu Pro Phe Pro Glu Ile Ala Thr Ala Ser Gly Pro Leu                 325 330 335 Pro Ser Leu Ala Pro Ala Pro             340 <210> 6 <211> 343 <212> PRT <213> Artificial Sequence <220> <223> CiP protein variant (F229V) <400> 6 Gln Gly Pro Gly Gly Gly Gly Ser Val Thr Cys Pro Gly Gly Gln Ser   1 5 10 15 Thr Ser Asn Ser Gln Cys Cys Val Trp Phe Asp Val Leu Asp Asp Leu              20 25 30 Gln Thr Asn Phe Tyr Gln Gly Ser Lys Cys Glu Ser Pro Val Arg Lys          35 40 45 Ile Leu Arg Ile Val Phe His Asp Ala Ile Gly Phe Ser Pro Ala Leu      50 55 60 Thr Ala Ala Gly Gln Phe Gly Gly Gly Gly Ala Asp Gly Ser Ile Ile  65 70 75 80 Ala His Ser Asn Ile Glu Leu Ala Phe Pro Ala Asn Gly Gly Leu Thr                  85 90 95 Asp Thr Ile Glu Ala Leu Arg Ala Val Gly Ile Asn His Gly Val Ser             100 105 110 Phe Gly Asp Leu Ile Gln Phe Ala Thr Ala Val Gly Met Ser Asn Cys         115 120 125 Pro Gly Ser Pro Arg Leu Glu Phe Leu Thr Gly Arg Ser Asn Ser Ser     130 135 140 Gln Pro Ser Pro Pro Ser Leu Ile Pro Gly Pro Gly Asn Thr Val Thr 145 150 155 160 Ala Ile Leu Asp Arg Met Gly Asp Ala Gly Phe Ser Pro Asp Glu Val                 165 170 175 Val Asp Leu Leu Ala Ala His Ser Leu Ala Ser Gln Glu Gly Leu Asn             180 185 190 Ser Ala Ile Phe Arg Ser Pro Leu Asp Ser Thr Pro Gln Val Phe Asp         195 200 205 Thr Gln Phe Tyr Ile Glu Thr Leu Leu Lys Gly Thr Thr Gln Pro Gly     210 215 220 Pro Ser Leu Gly Val Ala Glu Glu Leu Ser Pro Phe Pro Gly Glu Phe 225 230 235 240 Arg Met Arg Ser Asp Ala Leu Leu Ala Arg Asp Ser Arg Thr Ala Cys                 245 250 255 Arg Trp Gln Ser Met Thr Ser Ser Asn Glu Val Met Gly Gln Arg Tyr             260 265 270 Arg Ala Ala Met Ala Lys Met Ser Val Leu Gly Phe Asp Arg Asn Ala         275 280 285 Leu Thr Asp Cys Ser Asp Val Ile Pro Ser Ala Val Ser Asn Asn Ala     290 295 300 Ala Pro Val Ile Pro Gly Gly Leu Thr Val Asp Asp Ile Glu Val Ser 305 310 315 320 Cys Pro Ser Glu Pro Phe Pro Glu Ile Ala Thr Ala Ser Gly Pro Leu                 325 330 335 Pro Ser Leu Ala Pro Ala Pro             340 <210> 7 <211> 343 <212> PRT <213> Artificial Sequence <220> <223> CiP protein variant (F229H) <400> 7 Gln Gly Pro Gly Gly Gly Gly Ser Val Thr Cys Pro Gly Gly Gln Ser   1 5 10 15 Thr Ser Asn Ser Gln Cys Cys Val Trp Phe Asp Val Leu Asp Asp Leu              20 25 30 Gln Thr Asn Phe Tyr Gln Gly Ser Lys Cys Glu Ser Pro Val Arg Lys          35 40 45 Ile Leu Arg Ile Val Phe His Asp Ala Ile Gly Phe Ser Pro Ala Leu      50 55 60 Thr Ala Ala Gly Gln Phe Gly Gly Gly Gly Ala Asp Gly Ser Ile Ile  65 70 75 80 Ala His Ser Asn Ile Glu Leu Ala Phe Pro Ala Asn Gly Gly Leu Thr                  85 90 95 Asp Thr Ile Glu Ala Leu Arg Ala Val Gly Ile Asn His Gly Val Ser             100 105 110 Phe Gly Asp Leu Ile Gln Phe Ala Thr Ala Val Gly Met Ser Asn Cys         115 120 125 Pro Gly Ser Pro Arg Leu Glu Phe Leu Thr Gly Arg Ser Asn Ser Ser     130 135 140 Gln Pro Ser Pro Pro Ser Leu Ile Pro Gly Pro Gly Asn Thr Val Thr 145 150 155 160 Ala Ile Leu Asp Arg Met Gly Asp Ala Gly Phe Ser Pro Asp Glu Val                 165 170 175 Val Asp Leu Leu Ala Ala His Ser Leu Ala Ser Gln Glu Gly Leu Asn             180 185 190 Ser Ala Ile Phe Arg Ser Pro Leu Asp Ser Thr Pro Gln Val Phe Asp         195 200 205 Thr Gln Phe Tyr Ile Glu Thr Leu Leu Lys Gly Thr Thr Gln Pro Gly     210 215 220 Pro Ser Leu Gly His Ala Glu Glu Leu Ser Pro Phe Pro Gly Glu Phe 225 230 235 240 Arg Met Arg Ser Asp Ala Leu Leu Ala Arg Asp Ser Arg Thr Ala Cys                 245 250 255 Arg Trp Gln Ser Met Thr Ser Ser Asn Glu Val Met Gly Gln Arg Tyr             260 265 270 Arg Ala Ala Met Ala Lys Met Ser Val Leu Gly Phe Asp Arg Asn Ala         275 280 285 Leu Thr Asp Cys Ser Asp Val Ile Pro Ser Ala Val Ser Asn Asn Ala     290 295 300 Ala Pro Val Ile Pro Gly Gly Leu Thr Val Asp Asp Ile Glu Val Ser 305 310 315 320 Cys Pro Ser Glu Pro Phe Pro Glu Ile Ala Thr Ala Ser Gly Pro Leu                 325 330 335 Pro Ser Leu Ala Pro Ala Pro             340 <210> 8 <211> 343 <212> PRT <213> Artificial Sequence <220> <223> CiP protein variant (F229Y) <400> 8 Gln Gly Pro Gly Gly Gly Gly Ser Val Thr Cys Pro Gly Gly Gln Ser   1 5 10 15 Thr Ser Asn Ser Gln Cys Cys Val Trp Phe Asp Val Leu Asp Asp Leu              20 25 30 Gln Thr Asn Phe Tyr Gln Gly Ser Lys Cys Glu Ser Pro Val Arg Lys          35 40 45 Ile Leu Arg Ile Val Phe His Asp Ala Ile Gly Phe Ser Pro Ala Leu      50 55 60 Thr Ala Ala Gly Gln Phe Gly Gly Gly Gly Ala Asp Gly Ser Ile Ile  65 70 75 80 Ala His Ser Asn Ile Glu Leu Ala Phe Pro Ala Asn Gly Gly Leu Thr                  85 90 95 Asp Thr Ile Glu Ala Leu Arg Ala Val Gly Ile Asn His Gly Val Ser             100 105 110 Phe Gly Asp Leu Ile Gln Phe Ala Thr Ala Val Gly Met Ser Asn Cys         115 120 125 Pro Gly Ser Pro Arg Leu Glu Phe Leu Thr Gly Arg Ser Asn Ser Ser     130 135 140 Gln Pro Ser Pro Pro Ser Leu Ile Pro Gly Pro Gly Asn Thr Val Thr 145 150 155 160 Ala Ile Leu Asp Arg Met Gly Asp Ala Gly Phe Ser Pro Asp Glu Val                 165 170 175 Val Asp Leu Leu Ala Ala His Ser Leu Ala Ser Gln Glu Gly Leu Asn             180 185 190 Ser Ala Ile Phe Arg Ser Pro Leu Asp Ser Thr Pro Gln Val Phe Asp         195 200 205 Thr Gln Phe Tyr Ile Glu Thr Leu Leu Lys Gly Thr Thr Gln Pro Gly     210 215 220 Pro Ser Leu Gly Tyr Ala Glu Glu Leu Ser Pro Phe Pro Gly Glu Phe 225 230 235 240 Arg Met Arg Ser Asp Ala Leu Leu Ala Arg Asp Ser Arg Thr Ala Cys                 245 250 255 Arg Trp Gln Ser Met Thr Ser Ser Asn Glu Val Met Gly Gln Arg Tyr             260 265 270 Arg Ala Ala Met Ala Lys Met Ser Val Leu Gly Phe Asp Arg Asn Ala         275 280 285 Leu Thr Asp Cys Ser Asp Val Ile Pro Ser Ala Val Ser Asn Asn Ala     290 295 300 Ala Pro Val Ile Pro Gly Gly Leu Thr Val Asp Asp Ile Glu Val Ser 305 310 315 320 Cys Pro Ser Glu Pro Phe Pro Glu Ile Ala Thr Ala Ser Gly Pro Leu                 325 330 335 Pro Ser Leu Ala Pro Ala Pro             340 <210> 9 <211> 343 <212> PRT <213> Artificial Sequence <220> <223> CiP protein variant (F229W) <400> 9 Gln Gly Pro Gly Gly Gly Gly Ser Val Thr Cys Pro Gly Gly Gln Ser   1 5 10 15 Thr Ser Asn Ser Gln Cys Cys Val Trp Phe Asp Val Leu Asp Asp Leu              20 25 30 Gln Thr Asn Phe Tyr Gln Gly Ser Lys Cys Glu Ser Pro Val Arg Lys          35 40 45 Ile Leu Arg Ile Val Phe His Asp Ala Ile Gly Phe Ser Pro Ala Leu      50 55 60 Thr Ala Ala Gly Gln Phe Gly Gly Gly Gly Ala Asp Gly Ser Ile Ile  65 70 75 80 Ala His Ser Asn Ile Glu Leu Ala Phe Pro Ala Asn Gly Gly Leu Thr                  85 90 95 Asp Thr Ile Glu Ala Leu Arg Ala Val Gly Ile Asn His Gly Val Ser             100 105 110 Phe Gly Asp Leu Ile Gln Phe Ala Thr Ala Val Gly Met Ser Asn Cys         115 120 125 Pro Gly Ser Pro Arg Leu Glu Phe Leu Thr Gly Arg Ser Asn Ser Ser     130 135 140 Gln Pro Ser Pro Pro Ser Leu Ile Pro Gly Pro Gly Asn Thr Val Thr 145 150 155 160 Ala Ile Leu Asp Arg Met Gly Asp Ala Gly Phe Ser Pro Asp Glu Val                 165 170 175 Val Asp Leu Leu Ala Ala His Ser Leu Ala Ser Gln Glu Gly Leu Asn             180 185 190 Ser Ala Ile Phe Arg Ser Pro Leu Asp Ser Thr Pro Gln Val Phe Asp         195 200 205 Thr Gln Phe Tyr Ile Glu Thr Leu Leu Lys Gly Thr Thr Gln Pro Gly     210 215 220 Pro Ser Leu Gly Trp Ala Glu Glu Leu Ser Pro Phe Pro Gly Glu Phe 225 230 235 240 Arg Met Arg Ser Asp Ala Leu Leu Ala Arg Asp Ser Arg Thr Ala Cys                 245 250 255 Arg Trp Gln Ser Met Thr Ser Ser Asn Glu Val Met Gly Gln Arg Tyr             260 265 270 Arg Ala Ala Met Ala Lys Met Ser Val Leu Gly Phe Asp Arg Asn Ala         275 280 285 Leu Thr Asp Cys Ser Asp Val Ile Pro Ser Ala Val Ser Asn Asn Ala     290 295 300 Ala Pro Val Ile Pro Gly Gly Leu Thr Val Asp Asp Ile Glu Val Ser 305 310 315 320 Cys Pro Ser Glu Pro Phe Pro Glu Ile Ala Thr Ala Ser Gly Pro Leu                 325 330 335 Pro Ser Leu Ala Pro Ala Pro             340 <210> 10 <211> 1032 <212> DNA <213> Artificial Sequence <220> <223> gene sequence encoding CiP protein of sequence No: 1 <400> 10 caaggtcctg gtggtggtgg atctgttact tgtccaggag gtcaaagcac atcaaattct 60 cagtgctgtg tttggtttga tgtactggac gatcttcaaa ccaacttcta ccaagggtca 120 aaatgcgaat cacctgtcag aaaaatcttg cgtatcgtct tccatgatgc catcggattt 180 agtccagctt taacggctgc cggtcaattc ggtggaggtg gtgcggatgg atctattatc 240 gcccattcta acatcgaact tgcattccct gcaaacggtg gattgaccga tacaattgaa 300 gcattacgtg cagtcggtat taatcacggt gtctctttcg gtgatttaat ccagttcgct 360 accgcggttg gtatgtccaa ttgtccgggt tcacccagat tagaatttct gaccggaaga 420 agtaactcgt cccaaccatc acctccgagt ctgatcccag gtcctggtaa tacggttact 480 gccattctag acaggatggg cgatgctgga ttttctcccg atgaggtcgt cgatttgcta 540 gcagcacatt ctttagcgtc tcaagagggt ttgaacagtg ccatatttag gtccccgttg 600 gatagtaccc cccaggtatt cgacacacag ttctatatcg aaaccctgtt gaagggtact 660 actcaacccg gtccttcatt gggttttgca gaagaattgt ctccgttccc tggagaattt 720 agaatgagat cggatgctct tttggcaaga gactccagaa ctgcgtgtag gtggcaatcc 780 atgacttcaa gtaacgaggt tatgggtcaa aggtatagag cagccatggc gaaaatgtca 840 gtgttgggtt tcgacagaaa tgcgttgaca gattgctccg acgttatccc ttcggccgtt 900 agtaataacg ctgctccagt cattccagga ggtttgactg tcgatgatat agaggtatct 960 tgcccgtctg aaccatttcc agaaatcgcc actgcatccg gtccattgcc atcacttgct 1020 cctgctccat aa 1032 <210> 11 <211> 1032 <212> DNA <213> Artificial Sequence <220> <223> gene sequence encoding CiP protein variant of sequence No: 2 <400> 11 caaggtcctg gtggtggtgg atctgttact tgtccaggag gtcaaagcac atcaaattct 60 cagtgctgtg tttggtttga tgtactggac gatcttcaaa ccaacttcta ccaagggtca 120 aaatgcgaat cacctgtcag aaaaatcttg cgtatcgtct tccatgatgc catcggattt 180 agtccagctt taacggctgc cggtcaattc ggtggaggtg gtgcggatgg atctattatc 240 gcccattcta acatcgaact tgcattccct gcaaacggtg gattgaccga tacaattgaa 300 gcattacgtg cagtcggtat taatcacggt gtctctttcg gtgatttaat ccagttcgct 360 accgcggttg gtatgtccaa ttgtccgggt tcacccagat tagaatttct gaccggaaga 420 agtaactcgt cccaaccatc acctccgagt ctgatcccag gtcctggtaa tacggttact 480 gccattctag acaggatggg cgatgctgga ttttctcccg atgaggtcgt cgatttgcta 540 gcagcacatt ctttagcgtc tcaagagggt ttgaacagtg ccatatttag gtccccgttg 600 gatagtaccc cccaggtatt cgacacacag ttctatatcg aaaccctgtt gaagggtact 660 actcaacccg gtccttcatt gggtgctgca gaagaattgt ctccgttccc tggagaattt 720 agaatgagat cggatgctct tttggcaaga gactccagaa ctgcgtgtag gtggcaatcc 780 atgacttcaa gtaacgaggt tatgggtcaa aggtatagag cagccatggc gaaaatgtca 840 gtgttgggtt tcgacagaaa tgcgttgaca gattgctccg acgttatccc ttcggccgtt 900 agtaataacg ctgctccagt cattccagga ggtttgactg tcgatgatat agaggtatct 960 tgcccgtctg aaccatttcc agaaatcgcc actgcatccg gtccattgcc atcacttgct 1020 cctgctccat aa 1032 <210> 12 <211> 1032 <212> DNA <213> Artificial Sequence <220> <223> gene sequence encoding CiP protein variant of sequence No: 3 <400> 12 caaggtcctg gtggtggtgg atctgttact tgtccaggag gtcaaagcac atcaaattct 60 cagtgctgtg tttggtttga tgtactggac gatcttcaaa ccaacttcta ccaagggtca 120 aaatgcgaat cacctgtcag aaaaatcttg cgtatcgtct tccatgatgc catcggattt 180 agtccagctt taacggctgc cggtcaattc ggtggaggtg gtgcggatgg atctattatc 240 gcccattcta acatcgaact tgcattccct gcaaacggtg gattgaccga tacaattgaa 300 gcattacgtg cagtcggtat taatcacggt gtctctttcg gtgatttaat ccagttcgct 360 accgcggttg gtatgtccaa ttgtccgggt tcacccagat tagaatttct gaccggaaga 420 agtaactcgt cccaaccatc acctccgagt ctgatcccag gtcctggtaa tacggttact 480 gccattctag acaggatggg cgatgctgga ttttctcccg atgaggtcgt cgatttgcta 540 gcagcacatt ctttagcgtc tcaagagggt ttgaacagtg ccatatttag gtccccgttg 600 gatagtaccc cccaggtatt cgacacacag ttctatatcg aaaccctgtt gaagggtact 660 actcaacccg gtccttcatt gggtattgca gaagaattgt ctccgttccc tggagaattt 720 agaatgagat cggatgctct tttggcaaga gactccagaa ctgcgtgtag gtggcaatcc 780 atgacttcaa gtaacgaggt tatgggtcaa aggtatagag cagccatggc gaaaatgtca 840 gtgttgggtt tcgacagaaa tgcgttgaca gattgctccg acgttatccc ttcggccgtt 900 agtaataacg ctgctccagt cattccagga ggtttgactg tcgatgatat agaggtatct 960 tgcccgtctg aaccatttcc agaaatcgcc actgcatccg gtccattgcc atcacttgct 1020 cctgctccat aa 1032 <210> 13 <211> 1032 <212> DNA <213> Artificial Sequence <220> <223> gene sequence encoding CiP protein variant of sequence No: 4 <400> 13 caaggtcctg gtggtggtgg atctgttact tgtccaggag gtcaaagcac atcaaattct 60 cagtgctgtg tttggtttga tgtactggac gatcttcaaa ccaacttcta ccaagggtca 120 aaatgcgaat cacctgtcag aaaaatcttg cgtatcgtct tccatgatgc catcggattt 180 agtccagctt taacggctgc cggtcaattc ggtggaggtg gtgcggatgg atctattatc 240 gcccattcta acatcgaact tgcattccct gcaaacggtg gattgaccga tacaattgaa 300 gcattacgtg cagtcggtat taatcacggt gtctctttcg gtgatttaat ccagttcgct 360 accgcggttg gtatgtccaa ttgtccgggt tcacccagat tagaatttct gaccggaaga 420 agtaactcgt cccaaccatc acctccgagt ctgatcccag gtcctggtaa tacggttact 480 gccattctag acaggatggg cgatgctgga ttttctcccg atgaggtcgt cgatttgcta 540 gcagcacatt ctttagcgtc tcaagagggt ttgaacagtg ccatatttag gtccccgttg 600 gatagtaccc cccaggtatt cgacacacag ttctatatcg aaaccctgtt gaagggtact 660 actcaacccg gtccttcatt gggtttggca gaagaattgt ctccgttccc tggagaattt 720 agaatgagat cggatgctct tttggcaaga gactccagaa ctgcgtgtag gtggcaatcc 780 atgacttcaa gtaacgaggt tatgggtcaa aggtatagag cagccatggc gaaaatgtca 840 gtgttgggtt tcgacagaaa tgcgttgaca gattgctccg acgttatccc ttcggccgtt 900 agtaataacg ctgctccagt cattccagga ggtttgactg tcgatgatat agaggtatct 960 tgcccgtctg aaccatttcc agaaatcgcc actgcatccg gtccattgcc atcacttgct 1020 cctgctccat aa 1032 <210> 14 <211> 1032 <212> DNA <213> Artificial Sequence <220> <223> gene sequence encoding CiP protein variant of sequence No: 5 <400> 14 caaggtcctg gtggtggtgg atctgttact tgtccaggag gtcaaagcac atcaaattct 60 cagtgctgtg tttggtttga tgtactggac gatcttcaaa ccaacttcta ccaagggtca 120 aaatgcgaat cacctgtcag aaaaatcttg cgtatcgtct tccatgatgc catcggattt 180 agtccagctt taacggctgc cggtcaattc ggtggaggtg gtgcggatgg atctattatc 240 gcccattcta acatcgaact tgcattccct gcaaacggtg gattgaccga tacaattgaa 300 gcattacgtg cagtcggtat taatcacggt gtctctttcg gtgatttaat ccagttcgct 360 accgcggttg gtatgtccaa ttgtccgggt tcacccagat tagaatttct gaccggaaga 420 agtaactcgt cccaaccatc acctccgagt ctgatcccag gtcctggtaa tacggttact 480 gccattctag acaggatggg cgatgctgga ttttctcccg atgaggtcgt cgatttgcta 540 gcagcacatt ctttagcgtc tcaagagggt ttgaacagtg ccatatttag gtccccgttg 600 gatagtaccc cccaggtatt cgacacacag ttctatatcg aaaccctgtt gaagggtact 660 actcaacccg gtccttcatt gggtggtgca gaagaattgt ctccgttccc tggagaattt 720 agaatgagat cggatgctct tttggcaaga gactccagaa ctgcgtgtag gtggcaatcc 780 atgacttcaa gtaacgaggt tatgggtcaa aggtatagag cagccatggc gaaaatgtca 840 gtgttgggtt tcgacagaaa tgcgttgaca gattgctccg acgttatccc ttcggccgtt 900 agtaataacg ctgctccagt cattccagga ggtttgactg tcgatgatat agaggtatct 960 tgcccgtctg aaccatttcc agaaatcgcc actgcatccg gtccattgcc atcacttgct 1020 cctgctccat aa 1032 <210> 15 <211> 1032 <212> DNA <213> Artificial Sequence <220> <223> gene sequence encoding CiP protein variant of sequence No: 6 <400> 15 caaggtcctg gtggtggtgg atctgttact tgtccaggag gtcaaagcac atcaaattct 60 cagtgctgtg tttggtttga tgtactggac gatcttcaaa ccaacttcta ccaagggtca 120 aaatgcgaat cacctgtcag aaaaatcttg cgtatcgtct tccatgatgc catcggattt 180 agtccagctt taacggctgc cggtcaattc ggtggaggtg gtgcggatgg atctattatc 240 gcccattcta acatcgaact tgcattccct gcaaacggtg gattgaccga tacaattgaa 300 gcattacgtg cagtcggtat taatcacggt gtctctttcg gtgatttaat ccagttcgct 360 accgcggttg gtatgtccaa ttgtccgggt tcacccagat tagaatttct gaccggaaga 420 agtaactcgt cccaaccatc acctccgagt ctgatcccag gtcctggtaa tacggttact 480 gccattctag acaggatggg cgatgctgga ttttctcccg atgaggtcgt cgatttgcta 540 gcagcacatt ctttagcgtc tcaagagggt ttgaacagtg ccatatttag gtccccgttg 600 gatagtaccc cccaggtatt cgacacacag ttctatatcg aaaccctgtt gaagggtact 660 actcaacccg gtccttcatt gggtgttgca gaagaattgt ctccgttccc tggagaattt 720 agaatgagat cggatgctct tttggcaaga gactccagaa ctgcgtgtag gtggcaatcc 780 atgacttcaa gtaacgaggt tatgggtcaa aggtatagag cagccatggc gaaaatgtca 840 gtgttgggtt tcgacagaaa tgcgttgaca gattgctccg acgttatccc ttcggccgtt 900 agtaataacg ctgctccagt cattccagga ggtttgactg tcgatgatat agaggtatct 960 tgcccgtctg aaccatttcc agaaatcgcc actgcatccg gtccattgcc atcacttgct 1020 cctgctccat aa 1032 <210> 16 <211> 1032 <212> DNA <213> Artificial Sequence <220> <223> gene sequence encoding CiP protein variant of sequence No: 7 <400> 16 caaggtcctg gtggtggtgg atctgttact tgtccaggag gtcaaagcac atcaaattct 60 cagtgctgtg tttggtttga tgtactggac gatcttcaaa ccaacttcta ccaagggtca 120 aaatgcgaat cacctgtcag aaaaatcttg cgtatcgtct tccatgatgc catcggattt 180 agtccagctt taacggctgc cggtcaattc ggtggaggtg gtgcggatgg atctattatc 240 gcccattcta acatcgaact tgcattccct gcaaacggtg gattgaccga tacaattgaa 300 gcattacgtg cagtcggtat taatcacggt gtctctttcg gtgatttaat ccagttcgct 360 accgcggttg gtatgtccaa ttgtccgggt tcacccagat tagaatttct gaccggaaga 420 agtaactcgt cccaaccatc acctccgagt ctgatcccag gtcctggtaa tacggttact 480 gccattctag acaggatggg cgatgctgga ttttctcccg atgaggtcgt cgatttgcta 540 gcagcacatt ctttagcgtc tcaagagggt ttgaacagtg ccatatttag gtccccgttg 600 gatagtaccc cccaggtatt cgacacacag ttctatatcg aaaccctgtt gaagggtact 660 actcaacccg gtccttcatt gggtcatgca gaagaattgt ctccgttccc tggagaattt 720 agaatgagat cggatgctct tttggcaaga gactccagaa ctgcgtgtag gtggcaatcc 780 atgacttcaa gtaacgaggt tatgggtcaa aggtatagag cagccatggc gaaaatgtca 840 gtgttgggtt tcgacagaaa tgcgttgaca gattgctccg acgttatccc ttcggccgtt 900 agtaataacg ctgctccagt cattccagga ggtttgactg tcgatgatat agaggtatct 960 tgcccgtctg aaccatttcc agaaatcgcc actgcatccg gtccattgcc atcacttgct 1020 cctgctccat aa 1032 <210> 17 <211> 1032 <212> DNA <213> Artificial Sequence <220> <223> gene sequence encoding CiP protein variant of sequence No: 8 <400> 17 caaggtcctg gtggtggtgg atctgttact tgtccaggag gtcaaagcac atcaaattct 60 cagtgctgtg tttggtttga tgtactggac gatcttcaaa ccaacttcta ccaagggtca 120 aaatgcgaat cacctgtcag aaaaatcttg cgtatcgtct tccatgatgc catcggattt 180 agtccagctt taacggctgc cggtcaattc ggtggaggtg gtgcggatgg atctattatc 240 gcccattcta acatcgaact tgcattccct gcaaacggtg gattgaccga tacaattgaa 300 gcattacgtg cagtcggtat taatcacggt gtctctttcg gtgatttaat ccagttcgct 360 accgcggttg gtatgtccaa ttgtccgggt tcacccagat tagaatttct gaccggaaga 420 agtaactcgt cccaaccatc acctccgagt ctgatcccag gtcctggtaa tacggttact 480 gccattctag acaggatggg cgatgctgga ttttctcccg atgaggtcgt cgatttgcta 540 gcagcacatt ctttagcgtc tcaagagggt ttgaacagtg ccatatttag gtccccgttg 600 gatagtaccc cccaggtatt cgacacacag ttctatatcg aaaccctgtt gaagggtact 660 actcaacccg gtccttcatt gggttacgca gaagaattgt ctccgttccc tggagaattt 720 agaatgagat cggatgctct tttggcaaga gactccagaa ctgcgtgtag gtggcaatcc 780 atgacttcaa gtaacgaggt tatgggtcaa aggtatagag cagccatggc gaaaatgtca 840 gtgttgggtt tcgacagaaa tgcgttgaca gattgctccg acgttatccc ttcggccgtt 900 agtaataacg ctgctccagt cattccagga ggtttgactg tcgatgatat agaggtatct 960 tgcccgtctg aaccatttcc agaaatcgcc actgcatccg gtccattgcc atcacttgct 1020 cctgctccat aa 1032 <210> 18 <211> 1032 <212> DNA <213> Artificial Sequence <220> <223> gene sequence encoding CiP protein variant of sequence No: 9 <400> 18 caaggtcctg gtggtggtgg atctgttact tgtccaggag gtcaaagcac atcaaattct 60 cagtgctgtg tttggtttga tgtactggac gatcttcaaa ccaacttcta ccaagggtca 120 aaatgcgaat cacctgtcag aaaaatcttg cgtatcgtct tccatgatgc catcggattt 180 agtccagctt taacggctgc cggtcaattc ggtggaggtg gtgcggatgg atctattatc 240 gcccattcta acatcgaact tgcattccct gcaaacggtg gattgaccga tacaattgaa 300 gcattacgtg cagtcggtat taatcacggt gtctctttcg gtgatttaat ccagttcgct 360 accgcggttg gtatgtccaa ttgtccgggt tcacccagat tagaatttct gaccggaaga 420 agtaactcgt cccaaccatc acctccgagt ctgatcccag gtcctggtaa tacggttact 480 gccattctag acaggatggg cgatgctgga ttttctcccg atgaggtcgt cgatttgcta 540 gcagcacatt ctttagcgtc tcaagagggt ttgaacagtg ccatatttag gtccccgttg 600 gatagtaccc cccaggtatt cgacacacag ttctatatcg aaaccctgtt gaagggtact 660 actcaacccg gtccttcatt gggttgggca gaagaattgt ctccgttccc tggagaattt 720 agaatgagat cggatgctct tttggcaaga gactccagaa ctgcgtgtag gtggcaatcc 780 atgacttcaa gtaacgaggt tatgggtcaa aggtatagag cagccatggc gaaaatgtca 840 gtgttgggtt tcgacagaaa tgcgttgaca gattgctccg acgttatccc ttcggccgtt 900 agtaataacg ctgctccagt cattccagga ggtttgactg tcgatgatat agaggtatct 960 tgcccgtctg aaccatttcc agaaatcgcc actgcatccg gtccattgcc atcacttgct 1020 cctgctccat aa 1032 <210> 19 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer for rCiP (rCiP-N-EcoRI) <400> 19 cggaattcca gggtcctgga ggaggcgggt cag 33 <210> 20 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer for rCiP (rCiP-C-NotI) <400> 20 acgcgtcgac tcaaggagca ggagcgaggg agg 33 <210> 21 <211> 35 <212> DNA <213> Artificial Sequence <220> 5 'flanking primer (EcoRI) <400> 21 gcgcgaattc caaggtcctg gtggtggtgg atctg 35 <210> 22 <211> 37 <212> DNA <213> Artificial Sequence <220> 3 'flanking primer (NotI) <400> 22 gcgcgcggcc gcttatggag caggagcaag tgatggc 37 <210> 23 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229A (M1-F) <400> 23 cccggtcctt cattgggtgc tgcagaagaa ttgtctccg 39 <210> 24 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229A (M1-R) <400> 24 cggagacaat tcttctgcag cacccaatga aggaccggg 39 <210> 25 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229I (M3-F) <400> 25 cccggtcctt cattgggtat tgcagaagaa ttgtctccg 39 <210> 26 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229I (M3-R) <400> 26 cggagacaat tcttctgcaa tacccaatga aggaccggg 39 <210> 27 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229L (M2-F) <400> 27 cccggtcctt cattgggttt ggcagaagaa ttgtctccg 39 <210> 28 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229L (M2-R) <400> 28 cggagacaat tcttctgcca aacccaatga aggaccggg 39 <210> 29 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229G (M8-F) <400> 29 cccggtcctt cattgggtgg tgcagaagaa ttgtctccg 39 <210> 30 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229G (M8-R) <400> 30 cggagacaat tcttctgcac cacccaatga aggaccggg 39 <210> 31 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229V (M4-F) <400> 31 cccggtcctt cattgggtgt tgcagaagaa ttgtctccg 39 <210> 32 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229V (M4-R) <400> 32 cggagacaat tcttctgcaa cacccaatga aggaccggg 39 <210> 33 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229H (M7-F) <400> 33 cccggtcctt cattgggtca tgcagaagaa ttgtctccg 39 <210> 34 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229H (M7-R) <400> 34 cggagacaat tcttctgcat gacccaatga aggaccggg 39 <210> 35 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229Y (M5-F) <400> 35 cccggtcctt cattgggtta cgcagaagaa ttgtctccg 39 <210> 36 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229Y (M5-R) <400> 36 cggagacaat tcttctgcgt aacccaatga aggaccggg 39 <210> 37 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229W (M6-F) <400> 37 cccggtcctt cattgggttg ggcagaagaa ttgtctccg 39 <210> 38 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mutagenic primer for F229W (M6-R) <400> 38 cggagacaat tcttctgccc aacccaatga aggaccggg 39  

Claims (7)

서열번호 1의 아미노산 서열로 표시되는 코프리너스 시네레우스(Coprinus cinereus) 유래의 퍼옥시다아제(CiP) 단백질의 229 위치의 아미노산이 치환된, 서열번호 2 내지 4의 아미노산 서열로 표시되는 단백질로 이루어진 군에서 선택되는 것을 특징으로 하는, CiP 단백질 변이체.Consisting of a protein represented by the amino acid sequence of SEQ ID NOs: 2 to 4 substituted with an amino acid at position 229 of a peroxidase (CiP) protein derived from Coprinus cinereus represented by the amino acid sequence of SEQ ID NO: 1 CiP protein variant, characterized in that selected from the group. 제 1 항에 따른 CiP 단백질 변이체 서열을 코딩하는 유전자.Gene encoding the CiP protein variant sequence according to claim 1. 제 2 항에 있어서,The method of claim 2, 상기 유전자가 서열번호 11 내지 13의 염기 서열로 표시되는 유전자로 이루어진 군에서 선택되는 것을 특징으로 하는, 유전자.Gene is characterized in that the gene is selected from the group consisting of the gene represented by the nucleotide sequence of SEQ ID NO: 11 to 13. 제 2 항에 따른 유전자를 포함하는 재조합 벡터.Recombinant vector comprising the gene according to claim 2. 제 4 항에 있어서,The method of claim 4, wherein 상기 재조합 벡터가 pPICZαA 벡터에 상기 유전자를 삽입하여 제조되는 것을 특징으로 하는, 재조합 벡터.Recombinant vector, characterized in that the recombinant vector is prepared by inserting the gene into the pPICZαA vector. 제 4 항의 재조합 벡터를 포함하는 숙주 세포.A host cell comprising the recombinant vector of claim 4. 제 6 항에 있어서,The method of claim 6, 상기 숙주 세포가 피키아 파스토리스인 숙주 세포.A host cell wherein said host cell is Pichia pastoris.
KR1020090117904A 2009-12-01 2009-12-01 Novel Peroxidase Variants with Increased Radical Stability KR101059873B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020090117904A KR101059873B1 (en) 2009-12-01 2009-12-01 Novel Peroxidase Variants with Increased Radical Stability
PCT/KR2010/005146 WO2011068297A1 (en) 2009-12-01 2010-08-05 Peroxidase variant having improved radical stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090117904A KR101059873B1 (en) 2009-12-01 2009-12-01 Novel Peroxidase Variants with Increased Radical Stability

Publications (2)

Publication Number Publication Date
KR20110061297A KR20110061297A (en) 2011-06-09
KR101059873B1 true KR101059873B1 (en) 2011-08-29

Family

ID=44115121

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090117904A KR101059873B1 (en) 2009-12-01 2009-12-01 Novel Peroxidase Variants with Increased Radical Stability

Country Status (2)

Country Link
KR (1) KR101059873B1 (en)
WO (1) WO2011068297A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101424334B1 (en) 2012-08-07 2014-07-31 광운대학교 산학협력단 Mutant of Peroxidase Polypeptide, Nucleic acid molecule coding the same, Vector comprising the Nucleic acid molecule, Transformant transformed by the vector, Preparation method of the transformant, and Preparation method of the Mutant of Peroxidase Polypeptide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Biochemistry. 1996, Vol. 35(45), pp. 14370-14380
Biochimica et Biophysica Acta. 2001, Vol. 1544(1-2), pp. 18-27
European Journal of Biochemistry. 1998, Vol. 251(3), pp. 830-838

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101424334B1 (en) 2012-08-07 2014-07-31 광운대학교 산학협력단 Mutant of Peroxidase Polypeptide, Nucleic acid molecule coding the same, Vector comprising the Nucleic acid molecule, Transformant transformed by the vector, Preparation method of the transformant, and Preparation method of the Mutant of Peroxidase Polypeptide

Also Published As

Publication number Publication date
KR20110061297A (en) 2011-06-09
WO2011068297A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP6868662B2 (en) Hemoglobin A1c measurement method and measurement kit
GÜNZLER et al. The amino-acid sequence of bovine glutathione peroxidase
US9062291B2 (en) Transglutaminase having disulfide bond introduced therein
Guan et al. Evidence for complex formation between rabbit lung flavin-containing monooxygenase and calreticulin
WO2020045656A1 (en) Pyrrolysyl-trna synthetase
Schröder et al. Porcine natural-killer-enhancing factor-B: oligomerisation and identification as a calpain substrate in vitro
CN109486800B (en) Novel lysyl endopeptidase and preparation method thereof
EP2844747A1 (en) A glycosylated modified flavin adenine dinucleotide dependent glucose dehydrogenase
Wu et al. Cloning of amadoriase I isoenzyme from Aspergillus sp.: Evidence of FAD covalently linked to Cys342
Miginiac-Maslow et al. Light-dependent activation of NADP-malate dehydrogenase: a complex process
KR101059873B1 (en) Novel Peroxidase Variants with Increased Radical Stability
CN109439643B (en) Novel lysine specific endonuclease and preparation method thereof
KRAMER et al. Functional roles and efficiencies of the thioredoxin boxes of calcium-binding proteins 1 and 2 in protein folding
CN110093336B (en) Stable trypsin and preparation method thereof
JP7043161B2 (en) HbA1c measurement method using amadriase acting on glycated peptide
Wallner et al. Lab scale and medium scale production of recombinant allergens in Escherichia coli
Hughes et al. Production and characterization of a plant α‐hydroxynitrile lyase in Escherichia coli
KR101424334B1 (en) Mutant of Peroxidase Polypeptide, Nucleic acid molecule coding the same, Vector comprising the Nucleic acid molecule, Transformant transformed by the vector, Preparation method of the transformant, and Preparation method of the Mutant of Peroxidase Polypeptide
Fickenscher et al. Amino acid sequence similarity between malate dehydrogenases (NAD) and pea chloroplast malate dehydrogenase (NADP)
KR101634078B1 (en) Process for producing protein capable of forming inclusion body
US20220251534A1 (en) Compositions and methods for preparing factor xa and derivatives
Watanabe et al. Bovine lactoperoxidase and its recombinant: comparison of structure and some biochemical properties
Taylor et al. Site-directed mutagenesis of conserved serines in rat histidase. Identification of serine 254 as an essential active site residue.
JP5757555B2 (en) Novel acidic protease and its use
JP2002306163A (en) Method of preparing gene-recombinant human thrombin using escherichia coil as host

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150710

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160607

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170816

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180627

Year of fee payment: 8