KR101059560B1 - Optical multiplexer/demultiplexer - Google Patents

Optical multiplexer/demultiplexer Download PDF

Info

Publication number
KR101059560B1
KR101059560B1 KR1020100064780A KR20100064780A KR101059560B1 KR 101059560 B1 KR101059560 B1 KR 101059560B1 KR 1020100064780 A KR1020100064780 A KR 1020100064780A KR 20100064780 A KR20100064780 A KR 20100064780A KR 101059560 B1 KR101059560 B1 KR 101059560B1
Authority
KR
South Korea
Prior art keywords
transmission path
common transmission
terminal transmission
diffraction grating
grating
Prior art date
Application number
KR1020100064780A
Other languages
Korean (ko)
Inventor
이호재
부성재
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020100064780A priority Critical patent/KR101059560B1/en
Application granted granted Critical
Publication of KR101059560B1 publication Critical patent/KR101059560B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the arrayed waveguides, e.g. comprising a filled groove in the array section
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12014Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the wavefront splitting or combining section, e.g. grooves or optical elements in a slab waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE: An optical multiplexer/demultiplexer is provided to simplify the structure for demultiplexing signal rays of different wavelengths. CONSTITUTION: An optical multiplexer/demultiplexer(100) includes a module structure(110), a diffraction grating(130), a central grating filter(140), and an edge grating filter(150). A module structure is formed on one side of a common transmission path. A central terminal transmission path is placed on a location of the other side of the common transmission path corresponding to an expanding direction of the common transmission path. The diffraction grating diffracts incident light.

Description

광합분파기{optical multiplexer/demultiplexer}Optical multiplexer {optical multiplexer / demultiplexer}

본 발명은 광합분파기에 관한 것으로서, 상세하게는 상호 다른 파장의 신호광을 분리 및 합파시켜 전송할 수 있도록 된 광합분파기에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photosynthesis splitter, and more particularly, to a photosynthesis splitter that is capable of separating and combining signal light having different wavelengths.

현재 광통신 시스템에 널리 적용되고 있는 파장분할다중(WDM: Wavelength Division Multiplexing)화 방식은 광섬유를 이용한 신호 전송기술로서, 하나의 광섬유내에 서로 다른 다수 파장의 광신호를 다중화하여 전송하고 수신단에서는 파장에 따라서 광신호를 분리하는 역다중화를 수행하여 광섬유의 전송용량을 증대시킬 수 있는 방식이다. Wavelength Division Multiplexing (WDM), which is widely used in optical communication systems, is a signal transmission technology using optical fibers. Multiplexed optical signals of different wavelengths are transmitted within one optical fiber, and the receiving end is multiplexed according to the wavelength. It is a method to increase the transmission capacity of an optical fiber by performing demultiplexing to separate an optical signal.

이러한 파장분할다중(WDM)방식은 추가적인 광섬유망의 구축과 고속 전송장비를 사용하지 않고도 망의 용량을 증대시킬 수 있는 장점을 제공한다. This wavelength division multiplex (WDM) method provides the advantage of increasing the capacity of the network without the construction of additional optical fiber and high-speed transmission equipment.

일반적으로 파장분할다중(WDM)의 광전송 시스템에 사용되는 다중/역다중소자는 배열도파로(AWG:array waveguide grating)를 이용하는 방식, 광섬유 커플러(coupler)와 페브리-페로 필터(FPF:fabry-perot filter)를 결합한 방식, 파이버 격자(FBG:fiber bragg granting)필터와 광 서큘레이터(circulator)를 직렬로 연결하는 방식이 이용되고 있다.In general, multiple / demultiplex devices used in a WDM optical transmission system use an array waveguide grating (AWG), an optical fiber coupler and a Fabry-perot filter (FPF). A method of combining a filter, and a method of connecting a fiber bragg grant (FBG) filter and an optical circulator in series are used.

그런데, 이러한 종래의 파장 분할 또는 합파용 방식들은 구조가 복잡하고, 제작이 어려운 문제점이 있다.However, these conventional wavelength splitting or combining methods have a complicated structure and difficult manufacturing.

본 발명은 상기와 같은 문제점을 개선하기 위하여 창안된 것으로서, 상호 다른 파장의 신호광을 분리시켜 출력할 수 있으면서도 구조가 간단하고, 제작이 용이한 광합분파기를 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object thereof is to provide an optical splitter that is simple in structure and easy to manufacture while being able to separate and output signal light having different wavelengths.

상기의 목적을 달성하기 위하여 본 발명에 따른 광합분파기는 상호 다른 파장의 신호광을 상호 분리시키거나 합파할 수 있도록 된 광합분파기에 있어서, 공통 전송로가 일측에 형성되어 있고, 타측에는 상기 공통 전송로의 연장방향과 대응되는 위치에 중앙 단자 전송로가 마련되어 있고, 상기 공통전송로의 연장방향과 이격되는 위치상에 상기 중앙 단자전송로와 이격되게 주변 단자전송로가 마련된 모듈구조체와; 상기 공통전송로와 상기 중앙 및 주변 단자 전송로 사이에 마련되되 상기 공통전송로의 중심선에 대해 수직한 방향을 따라 격자가 다수 어레이되어 입사된 광을 회절시키는 회절격자와; 상기 회절격자와 상기 중앙 단자 전송로 사이에 마련되되 상기 공통 전송로의 연장방향과 나란한 방향을 따라 격자가 다수 어레이되어 제1파장대역의 광을 통과시키는 중앙 격자필터와; 상기 회절격자와 상기 주변 단자 전송로 사이에 마련되되 상기 공통 전송로의 연장방향과 나란한 방향을 따라 격자가 다수 어레이되어 상기 제1파장대역과는 다른 제2파장대역의 광을 통과시키는 주변 격자필터;를 구비한다.In order to achieve the above object, the photosynthesis splitter according to the present invention is capable of separating or combining signal light having different wavelengths from each other, wherein a common transmission path is formed on one side, and the common on the other side. A module structure in which a central terminal transmission path is provided at a position corresponding to an extension direction of the transmission path, and a peripheral terminal transmission path is provided to be spaced apart from the central terminal transmission path on a position spaced apart from the extension direction of the common transmission path; A diffraction grating provided between the common transmission path and the center and peripheral terminal transmission paths, the diffraction grating diffracting incident light by arraying a plurality of gratings along a direction perpendicular to the center line of the common transmission path; A central grating filter disposed between the diffraction grating and the center terminal transmission path, the plurality of gratings being arrayed along a direction parallel to the extension direction of the common transmission path to pass light in a first wavelength band; Peripheral grating filters provided between the diffraction grating and the peripheral terminal transmission path, and having a plurality of gratings arrayed along a direction parallel to the extension direction of the common transmission path to pass light in a second wavelength band different from the first wavelength band. It includes;

본 발명에 따른 광합분파기에 의하면, 상호 다른 파장의 신호광을 분리하기 위한 구조가 단순하고 제작이 용이한 장점을 제공한다.According to the photosynthesis spectrometer according to the present invention, the structure for separating signal light of different wavelengths provides a simple and easy manufacturing.

도 1은 본 발명에 따른 광합분파기를 나타내보인 도면이고,
도 2는 도 1의 광합분파기의 또 다른 사용예를 나타내 보인 도면이고,
도 3은 도 1의 제1격자에 대한 단면도이다.
1 is a view showing a photosynthetic splitter according to the present invention,
2 is a view showing another example of the use of the photosynthetic splitter of FIG.
3 is a cross-sectional view of the first grid of FIG. 1.

이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시 예에 따른 광합분파기를 더욱 상세하게 설명한다.Hereinafter, the photosynthetic splitter according to a preferred embodiment of the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 광합분파기를 나타내보인 도면이다.1 is a view showing a photosynthetic splitter according to the present invention.

도 1을 참조하면, 광합분파기(100)는 모듈구조체(110)와, 회절격자(130), 중앙 격자필터(140) 및 주변격자필터(150)를 구비한다.Referring to FIG. 1, the photosynthesis splitter 100 includes a module structure 110, a diffraction grating 130, a central grating filter 140, and a peripheral lattice filter 150.

모듈 구조체(110)는 광이 입출력될 수 있게 공통전송로(112), 중앙 단자 전송로(114) 및 복수개의 주변 단자 전송로(116)가 마련된 구조로 되어 있다.The module structure 110 has a structure in which a common transmission path 112, a central terminal transmission path 114, and a plurality of peripheral terminal transmission paths 116 are provided to input and output light.

즉, 모듈 구조체(110)는 일측 중앙에 공통전송로(112)가 마련되어 있고, 타측에는 중앙 단자 전송로(114) 및 주변 단자 전송로(116)가 마련된 구조로 되어 있다.That is, the module structure 110 has a structure in which a common transmission path 112 is provided at one center and a central terminal transmission path 114 and a peripheral terminal transmission path 116 are provided at the other side.

여기서, 중앙단자 전송로(114) 및 복수개의 주변 단자 전송로(116)는 신호광이 파장에 따라 각각 입출되는 분기 채널에 해당하고, 공통전송로(112)는 신호광이 상호 합파되어 전송되는 공통 채널에 해당한다.Here, the central terminal transmission path 114 and the plurality of peripheral terminal transmission paths 116 correspond to branch channels to which signal light is input and output according to wavelengths, and the common transmission path 112 is a common channel through which signal light is mutually combined and transmitted. Corresponds to

공통 전송로(112)는 접속되는 광섬유(미도시)를 통해 광을 수신 또는 송신할 수 있도록 일정 길이로 연장된 광도파로 구조로 되어 있다.The common transmission path 112 has an optical waveguide structure extending to a predetermined length so as to receive or transmit light through a connected optical fiber (not shown).

참조부호 112a는 코어이고, 참조부호 112b는 클래드 이다.Reference numeral 112a is a core, and reference numeral 112b is a clad.

중앙 단자 전송로(114)는 공통 전송로(112)와 대응되는 위치 즉, 공통 전송로(112)와 중심선과 일치되는 위치상에 마련되어 있다.The center terminal transmission path 114 is provided at a position corresponding to the common transmission path 112, that is, at a position corresponding to the common transmission path 112 and the center line.

주변 단자 전송로(116)는 모듈 구조체(110)의 타측에 마련되되 공통전송로(112)의 중심선과 어긋나는 위치상에 중앙 단자전송로(114)와 이격되게 복수개가 마련되어 있다.Peripheral terminal transmission path 116 is provided on the other side of the module structure 110 is provided with a plurality of spaced apart from the central terminal transmission path 114 on a position that deviates from the center line of the common transmission path (112).

회절격자(130)는 공통전송로(112)와 후술되는 중앙 및 주변 격자필터(140)(150)와의 사이에 마련되어 있다.The diffraction grating 130 is provided between the common transmission path 112 and the central and peripheral lattice filters 140 and 150 described later.

회절격자(130)는 공통전송로(112)의 중심선과 수직한 방향을 따라 격자가 다수 어레이되어 입사된 광을 회절시킨다.The diffraction grating 130 diffracts incident light by arraying a plurality of gratings along a direction perpendicular to the center line of the common transmission path 112.

중앙 격자필터(140)는 회절격자(130)와 중앙 단자 전송로(114) 사이에 마련되어 있다.The center grating filter 140 is provided between the diffraction grating 130 and the center terminal transmission path 114.

중앙 격자필터(140)는 공통 전송로(112)의 연장방향과 나란한 방향을 따라 격자가 다수 어레이된 구조로 되어 있다.The central grid filter 140 has a structure in which a plurality of grids are arrayed along a direction parallel to the extension direction of the common transmission path 112.

주변 격자필터(150)는 회절격자(130)와 주변 단자 전송로(116) 사이에 마련되어 있다.The peripheral grating filter 150 is provided between the diffraction grating 130 and the peripheral terminal transmission path 116.

주변 격자필터(150)는 공통 전송로(112)의 연장방향과 나란한 방향을 따라 격자가 다수 어레이된 구조로 되어 있다.The peripheral grid filter 150 has a structure in which a plurality of grids are arranged along a direction parallel to the extension direction of the common transmission path 112.

여기서, 중앙 격자필터(140)와 주변 격자필터(150)는 통과 파장대역이 상호 다르게 형성된다. 즉, 중앙 격자 필터(140)는 제1파장대역의 광신호를 통과시킬 수 있게 형성되고, 주변 격자필터(150)는 제1파장대역과는 다른 제2파장대역의 광신호를 통과시킬 수 있게 형성된다.Here, the central lattice filter 140 and the peripheral lattice filter 150 have different pass wavelength bands. That is, the central grating filter 140 is formed to pass an optical signal of the first wavelength band, and the peripheral grating filter 150 is capable of passing an optical signal of a second wavelength band different from the first wavelength band. Is formed.

중앙 격자필터(140)와 주변 격자필터(150)는 다양하게 형성될 수 있고, 바람직하게는 도 3에 도시된 바와 같이 기판(201)상에 코어기능을 할 수 있는 재질로 격자가 형성된 격자부분(203)과, 격자부분(203) 상부에 클래드 기능을 하는 재질로 형성된 클래드 부분(205)을 갖는 평면 도파로 구조로 형성할 수 있다.The central lattice filter 140 and the peripheral lattice filter 150 may be formed in various ways. Preferably, the lattice portion having the lattice formed of a material capable of performing a core function on the substrate 201 as shown in FIG. 3. 203 and a cladding portion 205 formed of a cladding material on the lattice portion 203 can be formed in a planar waveguide structure.

이때, 중앙 격자필터(140)와 주변 격자필터(150)는 각각 적용되는 투과 대역폭을 고려하여 격자 길이, 격자 형상, 피치(P)를 적절하게 조절하여 적용하면 된다. 격자형상은 도시된 형상으로 제한하지 않음은 물론이다.In this case, the central lattice filter 140 and the peripheral lattice filter 150 may be appropriately adjusted and applied to the lattice length, the lattice shape, and the pitch P in consideration of the transmission bandwidth to be applied. Of course, the lattice shape is not limited to the shape shown.

또한, 중앙 격자필터(140)와 주변 격자필터(150)는 초정밀 가공이 가능한 프레스 가공장치를 이용하여 원하는 격자를 나노 단위로 미세하게 형성한 다음 클래드 부분에 적용할 소재로 프린팅하여 제조할 수 있다.In addition, the central lattice filter 140 and the peripheral lattice filter 150 may be manufactured by forming a desired lattice finely in nano units using a press processing apparatus capable of ultra-precision processing and then printing the material to be applied to the cladding part. .

이러한 광합분파기(100)는 공통전송로(112)를 통해 전송되는 제1신호광과 공통전송로를 통해 제1신호광의 진행방향과 반대방향으로 진행하는 제2신호광을 상호 분리시킬 수 있다.The optical splitter 100 may separate the first signal light transmitted through the common transmission path 112 and the second signal light traveling in a direction opposite to the traveling direction of the first signal light through the common transmission path.

이하에서는 광합분파기(100)에 대해 주변 단자 전송로(116) 각각은 좌측에서 우측으로 신호를 전송하는 송신단(Tx)으로 이용되고, 중앙 단자 전송로(114)는 우측에서 좌측으로 전송되는 신호를 수신하는 수신단(Rx)으로 이용되는 경우에 대해 설명한다.Hereinafter, each of the peripheral terminal transmission paths 116 is used as a transmission terminal Tx for transmitting signals from left to right with respect to the photosynthetic splitter 100, and the central terminal transmission path 114 is a signal transmitted from right to left. The case where it is used as a receiving end (Rx) for receiving will be described.

먼저, 제1신호광이 주변 단자 전송로(116)를 통해 입사되고, 제1신호광과 다른 파장의 제2신호광이 공통 단자 전송로(112)를 통해 입사되는 경우를 도 1을 참조하여 설명한다.First, a case in which the first signal light is incident through the peripheral terminal transmission path 116 and the second signal light having a wavelength different from the first signal light is incident through the common terminal transmission path 112 will be described with reference to FIG. 1.

이 경우, 중앙 격자필터(140)는 제2신호광은 통과하고, 제2신호광의 파장과 다른 제1신호광은 차단할 수 있도록 격자가 형성된다. In this case, the center grating filter 140 has a grating formed to pass the second signal light and to block the first signal light different from the wavelength of the second signal light.

또한, 주변 격자필터(150)는 제1신호광은 통과하고, 제1신호광의 파장과 다른 파장의 제2신호광은 차단할 수 있도록 격자가 형성된다.In addition, the peripheral grating filter 150 has a grating formed to pass the first signal light and to block the second signal light having a wavelength different from that of the first signal light.

한편, 회절격자(130)는 입사된 제1신호광의 1차 회절광에 대해서는 공통 전송로(112) 내로 입사될 수 있는 회절 각도를 제공할 수 있게 형성된다.On the other hand, the diffraction grating 130 is formed to provide a diffraction angle that can be incident into the common transmission path 112 for the first diffracted light of the incident first signal light.

따라서, 제1신호광은 주변 단자 전송로(116) 및 주변 격자필터(150)를 통과한 후 회절격자(130)를 거치면서 1차 회절광은 공통 전송로(112)로 입사됨으로써 공통 전송로(112)를 통해 출력될 수 있고, 제2신호광은 공통 전송로(112)를 통해 회절격자(130)를 통과한 후 0차 회절광 즉, 직진되는 제2신호광은 중앙 격자필터(140)를 통과한 후 중앙 단자 전송로(114)를 통해 출력된다.Therefore, while the first signal light passes through the peripheral terminal transmission path 116 and the peripheral grating filter 150 and passes through the diffraction grating 130, the first diffracted light is incident on the common transmission path 112, thereby providing a common transmission path ( 112, the second signal light passes through the diffraction grating 130 through the common transmission path 112, and then the zero-order diffracted light, that is, the straight second signal light passes through the central grating filter 140. After it is output through the central terminal transmission path (114).

이때, 제2신호광 중 회절격자(130)를 통과한 1차 회절광 즉, 경사진 방향으로 진행되는 일부 제2신호광은 주변 격자필터(150)에 도달된 다 하더라도 주변 격자필터(150)의 통과 허용 파장과 다르기 때문에 진입이 차단된다.At this time, the first diffraction light that has passed through the diffraction grating 130 among the second signal light, that is, some second signal light that proceeds in the inclined direction, passes through the periphery grating filter 150 even if the periphery grating filter 150 is reached. Entry is blocked because it is different from the permissible wavelength.

한편, 이러한 광합분파기(100)는 주변 단자 전송로(116)를 수신용으로 중앙 단자 전송로(114)를 송신용으로 사용할 수 있고, 그 예가 도 2에 도시되어 있다.On the other hand, the optical splitter 100 can use the peripheral terminal transmission path 116 for receiving the center terminal transmission path 114 for transmission, an example of which is shown in FIG.

도 2에서 실선은 공통 전송로(112)를 통해 회절격자(130)로 진입되는 광을 나타내고, 일점 쇄선은 중앙 단자 전송로(114)를 통해 중앙 격자필터(140)로 입사되는 광을 나타낸다.In FIG. 2, the solid line represents light entering the diffraction grating 130 through the common transmission line 112, and the dashed-dotted line represents light incident to the center grating filter 140 through the center terminal transmission line 114.

110: 모듈구조체 130: 회절격자
140: 중앙 격자필터 150: 주변격자필터
110: module structure 130: diffraction grating
140: center lattice filter 150: peripheral lattice filter

Claims (1)

상호 다른 파장의 신호광을 상호 분리시키거나 합파할 수 있도록 된 광합분파기에 있어서,
공통 전송로가 일측에 형성되어 있고, 타측에는 상기 공통 전송로의 연장방향과 대응되는 위치에 중앙 단자 전송로가 마련되어 있고, 상기 공통전송로의 연장방향과 이격되는 위치상에 상기 중앙 단자전송로와 이격되게 주변 단자전송로가 마련된 모듈구조체와;
상기 공통전송로와 상기 중앙 및 주변 단자 전송로 사이에 마련되되 상기 공통전송로의 중심선에 대해 수직한 방향을 따라 격자가 다수 어레이되어 입사된 광을 회절시키는 회절격자와;
상기 회절격자와 상기 중앙 단자 전송로 사이에 마련되되 상기 공통 전송로의 연장방향과 나란한 방향을 따라 격자가 다수 어레이되어 제1파장대역의 광을 통과시키는 중앙 격자필터와;
상기 회절격자와 상기 주변 단자 전송로 사이에 마련되되 상기 공통 전송로의 연장방향과 나란한 방향을 따라 격자가 다수 어레이되어 상기 제1파장대역과는 다른 제2파장대역의 광을 통과시키는 주변 격자필터;를 구비하는 것을 특징으로 하는 광합분파기.
In a photosynthesis splitter which is capable of separating or combining signal light of different wavelengths from each other,
A common transmission path is formed at one side, and a central terminal transmission path is provided at a position corresponding to the extension direction of the common transmission path on the other side, and the center terminal transmission path is located at a position spaced apart from the extension direction of the common transmission path. A module structure provided with peripheral terminal transmission paths spaced apart from each other;
A diffraction grating provided between the common transmission path and the center and peripheral terminal transmission paths, the diffraction grating diffracting incident light by arraying a plurality of gratings along a direction perpendicular to the center line of the common transmission path;
A central grating filter disposed between the diffraction grating and the center terminal transmission path, the plurality of gratings being arrayed along a direction parallel to the extension direction of the common transmission path to pass light in a first wavelength band;
Peripheral grating filters provided between the diffraction grating and the peripheral terminal transmission path, and having a plurality of gratings arrayed along a direction parallel to the extension direction of the common transmission path to pass light in a second wavelength band different from the first wavelength band. A photosynthesis splitter comprising;
KR1020100064780A 2010-07-06 2010-07-06 Optical multiplexer/demultiplexer KR101059560B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100064780A KR101059560B1 (en) 2010-07-06 2010-07-06 Optical multiplexer/demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100064780A KR101059560B1 (en) 2010-07-06 2010-07-06 Optical multiplexer/demultiplexer

Publications (1)

Publication Number Publication Date
KR101059560B1 true KR101059560B1 (en) 2011-08-26

Family

ID=44933789

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100064780A KR101059560B1 (en) 2010-07-06 2010-07-06 Optical multiplexer/demultiplexer

Country Status (1)

Country Link
KR (1) KR101059560B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236227A (en) 2000-12-22 2002-08-23 Metrophotonics Inc Bidirectional multiplexer and demultiplexer based on single echelle waveguide reflection grating
JP2003140212A (en) 2001-11-06 2003-05-14 Mitsubishi Cable Ind Ltd Device and method for signal light demultiplexing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236227A (en) 2000-12-22 2002-08-23 Metrophotonics Inc Bidirectional multiplexer and demultiplexer based on single echelle waveguide reflection grating
JP2003140212A (en) 2001-11-06 2003-05-14 Mitsubishi Cable Ind Ltd Device and method for signal light demultiplexing

Similar Documents

Publication Publication Date Title
US10797817B2 (en) Optical signal processing device
KR100274804B1 (en) Bi-directional optical wavelength multiplexer and demultiplexer
WO2001081964A3 (en) Apparatus and method for producing a flat-topped filter response for diffraction grating (de)multiplexer
KR101747453B1 (en) Array waveguide grating router integrated wave multiplexing and wave demultiplexing
US6714702B2 (en) Optical demultiplexing system and method
KR100474695B1 (en) Bidirectoinal optical add/drop multiplexer for wavelength division multiplexing optical networks
KR101059560B1 (en) Optical multiplexer/demultiplexer
WO2023061376A1 (en) Optical multimode wavelength division multiplexing and demultiplexing devices and transmission systems implementing the same
US6313933B1 (en) Bidirectional wavelength division multiplex transmission apparatus
US20120063719A1 (en) DWDM and CWDM Communication System over Multimode Fiber
CN106154425A (en) Wavelength division multiplexer with parallel channel spacing translation function and demultiplexer
CN115963606A (en) Light receiving module and optical module
CN205941977U (en) Take parallel channel interval conversion functions's wavelength division multiplexer and demultiplexer
US7305185B2 (en) Device for integrating demultiplexing and optical channel monitoring
JP4651012B2 (en) Optical branching module
JP2007155777A (en) Monitoring circuit
WO2017069240A1 (en) Optical separator, optical multiplexer, and optical communication system
JP2006113465A (en) Waveguide type optical multiplexing/demultiplexing circuit
JP5798096B2 (en) Arrayed waveguide grating router
WO2004015874A3 (en) Apparatus and method for producing a flat-topped filter response in a multiplex/demultiplexer
KR101481148B1 (en) Arrayed Waveguide Collimators
KR101992142B1 (en) Optical module for convergence of different service
CN102466838A (en) Bidirectional arrayed waveguide grating and application device thereof
KR101529096B1 (en) The optical splitter for integration of WDM services to the optical communication networks
KR100831123B1 (en) Optical Drop/Add Multiplexer for Optical Transmission Device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141016

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150713

Year of fee payment: 5