KR101056599B1 - Method for forming organic-inorganic composite typed gate insulator of organic thin film transistor and organic-inorganic composite typed gate insulator of organic thin film transistor formed therefrom - Google Patents

Method for forming organic-inorganic composite typed gate insulator of organic thin film transistor and organic-inorganic composite typed gate insulator of organic thin film transistor formed therefrom Download PDF

Info

Publication number
KR101056599B1
KR101056599B1 KR1020100041917A KR20100041917A KR101056599B1 KR 101056599 B1 KR101056599 B1 KR 101056599B1 KR 1020100041917 A KR1020100041917 A KR 1020100041917A KR 20100041917 A KR20100041917 A KR 20100041917A KR 101056599 B1 KR101056599 B1 KR 101056599B1
Authority
KR
South Korea
Prior art keywords
organic
butoxide
gate insulating
thin film
film transistor
Prior art date
Application number
KR1020100041917A
Other languages
Korean (ko)
Inventor
김홍두
이진호
이은주
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020100041917A priority Critical patent/KR101056599B1/en
Application granted granted Critical
Publication of KR101056599B1 publication Critical patent/KR101056599B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/478Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising a layer of composite material comprising interpenetrating or embedded materials, e.g. TiO2 particles in a polymer matrix

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE: A method for forming the organic-inorganic composite gate insulating film of an organic thin film transistor and the organic-inorganic composite typed gate insulating film of an organic thin film transistor using the same are provided to simply form the gate insulation layer of a organic thin film transistor with a low cost, easily coat the surface, and efficiently apply to a substrate with a high molecule which is flexible and hard to be processed at a high temperature. CONSTITUTION: The carbon number of an alkyl group dissolves the alkyl alkoxide of 1 to 20 metallic oxides and an insulating organic polymer in an organic solvent and prepares organic-inorganic composite solutions for forming a gate dielectric layer. Organic-inorganic composite solutions are spread in the substrate of an organic thin film transistor and form a coating layer. An organic solvent is dried in the coating layer and an organic-inorganic composite gate insulating layer is formed.

Description

유기박막트랜지스터의 유기-무기 복합형 게이트 절연막 형성방법 및 이로부터 형성된 유기박막트랜지스터의 유기-무기 복합형 게이트 절연막{Method for forming organic-inorganic composite typed gate insulator of organic thin film transistor and organic-inorganic composite typed gate insulator of organic thin film transistor formed therefrom}Method for forming organic-inorganic composite gate insulating film of organic thin film transistor and organic-inorganic composite gate insulating film formed from organic thin film transistor and organic-inorganic composite typed gate insulator gate insulator of organic thin film transistor formed therefrom}

본 발명은 유기박막트랜지스터의 게이트 절연막 형성방법 및 이로부터 형성된 유기박막트랜지스터의 유기-무기 복합형 게이트 절연막에 관한 것이다. The present invention relates to a method for forming a gate insulating film of an organic thin film transistor and an organic-inorganic hybrid gate insulating film of an organic thin film transistor formed therefrom.

차세대 디스플레이로 거론되고 있는 플렉서블 디스플레이의 제조에 있어서 가장 큰 기술적 장애는 TFT 어레이이다. 통상적으로 TFT 어레이 제조에 이용되는 실리콘 반도체 재료는 가볍고 구부리거나 접을 수 있는 플렉서블 디스플레이를 만들기에는 만족스럽지 못하다. 따라서, 플렉서블 디스플레이에 적합한 유기물 재질의 반도체를 개발할 필요성이 제기되어 왔다. 즉, 제작 공정이 간단하고 비용이 저렴하며 충격에 의해 깨지지 않고 구부리거나 접을 수 있는 유기박막트랜지스터(OTFT)는 플렉서블 디스플레이 분야는 물론, 전자종이 등 매우 넓은 범위로 활용될 수 있어 각광을 받고 있는 연구 분야이다.  The biggest technical obstacle in the manufacture of flexible displays, which is being discussed as next generation displays, is the TFT array. Silicon semiconductor materials typically used in manufacturing TFT arrays are not satisfactory for making flexible displays that can be bent or folded. Accordingly, there has been a need to develop organic semiconductors suitable for flexible displays. In other words, the organic thin film transistor (OTFT), which can be bent or folded without breaking due to impact, is easy to use because of its simple manufacturing process, and is inexpensive. Field.

그런데, 유기박막트랜지스터가 제대로 작동하기 위해서는 우수한 유기 반도체의 개발도 필요하지만, 이와 함께 유기반도체와 접합이 잘 이루어지면서 유기반도체의 특성을 효과적으로 발현할 수 있는 게이트 절연막의 개발이 필수적이다. By the way, in order for the organic thin film transistor to work properly, it is necessary to develop an excellent organic semiconductor, but at the same time, it is necessary to develop a gate insulating film that can effectively express the characteristics of the organic semiconductor while being well bonded with the organic semiconductor.

유기박막트랜지스터의 게이트 절연막은 무기질로 된 게이트 절연막과 유기질인 절연성 고분자로 된 게이트 절연막으로 크게 대별될 수 있다.The gate insulating film of the organic thin film transistor can be roughly classified into a gate insulating film made of an inorganic insulating film and a gate insulating film made of an organic insulating polymer.

무기질로 된 게이트 절연막은 유전상수가 크다는 장점을 갖는 반면, 상대적으로 큰 누설전류(leakage current)를 발생시키는 단점이 있으며, 그 외 고온의 후처리 공정이 필요하고 유기반도체에 대한 접합성이 불량하다는 문제가 있다.Inorganic gate insulating film has the advantage of having a large dielectric constant, but has a disadvantage of generating a relatively large leakage current, and also requires a high temperature post-treatment process and poor adhesion to organic semiconductors. There is.

반대로 절연성 유기고분자로 된 게이트 절연막의 경우, 유기반도체와의 접합성이 우수하며, 누설전류 발생이 작고 쉽게 형성이 가능하다는 장점이 있다. 그러나, 유기질인 절연성 고분자는 무기질에 비해 유전상수가 작아 유기박막트랜지스터의 구동전압을 올리는 결과를 초래한다. On the contrary, in the case of a gate insulating film made of an insulating organic polymer, the gate insulating film is excellent in bonding property with the organic semiconductor and has a small leakage current and can be easily formed. However, the insulating polymer, which is organic, has a lower dielectric constant than the inorganic material, resulting in an increase in driving voltage of the organic thin film transistor.

그럼에도 불구하고 많은 유기박막트랜지스터에서 절연성 유기고분자를 게이트 절연막으로 사용하는 이유는 사용되는 유기 반도체와 접합 전압이 비교적 낮아 안정적인 소자 구성이 용이하기 때문이다. 더불어, 무기 절연막은 일반적으로 Si과 같은 기판에서 고온처리에 의해 만들어지는 무기 산화물이므로, 기판이 유연한 고분자 재료 등에는 사용할 수 없기 때문이다.Nevertheless, the reason why many organic thin film transistors use an insulating organic polymer as a gate insulating film is because the junction voltage of the organic semiconductor and the organic semiconductor used is relatively low, thus making it possible to construct a stable device. In addition, since the inorganic insulating film is generally an inorganic oxide made by high temperature treatment on a substrate such as Si, the substrate cannot be used for a flexible polymer material or the like.

유기 게이트 절연막의 전술한 문제점을 해결하기 위해서, 절연막으로 사용되는 절연성 유기고분자에, 유기고분자보다 유전상수가 큰 Ti02나 SiO2와 같은 나노입자 크기의 작은 금속 산화물을 혼합하여 유기-무기 복합형 게이트 절연막을 형성하는 방법이 제안되었다. 그러나, 이렇게 형성된 유기-무기 복합 게이트 절연막은 금속 산화물이 부분적으로 결집되어 있어 결점(defect)으로 작용할 수 있으며, 금속 산화물과 유기고분자의 경계면 등에서 기계적 결함이 발생할 수도 있다. In order to solve the above-mentioned problems of the organic gate insulating film, an organic-inorganic hybrid type is prepared by mixing an insulating organic polymer used as an insulating film with a small metal oxide having a nanoparticle size such as Ti0 2 or SiO 2 having a higher dielectric constant than the organic polymer. A method of forming a gate insulating film has been proposed. However, the organic-inorganic composite gate insulating film thus formed may act as a defect due to partial accumulation of metal oxide, and mechanical defects may occur at the interface between the metal oxide and the organic polymer.

따라서, 유기 절연막과 무기 절연막의 장점을 고루 갖추고 있으면서 유기 박막트랜지스터의 특성을 효과적으로 향상시킬 수 있는 유기박막트랜지스터의 게이트 절연막 형성방법이 요구되고 있다. Therefore, there is a need for a method of forming a gate insulating film of an organic thin film transistor which can effectively improve the characteristics of the organic thin film transistor while having the advantages of the organic insulating film and the inorganic insulating film.

본 발명의 기술적 과제는 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 유기반도체와의 접합성이 우수하며, 유전상수가 크면서도 누설전류 발생이 적은 유기-무기 복합형 게이트 절연막을 간단한 방법으로 유기박막트랜지스터에 형성할 수 있는 방법 및 이로부터 형성된 유기박막트랜지스터의 유기-무기 복합형 게이트 절연막을 제공하는데 있다.The technical problem of the present invention was devised to solve the above problems. The organic-inorganic hybrid gate insulating film having a high dielectric constant and low leakage current with a high dielectric constant and an organic thin film in a simple manner has been developed. A method that can be formed in a transistor and an organic-inorganic hybrid gate insulating film of an organic thin film transistor formed therefrom are provided.

상기와 같은 목적을 달성하기 위하여, 본 발명에 따른 유기박막트랜지스터의 유기-무기 복합형 게이트 절연막 형성방법은, In order to achieve the above object, the organic-inorganic hybrid gate insulating film forming method of the organic thin film transistor according to the present invention,

(S1) 알킬 그룹의 탄소수가 1 내지 20인 금속산화물의 알킬알콕사이드와 절연성 유기고분자를 유기용매에 용해시켜, 게이트 절연막 형성을 위한 유기-무기 복합용액을 준비하는 단계; (S1) dissolving an alkyl alkoxide and an insulating organic polymer of a metal oxide having 1 to 20 carbon atoms of an alkyl group in an organic solvent to prepare an organic-inorganic composite solution for forming a gate insulating film;

(S2) 상기 유기-무기 복합용액을 유기박막트랜지스터 기판에 도포하여 코팅층을 형성하는 단계; 및 (S2) coating the organic-inorganic composite solution on an organic thin film transistor substrate to form a coating layer; And

(S3) 상기 코팅층으로부터 유기용매를 건조시켜 유기-무기 복합형 게이트 절연막을 형성하는 단계를 포함한다. (S3) drying the organic solvent from the coating layer to form an organic-inorganic hybrid gate insulating film.

본 발명의 게이트 절연막 형성방법에 있어서, 금속산화물의 알킬알콕사이드는 Aluminum ethoxide, Aluminum isopropoxide, Aluminum tributoxide, Aluminum sec-butoxide, Aluminum tert-butoxide, Aluminum tri-sec-butoxide, Tin(IV) tert-butoxide, Tributyltin ethoxide, Tin(IV) tert-butoxide, Hafnium(IV) n-butoxide, Hafnium(IV) tert-butoxide, Hafnium isopropoxide isopropanol adduct, Antimony(III) methoxide, Antimony(III) ethoxide, Antimony(III) propoxide, Antimony(III) butoxide, Tantalum(V) methoxide, Tantalum(V) ethoxide, Tantalum(V) butoxide, Titanium(IV) methoxide, Titanium(IV) ethoxide, Titanium(IV) propoxide, Titanium(IV) isopropoxide, Titanium(IV) butoxide, Titanium(IV) tert-butoxide, Zinc methoxide, Zirconium(IV) ethoxide, Zirconium(IV) propoxide, Zirconium(IV) butoxide, Zirconium(IV) tert-butoxide, Zirconium(IV) isopropoxide isopropanol complex, Thallium(I) ethoxide, Zirconium(IV) ethoxide, Vanadium(V) oxytriethoxide, Vanadium(V) oxytriisopropoxide, Indium(III) tert-butoxide, Yttrium(III) butoxide, Barium tert-butoxide, Lanthanum(III) isopropoxide, Scandium(III) isopropoxide, Niobium(V) ethoxide 등을 각각 단독으로 또는 이들 중 2종 이상을 혼합하여 사용할 수 있다. In the gate insulating film forming method of the present invention, the alkyl alkoxide of the metal oxide is aluminum ethoxide, Aluminum isopropoxide, Aluminum tributoxide, Aluminum sec-butoxide, Aluminum tert-butoxide, Aluminum tri-sec-butoxide, Tin (IV) tert-butoxide, Tributyltin ethoxide, Tin (IV) tert-butoxide, Hafnium (IV) n-butoxide, Hafnium (IV) tert-butoxide, Hafnium isopropoxide isopropanol adduct, Antimony (III) methoxide, Antimony (III) ethoxide, Antimony (III) propoxide, Antimony (III) butoxide, Tantalum (V) methoxide, Tantalum (V) ethoxide, Tantalum (V) butoxide, Titanium (IV) methoxide, Titanium (IV) ethoxide, Titanium (IV) propoxide, Titanium (IV) isopropoxide, Titanium ( IV) butoxide, Titanium (IV) tert-butoxide, Zinc methoxide, Zirconium (IV) ethoxide, Zirconium (IV) propoxide, Zirconium (IV) butoxide, Zirconium (IV) tert-butoxide, Zirconium (IV) isopropoxide isopropanol complex, Thallium (I) ethoxide, Zirconium (IV) ethoxide, Vanadium (V) oxytriethoxide, Vanadium (V) oxytriisopropoxide, Indium (III ) tert-butoxide, Yttrium (III) butoxide, Barium tert-butoxide, Lanthanum (III) isopropoxide, Scandium (III) isopropoxide, Niobium (V) ethoxide, etc. can be used alone or in combination of two or more of them. .

본 발명의 게이트 절연막 형성방법에 있어서, 상기 금속산화물의 알킬알콕사이드의 금속성분은 티타늄, 탄탈륨, 지르코늄 등인 것이 바람직하다. 또한, 금속산화물의 알킬알콕사이드(a)와 절연성 유기고분자(b)는 1:100 내지 100:1의 중량비(a:b)로 상기 유기-무기 복합용액에 첨가할 수 있다. In the gate insulating film forming method of the present invention, the metal component of the alkyl alkoxide of the metal oxide is preferably titanium, tantalum, zirconium or the like. In addition, the alkyl alkoxide (a) and the insulating organic polymer (b) of the metal oxide may be added to the organic-inorganic composite solution in a weight ratio (a: b) of 1: 100 to 100: 1.

이러한 방법으로 형성된 유기박막트랜지스터의 유기-무기 복합형 게이트 절연막은 유기 절연막과 무기 절연막의 장점을 고루 갖추고 있으면서 유기 박막트랜지스터의 특성을 효과적으로 향상시킬 수 있다. The organic-inorganic hybrid gate insulating film of the organic thin film transistor formed in this manner can effectively improve the characteristics of the organic thin film transistor while having the advantages of the organic insulating film and the inorganic insulating film.

본 발명의 형성방법에 따르면 간단한 방법으로 유기박막트랜지스터의 게이트 절연막을 형성할 수 있으며, 대면적 코팅도 용이하다. 더불어, 진공장비 등이 필요 없으므로 저비용으로 게이트 절연막을 형성할 수 있고, 고온 처리가 불가능하며 유연성이 있는 고분자 기판에도 효과적으로 적용할 수 있다. According to the forming method of the present invention, the gate insulating film of the organic thin film transistor can be formed by a simple method, and a large area coating is also easy. In addition, it is possible to form a gate insulating film at low cost since no vacuum equipment is required, and can be effectively applied to a polymer substrate which is not capable of high temperature processing and is flexible.

한편, 본 발명에 따라 형성된 유기박막트랜지스터의 유기-무기 복합 게이트 절연막은 유기반도체와의 접합성이 우수하다. 또한, 유전상수가 크면서도 누설전류 발생이 적으므로, 유기박막트랜지스터의 특성을 효과적으로 발현하게 한다. On the other hand, the organic-inorganic composite gate insulating film of the organic thin film transistor formed according to the present invention is excellent in bonding with the organic semiconductor. In addition, since the dielectric constant is large and there is little leakage current, the organic thin film transistor can effectively express the characteristics.

도 1 내지 도 3은 본 발명의 실시예들과 비교예들에 따라 형성된 게이트 절연막의 주파수 변화에 따른 유전상수를 측정하여 도시한 그래프이다.
도 4는 본 발명의 실시예 10에 따른 게이트 절연막의 주파수 변화에 따른 유전상수를 측정하여 도시한 그래프이다.
도 5 내지 도 7은 본 발명의 실시예들과 비교예들에 따라 형성된 게이트 절연막의 전기장 변화에 따른 누설전류를 측정하여 도시한 그래프이다.
1 to 3 are graphs illustrating the measurement of the dielectric constant according to the frequency change of the gate insulating film formed according to the embodiments of the present invention and the comparative examples.
4 is a graph illustrating a dielectric constant measured according to a frequency change of the gate insulating film according to the tenth embodiment of the present invention.
5 to 7 are graphs illustrating leakage currents according to electric field changes of gate insulating layers formed according to embodiments and comparative examples of the present invention.

이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. Hereinafter, the present invention will be described in detail. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.

본 발명자들은 높은 유전상수를 갖는 금속산화물의 알킬알콕사이드를 절연성 유기고분자와 함께 용매에 유기용매에 용해시킨 유기-무기 복합용액을 유기박막트랜지스터 기판에 도포하여 게이트 절연막을 형성하므로서, 전술한 본 발명의 목적을 달성하였다. The present inventors apply an organic-inorganic composite solution obtained by dissolving an alkyl alkoxide of a metal oxide having a high dielectric constant in an organic solvent together with an insulating organic polymer to an organic thin film transistor substrate to form a gate insulating film. The objective was achieved.

본 발명의 유기박막트랜지스터의 유기-무기 복합형 게이트 절연막 형성방법에 따르면, 먼저 알킬 그룹의 탄소수가 1 내지 20인 금속산화물의 알킬알콕사이드와 절연성 유기고분자를 유기용매에 용해시켜, 게이트 절연막 형성을 위한 유기-무기 복합용액을 준비한다(S1 단계). According to the method for forming an organic-inorganic hybrid gate insulating film of the organic thin film transistor of the present invention, first, the alkyl alkoxide and insulating organic polymer of a metal oxide having 1 to 20 carbon atoms of an alkyl group are dissolved in an organic solvent to form a gate insulating film. Prepare an organic-inorganic complex solution (step S1).

금속산화물의 알킬알콕사이드는 M(-O-Alkyl)n으로 표시될 수 있는데, 여기서 M은 금속원소로서, 티타늄, 탄탈륨, 지르코늄 등을 예시할 수 잇다. n은 잘 알려진 바와 같이 금속원소의 산화상태에 따라 정해지는 1 이상의 정수이다. 또한, 알킬 그룹의 탄소수는 1 내지 20인 것이 바람직하고, 더욱 바람직하게는 알킬 그룹의 탄소수가 1 내지 10이다. The alkyl alkoxide of the metal oxide may be represented by M (-O-Alkyl) n, where M is a metal element, and examples thereof include titanium, tantalum, zirconium, and the like. n is an integer of 1 or more, as is well known depending on the oxidation state of the metal element. Moreover, it is preferable that carbon number of an alkyl group is 1-20, More preferably, it is 1-10.

이러한 금속산화물의 알킬알콕사이드는 Aluminum ethoxide, Aluminum isopropoxide, Aluminum tributoxide, Aluminum sec-butoxide, Aluminum tert-butoxide, Aluminum tri-sec-butoxide, Tin(IV) tert-butoxide, Tributyltin ethoxide, Tin(IV) tert-butoxide, Hafnium(IV) n-butoxide, Hafnium(IV) tert-butoxide, Hafnium isopropoxide isopropanol adduct, Antimony(III) methoxide, Antimony(III) ethoxide, Antimony(III) propoxide, Antimony(III) butoxide, Tantalum(V) methoxide, Tantalum(V) ethoxide, Tantalum(V) butoxide, Titanium(IV) methoxide, Titanium(IV) ethoxide, Titanium(IV) propoxide, Titanium(IV) isopropoxide, Titanium(IV) butoxide, Titanium(IV) tert-butoxide, Zinc methoxide, Zirconium(IV) ethoxide, Zirconium(IV) propoxide, Zirconium(IV) butoxide, Zirconium(IV) tert-butoxide, Zirconium(IV) isopropoxide isopropanol complex, Thallium(I) ethoxide, Zirconium(IV) ethoxide, Vanadium(V) oxytriethoxide, Vanadium(V) oxytriisopropoxide, Indium(III) tert-butoxide, Yttrium(III) butoxide, Barium tert-butoxide, Lanthanum(III) isopropoxide, Scandium(III) isopropoxide, Niobium(V) ethoxide 등을 예시할 수 있는데, 이들을 각각 단독으로 또는 이들 중 2종 이상을 혼합하여 사용할 수 있다. Alkyl alkoxides of these metal oxides include Aluminum ethoxide, Aluminum isopropoxide, Aluminum tributoxide, Aluminum sec-butoxide, Aluminum tert-butoxide, Aluminum tri-sec-butoxide, Tin (IV) tert-butoxide, Tributyltin ethoxide, Tin (IV) tert- butoxide, Hafnium (IV) n-butoxide, Hafnium (IV) tert-butoxide, Hafnium isopropoxide isopropanol adduct, Antimony (III) methoxide, Antimony (III) ethoxide, Antimony (III) propoxide, Antimony (III) butoxide, Tantalum (V ) methoxide, Tantalum (V) ethoxide, Tantalum (V) butoxide, Titanium (IV) methoxide, Titanium (IV) ethoxide, Titanium (IV) propoxide, Titanium (IV) isopropoxide, Titanium (IV) butoxide, Titanium (IV) tert -butoxide, Zinc methoxide, Zirconium (IV) ethoxide, Zirconium (IV) propoxide, Zirconium (IV) butoxide, Zirconium (IV) tert-butoxide, Zirconium (IV) isopropoxide isopropanol complex, Thallium (I) ethoxide, Zirconium (IV) ethoxide, Vanadium (V) oxytriethoxide, Vanadium (V) oxytriisopropoxide, Indium (III) tert-butoxide, Yttrium (III) butoxide, Barium ter t-butoxide, Lanthanum (III) isopropoxide, Scandium (III) isopropoxide, Niobium (V) ethoxide, etc. can be exemplified, and these may be used alone or in combination of two or more thereof.

절연성 유기고분자로는 유기박막 트랜지스터의 유기 게이트 절연막 형성에 사용되거나 사용될 수 있는 유기고분자라면 모두 사용이 가능하므로, 본 발명에 있어서 절연성 유기고분자는 호모폴리머 뿐만 아니라, 2종 이상의 모노머가 중합된 코폴리머, 그래프트 폴리머는 물론, 열이나 광 조사에 의해 가교반응하여 형성되는 가교고분자를 모두 포함되는 의미로 해석되어야 한다. As the insulating organic polymer, any organic polymer that can be used or used to form the organic gate insulating film of the organic thin film transistor can be used. Therefore, in the present invention, the insulating organic polymer is not only a homopolymer but also a copolymer in which at least two monomers are polymerized. , Graft polymer, as well as cross-linked polymer formed by cross-linking reaction by heat or light irradiation should be interpreted to include all.

알려진 절연성 유기고분자로는 예를 들어 폴리에스테르 (polyester), 폴리카보네이트(polycarbonate), 폴리비닐알코올(polyvinylalcohol), 폴리비닐부티랄(polyvinylbutyral), 폴리아세탈(polyacetal), 폴리아릴레이트(polyarylate), 폴리아마이드(polyamide), 폴리아미드이미드(polyamidimide), 폴리에테르이미드(polyetherimide), 폴리페닐렌에테르(polyphenylenether), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리에테르설폰(polyethersulfone), 폴리에테르케톤(polyetherketone), 폴리프탈아마이드(polypthalamide), 폴리에테르니트릴(polyethernitrile), 폴리에테르설폰(polyethersulofone), 폴리벤즈이미다졸(polybenzimidazole), 폴리카보디이미드(polycarbodiimide), 폴리실록산 (polysiloxane), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리메타크릴아마이드(polymethacrylamide), 니트릴고무(nitrile rubber), 아크릴 고무(acryl rubber), 폴리에틸렌테트라플루오라이드(polyethylenetetrafluoride), 에폭시 수지 (epoxy resin), 페놀 수지(phenol resin), 멜라민 수지(melamine resin), 우레아 수지(urea resin), 폴리부텐(polybutene), 폴리펜텐(polypentene), 에틸렌-프로필렌공중합체(ethylene-co-propylene), 에틸렌-부텐-디엔 공중합체(ethylene-co-butene diene), 폴리부타디엔(polybutadiene), 폴리이소프렌(polyisoprene), 에틸렌-프로필렌-디엔 공중합체(ethylene-co-propylene diene), 부틸고무(butyl rubber), 폴리메틸펜텐(polymethylpentene), 폴리스티렌(polystyrene), 스티렌-부타디엔 공중합체(styrene-co-butadiene), 수첨스티렌-부타디엔 공중합체 (hydrogenated styrene-co-butadiene), 수첨폴리이소프렌(hydrogenated polyisoprene), 수첨폴리부타디엔(hydrogenated polybutadiene) 등을 예시할 수 있으며, 이에 제한되지 않는다. Known insulating organic polymers include, for example, polyester, polycarbonate, polyvinylalcohol, polyvinylbutyral, polyacetal, polyarylate, poly Amide (polyamide), polyamidimide, polyetherimide, polyphenylenether, polyphenylenesulfide, polyethersulfone, polyetherketone, polyetherketone, polyetherketone Phthalamide, polyethernitrile, polyethersulofone, polybenzimidazole, polycarbodiimide, polysiloxane, polymethylmethacrylate, Polymethacrylamide, nitrile rubber, acrylic rubber, poly Ethylenetetrafluoride, epoxy resin, phenol resin, melamine resin, urea resin, polybutene, polypentene, polypentene, ethylene- Ethylene-co-propylene, ethylene-co-butene diene, polybutadiene, polyisoprene, ethylene-propylene-diene copolymer -propylene diene, butyl rubber, polymethylpentene, polystyrene, styrene-butadiene copolymer, hydrogenated styrene-butadiene copolymer (hydrogenated styrene-co-butadiene ), Hydrogenated polyisoprene, hydrogenated polybutadiene, and the like, but are not limited thereto.

유기-무기 복합용액을 준비하기 위해 사용되는 유기용매로는 금속산화물의 알킬알콕사이드와 절연성 유기고분자를 모두 용해시킬 수 있는 용매라면 모두 사용이 가능하다. 이러한 유기용매는 사용되는 금속산화물의 알킬알콕사이드와 절연성 유기고분자의 종류에 따라 당업자가 적절하게 선택할 수 있음은 물론이다. 이와 같이, 금속산화물의 알킬알콕사이드와 절연성 유기고분자가 모두 용해된 유기-무기 복합용액에는 무기 성분과 유기 성분이 잘 혼화된 상태로 존재하게 된다.As the organic solvent used to prepare the organic-inorganic composite solution, any solvent capable of dissolving both the alkyl alkoxide and the insulating organic polymer of the metal oxide can be used. Such an organic solvent may be appropriately selected by those skilled in the art according to the type of the alkyl alkoxide and the insulating organic polymer of the metal oxide used. As such, the organic-inorganic composite solution in which both the alkyl alkoxide and the insulating organic polymer of the metal oxide are dissolved is present in a state in which the inorganic component and the organic component are well mixed.

유기용매의 대표적인 예로는 톨루엔, 테트라하이드로퓨란, 부틸아세테이트, 이소프로판올, 에탄올, PGMEA 등을 예시할 수 있으며, 이에 제한되지 않는다. 유기용매는 각각 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.Representative examples of the organic solvent may include toluene, tetrahydrofuran, butyl acetate, isopropanol, ethanol, PGMEA and the like, but is not limited thereto. An organic solvent can be used individually or in mixture of 2 or more types, respectively.

본 발명에 따른 유기박막트랜지스터의 유기-무기 복합형 게이트 절연막 형성방법에 있어서, 금속산화물의 알킬알콕사이드(a)와 절연성 유기고분자(b)는 1:100 내지 100:1의 중량비(a:b)로 상기 유기-무기 복합용액에 첨가할 수 있다. 유기-무기 복합용액에 용해되는 고형성분, 즉 금속산화물의 알킬알콕사이드와 절연성 유기고분자의 농도는 균일한 코팅층을 형성하기 위해 적절히 조절할 수 있는데, 예를 들어 유기-무기 복합용액 총 중량을 기준으로 0.1 내지 40중량%가 되도록 첨가할 수 있다. In the organic-inorganic hybrid gate insulating film formation method of the organic thin film transistor according to the present invention, the alkyl alkoxide (a) and the insulating organic polymer (b) of the metal oxide is 1: 100 to 100: 1 by weight ratio (a: b) It may be added to the organic-inorganic composite solution. The concentration of the solid component dissolved in the organic-inorganic composite solution, that is, the alkyl alkoxide of the metal oxide and the insulating organic polymer can be appropriately adjusted to form a uniform coating layer, for example, 0.1 based on the total weight of the organic-inorganic composite solution. To 40% by weight.

이어서, 준비한 유기-무기 복합용액을 유기박막트랜지스터 기판에 도포하여 코팅층을 형성한다(S2 단계).Subsequently, the prepared organic-inorganic composite solution is applied to the organic thin film transistor substrate to form a coating layer (step S2).

유기-무기 복합용액을 코팅하는 방법으로는 스핀코팅법, 딥코팅법과 같이 공지의 용액 코팅방법이 모두 적용될 수 있다. As a method of coating the organic-inorganic composite solution, all known solution coating methods such as spin coating and dip coating may be applied.

그런 다음, 코팅층, 즉 유기-무기 복합용액 코팅층으로부터 유기용매를 건조시켜 유기-무기 복합형 게이트 절연막을 형성한다(S3 단계). Then, the organic solvent is dried from the coating layer, that is, the organic-inorganic composite solution coating layer, to form an organic-inorganic hybrid gate insulating film (step S3).

만일 절연성 유기고분자로서 가교반응을 할 수 있는 관능기를 포함하는 고분자를 사용하였다면, 필요에 따라 열을 가하거나 또는 광을 조사하여 가교반응을 진행하는 공정을 추가할 수 있음은 물론이다.If a polymer containing a functional group capable of crosslinking reaction is used as the insulating organic polymer, a step of applying a heat or irradiating light to the crosslinking reaction may be added if necessary.

이와 같이, 본 발명에 따르면 고온의 후처리 공정 없이도 유기-무기 복합형 게이트 절연막을 간단한 방법으로 형성할 수 있다. 또한, 형성된 유기-무기 복합형 게이트 절연막은 포함된 절연성 유기고분자로 인하여 유기반도체와의 접합성이 우수하며 누설전류 발생도 적다. 더불어, 금속산화물의 알킬알콕사이드 성분으로 인하여 유전상수가 커서 유기반도체의 특성을 효과적으로 발현할 수 있게 한다.
As described above, according to the present invention, the organic-inorganic hybrid gate insulating film can be formed by a simple method without a high temperature post-treatment process. In addition, the formed organic-inorganic hybrid gate insulating film is excellent in adhesion with the organic semiconductor due to the insulating organic polymer included and less leakage current. In addition, due to the alkyl alkoxide component of the metal oxide, the dielectric constant is large so that the characteristics of the organic semiconductor can be effectively expressed.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것으로 해석되어져서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되어 지는 것이다.
Hereinafter, examples will be described in detail to help understand the present invention. However, embodiments according to the present invention can be modified in many different forms, the scope of the invention should not be construed as limited to the following examples. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.

절연성 유기고분자의 합성Synthesis of Dielectric Organic Polymer

합성예 1Synthesis Example 1

테트라하이드로퓨란 100ml에 MMA(Methyl methacrylate) 1.2ml, N-phenylmaleimide 3.88g 과 개시제인 AIBN 0.055g을 넣고, 질소 분위기 하에서 75℃에서 24시간 반응시킨 다음, 헥산에서 침전시켜 공중합체(MMA:N-phenylmaleimide의 몰비=1:2)를 합성하였다.To 100 ml of tetrahydrofuran, 1.2 ml of MMA (Methyl methacrylate), 3.88 g of N-phenylmaleimide, and 0.055 g of AIBN, an initiator, were reacted at 75 ° C. for 24 hours in a nitrogen atmosphere, and then precipitated in hexane to obtain a copolymer (MMA: N- The molar ratio of phenylmaleimide = 1: 2) was synthesized.

합성예 2Synthesis Example 2

공중합체(MMA:N-phenylmaleimide)의 몰비를 2:1로 변화시킨 것을 제외하고는, 합성예 1과 동일한 방법으로 합성하였다.Synthesis was carried out in the same manner as in Synthesis Example 1, except that the molar ratio of the copolymer (MMA: N-phenylmaleimide) was changed to 2: 1.

합성예 3Synthesis Example 3

공중합체(MMA:N-phenylmaleimide)의 몰비를 3:1로 변화시킨 것을 제외하고는, 합성예 1과 동일한 방법으로 합성하였다.
Synthesis was carried out in the same manner as in Synthesis Example 1, except that the molar ratio of the copolymer (MMA: N-phenylmaleimide) was changed to 3: 1.

실시예Example

실시예 1Example 1

PGMEA(Propylene Glycol Methyl Ether Acetate) 5㎖에 합성예 1에서 합성한 공중합체 0.54g을 첨가하고, 여기에 Titanium(IV) isopropoxide(97%) 0.041㎖를 첨가하여 유기-무기 복합용액을 준비하였다. 준비한 복합용액을 기판에 도포하기 전에 0.2um 필터를 통과시켜 미세 먼지 등을 제거하였다. 0.54 g of the copolymer synthesized in Synthesis Example 1 was added to 5 ml of PGMEA (Propylene Glycol Methyl Ether Acetate), and 0.041 ml of Titanium (IV) isopropoxide (97%) was added thereto to prepare an organic-inorganic composite solution. Before applying the prepared composite solution to the substrate through a 0.2um filter to remove fine dust and the like.

아세톤에 담가 초음파 세척한 Si 웨이퍼 기판 위에 복합용액을 떨어뜨리고 3000rpm에서 30초 동안 유지하여 스핀코팅하였다. 이 후, 150℃ 진공오븐에서 10시간이상 건조하여 게이트 절연막을 형성하였다. 형성된 게이트 절연막의 두께는 약 130nm였다.The composite solution was dropped on acetone and ultrasonically cleaned, and the composite solution was spin coated by maintaining the solution at 3000 rpm for 30 seconds. Thereafter, the resultant was dried in a vacuum oven at 150 ° C. for at least 10 hours to form a gate insulating film. The thickness of the formed gate insulating film was about 130 nm.

이렇게 실시예 1에 따라 형성된 게이트 절연막을 사용된 절연성 고분자의 종류와 금속 산화물의 알콕사이드의 금속성분 종류에 따라 MP1-Ti로 명명하였다.Thus, the gate insulating film formed according to Example 1 was named MP1-Ti according to the type of insulating polymer used and the type of metal component of the alkoxide of the metal oxide.

실시예 2Example 2

합성예 1에서 합성한 공중합체 대신 합성예 2에서 합성한 공중합체를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 실시하였다.The same procedure as in Example 1 was carried out except that the copolymer synthesized in Synthesis Example 2 was used instead of the copolymer synthesized in Synthesis Example 1.

이렇게 실시예 2에 따라 형성된 게이트 절연막을 MP2-Ti로 명명하였다.Thus, the gate insulating film formed in accordance with Example 2 was named MP2-Ti.

실시예 3Example 3

합성예 1에서 합성한 공중합체 대신 합성예 3에서 합성한 공중합체를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 실시하였다.The same procedure as in Example 1 was carried out except that the copolymer synthesized in Synthesis Example 3 was used instead of the copolymer synthesized in Synthesis Example 1.

이렇게 실시예 3에 따라 형성된 게이트 절연막을 MP3-Ti로 명명하였다.Thus, the gate insulating film formed in accordance with Example 3 was named MP3-Ti.

실시예 4Example 4

실시예 1의 Titanium(IV) isopropoxide 대신 Zirconium(IV) propoxide(용매1-propanol하에서 70wt%)을 0.038㎖ 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 실시하였다.The same procedure as in Example 1 was conducted except that 0.038 ml of Zirconium (IV) propoxide (70 wt% under Solvent 1-propanol) was added instead of the Titanium (IV) isopropoxide of Example 1.

이렇게 실시예 4에 따라 형성된 게이트 절연막을 MP1-Zr로 명명하였다.Thus, the gate insulating film formed in accordance with Example 4 was named MP1-Zr.

실시예 5Example 5

실시예 2의 Titanium(IV) isopropoxide 대신 Zirconium(IV) propoxide(용매1-propanol하에서 70wt%)을 0.038㎖ 첨가한 것을 제외하고는, 실시예 2와 동일한 방법으로 실시하였다.The same procedure as in Example 2 was carried out except that 0.038 ml of Zirconium (IV) propoxide (70 wt% under Solvent 1-propanol) was added instead of the Titanium (IV) isopropoxide of Example 2.

이렇게 실시예 5에 따라 형성된 게이트 절연막을 MP2-Zr로 명명하였다.Thus, the gate insulating film formed in accordance with Example 5 was named MP2-Zr.

실시예 6Example 6

실시예 3의 Titanium(IV) isopropoxide 대신 Zirconium(IV) propoxide(용매1-propanol하에서 70wt%)을 0.038㎖ 첨가한 것을 제외하고는, 실시 예 3과 동일한 방법으로 실시하였다.The same procedure as in Example 3 was conducted except that 0.038 ml of Zirconium (IV) propoxide (70 wt% under Solvent 1-propanol) was added instead of Titanium (IV) isopropoxide of Example 3.

이렇게 실시예 6에 따라 형성된 게이트 절연막을 MP3-Zr로 명명하였다.Thus, the gate insulating film formed in accordance with Example 6 was named MP3-Zr.

실시예 7Example 7

실시예 1의 Titanium(IV) isopropoxide 대신 Tantalum(V) ethoxide(99.98%)을 0.025㎖ 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 실시하였다.The same procedure as in Example 1 was conducted except that 0.025 ml of tantalum (V) ethoxide (99.98%) was added instead of the titanium (IV) isopropoxide of Example 1.

이렇게 실시예 7에 따라 형성된 게이트 절연막을 MP1-Ta로 명명하였다.Thus, the gate insulating film formed in accordance with Example 7 was named MP1-Ta.

실시예 8Example 8

실시예 2의 Titanium(IV) isopropoxide 대신 Tantalum(V) ethoxide(99.98%)을 0.025㎖ 첨가한 것을 제외하고는, 실시예 2와 동일한 방법으로 실시하였다.The same procedure as in Example 2 was conducted except that 0.025 ml of tantalum (V) ethoxide (99.98%) was added instead of the titanium (IV) isopropoxide of Example 2.

이렇게 실시예 8에 따라 형성된 게이트 절연막을 MP2-Ta로 명명하였다.Thus, the gate insulating film formed in accordance with Example 8 was named MP2-Ta.

실시예 9Example 9

실시예 3의 Titanium(IV) isopropoxide 대신 Tantalum(V) ethoxide(99.98%)을 0.025㎖ 첨가한 것을 제외하고는, 실시예 3과 동일한 방법으로 실시하였다.The same procedure as in Example 3 was conducted except that 0.025 ml of Tantalum (V) ethoxide (99.98%) was added instead of the Titanium (IV) isopropoxide of Example 3.

이렇게 실시예 9에 따라 형성된 게이트 절연막을 MP3-Ta로 명명하였다.Thus, the gate insulating film formed in accordance with Example 9 was named MP3-Ta.

실시예 10Example 10

실시예 1의 유기-무기 복합용액으로서, 2-propanol 45㎖에 poly(melamine-co-formaldehyde) 0.2g을 첨가하고, Titanium(IV) isopropoxide(97%) 3.07㎖를 첨가하여 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 실시하였다.
As an organic-inorganic composite solution of Example 1, except that 0.2 g of poly (melamine-co-formaldehyde) was added to 45 ml of 2-propanol, and 3.07 ml of Titanium (IV) isopropoxide (97%) was added. Was carried out in the same manner as in Example 1.

비교예Comparative example

비교예 1Comparative Example 1

금속산화물의 알킬알콕사이드를 첨가하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였다.The same procedure as in Example 1 was conducted except that no alkyl alkoxide of metal oxide was added.

이렇게 비교예 1에 따라 형성된 게이트 절연막을 MP1으로 명명하였다.Thus, the gate insulating film formed according to Comparative Example 1 was named MP1.

비교예 2Comparative Example 2

금속산화물의 알킬알콕사이드를 첨가하지 않은 것을 제외하고는 실시예 2와 동일한 방법으로 실시하였다.The same process as in Example 2 was conducted except that no alkyl alkoxide of the metal oxide was added.

이렇게 비교예 2에 따라 형성된 게이트 절연막을 MP2로 명명하였다.The gate insulating film formed according to Comparative Example 2 was named MP2.

비교예 3Comparative Example 3

금속산화물의 알킬알콕사이드를 첨가하지 않은 것을 제외하고는 실시예 3과 동일한 방법으로 실시하였다.The same process as in Example 3 was conducted except that no alkyl alkoxide of metal oxide was added.

이렇게 비교예 3에 따라 형성된 게이트 절연막을 MP3로 명명하였다.
Thus, the gate insulating film formed according to Comparative Example 3 was named MP3.

유전상수 및 누설전류 측정Dielectric constant and leakage current measurement

실시예 및 비교예에 따라 제조한 게이트 절연막 위에 금 전극을 올려 LCR meter를 이용하여 유전상수를 측정하였고, 그 결과를 도 1 내지 4에 나타냈다. 또한, 누설전류를 측정하여 그 결과를 도 5 내지 7에 나타냈다. A gold electrode was placed on the gate insulating film prepared according to Examples and Comparative Examples to measure the dielectric constant using an LCR meter, and the results are shown in FIGS. 1 to 4. In addition, the leakage current was measured and the results are shown in FIGS. 5 to 7.

도 1 내지 도 3을 참조하면, 무기산화물의 알콕사이드와 절연성 유기고분자를 동시에 용해시킨 유기-무기 복합용액으로 형성한 실시예들의 게이트 절연막들이, 절연성 고분자만을 용해시킨 용액으로 형성한 비교예들의 게이트 절연막들보다 모든 주파수 영역에서 유전상수가 크게 나타났다. 또한, 실시예들의 게이트 절연막은 주파수 변화에 따른 유전상수값의 변화가 적어서 양호한 특성을 보여주고 있다.1 to 3, the gate insulating films of the comparative examples in which the gate insulating films of the embodiments formed of the organic-inorganic composite solution in which the alkoxide of the inorganic oxide and the insulating organic polymer were dissolved simultaneously were formed of a solution in which only the insulating polymer was dissolved. The dielectric constant was higher in all frequency ranges than In addition, the gate insulating film of the embodiments exhibits good characteristics because there is little change in the dielectric constant value according to the frequency change.

도 4는 실시예 10에 따른 게이트 절연막의 유전상수를 도시한 도면이다. 도면에 나타난 바와 같이, 실시예 10의 유전상수는 매우 높게 나타났는데, 이는 유기-무기 복합용액 제조시 금속산화물의 알콕사이드를 절연성 유기고분자에 비해 상대적으로 많이 첨가하였기 때문이다.4 is a diagram showing a dielectric constant of a gate insulating film according to the tenth embodiment. As shown in the figure, the dielectric constant of Example 10 was very high, since the alkoxide of the metal oxide was added relatively more than the insulating organic polymer when preparing the organic-inorganic composite solution.

한편, 도 5 내지 도 7에 나타난 바와 같이, 무기산화물의 알콕사이드와 절연성 유기고분자를 동시에 용해시킨 유기-무기 복합용액으로 형성한 실시예들의 게이트 절연막들은 누설전류 특성이 양호함을 알 수 있다. 도면을 참조하면, 도 7의 MP3-Ti를 제외하고는 유기-무기 복합용액으로 형성한 실시예들의 게이트 절연막들은 대부분의 전기장 영역에서 절연성 고분자만을 용해시킨 용액으로 형성한 비교예들의 게이트 절연막들보다 오히려 누설전류 발생량이 적게 나타났는데, 이는 게이트 절연막 내의 유기고분자와 무기산화물의 알콕사이드가 서로 잘 혼화된 것에 기인한 것으로 추정된다. On the other hand, as shown in Figures 5 to 7, it can be seen that the gate insulating films of the embodiments formed of an organic-inorganic composite solution in which the alkoxide of the inorganic oxide and the insulating organic polymer are dissolved simultaneously have good leakage current characteristics. Referring to the drawings, except for the MP3-Ti of FIG. 7, the gate insulating films of the embodiments formed of the organic-inorganic composite solution are compared to the gate insulating films of the comparative examples formed of a solution in which only an insulating polymer is dissolved in most electric field regions. On the contrary, the amount of leakage current generated was low, which is presumed to be due to the good mixing of the organic polymer and the alkoxide of the inorganic oxide in the gate insulating film.

Claims (6)

(S1) 알킬 그룹의 탄소수가 1 내지 20인 금속산화물의 알킬알콕사이드와 절연성 유기고분자를 유기용매에 용해시켜, 게이트 절연막 형성을 위한 유기-무기 복합용액을 준비하는 단계;
(S2) 상기 유기-무기 복합용액을 유기박막트랜지스터 기판에 도포하여 코팅층을 형성하는 단계; 및
(S3) 상기 코팅층으로부터 유기용매를 건조시켜 유기-무기 복합형 게이트 절연막을 형성하는 단계를 포함하는,
유기박막트랜지스터의 유기-무기 복합형 게이트 절연막 형성방법.
(S1) dissolving an alkyl alkoxide and an insulating organic polymer of a metal oxide having 1 to 20 carbon atoms of an alkyl group in an organic solvent to prepare an organic-inorganic composite solution for forming a gate insulating film;
(S2) coating the organic-inorganic composite solution on an organic thin film transistor substrate to form a coating layer; And
(S3) drying the organic solvent from the coating layer to form an organic-inorganic hybrid gate insulating film,
A method of forming an organic-inorganic hybrid gate insulating film of an organic thin film transistor.
제1항에 있어서, 상기 알킬 그룹의 탄소수가 1 내지 10인 것을 특징으로 하는, 유기박막트랜지스터의 유기-무기 복합형 게이트 절연막 형성방법. 2. The method of forming an organic-inorganic hybrid gate insulating film of an organic thin film transistor according to claim 1, wherein the alkyl group has 1 to 10 carbon atoms. 제1항에 있어서, 상기 금속산화물의 알킬알콕사이드는 Aluminum ethoxide, Aluminum isopropoxide, Aluminum tributoxide, Aluminum sec-butoxide, Aluminum tert-butoxide, Aluminum tri-sec-butoxide, Tin(IV) tert-butoxide, Tributyltin ethoxide, Tin(IV) tert-butoxide, Hafnium(IV) n-butoxide, Hafnium(IV) tert-butoxide, Hafnium isopropoxide isopropanol adduct, Antimony(III) methoxide, Antimony(III) ethoxide, Antimony(III) propoxide, Antimony(III) butoxide, Tantalum(V) methoxide, Tantalum(V) ethoxide, Tantalum(V) butoxide, Titanium(IV) methoxide, Titanium(IV) ethoxide, Titanium(IV) propoxide, Titanium(IV) isopropoxide, Titanium(IV) butoxide, Titanium(IV) tert-butoxide, Zinc methoxide, Zirconium(IV) ethoxide, Zirconium(IV) propoxide, Zirconium(IV) butoxide, Zirconium(IV) tert-butoxide, Zirconium(IV) isopropoxide isopropanol complex, Thallium(I) ethoxide, Zirconium(IV) ethoxide, Vanadium(V) oxytriethoxide, Vanadium(V) oxytriisopropoxide, Indium(III) tert-butoxide, Yttrium(III) butoxide, Barium tert-butoxide, Lanthanum(III) isopropoxide, Scandium(III) isopropoxide 및 Niobium(V) ethoxide로 이루어진 군으로부터 선택된 적어도 어느 하나인 것을 특징으로 하는, 유기박막트랜지스터의 유기-무기 복합형 게이트 절연막 형성방법. The method of claim 1, wherein the alkyl alkoxide of the metal oxide is Aluminum ethoxide, Aluminum isopropoxide, Aluminum tributoxide, Aluminum sec-butoxide, Aluminum tert-butoxide, Aluminum tri-sec-butoxide, Tin (IV) tert-butoxide, Tributyltin ethoxide, Tin (IV) tert-butoxide, Hafnium (IV) n-butoxide, Hafnium (IV) tert-butoxide, Hafnium isopropoxide isopropanol adduct, Antimony (III) methoxide, Antimony (III) ethoxide, Antimony (III) propoxide, Antimony (III) ) butoxide, Tantalum (V) methoxide, Tantalum (V) ethoxide, Tantalum (V) butoxide, Titanium (IV) methoxide, Titanium (IV) ethoxide, Titanium (IV) propoxide, Titanium (IV) isopropoxide, Titanium (IV) butoxide , Titanium (IV) tert-butoxide, Zinc methoxide, Zirconium (IV) ethoxide, Zirconium (IV) propoxide, Zirconium (IV) butoxide, Zirconium (IV) tert-butoxide, Zirconium (IV) isopropoxide isopropanol complex, Thallium (I) ethoxide, Zirconium (IV) ethoxide, Vanadium (V) oxytriethoxide, Vanadium (V) oxytriisopropoxide, Indium (III) tert-butoxide, Yttrium (III) b Forming an organic-inorganic hybrid gate insulating film of an organic thin film transistor, characterized in that at least one selected from the group consisting of utoxide, Barium tert-butoxide, Lanthanum (III) isopropoxide, Scandium (III) isopropoxide and Niobium (V) ethoxide Way. 제1항에 있어서, 상기 금속산화물의 알킬알콕사이드의 금속성분은 티타늄, 탄탈륨 및 지르코늄으로 이루어진 군으로부터 선택된 적어도 어느 하나인 것을 특징으로 하는, 유기박막트랜지스터의 유기-무기 복합형 게이트 절연막 형성방법. The method of claim 1, wherein the metal component of the alkyl alkoxide of the metal oxide is at least one selected from the group consisting of titanium, tantalum and zirconium. 제1항에 있어서, 상기 금속산화물의 알킬알콕사이드와 절연성 유기고분자를 1:100 내지 100:1의 중량비로 상기 유기-무기 복합용액에 첨가하는 것을 특징으로 하는, 유기박막트랜지스터의 유기-무기 복합형 게이트 절연막 형성방법. The organic-inorganic hybrid type of organic thin film transistor according to claim 1, wherein the alkyl alkoxide and the insulating organic polymer of the metal oxide are added to the organic-inorganic composite solution in a weight ratio of 1: 100 to 100: 1. Method for forming a gate insulating film. 제1항 내지 제5항 중 어느 한 항에 따라 형성된 유기박막트랜지스터의 유기-무기 복합형 게이트 절연막.An organic-inorganic hybrid gate insulating film of an organic thin film transistor formed according to any one of claims 1 to 5.
KR1020100041917A 2010-05-04 2010-05-04 Method for forming organic-inorganic composite typed gate insulator of organic thin film transistor and organic-inorganic composite typed gate insulator of organic thin film transistor formed therefrom KR101056599B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100041917A KR101056599B1 (en) 2010-05-04 2010-05-04 Method for forming organic-inorganic composite typed gate insulator of organic thin film transistor and organic-inorganic composite typed gate insulator of organic thin film transistor formed therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100041917A KR101056599B1 (en) 2010-05-04 2010-05-04 Method for forming organic-inorganic composite typed gate insulator of organic thin film transistor and organic-inorganic composite typed gate insulator of organic thin film transistor formed therefrom

Publications (1)

Publication Number Publication Date
KR101056599B1 true KR101056599B1 (en) 2011-08-11

Family

ID=44933244

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100041917A KR101056599B1 (en) 2010-05-04 2010-05-04 Method for forming organic-inorganic composite typed gate insulator of organic thin film transistor and organic-inorganic composite typed gate insulator of organic thin film transistor formed therefrom

Country Status (1)

Country Link
KR (1) KR101056599B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100492300B1 (en) 2002-11-22 2005-06-02 전자부품연구원 Organic-inorganic dual-layered insulation film
KR20050123332A (en) * 2004-06-24 2005-12-29 삼성에스디아이 주식회사 Organic tft and fabrication method of the same
KR100737383B1 (en) 2006-09-11 2007-07-09 한국전자통신연구원 Insulation layer, organic thin film transistor using the same and manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100492300B1 (en) 2002-11-22 2005-06-02 전자부품연구원 Organic-inorganic dual-layered insulation film
KR20050123332A (en) * 2004-06-24 2005-12-29 삼성에스디아이 주식회사 Organic tft and fabrication method of the same
KR100737383B1 (en) 2006-09-11 2007-07-09 한국전자통신연구원 Insulation layer, organic thin film transistor using the same and manufacturing method

Similar Documents

Publication Publication Date Title
JP4791778B2 (en) Organic / inorganic metal hybrid material and organic insulator composition containing the same
JP4562027B2 (en) Composition for forming organic insulator and organic insulator produced therefrom
KR101353824B1 (en) Composition for Preparing Organic Insulator and Organic Insulator Prepared using the same
JP5054885B2 (en) Organic thin-film transistor including multi-layer gate insulating film
CN102804439B (en) Crosslinkable dielectrics and methods of preparation and use thereof
EP2975649A1 (en) Field effect transistor
US7382041B2 (en) Organic-inorganic composite insulating material for electronic element, method of producing same and field-effect transistor comprising same
WO2006086082A2 (en) Siloxane-polymer dielectric compositions and related organic field-effect transistors
Kwon et al. Newly synthesized nonvacuum processed high‐k polymeric dielectrics with carboxyl functionality for highly stable operating printed transistor applications
TWI690982B (en) Semiconductor element, complementary semiconductor device, method of manufacturing semiconductor element, wireless communication device, and product tag
Kim et al. Preparation and application of polystyrene-grafted alumina core-shell nanoparticles for dielectric surface passivation in solution-processed polymer thin film transistors
KR20140023114A (en) Insulating layer forming method using icvd process
US9431619B2 (en) Composition for insulator, insulator, and thin film transistor
Baek et al. A critical role of amphiphilic polymers in organic–inorganic hybrid sol–gel derived gate dielectrics for flexible organic thin-film transistors
JP2010267657A (en) Insulating thin film, solution for forming insulating thin film, method of manufacturing insulating thin film, field effect transistor and method of manufacturing the same, and image display device
JP6289617B2 (en) Organic semiconductor device
Rao et al. ZrHfO2-PMMA hybrid dielectric layers for high-performance all solution-processed In2O3-based TFTs
KR101056599B1 (en) Method for forming organic-inorganic composite typed gate insulator of organic thin film transistor and organic-inorganic composite typed gate insulator of organic thin film transistor formed therefrom
US20180053896A1 (en) Organic thin film transistor, and fabricating method thereof
TWI573194B (en) Insulation film for semiconductor and organic film transister using the same
Watase et al. Preparation and electric property of polysilsesquioxane thin films incorporating carbazole groups
KR20110082051A (en) Underlayer film for image formation
JP5446751B2 (en) Multilayer structure, electronic element, electronic element array, image display medium, and image display apparatus
JP5590366B2 (en) Aluminum-containing organic compound solution, field effect transistor, and method for producing field effect transistor
US20090189149A1 (en) Composition for producing insulator and organic insulator using the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140722

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150717

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee