KR101054752B1 - Composite panel for automobile interior and its manufacturing method - Google Patents
Composite panel for automobile interior and its manufacturing method Download PDFInfo
- Publication number
- KR101054752B1 KR101054752B1 KR1020080110048A KR20080110048A KR101054752B1 KR 101054752 B1 KR101054752 B1 KR 101054752B1 KR 1020080110048 A KR1020080110048 A KR 1020080110048A KR 20080110048 A KR20080110048 A KR 20080110048A KR 101054752 B1 KR101054752 B1 KR 101054752B1
- Authority
- KR
- South Korea
- Prior art keywords
- fiber
- fibers
- thermoplastic
- felt
- composite panel
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 62
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 239000000835 fiber Substances 0.000 claims abstract description 140
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 58
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 58
- 238000000034 method Methods 0.000 claims abstract description 30
- 229920005672 polyolefin resin Polymers 0.000 claims abstract description 18
- -1 felt Substances 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 12
- 238000010030 laminating Methods 0.000 claims abstract description 5
- 238000009941 weaving Methods 0.000 claims abstract description 5
- 239000004743 Polypropylene Substances 0.000 claims description 15
- 229920001155 polypropylene Polymers 0.000 claims description 15
- 238000002844 melting Methods 0.000 claims description 8
- 230000008018 melting Effects 0.000 claims description 8
- 239000012784 inorganic fiber Substances 0.000 claims description 7
- 244000025254 Cannabis sativa Species 0.000 claims description 6
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 claims description 6
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 claims description 6
- 235000009120 camo Nutrition 0.000 claims description 6
- 235000005607 chanvre indien Nutrition 0.000 claims description 6
- 239000011487 hemp Substances 0.000 claims description 6
- 229920000728 polyester Polymers 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 5
- 239000011347 resin Substances 0.000 claims description 5
- 239000002759 woven fabric Substances 0.000 claims description 4
- 235000011777 Corchorus aestuans Nutrition 0.000 claims description 3
- 235000010862 Corchorus capsularis Nutrition 0.000 claims description 3
- 244000198134 Agave sisalana Species 0.000 claims description 2
- 229920002748 Basalt fiber Polymers 0.000 claims description 2
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 239000004917 carbon fiber Substances 0.000 claims description 2
- 239000003365 glass fiber Substances 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 229920013716 polyethylene resin Polymers 0.000 claims description 2
- 240000000491 Corchorus aestuans Species 0.000 claims 2
- 240000006240 Linum usitatissimum Species 0.000 claims 1
- 235000004431 Linum usitatissimum Nutrition 0.000 claims 1
- 240000000907 Musa textilis Species 0.000 claims 1
- 229910019142 PO4 Inorganic materials 0.000 claims 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 1
- 239000010452 phosphate Substances 0.000 claims 1
- 238000004080 punching Methods 0.000 description 12
- 238000009960 carding Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 5
- 229920002522 Wood fibre Polymers 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 239000002025 wood fiber Substances 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 240000000797 Hibiscus cannabinus Species 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 2
- 239000004312 hexamethylene tetramine Substances 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 101150058502 Acaca gene Proteins 0.000 description 1
- 240000004792 Corchorus capsularis Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011199 continuous fiber reinforced thermoplastic Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/08—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/14—Layered products comprising a layer of metal next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/04—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a layer being specifically extensible by reason of its structure or arrangement, e.g. by reason of the chemical nature of the fibres or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
- B32B9/02—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising animal or vegetable substances, e.g. cork, bamboo, starch
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
- B32B9/04—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B9/047—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material made of fibres or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
- B32B2260/023—Two or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/06—Vegetal fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/103—Metal fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/003—Interior finishings
Landscapes
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Laminated Bodies (AREA)
- Nonwoven Fabrics (AREA)
Abstract
본 발명은 자동차 내장재용 복합패널 및 이의 제조방법에 관한 것으로서, 상기 본 발명의 복합패널은 천연 섬유 및 열가소성 섬유를 포함하는 펠트; 및 연속상의 무기장섬유 및 폴리올레핀 수지를 포함하는 열가소성 연속섬유 직조체;를 포함하고 있는 것을 특징으로 하며, 그 제조방법은 천연 섬유 및 열가소성 섬유로 펠트를 제조하는 제 1 단계; 연속상의 무기장섬유를 폴리올레핀 수지 내에 함침시켜서 열가소성 연속섬유를 제조하는 제 2 단계; 상기 열가소성 연속섬유를 직조하여 열가소성 연속섬유 직조체(WCFT, weaving continuous fiber reinforced thermoplastics)를 제조하는 제 3 단계; 상기 직조체를 상기 펠트의 단면 또는 양면에 적층시키는 제 4 단계;를 포함하는 것을 그 특징으로 한다. 이러한 본 발명은 인장강도, 굴곡강도, 내열성, 내충격성 등 기계적 물성이 우수하면서도 매우 가볍기 때문에 헤드라이닝, 도어트림, 패키지트레이, 커버링셀프, 시트백판넬 등의 자동차 내장재로서 사용하기에 적합하다. The present invention relates to a composite panel for automobile interior materials and a method for manufacturing the same, the composite panel of the present invention is a felt comprising a natural fiber and a thermoplastic fiber; And a continuous thermoplastic fiber woven body comprising a continuous inorganic long fiber and a polyolefin resin. The manufacturing method includes: a first step of preparing a felt from natural fibers and thermoplastic fibers; A second step of preparing a thermoplastic continuous fiber by impregnating a continuous inorganic long fiber in a polyolefin resin; A third step of weaving the thermoplastic continuous fibers to produce a thermoplastic continuous fiber woven body (WCFT); And a fourth step of laminating the woven body on one or both sides of the felt. The present invention is excellent in mechanical properties such as tensile strength, flexural strength, heat resistance, impact resistance, and very light, and thus is suitable for use as automotive interior materials such as headlining, door trim, package tray, covering self, and seat back panel.
자동차 내장재, 천연 섬유, 무기 장섬유, 펠트, 열가소성 연속섬유 직조체 Automotive interior materials, natural fiber, inorganic long fiber, felt, thermoplastic continuous fiber weave
Description
본 발명은 천연 섬유 및 열가소성 섬유를 포함하는 펠트; 및 연속상의 무기장섬유 및 폴리올레핀 수지를 포함하는 열가소성 연속섬유 직조체;를 포함하고 있는 것을 특징으로 자동차 내장재용 복합패널 및 이의 제조방법에 관한 것이다.The present invention is a felt comprising a natural fiber and a thermoplastic fiber; And a continuous thermoplastic fiber woven body comprising a continuous inorganic inorganic fiber and a polyolefin resin. The present invention relates to a composite panel for automobile interior materials and a method of manufacturing the same.
종래의 자동차 내장재의 구조는 마섬유, 면섬유, 화학섬유 등을 일정비율로 혼합한 섬유에 열경화성 페놀수지를 혼합한 레진펠트(Resin Felt);와 목분 또는 목질섬유에 페놀수지를 혼합한 우드화이버(Wood Fiber);이거나, 중간층을 폴리프로필렌 섬유와 마섬유를 일정비율로 혼합한 펠트에 폴리프로필렌 섬유와 폴리에스테르 섬유를 혼합한 펠트를 양측으로 적층시킨 3층 펠트구조; 또는 폴리프로필렌(PP) 섬유와 마섬유를 일정 배합비율로 혼합한 펠트 일면에 폴리프로필렌 기포지를 적층한 복합펠트(HS Felt) 2매를 펠트 면을 맞대어 적층한 4층 복합구조;를 이루고 있는 것이 일반적으로 사용되었다. The structure of a conventional automobile interior material is Resin Felt mixed with thermosetting phenolic resin to fibers mixed with hemp fiber, cotton fiber, chemical fiber, etc., and wood fiber mixed with phenolic resin with wood flour or wood fiber ( Or a three-layer felt structure in which an intermediate layer is laminated on both sides of a felt in which a polypropylene fiber and a hemp fiber are mixed at a predetermined ratio, and a felt in which a polypropylene fiber and a polyester fiber are mixed. Alternatively, a four-layered composite structure in which two sheets of composite felt (HS Felt) in which polypropylene foam paper is laminated on one side of a felt in which polypropylene (PP) fibers and hemp fibers are mixed at a predetermined mixing ratio, is laminated on a felt side. Generally used.
그러나 상기 레진펠트와 우드화이버의 경우, 페놀의 열 경화를 촉진하기 위 해 헥사민이라는 경화제가 첨가되는데 이 헥사민이 분해 반응 시에 아민과 암모니아류의 분해 부산물이 생성되며 이 부산물은 악취 발생 요인으로 환경위생측면에서 인체에 유해하며 또한 분말 페놀수지가 소재 취급과정에서 낙하되어 분진이 발생하여 작업환경이 열악해지는 문제점이 있었다. However, in the case of the resin felt and the wood fiber, a hardening agent called hexamine is added to promote the thermal curing of phenol, and the decomposition product of amine and ammonia is generated during the decomposition reaction of the hexamine, which is a odor generating factor. In terms of environmental hygiene, there is a problem that the working environment is poor due to dust generated by the powder phenol resin falls during the material handling process.
또 다른 종래의 기술인 상기 3층 펠트구조의 경우, 카딩(Carding)을 통해 웹(Web)을 형성한 후 웹을 적층시켜 니들펀칭(Needle-punching) 공정으로 적층된 웹들을 결합시켜 밀집상태의 펠트를 제조하는데, 중간층 펠트와 중간층 펠트의 양면에 적층되는 펠트를 각각 제조하여 3층으로 적층시킨 후 또다시 니들펀칭 공정으로 각각의 펠트를 결합시키게 된다. In another conventional technology of the three-layer felt structure, after forming the web (Web) through the carding (Carding), the web is laminated by combining the laminated webs in the needle-punching process by the needle-punching process To prepare, each of the intermediate layer felt and the felt layer is laminated on both sides of the intermediate layer felt to be laminated in three layers and then to combine the respective felt in the needle punching process.
그리고 종래의 기술로서, 펠트 일면에 PP 기포지를 적층한 복합펠트 2매를 펠트 면을 맞대어 적층한 상기 4층 복합구조의 경우, 전술한 3층 펠트구조와 동일하게 복합펠트를 각각 제조하여 펠트면을 맞대어 적층시킨 후 또다시 니들펀칭 공정으로 각각의 펠트를 결합시키게 된다. 따라서 3층 펠트구조는 총 4번의 니들펀칭 공정이 필요하고 4층 복합구조의 경우 총 3번의 니들펀칭 공정이 필요하기 때문에 제품의 생산속도가 떨어질 뿐만 아니라, 면밀도 1,800 g/m2 이상의 펠트를 제조할 경우, 니들펀칭 스트로크(Stroke)도 길어져야 하고 니들펀칭의 용량도 증가되어야 하므로 장비에 무리가 가거나 공정 밸런스가 맞지 않게 되어 니들이 파손되어 펠트에 잔존하는 문제점이 있었다. 따라서, 자동차 업계에서는 이와 같은 문제점을 해결한 새로운 자동차 내장재에 대한 요구가 증가하고 있는 실정이다.In the conventional technique, in the case of the four-layered composite structure in which two composite felts in which PP bubble paper is laminated on one surface of the felt are laminated with the felt surface, the composite felt is manufactured in the same way as the three-layered felt structure described above. After lamination to each other, the needle punching process is to combine the respective felt. Therefore, the three-layer felt structure requires a total of four needle punching processes and the four-layer composite structure requires three needle punching processes, which not only reduces the production speed but also produces felts with a surface density of more than 1,800 g / m 2. In this case, the needle punching stroke (Stroke) also has to be long and the capacity of the needle punching should be increased, so that the equipment is unreasonable or the process is not balanced, the needle is broken and the felt remains in the felt. Therefore, in the automotive industry, there is an increasing demand for new automotive interior materials that solve such problems.
이에 본 발명자들은 앞서 설명한 기존 자동차 내장재들의 문제점 및 업계의 요구를 해결하고자 노력, 연구한 결과, 연속상의 무기장섬유 및 폴리올레핀 수지를 포함하는 열가소성 연속섬유 직조체를 이용하면, 기존 자동차 내장재 보다 가벼우면서도 우수한 기계적 물성을 갖는 복합판넬의 제조가 가능함을 알게 되어 본 발명을 완성하게 되었다.Accordingly, the present inventors endeavor to solve the problems and industry demands of the existing automotive interior materials described above, using a thermoplastic continuous fiber woven fabric containing a continuous inorganic fiber and polyolefin resin, it is lighter than conventional automotive interior materials The present invention was completed by finding that it is possible to manufacture a composite panel having excellent mechanical properties.
상기 과제를 해결하기 위한 본 발명의 자동차 내장재용 복합판넬은 Composite panel for automobile interior of the present invention for solving the above problems
천연 섬유 및 열가소성 섬유를 포함하는 펠트; 및 연속상의 무기장섬유 및 폴리올레핀 수지를 포함하는 열가소성 연속섬유 직조체;를 포함하고 있는 것을 특징으로 한다.Felts, including natural fibers and thermoplastic fibers; And a thermoplastic continuous fiber woven body comprising a continuous inorganic long fiber and a polyolefin resin.
또한, 상기 본 발명의 복합판넬의 제조방법은 In addition, the manufacturing method of the composite panel of the present invention
천연 섬유 및 열가소성 섬유로 펠트를 제조하는 제 1 단계; 연속상의 무기장섬유를 폴리올레핀 수지 내에 함침시켜서 열가소성 연속섬유를 제조하는 제 2 단계; 상기 열가소성 연속섬유를 직조하여 열가소성 연속섬유 직조체(WCFT, weaving continuous fiber reinforced thermoplastics)를 제조하는 제 3 단계; 상기 직조체를 상기 펠트의 단면 또는 양면에 적층시키는 제 4 단계;를 포함하는 것을 특징으로 한다.A first step of making felt from natural fibers and thermoplastic fibers; A second step of preparing a thermoplastic continuous fiber by impregnating a continuous inorganic long fiber in a polyolefin resin; A third step of weaving the thermoplastic continuous fibers to produce a thermoplastic continuous fiber woven body (WCFT); And a fourth step of laminating the woven body on one or both sides of the felt.
이러한 본 발명은 인장강도, 굴곡강도, 내열성, 내충격성 등 기계적 물성이 우수하면서도 생산성 향상 및 경량화가 가능하기 때문에 엔진의 연비 향상, 배기가스를 저감의 부가적 효과도 얻을 수 있다.The present invention is excellent in mechanical properties such as tensile strength, flexural strength, heat resistance, impact resistance, while improving productivity and weight can be obtained, and thus, additional effects of improving engine fuel efficiency and reducing exhaust gas can be obtained.
앞서 설명한 본 발명을 하기에서 자세하게 설명을 하겠다.The present invention described above will be described in detail below.
본 발명의 자동차 내장재용 복합판넬은 Composite panel for automobile interior of the present invention
천연 섬유 및 열가소성 섬유를 포함하는 펠트; 및 Felts, including natural fibers and thermoplastic fibers; And
연속상의 무기장섬유 및 폴리올레핀 수지를 포함하는 열가소성 연속섬유 직조체;를 포함하여 이루어진다.It comprises a; continuous continuous fiber woven fabric comprising inorganic long fibers and polyolefin resin.
본 발명을 구조적으로 설명을 하면, 본 발명의 자동차 내장재용 복합판넬은 상기 펠트의 단면 또는 양면에 상기 열가소성 연속섬유 직조체를 적층시킨 구조를 갖으며, 이러한 본 발명의 분해 사시도를 도 1 및 도 2에 나타내었다.In the structural description of the present invention, the composite panel for automobile interior of the present invention has a structure in which the thermoplastic continuous fiber woven body is laminated on one side or both sides of the felt, the exploded perspective view of the present invention as shown in Figs. 2 is shown.
그리고 본 발명은 And the present invention
천연 섬유 40 ~ 60 중량% 및 열가소성 섬유 40 ~ 60 중량%를 포함하는 펠트; 및 Felt comprising 40 to 60% by weight of natural fibers and 40 to 60% by weight of thermoplastic fibers; And
연속상의 무기장섬유 30 ~ 50 중량% 및 폴리올레핀 수지 50 ~ 70 중량%를 포함하는 열가소성 연속섬유 직조체(WCFT, weaving continuous fiber reinforced thermoplastics);를 포함하고 있는 것을 특징으로 하며, 이하에서는 본 발명의 조성물질들에 대하여 더욱 자세하게 설명을 하겠다.Weaving continuous fiber reinforced thermoplastics (WCFT) comprising 30 to 50% by weight of continuous inorganic inorganic fibers and 50 to 70% by weight of polyolefin resin, characterized in that it comprises the following, The compositions will be described in more detail.
펠트felt
본 발명에 있어서, 복합패널의 강도와 내충격성을 담당하는 상기 펠트는 천연 섬유 40 ~ 60 중량% 및 열가소성 섬유 40 ~ 60 중량%를 포함하고 있는데, 여기서 상기 천연 섬유는 복합패널의 강도를 증가시키는 보강섬유 역할을 하는데, 천연섬유가 펠트 전체 중량에 대하여 40 중량% 미만이면 복합패널의 보강섬유의 부족으로 강도가 저하되는 문제가 발생할 수 있고, 60 중량% 초과시 천연 섬유들을 결속하는 바인더 역할을 하는 열가소성 섬유의 부족으로 복합패널 성형 시 천연 섬유들간의 결합력 부족으로 인하여 복합패널의 강도가 저하되는 문제가 발생할 수 있으므로 상기 범위 내에서 사용하는 것이 좋다. 이러한, 상기 펠트는 평균면밀도 600 g/m2 ~ 1,400 g/m2 인 것을 특징으로 하는데, 상기 펠트의 평균면밀도가 600 g/m2 미만이면 일정 두께 이상을 갖는 펠트를 구현하는데 어려움이 있고, 1,400 g/m2 초과한 것을 사용하면 펠트 단면 또는 양면에 열가소성 연속섬유 직조체의 보강이 이루어진 복합패널의 무게가 증가되는 단점뿐만 아니라 복합패널의 중량 저감을 위해 열가소성 연속섬유 직조체의 중량을 감소시키게 되고 보강 효과 또한 감소되므로 상기 범위 내의 면밀도를 갖는 펠트를 사용하는 것이 좋다.In the present invention, the felt which is responsible for the strength and impact resistance of the composite panel comprises 40 to 60% by weight of natural fibers and 40 to 60% by weight of thermoplastic fibers, wherein the natural fibers to increase the strength of the composite panel When the natural fiber is less than 40% by weight relative to the total weight of the felt, the strength may be reduced due to the lack of the reinforcing fiber of the composite panel, and when more than 60% by weight, the natural fiber acts as a binder to bind the natural fibers. When the composite panel is formed due to the lack of thermoplastic fibers, the strength of the composite panel may be lowered due to the lack of bonding strength between the natural fibers. Such, the felt has an average surface density of 600 g / m 2 ~ 1,400 g / m 2 Characterized in that, if the average surface density of the felt is less than 600 g / m 2 It is difficult to implement a felt having a predetermined thickness or more, 1,400 g / m 2 In addition to the use of the excess, the weight of the composite panel, which is reinforced with the thermoplastic continuous fiber weave on one or both sides of the felt, increases the weight of the thermoplastic continuous fiber weave to reduce the weight of the composite panel, and also the reinforcing effect It is preferable to use felt having a surface density within the above range since it is reduced.
상기 천연 섬유는 아마(Flax), 저마(Ramie), 대마(Hemp), 황마(Jute), 및 양마(Kenaf) 등 중에서 선택된 단종 또는 2 종 이상의 식물성 인피 섬유(Bast Fiber); 및 아바카(Abaca), 사이잘(Sisal) 및 헤네켄(Henequen) 등 중에서 선택된 단종 또는 2 종 이상의 식물성 엽맥 섬유(Leaf Fiber); 중에서 선택된 단종 또는 2 종 이상 천연 섬유를 사용하는 것이 바람직하다. 그리고 상기 천연 섬유는 섬도 20 ~ 80 ㎛, 길이 50 ~ 80 ㎜인 것을 사용하는 것이 좋은데, 여기서, 상기 천연 섬유의 섬도가 20 ㎛ 미만인 것을 사용하면 열가소성 섬유와의 결합력이 증가하여 강도가 증가하는 장점이 있지만, 천연 섬유를 20 ㎛ 미만으로 제작하기 위해 물리적 방법으로 천연 섬유를 분리하거나, 화학적 방법으로 표면을 개질하는 추가작업으로 인하여 생산성 저하와 가격의 상승을 초래하는 문제가 발생할 수 있고, 80 ㎛ 초과하는 것을 사용하면 펠트를 제조하는 카딩 공정에서 천연 섬유가 실린더에 박혀 생산성이 저하되거나 니들펀칭 공정에서 바늘이 부서지는 문제가 발생할 수 있으며, 천연 섬유의 길이가 50 ㎜ 미만인 것을 사용하면 펠트를 제조하는 카딩 공정에서 분진이 발생하여 열악한 작업 환경을 초래할 수 있고, 80 ㎜ 초과하는 것을 사용하면 펠트를 제조하는 카딩 공정에서 실린더에 천연 섬유가 감기게 되어 생산성이 저하되는 문제가 발생할 수 있는 바, 상기 범위 내의 섬도와 길이를 갖는 천연 섬유를 사용하는 것이 좋다.The natural fiber may be selected from the group consisting of Flax, Ramie, Hemp, Jute, and Kenaf, or two or more kinds of vegetable bast fibers (Bast Fiber); And single or two or more vegetable leaf vein fibers selected from Acaca, Sisal, Henkenn and the like; It is preferable to use single or 2 or more types of natural fibers selected from among them. And the natural fiber is good to use a fineness of 20 ~ 80 ㎛, 50 ~ 80 ㎜ length, where the fineness of the natural fiber is less than 20 ㎛ advantage that the strength to increase the bonding strength with the thermoplastic fiber increases However, due to the additional work of separating the natural fibers by physical methods or modifying the surface by chemical methods to produce the natural fibers to less than 20 ㎛, there may be a problem that leads to a decrease in productivity and an increase in price, 80 ㎛ If the excess is used, the natural fiber may be embedded in the cylinder in the carding process for producing the felt, and the productivity may be reduced, or the needle may be broken in the needle punching process. If the length of the natural fiber is less than 50 mm, the felt may be manufactured. Dust may be generated in the carding process, resulting in a poor working environment, exceeding 80 mm When a good idea to use natural fibers having a fineness and a length in the bar which can cause problems with the cylinder in the carding process for producing a felt of natural fibers which is wound decreases the productivity, the scope used.
상기 열가소성 섬유는 상기 천연 섬유와 혼섬되어 본 발명의 복합패널을 예열하는 과정에서 용융되며, 용융된 열가소성 섬유는 천연 섬유들 사이에 스며들어 냉각과정을 거치면 천연 섬유들 사이에서 경화되어, 천연 섬유들을 결속하는 바인더 역할과 복합패널의 성형성을 부여하는 역할을 한다. 이러한 상기 열가소성 섬유는 섬도는 3 ~ 15 de, 길이가 50 ~ 80 mm이며 크림프(Crimp)가 부여된 것을 사 용할 수 있다. 그리고 상기 열가소성 섬유는 폴리프로필렌 섬유, 폴리에틸렌 섬유 및 170℃ ~ 200℃의 저융점을 갖는 저융점 폴리에스테르 섬유 중에서 선택된 단종 또는 2 종 이상의 열가소성 수지를 사용하는 것이 바람직하다. 여기서, 상기 열가소성 섬유의 섬도가 3 de 미만인 것을 사용하면 섬도가 가늘기 때문에 펠트를 제조하는 카딩 공정에서 열가소성 섬유의 분산이 원활히 이뤄지지 않아 뭉침 현상이 발생할 수 있고, 15 de 초과하는 것을 사용하면 펠트를 제조하는 카딩 공정에서 천연 섬유가 실린더에 박히거나 생산되는 웹의 중량이 감소하여 생산성이 저하되는 문제가 발생할 수 있으며, 상기 열가소성 섬유의 길이가 50 ㎜ 미만인 것을 사용하면 펠트를 제조하는 카딩 공정에서 분진이 발생하여 열악한 작업 환경을 초래할 수 있고, 80 ㎜ 초과하는 것을 사용하면 펠트를 제조하는 카딩 공정에서 실린더에 천연 섬유가 감기게 되어 생산성이 저하되는 문제가 발생할 수 있는 바, 상기 범위 내의 섬도와 길이를 갖는 열가소성 수지 섬유를 사용하는 것이 좋다. 또한, 복합패널 성형 시 열간 프레스에서 복합패널에 전달되는 열이 220℃를 초과할 경우 천연 섬유의 탄화가 발생하기 쉬운 문제점이 있는데, 일반적인 폴리에스테르 섬유를 사용할 경우 융점이 240℃ ~ 260℃이기 때문에 복합패널을 제조하는데 사용하기엔 문제점이 있는 바, 상기 폴리에스테르 섬유는 저융점을 갖는 저융점 폴리에스테르를 사용하는 것이 좋다.The thermoplastic fibers are mixed with the natural fibers and melted during the preheating of the composite panel of the present invention, and the molten thermoplastic fibers are sintered between the natural fibers and cured between the natural fibers when the cooling process is performed. It serves to bind the binder and gives the moldability of the composite panel. Such thermoplastic fibers may have a fineness of 3 to 15 de, a length of 50 to 80 mm, and a crimp. In addition, the thermoplastic fiber is preferably a polypropylene fiber, a polyethylene fiber and a low melting point polyester fiber having a low melting point of 170 ° C to 200 ° C. Here, since the fineness of the thermoplastic fiber is less than 3 de, the fineness of the thermoplastic fiber is thin, and thus, in the carding process for producing the felt, the dispersion of the thermoplastic fiber may not be performed smoothly, and agglomeration may occur. In the carding process to produce a natural fiber is embedded in the cylinder or the weight of the web produced is reduced, there may be a problem that the productivity is lowered. If the length of the thermoplastic fiber is used less than 50 mm dust in the carding process for producing the felt This may result in a poor working environment, and the use of more than 80 mm may cause natural fibers to be wound around the cylinder in the carding process for producing felt, which may cause a problem of reduced productivity. It is preferable to use thermoplastic resin fibers having In addition, when the heat transmitted from the hot press to the composite panel when forming the composite panel exceeds 220 ℃, there is a problem that carbonization of natural fibers easily occurs, since the melting point is 240 ℃ ~ 260 ℃ when using general polyester fibers There is a problem to use to prepare a composite panel, the polyester fiber is preferably used a low melting point polyester having a low melting point.
열가소성 연속섬유 직조체Thermoplastic Continuous Fiber Weave
본 발명의 성분 중 하나인 상기 열가소성 연속섬유 직조체는 연속상의 무기장섬유 30 ~ 50 중량% 및 폴리올레핀 수지 50 ~ 70 중량%를 포함하고 있는데, 여기 서, 상기 무기장섬유가 30 중량% 미만이면 물성 보강 효과가 떨어지게 되는 문제가 발생할 수 있고, 50 중량% 초과시 폴리올레핀 수지에 완전 함침이 어렵게 되는 문제가 발생할 수 있으며, 상기 폴리올레핀 수지의 사용량은 무기장섬유의 사용량에 의해서 상대적으로 정해진다. 이러한, 상기 열가소성 연속섬유 직조체는 평균면밀도 200 ~ 1,000 g/m2 인 것을 특징으로 하는데, 여기서, 평균면밀도가 200 g/m2 미만인 것을 사용하면 열가소성 연속섬유 직조체의 보강 효과가 감소되는 문제가 발생할 수 있고, 1,000 g/m2 초과하는 것을 사용하면 면밀도의 경우 복합패널의 중량이 증가되는 단점뿐만 아니라 복합패널의 중량 저감을 위해 펠트의 중량을 감소시키게 되어 일정 두께 이상의 제품 형상을 구현하는데 어려움이 있으므로 상기 범위 내의 면밀도를 갖는 것을 사용하는 것이 좋다.The thermoplastic continuous fiber woven body, which is one of the components of the present invention, includes 30 to 50% by weight of continuous long inorganic fiber and 50 to 70% by weight of polyolefin resin, where the inorganic long fiber is less than 30% by weight Problems may occur that the physical reinforcing effect is lowered, and when more than 50% by weight, it may be difficult to completely impregnate the polyolefin resin, the amount of the polyolefin resin is relatively determined by the amount of inorganic long fibers. The thermoplastic continuous fiber woven body is characterized in that the average surface density of 200 ~ 1,000 g / m 2 , where the average surface density of 200 Using less than g / m 2 may cause a problem that the reinforcing effect of the thermoplastic continuous fiber weave is reduced, 1,000 If the g / m 2 or more is used, the surface density increases the weight of the composite panel as well as reduces the weight of the felt to reduce the weight of the composite panel. It is better to use one having a surface density.
상기 무기장섬유는 열가소성 연속섬유 직조체의 물성을 증가시키는 역할을 하며 유리 섬유, 바살트(Basalt) 섬유, 탄소 섬유 및 금속 섬유 중에서 선택된 단종 또는 2 종 이상의 고강도 섬유를 사용할 수 있다. 이러한, 상기 무기장섬유는 섬도 8 ~ 20 ㎛인 연속섬유(filament)로서, 무기장섬유의 섬도가 8 ㎛ 미만의 경우 무기장섬유 생산성 저하로 인한 가격 상승이 초래될 가능성이 있을 뿐만 아니라 열가소성 연속섬유 제조 시 끊어진 무기장섬유가 피부나 호흡기를 통하여 침투가 발생할 가능성이 높아 열악한 작업 환경을 초래할 수 있고, 20 ㎛ 초과하는 것을 사용하면 열가소성 연속섬유 제조 시 폴리올레핀 수지에 완전 함침하여 제조하기 어려운 바, 상기 범위 내의 섬도를 갖는 것을 사용하는 것이 바람직하다.The inorganic long fiber serves to increase the physical properties of the thermoplastic continuous fiber woven body, and may use a single type or two or more types of high strength fibers selected from glass fibers, Basalt fibers, carbon fibers, and metal fibers. The inorganic long fiber is a continuous fiber having a fineness of 8 to 20 μm, and when the fineness of the inorganic long fiber is less than 8 μm, there is a possibility that a price increase may be caused due to a decrease in productivity of the inorganic long fiber. In the manufacture of fibers, the broken inorganic fiber is likely to penetrate through the skin or respiratory organs, which may result in a poor working environment. It is preferable to use what has a fineness in the said range.
상기 폴리올레핀 수지는 본 발명의 복합패널 성형 시 열가소성 연속섬유 직조체와 펠트를 결합시키는 기능 및 복합패널의 성형성을 부여하는 역할을 수행한다. 여기서, 복합패널 성형 시 열간 프레스에서 복합패널에 전달되는 열이 일반적으로 180℃ ~ 220℃이므로, 상기 폴리올레핀 수지는 용융 온도가 130℃ 내외인 폴리에틸렌 수지 및 165℃ 내외인 폴리프로필렌 수지 중에서 선택된 하나를 사용하는 것이 좋다. The polyolefin resin serves to bond the thermoplastic continuous fiber woven body and the felt and the moldability of the composite panel when forming the composite panel of the present invention. Here, since the heat transmitted to the composite panel in the hot press during the molding of the composite panel is generally 180 ° C. to 220 ° C., the polyolefin resin is selected from a polyethylene resin having a melting temperature of about 130 ° C. and a polypropylene resin of about 165 ° C. It is good to use.
본 발명의 복합판넬의 제조방법은 Method for producing a composite panel of the present invention
천연 섬유 및 열가소성 섬유로 펠트를 제조하는 제 1 단계; 연속상의 무기장섬유를 폴리올레핀 수지 내에 함침시켜서 열가소성 연속섬유를 제조하는 제 2 단계; 상기 열가소성 연속섬유를 직조하여 열가소성 연속섬유 직조체(WCFT, weaving continuous fiber reinforced thermoplastics)를 제조하는 제 3 단계; 상기 직조체를 상기 펠트의 단면 또는 양면에 적층시키는 제 4 단계;를 포함하는 것을 특징으로 한다.A first step of making felt from natural fibers and thermoplastic fibers; A second step of preparing a thermoplastic continuous fiber by impregnating a continuous inorganic long fiber in a polyolefin resin; A third step of weaving the thermoplastic continuous fibers to produce a thermoplastic continuous fiber woven body (WCFT); And a fourth step of laminating the woven body on one or both sides of the felt.
이하에서는 본 발명을 실시예에 의거하여 더욱 상세하게 설명을 하겠다. 그러나, 본 발명의 권리범위가 하기 실시예에 의해서 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited by the following examples.
자동차 내장재용 복합패널의 제조Manufacture of composite panel for automobile interior
실시예 1 Example 1
섬도 20 ~ 30 μm, 길이 80 mm인 양마 섬유 50 중량% 및 섬도 6 de, 길이 64 mm를 갖는 크림프가 부여된 폴리프로필렌 섬유 50 중량%을 혼섬하여 카딩 공정을 통하여 웹을 형성한 후, 형성된 웹을 적층하여 니들펀칭 공정을 통하여 평균면밀도 1100 g/m2의 펠트를 제조하였다. 50% by weight of wool fibers having a fineness of 20 to 30 μm and a length of 80 mm and 50% by weight of a crimped polypropylene fiber having a fineness of 6 de and a length of 64 mm were formed to form a web through a carding process, and then formed a web. Was laminated to produce a felt having an average surface density of 1100 g / m 2 through a needle punching process.
섬도 12 μm인 유리 장섬유(40 중량%)를 폴리프로필렌 수지(60중량%)에 함침시켜서 면밀도 550 g/m2의 열가소성 연속섬유 직조체를 제조하였다.A glass continuous fiber (40 wt%) having a fineness of 12 μm was impregnated into a polypropylene resin (60 wt%) to prepare a thermoplastic continuous fiber woven fabric having a surface density of 550 g / m 2 .
상기 펠트의 단면에 상기 열가소성 연속섬유 직조체를 적층신킨 후, 240℃로 조정된 열간 프레스에서 90초 동안 가압가열을 한 후, 냉각 프레스에서 60초 동안 가압냉각하여 두께 2.5 mm의 복합패널을 제작하였다. After laminating and stretching the thermoplastic continuous fiber woven body on the cross section of the felt, pressurized heating was performed for 90 seconds in a hot press adjusted to 240 ° C., and pressurized cooling for 60 seconds in a cold press to produce a composite panel having a thickness of 2.5 mm. It was.
실시예 2 ~ 6Examples 2-6
실시예 1과 동일하게 실시하되, 면밀도 1,000 g/m2인 열가소성 연속섬유 직조체를 상기 펠트의 단면에 적층시켜서 두께 2.5 mm의 복합패널을 제작하여 실시예 2를 실시하였다. Example 2 was carried out in the same manner as in Example 1, but a composite panel having a surface density of 1,000 g / m 2 was laminated on the cross section of the felt to prepare a composite panel having a thickness of 2.5 mm, and Example 2 was carried out.
실시예 3은 실시예 1과 동일하게 실시하되, 상기 열가소성 연속섬유를 상기 펠트의 양면에 적층시켜서 두께 2.5 mm의 복합패널을 제작하였다.Example 3 was carried out in the same manner as in Example 1, wherein the thermoplastic continuous fibers were laminated on both sides of the felt to prepare a composite panel having a thickness of 2.5 mm.
그리고, 실시예 4는 실시예 1과 동일하게 실시하되, 두께 3.5 mm의 복합패널을 제작하였다.And, Example 4 was carried out in the same manner as in Example 1, a composite panel having a thickness of 3.5 mm was prepared.
실시예 5는 실시예 2와 동일하게 그리고 실시예 6은 실시예 3과 동일하게 실시하여, 두께 3.5 mm의 복합패널을 제작하였다. Example 5 was carried out in the same manner as in Example 2 and Example 6 in the same manner as in Example 3 to produce a composite panel having a thickness of 3.5 mm.
종래 자동차 내장재용 복합패널의 제조Manufacturing of composite panel for automobile interior
비교예 1 ~ 비교예 2Comparative Example 1 to Comparative Example 2
섬도 20~30 μm, 길이 80 mm인 양마(Kenaf) 섬유 50 중량%와 섬도가 6 de이고 길이가 64 mm인 크림프가 부여된 폴리프로필렌(PP) 섬유 50 중량%을 혼섬하여 카딩 공정을 통하여 웹을 형성한 후 형성된 웹을 면밀도 50 g/m2의 폴리프로필렌 기포지 상부에 적층하여 니들펀칭 공정을 통하여 면밀도 1150 g/m2의 복합펠트(HS Felt) 2매를 제조하였다. 그리고 제조된 복합펠트 2매를 펠트면을 맞대어 적층하여 니들펀칭 공정으로 복합펠트 2매를 결속시켜 240℃로 조정된 열간 프레스에서 90초 동안 가압가열을 한 후 냉각 프레스에서 60초 동안 가압냉각하여 두께 2.5 mm와 3.5 mm의 복합패널을 각각 제작하여 비교예 1과 비교예 2를 실시하였다. 50% by weight of Kenaf fibers with a fineness of 20 to 30 μm and 80 mm in length and 50% by weight of polypropylene (PP) fibers impregnated with a crimp of 6 de and 64 mm in length, through the carding process After forming the formed web was laminated on top of a polypropylene bubble paper having a surface density of 50 g / m 2 to prepare two composite felt (HS Felt) with a surface density of 1150 g / m 2 through a needle punching process. Then, the two composite felt sheets were laminated to each other with a felt surface, and the two composite felts were bound by a needle punching process, and heated under pressure in a hot press adjusted to 240 ° C. for 90 seconds, and then pressure-cooled in a cold press for 60 seconds. 2.5 mm and 3.5 mm composite panels were produced, respectively, and Comparative Example 1 and Comparative Example 2 were carried out.
실험예Experimental Example
물성평가실험Property evaluation experiment
상기 실시예 1 ~ 7 및 비교예 1 ~ 2에서 제조한 복합패널을 하기 표 1에 표시된 방법으로 인장강도, 굴곡강도, 굴곡탄성율 및 초기기울기를 측정하였으며, 그 결과는 하기 표 2에 나타내었다.The composite panels prepared in Examples 1 to 7 and Comparative Examples 1 to 2 were measured in the tensile strength, flexural strength, flexural modulus and initial slope by the method shown in Table 1 below, the results are shown in Table 2 below.
상기 표 2의 실험결과를 살펴보면, 본 발명의 자동차 내장재용 복합패널이 기존의 자동차 내장재 복합패널 보다 인장강도, 굴곡강도 등의 기계적 물성이 매우 우수한 것을 확인할 수 있다. 이러한 효과를 갖는 본 발명의 복합패널은 헤드라이닝, 도어트림, 패키지트레이, 커버링셀프, 시트백판넬 등의 자동차 내장재로 사용하기에 매우 적합하다.Looking at the experimental results of Table 2, it can be confirmed that the composite panel for automobile interior of the present invention is very excellent mechanical properties, such as tensile strength, flexural strength than the conventional automotive interior composite panel. The composite panel of the present invention having such an effect is very suitable for use as automotive interior materials such as headlining, door trim, package tray, covering self, seat back panel and the like.
도 1은 본 발명에 따른 단면에 열가소성 연속섬유 직조체가 형성된 자동차 내장재용 복합패널의 분해 사시도이다. 1 is an exploded perspective view of a composite panel for automobile interiors in which a thermoplastic continuous fiber woven body is formed in a cross section according to the present invention.
도 2는 본 발명에 따른 양면에 열가소성 연속섬유 직조체가 형성된 자동차 내장재용 복합패널의 분해 사시도이다. Figure 2 is an exploded perspective view of a composite panel for automobile interiors formed with thermoplastic continuous fiber woven body on both sides according to the present invention.
도 3은 본 발명에 따른 천연 섬유와 열가소성 섬유를 혼합하여 이루어진 펠트 사진이다. 3 is a felt picture made by mixing a natural fiber and a thermoplastic fiber according to the present invention.
도 4는 본 발명에 따른 열가소성 연속섬유 직조체의 사진이다. Figure 4 is a photograph of a thermoplastic continuous fiber woven body according to the present invention.
***도면의 주요 부분의 설명*** *** Description of the main parts of the drawings ***
10 ; 펠트 10; felt
20 ; 열가소성 연속섬유 직조체 20; Thermoplastic Continuous Fiber Weave
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080110048A KR101054752B1 (en) | 2008-11-06 | 2008-11-06 | Composite panel for automobile interior and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080110048A KR101054752B1 (en) | 2008-11-06 | 2008-11-06 | Composite panel for automobile interior and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100050924A KR20100050924A (en) | 2010-05-14 |
KR101054752B1 true KR101054752B1 (en) | 2011-08-05 |
Family
ID=42276851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080110048A KR101054752B1 (en) | 2008-11-06 | 2008-11-06 | Composite panel for automobile interior and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101054752B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102294294B1 (en) * | 2020-11-17 | 2021-08-27 | 엔브이에이치코리아(주) | Manufacturing method of antibacterial mobilephone case |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101896624B1 (en) * | 2016-09-30 | 2018-09-07 | 주식회사 서연이화 | Multilayer structure for a vehicle ceiling material and method for manufacturing same |
KR102443335B1 (en) * | 2017-11-06 | 2022-09-15 | 현대자동차주식회사 | Interior decoration material for vehicle having metallic effect |
KR102310431B1 (en) * | 2019-10-28 | 2021-10-12 | 주식회사 서연이화 | Composite material and manufacturing method for the same and manufacturing method of multi-layer structure for using the same |
KR102396230B1 (en) * | 2020-08-27 | 2022-05-10 | 주식회사 애니켐 | Lightweight, low-carbon, eco-friendly molded product made of hollow natural fiber reinforced thermoplastic resin composite |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR900002175B1 (en) * | 1987-07-23 | 1990-04-02 | 주식회사 코오롱 | Process pf preparing complex material from carbon fiber and thermo plastic elastomer |
KR100540360B1 (en) * | 2002-06-05 | 2006-01-10 | 동진이공(주) | Method of manufacturing interior sheet for an automobile using a kenaf and an interior sheet of the same |
-
2008
- 2008-11-06 KR KR1020080110048A patent/KR101054752B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR900002175B1 (en) * | 1987-07-23 | 1990-04-02 | 주식회사 코오롱 | Process pf preparing complex material from carbon fiber and thermo plastic elastomer |
KR100540360B1 (en) * | 2002-06-05 | 2006-01-10 | 동진이공(주) | Method of manufacturing interior sheet for an automobile using a kenaf and an interior sheet of the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102294294B1 (en) * | 2020-11-17 | 2021-08-27 | 엔브이에이치코리아(주) | Manufacturing method of antibacterial mobilephone case |
WO2022108138A1 (en) * | 2020-11-17 | 2022-05-27 | 엔브이에이치코리아(주) | Method for molding sound-absorbing material for automobile |
Also Published As
Publication number | Publication date |
---|---|
KR20100050924A (en) | 2010-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7201579B2 (en) | planar composite | |
JP5028280B2 (en) | Lightweight composite plate material for automotive inner parts | |
US10364368B2 (en) | Articles including high melt flow index resins | |
KR101279522B1 (en) | Natural fiber reinforced composite board for vehicle headliner of multi-layers structure using thermoplastic matrix fibers of high crystalline and bonding to improve heat resistance and strength, and method for preparing the board | |
US20090155522A1 (en) | Lightweight thermoplastic composite including bi-directional fiber tapes | |
KR101923379B1 (en) | Porous fiber reinforced composite material and method for preparing the same | |
KR101233813B1 (en) | Thermoplastic organic fiber, method for preparing the same, fiber composite board using the same and method for preparing the board | |
KR101054752B1 (en) | Composite panel for automobile interior and its manufacturing method | |
AU2013356368B2 (en) | Articles including untwisted fibers and methods of using them | |
JP2017128705A (en) | Carbon fiber sheet material, prepreg, laminate, molded body and method for manufacturing them | |
KR101357018B1 (en) | Manufacturing process of multi-component nonwoven fabric felt with lightness and high-strength | |
KR102165529B1 (en) | Moldable nonwoven having high strength to weight ratio for structural components and method of construction thereof | |
KR101601861B1 (en) | Layered felt for car interior substrate and method of producing the same | |
KR101143514B1 (en) | Manufacturing method of composite panel for automobile interior | |
US20050250403A1 (en) | Mat made from natural fibres and glass | |
US20240116269A1 (en) | Nonwoven laminate | |
KR20190040597A (en) | Headliner cover for vehicle and method thereof | |
KR101986999B1 (en) | Composite material for vehicle | |
EP3917746A1 (en) | Lightweight reinforced thermoplastic composite articles including bicomponent fibers | |
KR20240159520A (en) | Nonwoven laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20140610 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20150623 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20160729 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20180625 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20190729 Year of fee payment: 9 |